	TEST REP	URI		
FCC ID :	2BE6N-W150			
Test Report No:	TCT240418E009	(č		
Date of issue:	Apr. 29, 2024	C		
Testing laboratory: :	SHENZHEN TONGCE T	ESTING LAB		
Testing location/ address:	2101 & 2201, Zhenchang Fuhai Subdistrict, Bao'an 518103, People's Repub	District, Shenzh		
Applicant's name: :	GIRAFIT INC			
Address:	21642 GOLDEN POPPY States	COURT, WALN	UT, CA 91749	, United
Manufacturer's name :	GIRAFIT INC			
Address:	21642 GOLDEN POPPY States			Jnited
Standard(s):	FCC CFR Title 47 Part 13 FCC KDB 558074 D01 1 ANSI C63.10:2013			
Product Name::	W150 Window Camera			
Trade Mark:	N/A			
Model/Type reference:	GRF-W150W			
Rating(s):	Adapter Information: Model: SA0101-0501000 Input: AC 100–240V, 50/ Output: DC 5.0V, 1.0A, 5	60Hz, 0.35A Ma	x	
Date of receipt of test item	Apr. 18, 2024			
Date (s) of performance of test:	Apr. 18, 2024 ~ Apr. 29, 1	2024		
Tested by (+signature) :	Yannie ZHONG	Yannik	2 TONECE TE	
Check by (+signature) :	Beryl ZHAO	Bart	THE TOT	
Approved by (+signature):	Tomsin	() Jom	The By	

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1	General Pr							
	1.1. EUT des	cription		<u>(</u> ())				3
	1.2. Model(s)	list						3
	1.3. Operation	on Frequenc	y					4
2.	Test Resul	t Summary	/		<u>(6)</u>		<u>(6</u>)	5
3.	General Inf							
	3.1. Test env	rironment an	nd mode					6
	3.2. Descript	ion of Supp	ort Units.					7
4.	Facilities a							
	4.1. Facilities	S						8
	4.2. Location	1						8
	4.3. Measure							
5.	Test Resul	ts and Mea	asureme	ent Data .				9
	5.1. Antenna	requiremen	t					9
	5.2. Conduct							
	5.3. Maximur	m Conducte	d (Peak) (wer			14
	5.4. Emission							
	5.5. Power S	pectral Dens	sity					16
	5.6. Conduct	ed Band Ed	ge and S	purious Er	nission M	leasureme	nt	17
	5.7. Radiated	l Spurious E	mission	Measurem	ent			19
Ap	opendix A: 7	Fest Resul	t of Con	ducted T	est			
Ap	opendix B: I	Photograp	hs of Te	est Setup				
A	opendix C: I	Photograp	hs of El	JT				
		$\langle \mathcal{C} \rangle$						

1. General Product Information

1.1. EUT description

Product Name:	W150 Window Camera
Model/Type reference:	GRF-W150W
Sample Number	TCT240418E008-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)/802.11ax(HT20)) 2422MHz~2452MHz (802.11n(HT40)/802.11ax(HT40))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)/802.11ax(HT20) 7 for 802.11n(HT40)/802.11ax(HT40)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing(OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	Metal Antenna
Antenna Gain:	2.35dBi
Rating(s):	Adapter Information: Model: SA0101-0501000UA Input: AC 100–240V, 50/60Hz, 0.35A Max Output: DC 5.0V, 1.0A, 5.0W

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 98

1.3. Operation Frequency

For 802.11b/g/n(HT20)/ax(HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
~	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

For 802.11n (HT40)/ax(HT40)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
G`)	(5)5	2432MHz	8	2447MHz	G`)	(20
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)/802.11ax (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (HT40)/802.11ax (HT40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Page 5 of 98

3. General Information

3.1. Test environment and mode

Condition	Conducted Emission	Radiated Emission
Temperature:	23.6 °C	24.9 °C
Humidity:	56 % RH	51 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	SSCOM V5.13.1	
Power Level:	10	
Test Mode:		
Engineer mode:	Keep the EUT in continuous channel and modulations with the second secon	• •
above the ground plane of 3 polarities were performed. In the EUT continuously workin axis (X, Y & Z) and con manipulating interconnectin from 1m to 4m in both	8m & 1.5m for the measure on chamber. Measurements in During the test, each emission ng, investigated all operating usidered typical configuration g cables, rotating the turnta horizontal and vertical po vn in Test Results of the follow	n both horizontal and vertical n was maximized by: having g modes, rotated about all 3 n to obtain worst position, ble, varying antenna height larizations. The emissions

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

S)	Mode	Data rate
	802.11b	1Mbps
	802.11g	6Mbps
	802.11n(H20)	6.5Mbps
	802.11n(HT40)	13.5Mbps
	802.11ax(HT20)	6.5Mbps
Ś	802.11ax(HT40)	13.5Mbps

Page 6 of 98

TCT 通测检测 TCT 通测检测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1	1	
$(\mathbf{z}\mathbf{G})$	20		(`)	$(\mathbf{z}\mathbf{G})$

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB
 - CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is metal antenna which permanently attached, and the best case gain of the antenna is 2.35dBi.

5.2. Conducted Emission

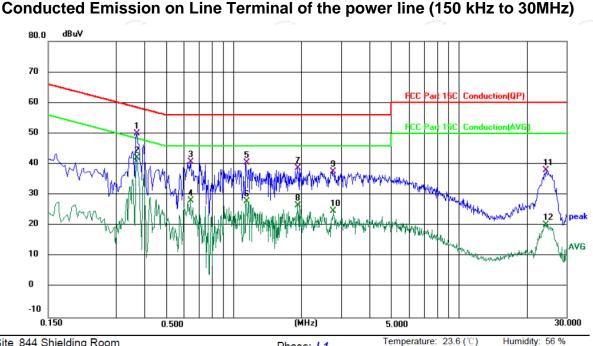
5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207					
Fest Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto			
	Frequency range	Limit (dBuV)	_		
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*	Ì		
	0.5-5	56	46			
	5-30	60	50			
	Referenc	e Plane				
Fest Setup:	F.U.T AC power Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	EMI Receiver	- AC power			
Test Mode:	Transmitting Mode			9		
Γest Procedure:	 The E.U.T is connected to the main power throughing impedance stabilization network (L.I.S.N.). provides a 50ohm/50uH coupling impedance for measuring equipment. The peripheral devices are also connected to the n power through a LISN that provides a 50ohm/50 coupling impedance with 50ohm termination. (Ple refer to the block diagram of the test setup photographs). Both sides of A.C. line are checked for maxim emission, the relative positions of equipment and a the interface cables must be changed according ANSI C63.10:2013 on conducted measurement. 					
Fest Result:	PASS	((0))	()	Ś		

Page 10 of 98

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024		
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025		
Line-5	ТСТ	CE-05	/	Jul. 03, 2024		
EMI Test Software	Shurple Technology	EZ-EMC	1	1		



Page 11 of 98

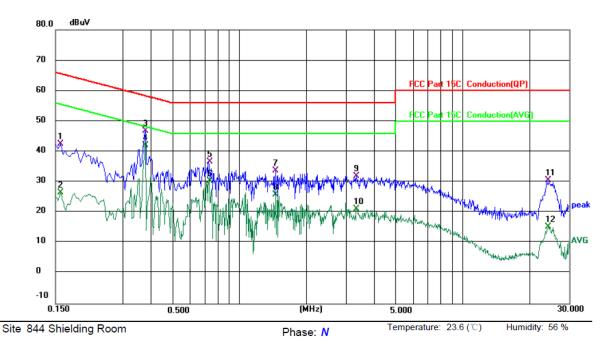
5.2.3. Test data

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Please refer to following diagram for individual

 Site 844 Shielding Room
 Phase: L1
 Temperature: 23.6 (°C)
 Humidity: 56 °

 Limit: FCC Part 15C Conduction(QP)
 Power: AC 120 V/ 60 Hz
 Humidity: 56 °


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3700	40.46	9.46	49.92	58.50	-8.58	QP	
2	*	0.3700	32.65	9.46	42.11	48.50	-6.39	AVG	
3		0.6460	31.43	9.20	40.63	56.00	-15.37	QP	
4		0.6460	18.97	9.20	28.17	46.00	-17.83	AVG	
5		1.1379	30.55	9.91	40.46	56.00	-15.54	QP	
6		1.1379	18.09	9.91	28.00	46.00	-18.00	AVG	
7		1.9259	28.60	10.02	38.62	56.00	-17.38	QP	
8		1.9259	16.58	10.02	26.60	46.00	-19.40	AVG	
9		2.7780	27.52	10.16	37.68	56.00	-18.32	QP	
10		2.7780	14.53	10.16	24.69	46.00	-21.31	AVG	
11		24.3260	27.22	10.77	37.99	60.00	-22.01	QP	
12		24.3260	9.47	10.77	20.24	50.00	-29.76	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FC	Limit: FCC Part 15C Conduction(QP)				Power: AC 120 V/ 60 Hz			
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1580	32.46	10.01	42.47	65.57	-23.10	QP	
2	0.1580	16.64	10.01	26.65	55.57	-28.92	AVG	
3	0.3780	37.48	9.43	46.91	58.32	-11.41	QP	
4 *	0.3780	32.75	9.43	42.18	48.32	-6.14	AVG	
5	0.7339	27.67	9.10	36.77	56.00	-19.23	QP	
6	0.7339	21.38	9.10	30.48	46.00	-15.52	AVG	
7	1.4539	23.89	9.92	33.81	56.00	-22.19	QP	
8	1.4539	15.96	9.92	25.88	46.00	-20.12	AVG	
9	3.3620	21.89	10.14	32.03	56.00	-23.97	QP	
10	3.3620	10.95	10.14	21.09	46.00	-24.91	AVG	
11	24.2420	20.00	10.70	30.70	60.00	-29.30	QP	
12	24.2420	4.71	10.70	15.41	50.00	-34.59	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 13 of 98

5.3. Maximum Conducted (Peak) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b	o)(3)			
Test Method:	KDB 558074 D01 v05r02				
Limit:	30dBm				
Test Setup:	Power meter				
Test Mode:	Transmitting mode with modulat	EUT			
Test Procedure:	1. The RF output of EUT was cometer by RF cable and atten compensated to the results f 2. Set to the maximum power se EUT transmit continuously.	 The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results 			
Test Result:	PASS				

5.3.2. Test Instruments

(Equipment	Manufacturer	Model	Serial Number	Calibration Due
0	Power Sensor	Agilent	8184A	MY41096530	Jun. 01, 2024
	Power Meter	Agilent	E4418B	MY45100357	Jun. 27, 2024

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	(c			
Test Method:	KDB 558074 D01 v05r02				
Limit:	>500kHz				
Test Setup:		C			
	Spectrum Analyzer EUT	140			
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 Set to the maximum power setting and enable EUT transmit continuously. Make the measurement with the spectrum ana resolution bandwidth (RBW) = 100 kHz. Set th Video bandwidth (VBW) = 300 kHz. In order to an accurate measurement. The 6dB bandwidt be greater than 500 kHz. Measure and record the results in the test report 	Ilyzer's ne o make th must			
Test Result:	PASS				

5.4.2. Test Instruments

G	Equipment	Manufacturer	Model	Serial Number	Calibration Due
	Equipment	Manufacturer	model		Calibration Duc
	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
	Combiner Box	Ascentest	AT890-RFB		(SY

5.5. Power Spectral Density

5.5.1. Test Specification

FCC Part15 C Section 15.247 (e)
KDB 558074
The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Spectrum Analyzer EUT
Transmitting mode with modulation
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
PASS

5.5.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
6	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
2	Combiner Box	Ascentest	AT890-RFB	/	/

5.6. Conducted Band Edge and Spurious Emission Measurement

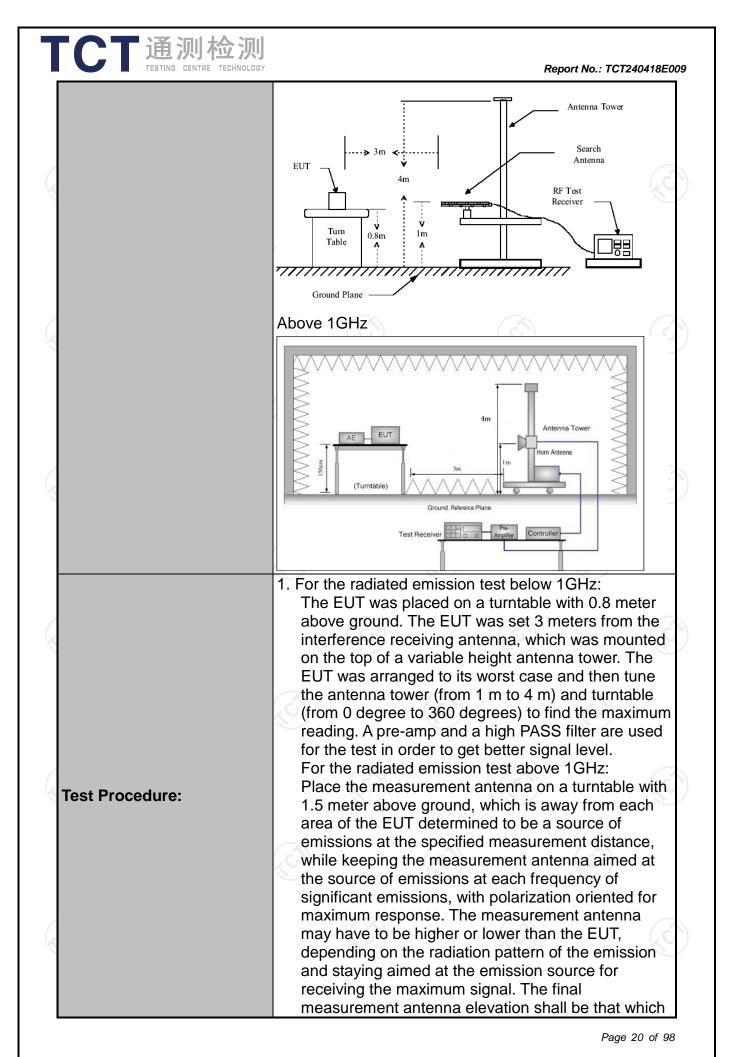
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	KDB558074		
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Sectior 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).		
Test Setup:			
	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is 		
	 used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 		

5.6.2. Test Instruments

	Equipment	Manufacturer	Model	Serial Number	Calibration Due
(Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
N.	Combiner Box	Ascentest	AT890-RFB		1

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



5.7. Radiated Spurious Emission Measurement

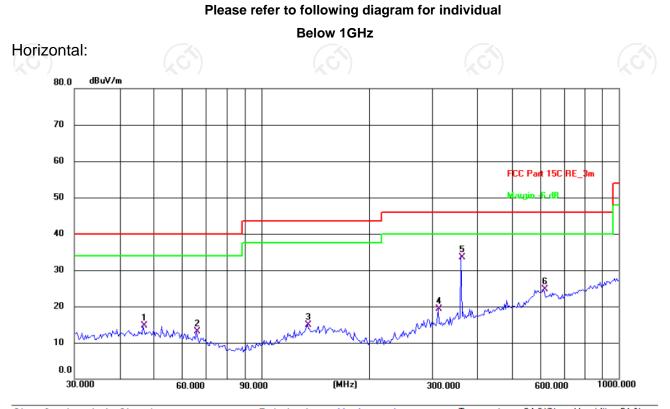
5.7.1. Test Specification

Test Requirement:	FCC Part15	C Section	n 15.209	<i>(</i> C)		k								
Test Method:	ANSI C63.10	0:2013												
Frequency Range:	9 kHz to 25 (GHz				7.								
Measurement Distance:	3 m	(<u>(</u>)			Average Average Value Measurement istance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30								
Antenna Polarization:	Horizontal &	Vertical	<u> </u>		zQuasi-peak ValueIzQuasi-peak ValueHzQuasi-peak ValueZPeak ValuezAverage ValueMeasurementDistance (meters)300333333SurementDetectoreters)33Average									
Operation mode:	Transmitting	mode wit	h modulat	ion		(
	Frequency	Detector	RBW	VBW		Romark								
	9kHz- 150kHz	Quasi-peal		1kHz										
Receiver Setup:	150kHz- 30MHz	Quasi-peal												
	30MHz-1GHz	Quasi-peal	k 120KHz	300KHz	Quas	si-peak Value								
		Peak	1MHz	3MHz										
	Above 1GHz Peak		1MHz 10Hz											
	Frequen	ncy	Field Stro (microvolts											
	0.009-0.4	490	2400/F(I											
	0.490-1.7		24000/F(
	1.705-3	30	30											
	30-88		100		(.c									
	88-216		150			3								
Limit:	216-96	60	200			3								
	Above 9	500			3									
	Frequency Above 1GH:	(micro	d Strength ovolts/meter)		се	Average								
	For radiated	emission	5000 s below 30		R.	Peak								
	Di	stance = 3m			Commu									
Test setup:	EUT 0.8m	Turn table		Pre -/										
	30MHz to 10	~	d Plane	- 4	teceiver									

Page 19 of 98

٦		
	TESTING CENTRE TECHNOLOGY	Report No.: TCT240418E009 maximizes the emissions. The measurement
		 antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings:
		 (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when
		duty cycle is no less than 98 percent. VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
	Test results:	PASS

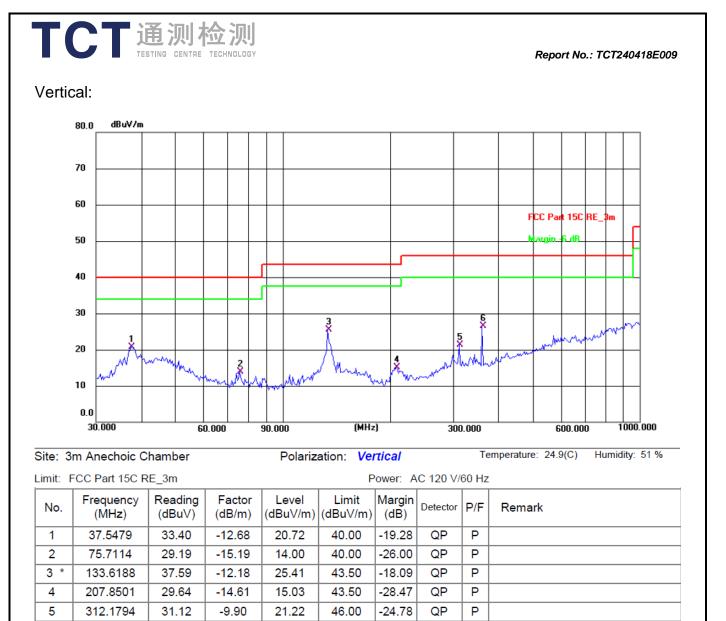
Page 21 of 98


5.7.2. Test Instruments

	Radiated Em	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
EMI Test Software	Shurple Technology	EZ-EMC		1

5.7.3. Test Data

Site: 3m Anechoic Chamber


Polarization: Horizontal

Temperature: 24.9(C) Humidity: 51 %

Limit:	FCC Part 15C F	RE_3m			F	2			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	46.6664	27.30	-12.59	14.71	40.00	-25.29	QP	Р	
2	65.8031	26.82	-13.78	13.04	40.00	-26.96	QP	Р	
3	134.5592	27.09	-12.20	14.89	43.50	-28.61	QP	Р	
4	312.1794	29.12	-9.90	19.22	46.00	-26.78	QP	Р	
5 *	361.7139	42.66	-9.21	33.45	46.00	-12.55	QP	Р	
6	616.3718	28.63	-3.85	24.78	46.00	-21.22	QP	Ρ	

Page 23 of 98

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

46.00

2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11ax(HT20), 802.11n(HT40), 802.11ax(HT40)), and the worst case Mode (Middle channel and 802.11g)) was submitted only.

-19.57

QP

Ρ

3. Freq. = Emission frequency in MHz

35.64

361.7139

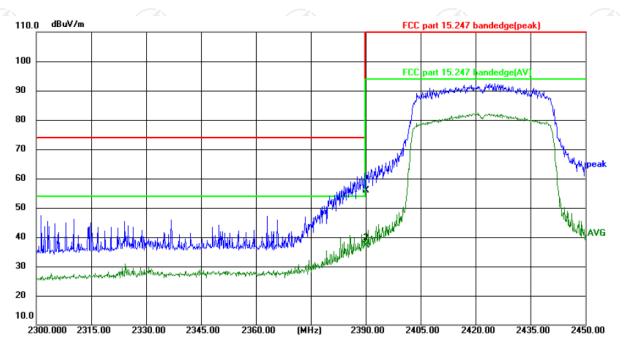
6

- Measurement $(dB\mu V/m) = Reading \, level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
- Limit $(dB\mu V/m) = Limit$ stated in standard
- Margin (dB) = Measurement (dB μ V/m) Limits (dB μ V/m)

-9.21

* is meaning the worst frequency has been tested in the test frequency range.

26.43


Page 24 of 98

Test Result of Radiated Spurious at Band edges

Lowest channel 2422:

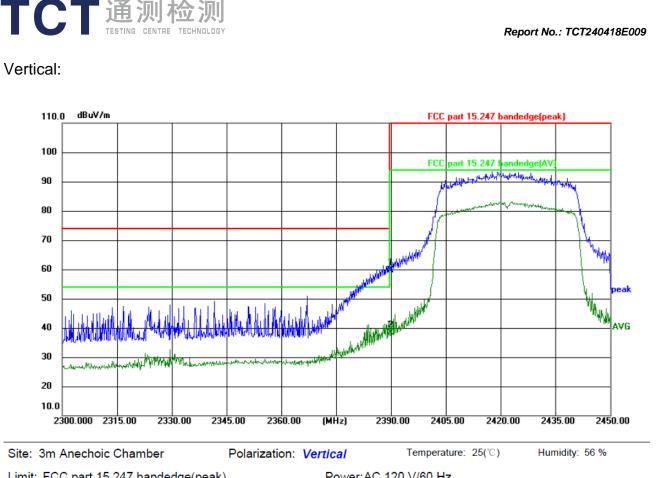
Horizontal:

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 25(°C) Humidity: 56 %

Limit: FCC part 15.247 bandedge(peak)

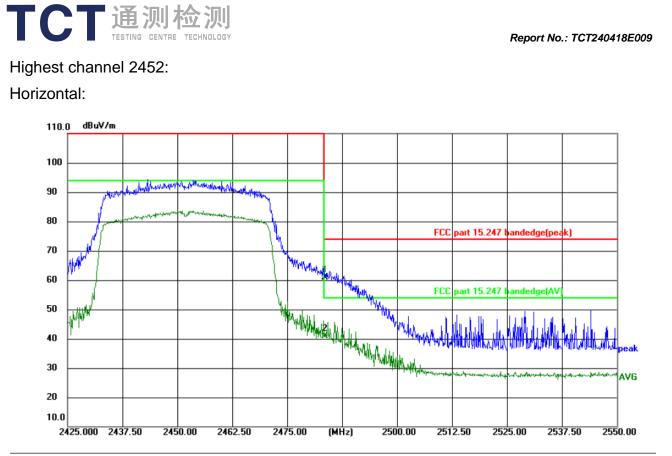
Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2390.000	71.75	-15.86	55.89	74.00	-18.11	peak	Ρ	
2 *	2390.000	53.10	-15.86	37.24	54.00	-16.76	AVG	Ρ	



Page 25 of 98

Limit.	FCC part 15.2	ige(peak)		FOV	ver.AC	120 0/60			
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2390.000	75.49	-15.86	59.63	74.00	-14.37	peak	Ρ	
2	2390.000	54.17	-15.86	38.31	54.00	-15.69	AVG	Ρ	

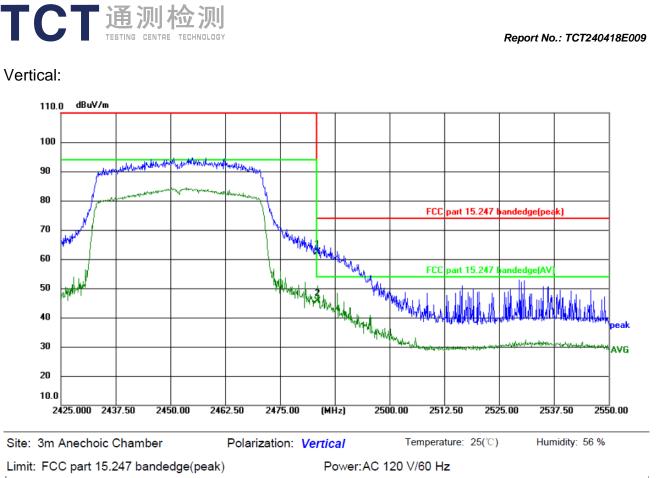

Note: Measurements were conducted in all two channels (high, low) and all modulation (802.11b, 802.11g, 802.11n(HT20), 802.11ax(HT20), 802.11n(HT40), 802.11ax(HT40)), and the worst case Mode 802.11ax(HT40)) was submitted only.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 26 of 98

Vertical:

CT通测检测 TESTING CENTRE TECHNOLOGY


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 25(°C) Humidity: 56 %

Limit: FCC part 15.247 bandedge(peak) Power:AC 120 V/60 Hz

	r e e part reiz		ige(pean)				120 1/00		
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2483.500	76.85	-15.87	60.98	74.00	-13.02	peak	Ρ	
2	2483.500	56.72	-15.87	40.85	54.00	-13.15	AVG	Ρ	

Page 27 of 98

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2483.500	78.18	-15.87	62.31	74.00	-11.69	peak	Р	
2 *	2483.500	61.51	-15.87	45.64	54.00	-8.36	AVG	Ρ	

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11ax(HT20), 802.11n(HT40), 802.11ax(HT40)), and the worst case Mode 802.11ax(HT40)) was submitted only.

			M	odulation T	ype: 802.11	1b			
			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
4824	Н	45.24		0.75	45.99		74	54	-8.01
7236	Н	33.99		9.87	43.86		74	54	-10.14
	Н								
4824	V	44.94		0.75	45.69		74	54	-8.31
7236	V	33.11	(2G	9.87	42.98	G`)	74	54	-11.02
	V				7				

Above 1GHz

			Μ	iddle chann	el: 2437 MI	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	44.88		0.97	45.85		74	54	-8.15
7311	Н	31.63		9.83	41.46		74	54	-12.54
	H				(4	
			KO.)	X	0)		KO)	
4874	V	42.49		0.97	43.46	<u> </u>	74	54	-10.54
7311	V	31.77		9.83	41.60		74	54	-12.40
	V								
				((

			H	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	43.02		1.18	44.20		74	54	-9.80
7386	H	34.25		10.07	44.32		74	54	-9.68
	Η					-			
4924	V	43.80		1.18	44.98		74	54	-9.02
7386	V	33.79		10.07	43.86		74	54	-10.14
	V			@					

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

	TESTI	NG CENTRE TEC	HNOLOGY				Repo	ort No.: TCT24	40418E009
			Μ	odulation T	ype: 802.11	lg			
			Ĺ	ow channe	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	44.95		0.75	45.70		74	54	-8.30
7236	Н	34.52		9.87	44.39		74	54	-9.61
	Н			(· · · ·		<u> </u>		
4824	V	43.28		0.75	44.03		74	54	-9.97
7236	V	33.49	()	9.87	43.36	·	74	54	-10.64
	V		{20	•)		5		(2G)	

	Middle channel: 2437 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
4874	Н	43.03		0.97	44.00		74	54	-10.00			
7311	Н	32.21		9.83	42.04		74	54	-11.96			
	Н											
				6	(
4874	V	42.95		0.97	43.92	<u> </u>	74	54	-10.08			
7311	V	31.64		9.83	41.47		74	54	-12.53			
	V											

					- A .				
(\mathbf{c})		(\mathbf{G})	h F	ligh channe	el: 2462 MH	Z			(\mathbf{c})
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	43.47		1.18	44.65		74	54	-9.35
7386	H	33.22		10.07	43.29		74	54	-10.71
	H			/		<u> </u>			
4924	V	44.56		1.18	45.74		74	54	-8.26
7386	V	34.44		10.07	44.51		74	54	-9.49
$(-\Theta)$	V	U .		(, (· · · ·		$\mathcal{S}^{\rightarrow}$		
Made									

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

T C T 通测检测

TC	T	的加松					Repo	ort No.: TCT24	40418E009
			Modu	lation Type	: 802.11n (ł	HT20)			
			L	.ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	42.21		0.75	42.96		74	54	-11.04
7236	Н	30.45		9.87	40.32		74	54	-13.68
· · · · · · · · · · · · · · · · · · ·	Н				J		<u> </u>		
4824	V	43.09		0.75	43.84		74	54	-10.16
7236	V	32.33	()	9.87	42.20		74	54	-11.80
	V		, C)	(G`)		(2G)	

	Middle channel: 2437 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
4874	Н	42.86		0.97	43.83		74	54	-10.17			
7311	Н	32.11		9.83	41.94		74	54	-12.06			
	Н											
				2	(
4874	V	44.78		0.97	45.75	<u> </u>	74	54	-8.25			
7311	V	33.54		9.83	43.37		74	54	-10.63			
	V											

) Н	High channel: 2462 MHz				(a)		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4924	H_	41.07		1.18	42.25		74	54	-11.75	
7386	H	32.99		10.07	43.06	<u> </u>	74	54	-10.94	
	H			/		<u> </u>				
						1	1			
4924	V	43.42		1.18	44.60		74	54	-9.40	
7386	V	33.40		10.07	43.47		74	54	-10.53	
$(-\Theta)$	V	U .		(, (· · · ·		$\mathcal{S}^{\rightarrow}$			
Matai										

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

TC		刻 检 NG CENTRE TEC					Repo	ort No.: TCT24	40418E009
			Modul	ation Type:	802.11ax (HT20)			
			L	ow channe	l: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	42.92		0.75	43.67		74	54	-10.33
7236	Н	30.46		9.87	40.33		74	54	-13.67
	Н			``	· · · ·				
4824	V	43.88		0.75	44.63		74	54	-9.37
7236	V	32.11	(9.87	41.98	×	74	54	-12.02
	V)	(<u> </u>			

	Middle channel: 2437 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
4874	Н	42.53		0.97	43.50		74	54	-10.50			
7311	Н	32.86		9.83	42.69		74	54	-11.31			
	Н											
				6	(
4874	V	44.79		0.97	45.76		74	54	-8.24			
7311	V	33.84		9.83	43.67		74	54	-10.33			
	V											

(\mathbf{c})		()	F	ligh channe	el: 2462 MH	z			()
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	41.85		1.18	43.03		74	54	-10.97
7386	Н	32.07		10.07	42.14		74	54	-11.86
	H			/		<u> </u>			
4924	V	43.42		1.18	44.60		74	54	-9.40
7386	V	33.36		10.07	43.43		74	54	-10.57
	V	U .		(, (· · · ·		$\mathcal{S}^{\rightarrow}$		
Matai									

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

TC	T	的加枪					Rep	ort No.: TCT24	40418E009
			Modu	lation Type	: 802.11n (l	HT40)			
			L	ow channe.	I: 2422 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4844	Н	41.84		0.75	42.59		74	54	-11.41
7266	Н	31.61		9.87	41.48		74	54	-12.52
· · · · · ·	Н			0	· · · ·		<u> </u>		·
4824	V	43.28		0.75	44.03		74	54	-9.97
7236	V	33.72	6	9.87	43.59	~~	74	54	-10.41
	V)	(9		(\mathbf{G})	

	Middle channel: 2437 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
4874	Н	44.23		0.97	45.20		74	54	-8.80		
7311	Н	33.49		9.83	43.32		74	54	-10.68		
	Н										
				6	(
4874	V	45.06		0.97	46.03		74	54	-7.97		
7311	V	36.35		9.83	46.18		74	54	-7.82		
	V										

		()	F	ligh channe	el: 2452 MH	z			(\mathbf{a})
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4904	H.	42.88		1.18	44.06		74	54	-9.94
7356	H	31.44		10.07	41.51		74	54	-12.49
	H			/		<u> </u>			
4904	V	44.62		1.18	45.80		74	54	-8.20
7356	V	32.07		10.07	42.14		-74	54	-11.86
	V	Ú ,		(, (5)		<u>_G</u> +		
Matai			7						

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

TC		刻 检 NG CENTRE TEC					Repo	ort No.: TCT24	40418E009
			Modul	ation Type:	802.11ax (HT40)			
			L	ow channe.	I: 2422 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4844	Н	41.83		0.75	42.58		74	54	-11.42
7266	Н	31.16		9.87	41.03		74	54	-12.97
· · · · ·	Н			0	· · · ·		<u> </u>		
4824	V	43.39		0.75	44.14		74	54	-9.86
7236	V	33.77		9.87	43.64	×	74	54	-10.36
	V)	(<u> </u>			

Middle channel: 2437 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4874	Н	44.12		0.97	45.09		74	54	-8.91	
7311	Н	33.41		9.83	43.24		74	54	-10.76	
	Н									
				6	(
4874	V	45.88		0.97	46.85	<u> </u>	74	54	-7.15	
7311	V	36.24		9.83	46.07		74	54	-7.93	
	V									

(.c.)		(h F	ligh channe	el: 2452 MH	z			(\mathbf{a})
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4904	H	42.06		1.18	43.24		74	54	-10.76
7356	Н	31.93		10.07	42.00		74	54	-12.00
	H			/		<u> </u>			
4904	V	44.89		1.18	46.07		74	54	-7.93
7356	V	32.17		10.07	42.24		74	54	-11.76
	V	Ú.		(, (· · · ·				
Matai			7						

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

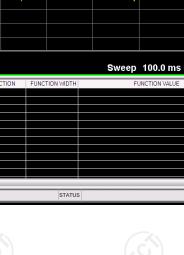
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Appendix A: Test Result of Conducted Test

		Duty	/ Cycle	
Conditi	on Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	b	2412	99.20	0
NVNT	b	2437	99.24	0
NVNT	b	2462	99.53	0,0
NVNT	g	2412	96.58	0.15
NVNT	- g	2437	96.58	0.15
NVNT	- g	2462	97.34	0.12
NVNT	n20	2412	96.39	0.16
NVNT	n20	2437	95.85	0.18
NVNT	n20	2462	96.38	0.16
NVNT	n40	2422	97.23	0.12
NVNT	n40	2437	93.13	0.31
NVNT	n40	2452	97.63	0.10
NVNT	ax20	2412	95.01	0.22
NVNT	ax20	2437	95.98	0.18
NVNT	ax20	2462	96.51	0.15
NVNT	ax40	2422	96.30	0.16
NVNT	ax40	2437	96.61	0.15
NVNT	ax40	2452	96.51	0.15

Duty Cycle NVNT b 2437MHz

Keysight S	pectrum Ar	alyzer - Swept S			051005.1	a				00.45	- 6
		50 Ω /			SENSE:I	NI		ALIGN AUTO	e: Log-Pwr		14 PM Apr 25, 2
enter	req z	-1570000		PNO: Fast		g: Free Run ten: 40 dB					
			1	FGain:Low	#A	ten. 40 dB				Micra	5.560
) dB/div		Offset 2.31 30.00 dB								1	5.01 dE
	<u>1</u>			3							
0.0				¥							
.00											
0.0											
0.0											
0.0											
0.0	<u> </u>			<u> </u>					¹		
0.0											
0.0											
enter 2 es BW		0000 GH	Z	#	/BW 8.0	MH7			Sweep	100.0 ms	Span 0 (10001)
			Х	Y		FUNCTIO	N FI	UNCTION WIDTH		UNCTION VALUE	
1 N	1 t		5.560 ms		.01 dBm						
2 N 3 N	1 t 1 t		5.680 ms 29.90 ms	<u>14</u> 14	.72 dBm .91 dBm						
4 5											
6											
8											
9 0											
1						III					
				_			_	STATUS		_	
G											


Report No.: TCT240418E009

03:41:39 PM Apr 25, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWW DET PNNNN

Keysight Spectrum Analyzer - Swept SA

Center Freq 2.412000000 GHz

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 40 dB

Test Graphs Duty Cycle NVNT b 2412MHz

ALIGN AUTO Avg Type: Log-Pwr

STATUS

Keysight Spectrum Analyzer - Swept SA R RF 50 Ω AC Center Freq 2.462000000 GHz 03:47:12 PM Ap TRACE AUTO Avg Type: Log-Pwr Trig: Free Run #Atten: 40 dB TYP PNO: Fast ↔→ IFGain:Low Mkr1 17.14 ms 17.94 dBm _____3 Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz 17.14 ms 17.29 ms 41.51 ms 17.94 dBm 17.09 dBm 17.12 dBm

STATUS

Duty Cycle NVNT g 2412MHz

Duty Cycle NVNT b 2462MHz

R RF Center Freq 2.412	50 Ω AC 2000000 GHz		SENSE:II		AL	IGN AUTO Avg Ty	/pe: Log	g-Pwr		Т	7 PM Apr 2 RACE 12	3 4
		PNO: Fast IFGain:Low		j: Free Run ten: 40 dB								INN
Ref Offed	et 2.22 dB									Mkr1	3.250) r
0 dB/div Ref 30.0	00 dBm									-2	0.06 c	i E
10.0	danis di tela di subitana di sistembi	i Kalandari ing Kalandari	nin hidda in an	della des de la constante de				ide pitate i	di sen de	innin liikine	i dinad	i
0.00												
10.0												
20.0												
30.0												
40.0								ļ				1
50.0												
enter 2.41200000	00 GHz										Span	0
enter 2.41200000	00 GHz	#	VBW 8.0	MHz				Swe	ep 10	0.0 ms	Span (1000′	0 1 p
enter 2.41200000 es BW 8 MHz	X	۱ ۱	Y	MHZ	FUNC	TION WIDTH		Swe		0.0 ms	Span (1000′	0 1 p
enter 2.41200000 es BW 8 MHz	× 3.250 3.440	ms -20 ms 13	Y 1.06 dBm 3.52 dBm		I FUNC	TION WIDTH		Swe			Span (1000 ⁷	0 1 p
enter 2.41200000 es BW 8 MHz KR MODE TRC SCL 1 N 1 t	× 3.250	ms -20 ms 13	Y .06 dBm		FUNC	TION WIDTH		Swe			Span (1000′	0 1 p
enter 2.41200000 es BW 8 MHz KRI MODE TRCI SCL 1 N 1 t 2 N 1 t 3 N 1 t 4 5	× 3.250 3.440	ms -20 ms 13	Y 1.06 dBm 3.52 dBm		FUNC	TION WIDTH		Swe			Span (1000 ⁷	0 1 p
Image: State of the s	× 3.250 3.440	ms -20 ms 13	Y 1.06 dBm 3.52 dBm		I FUNC	TION WIDTH		Swe			Span (1000 ⁷	0 1 p
Image: Solution of the second state of the	× 3.250 3.440	ms -20 ms 13	Y 1.06 dBm 3.52 dBm		I FUNC	TION WIDTH		Swe			Span (1000 ⁷	0 1 p
NO.0 Enter 2.41200000 enter 2.41200000 es BW 8 MHz 8 MHz 8 KR MODE TRC SCL 1 1 N 1 t 2 N 1 t 3 N 1 t 5 6 6 6 7 7 7 7 8 9 0 9	× 3.250 3.440	ms -20 ms 13	Y 1.06 dBm 3.52 dBm		I FUNC	TION WIDTH		Swe			Span (1000 ⁷	0 1 p
Image: Non-Openation of the second	× 3.250 3.440	ms -20 ms 13	Y 1.06 dBm 3.52 dBm		FUNC	TION WIDTH		Swe			Span (1000/	0 1 p

10 d Log

Ref Offset 2.37 dB Ref 30.00 dBm

Center 2.462000000 GHz Res BW 8 MHz

Keysight Spectrum Analyzer - Swept S

N N

🔤 Keysight Spectrum Analyzer - Sι 04:27:05 PM Apr 25, 2024 TRACE 1 2 3 4 5 K/R Avg Type: Log-Pwr Center Freg 2.437000000 GHz Trig: Free Run #Atten: 40 dB TYP DE PNO: Fast +++ Mkr1 4.400 ms 17.90 dBm Ref Offset 2.31 dB Ref 30.00 dBm Center 2.437000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz 4.400 ms 4.620 ms 9.320 ms 17.90 dBm 15.35 dBm -15.61 dBm N 1 t N 1 t 2 3 4 Duty Cycle NVNT g 2462MHz Keysight Spectrum Analyzer - Swept SA 04:30:11 PM Apr Avg Type: Log-Pwr Center Freg 2.462000000 GHz 1 2 3 4 5 WWWWW P N N N N Trig: Free Run #Atten: 40 dB TYP PNO: Fast IFGain:Low Mkr1 3.820 ms 15.93 dBn Ref Offset 2.37 dB Ref 30.00 dBm 10 dB/div Log**√** 1 ____3 Center 2.462000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz FUNCTION WIDTH **FION** 1 t 1 t 1 t 3.820 ms 3.970 ms 8.670 ms 15.93 dBm 14.80 dBm 15.56 dBm 10 11 STATUS

Duty Cycle NVNT g 2437MHz

Duty Cycle NVNT n20 2412MHz

Trig: Free Run #Atten: 40 dB

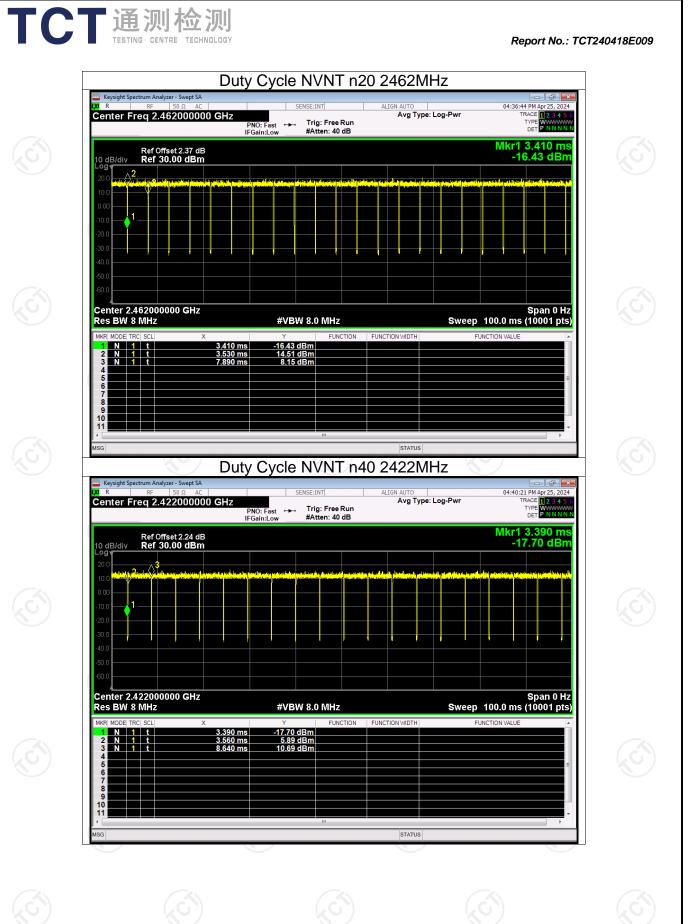
PNO: Fast ↔→ IFGain:Low Avg Type: Log-Pwr

Center Freg 2.412000000 GHz

Ref Offset 2.22 dB Ref 30.00 dBm

Keysight Spe

K/R


Report No.: TCT240418E009

04:01:28 PM Apr 25, 2024 TRACE 1 2 3 4 5

TYP DE

Mkr1 2.050 ms 15.95 dBm

Page 39 of 98

Page 40 of 98

Duty Cycle NVNT n40 2437MHz

Trig: Free Run #Atten: 40 dB

PNO: Fast ↔→ IFGain:Low Avg Type: Log-Pwr

Center Freg 2.437000000 GHz

Keysight Spe

K/R

Report No.: TCT240418E009

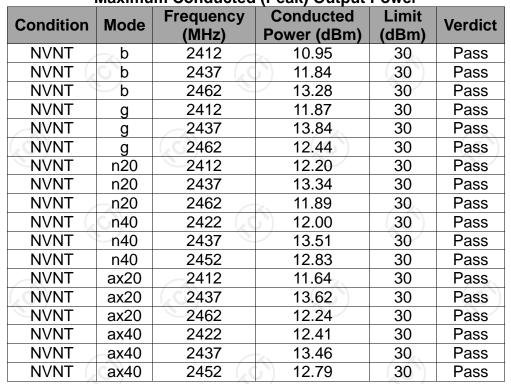
04:44:31 PM Apr 25, 2024 TRACE 1 2 3 4 5

TYP DE

Page 41 of 98

🔤 Keysight Sp 05:17:27 PM Apr 25, 2 TRACE 1 2 3 K/R Avg Type: Log-Pwr Center Freg 2.462000000 GHz Trig: Free Run #Atten: 36 dB TYP DE PNO: Fast ↔→ IFGain:Low Mkr1 3.630 ms 15.92 dBm Ref Offset 2.37 dB Ref 25.00 dBm 10 dBits Log Center 2.462000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz 3.630 ms 3.750 ms 7.550 ms 15.92 dBm 16.02 dBm 15.63 dBm N 1 t N 1 t 2 3 4

Duty Cycle NVNT ax20 2462MHz


05:23:20 PM Apr 25, 2 TRACE 1 2 3 Avg Type: Log-Pwr Center Freg 2.437000000 GHz Trig: Free Run #Atten: 36 dB TYP DE PNO: Fast ↔→ IFGain:Low <mark>Mkr1 160.0 µ</mark>s 11.26 dBm Ref Offset 2.31 dB Ref 25.00 dBm 10 dB/div Center 2.437000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz <u>160.0 µs</u> 290.0 µs 4.540 ms 11.26 dBm 9.35 dBm 14.58 dBm N 1 t N 1 t 234

Duty Cycle NVNT ax40 2437MHz

Keysight Spe

K/R

Report No.:	TCT240418E009
-------------	---------------

Maximum Conducted (Peak) Output Power

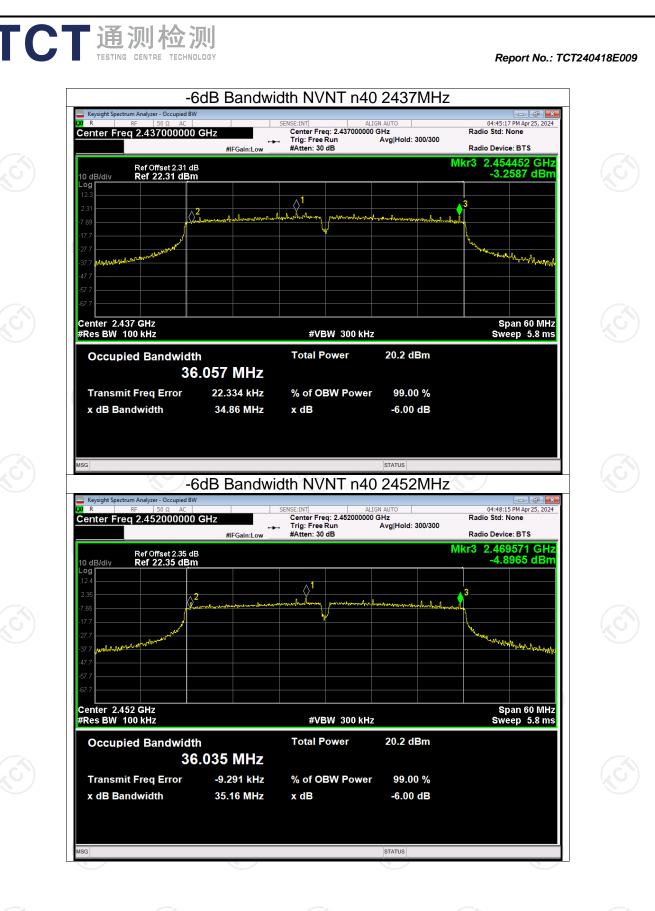
Report No.:	TCT240418E009
-------------	---------------

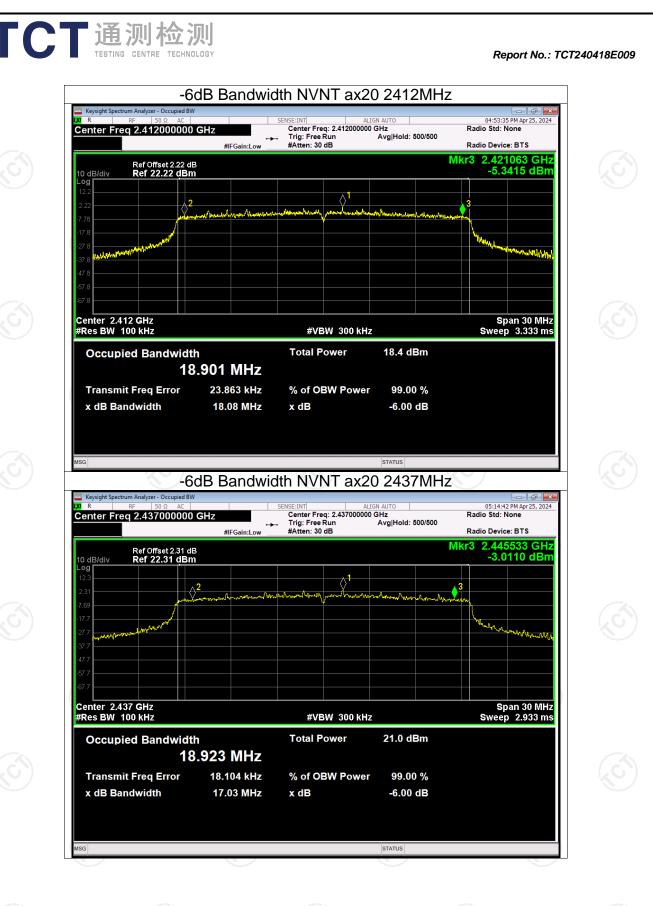

-6dB Bandwidth							
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict		
NVNT	b	2412	9.589	0.5	Pass		
NVNT	b	2437	10.072	0.5	Pass		
NVNT	b	2462	9.603	0.5	Pass		
NVNT	g	2412	14.792	0.5	Pass		
NVNT	g	2437	16.306	0.5	Pass		
NVNT	g	2462	15.780	0.5	Pass		
NVNT	n20	2412	16.204	0.5	Pass		
NVNT	n20	2437	17.087	0.5	Pass		
NVNT	n20	2462	16.940	0.5	Pass		
NVNT	n40	2422	35.454	0.5	Pass		
NVNT	n40	2437	34.860	0.5	Pass		
NVNT	n40	2452	35.161	0.5	Pass		
NVNT	ax20	2412	18.079	0.5	Pass		
NVNT	ax20	2437	17.031	0.5	Pass		
NVNT	ax20	2462	16.823	0.5	Pass		
NVNT	ax40	2422	35.607	0.5	Pass		
NVNT	ax40	2437	36.476	0.5	Pass		
NVNT	ax40	2452	37.010	0.5	Pass		

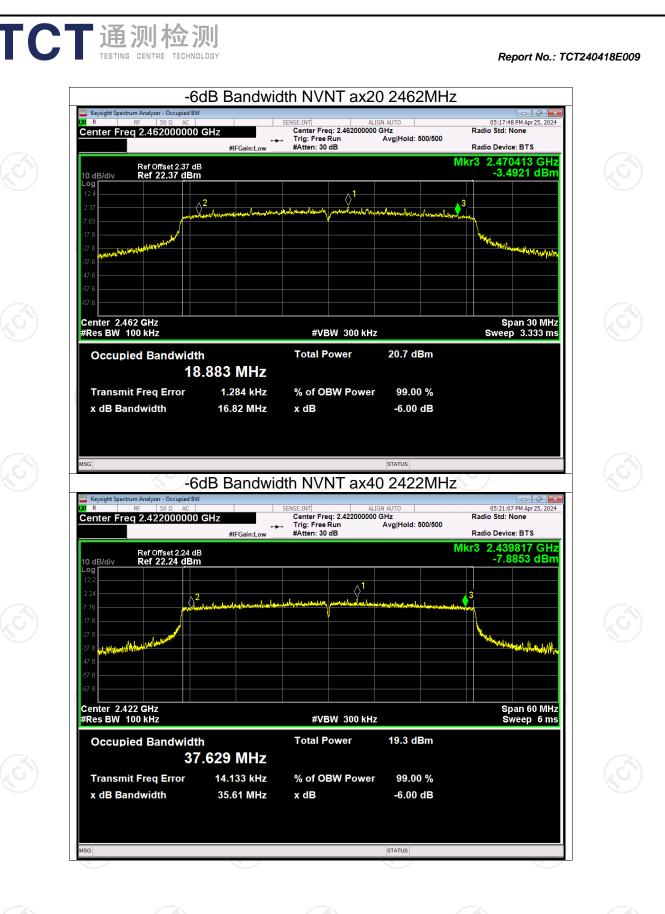
TCT 通测检测 TESTING CENTRE TECHNOLOGY

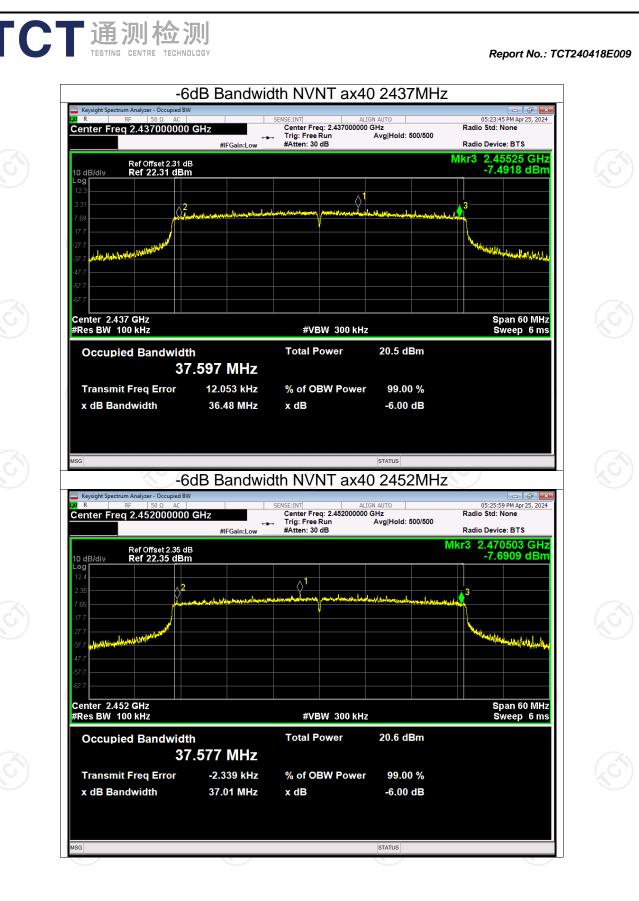
Page 47 of 98

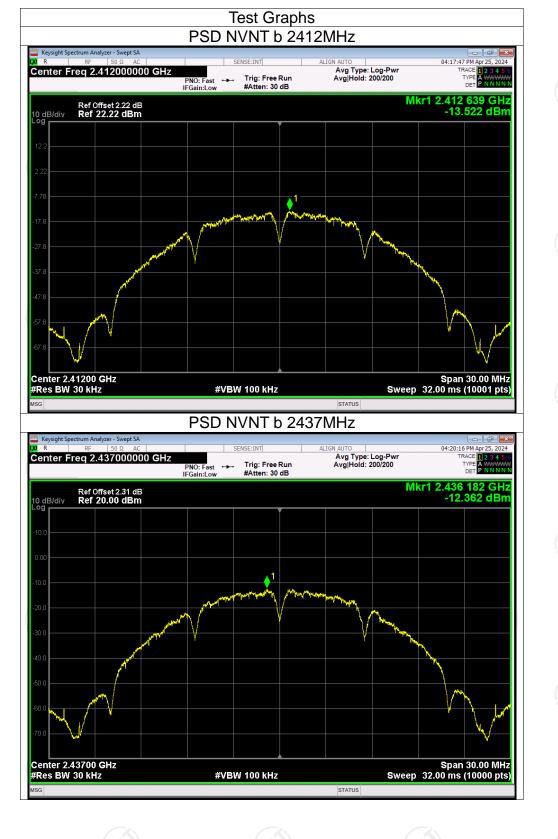
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com




Page 49 of 98

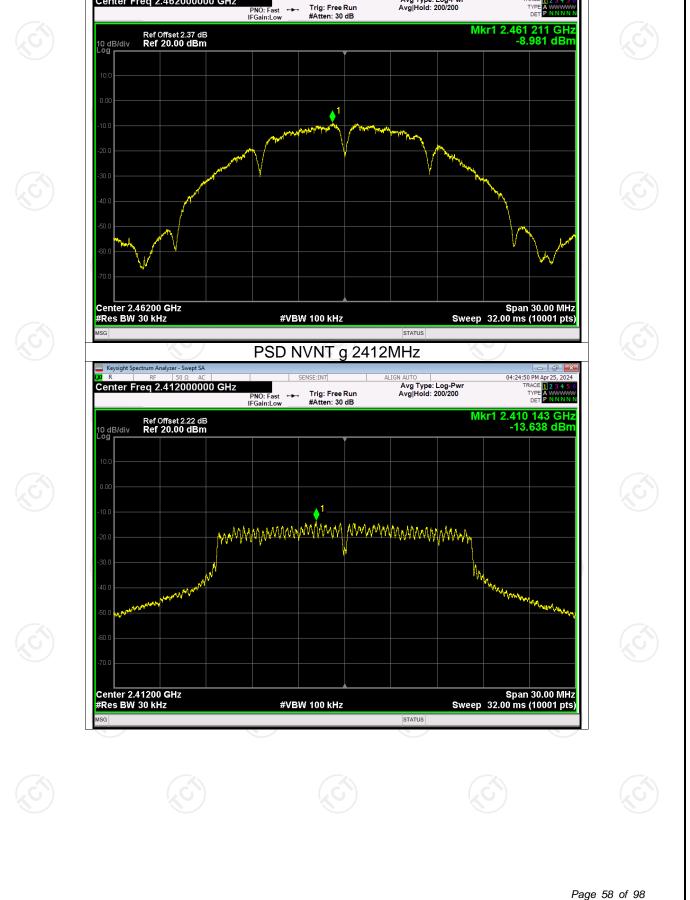

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com





Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/30kHz)	Duty Factor (dB)	Total PSD (dBm/30kHz)	Total PSD (dBm/3kHz)	Limit (dBm)	Verdict
NVNT	b	2412	-13.52	0	-13.52	-23.52	8	Pass
NVNT	b	2437	-12.36	0	-12.36	-22.36	8	Pass
NVNT	b	2462	-8.98	0	-8.98	-18.98	8	Pass
NVNT	g	2412	-13.64	0.15	-13.49	-23.49	8	Pass
NVNT	g	2437	-12.31	0.15	-12.16	-22.16	8	Pass
NVNT	g	2462	-12.44	0.12	-12.32	-22.32	8	Pass
NVNT	n20	2412	-14.49	0.16	-14.33	-24.33	8	Pass
NVNT	n20	2437	-12.37	0.18	-12.19	-22.19	8	Pass
NVNT	n20	2462	-12.32	0.16	-12.16	-22.16	8	Pass
NVNT	n40	2422	-15.96	0.12	-15.84	-25.84	8	Pass
NVNT	n40	2437	-14.85	0.31	-14.54	-24.54	8	Pass
NVNT	n40	2452	-14.33	0.10	-14.23	-24.23	8	Pass
NVNT	ax20	2412	-11.40	0.22	-11.18	-21.18	8	Pass
NVNT	ax20	2437	-9.31	0.18	-9.13	-19.13	8	Pass
NVNT	ax20	2462	-7.14	0.15	-6.99	-16.99	8	Pass
NVNT	ax40	2422	-12.42	0.16	-12.26	-22.26	8	Pass
NVNT	ax40	2437	-10.84	0.15	-10.69	-20.69	8	Pass
NVNT	ax40	2452	-11.52	0.15	-11.37	-21.37	8	Pass

Maximum Power Spectral Density Level


Note: Total PSD (dBm/3kHz) = Total PSD (dBm/30kHz) +10log(3kHz/30kHz)

Page 57 of 98

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

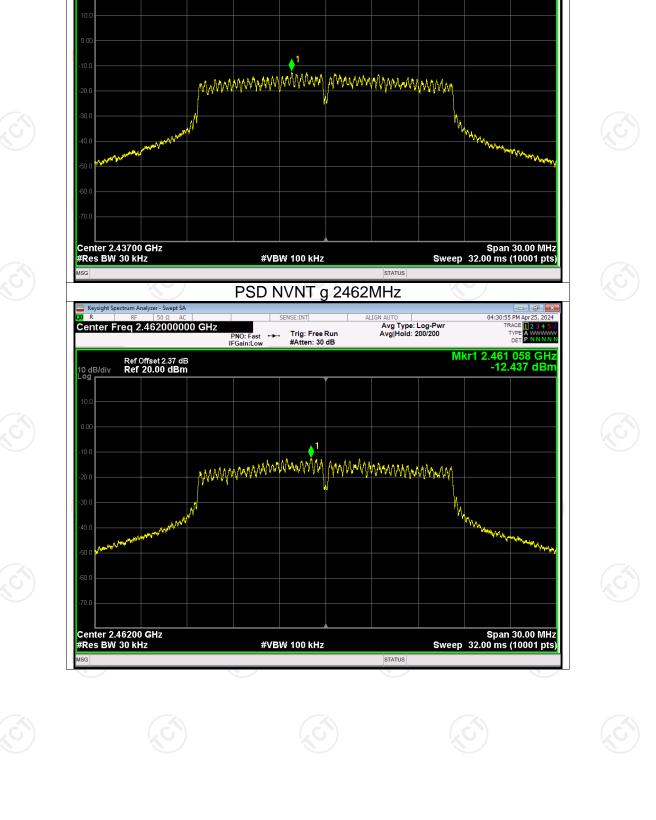
PSD NVNT b 2462MHz

ALTGN AL

Avg Type: Log-Pwr Avg|Hold: 200/200

TCT通测检测 TESTING CENTRE TECHNOLOGY

0 R


Keysight Spectrum Analyzer - Swept SA

Center Freg 2.462000000 GHz

Report No.: TCT240418E009

04:21:52 PM Apr 25, 2024 TRACE 1 2 3 4 5 (TYPE A WWWW DET P N N N N

TYP DE

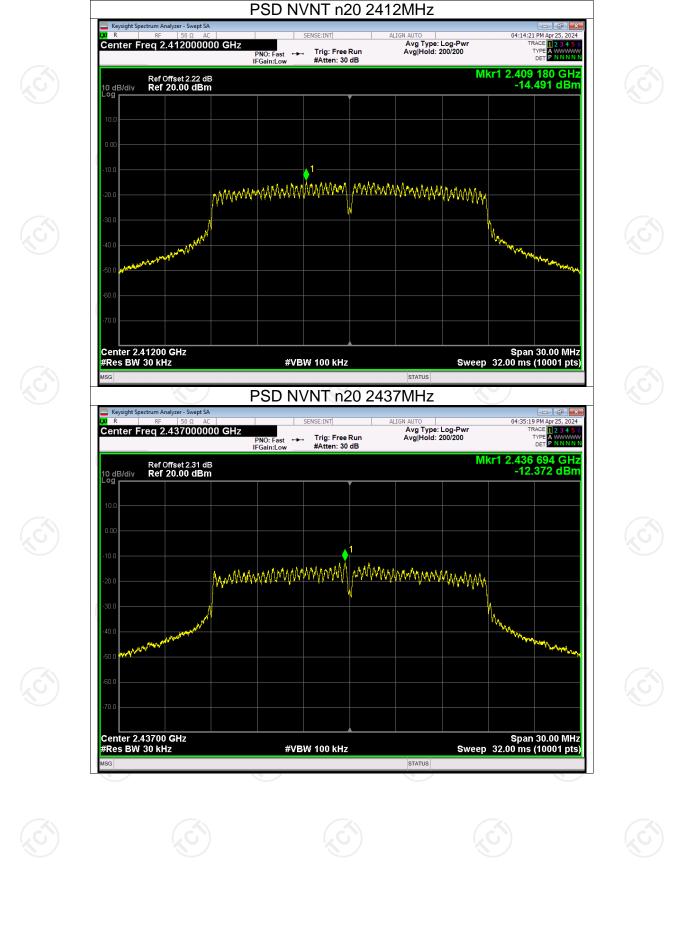
PSD NVNT g 2437MHz

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low

Avg Type: Log-Pwr Avg|Hold: 200/200

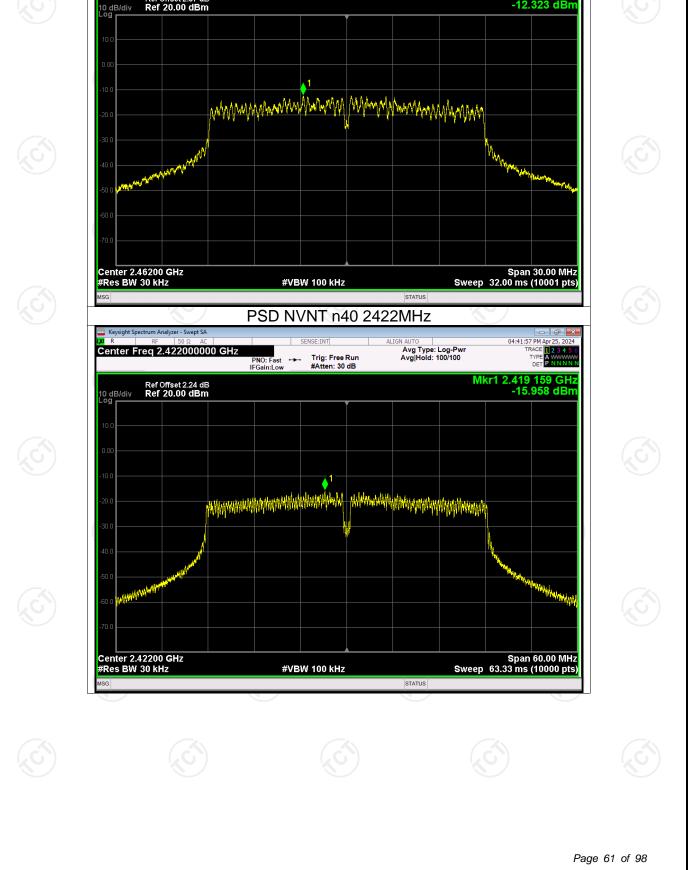
Keysight Spectrum Analyzer - Swept S 0 R Center Freg 2.437000000 GHz Ref Offset 2.31 dB Ref 20.00 dBm 10 dB/div Loa


TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT240418E009

04:28:18 PM Apr 25, 2024 TRACE 1 2 3 4 5 (TYPE A WWWW DET P N N N N

Mkr1 2.434 780 GHz -12.305 dBm


Page 59 of 98

Report No.: TCT240418E009

Page 60 of 98

TCT通测检测 TESTING CENTRE TECHNOLOGY

PSD NVNT n20 2462MHz

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low

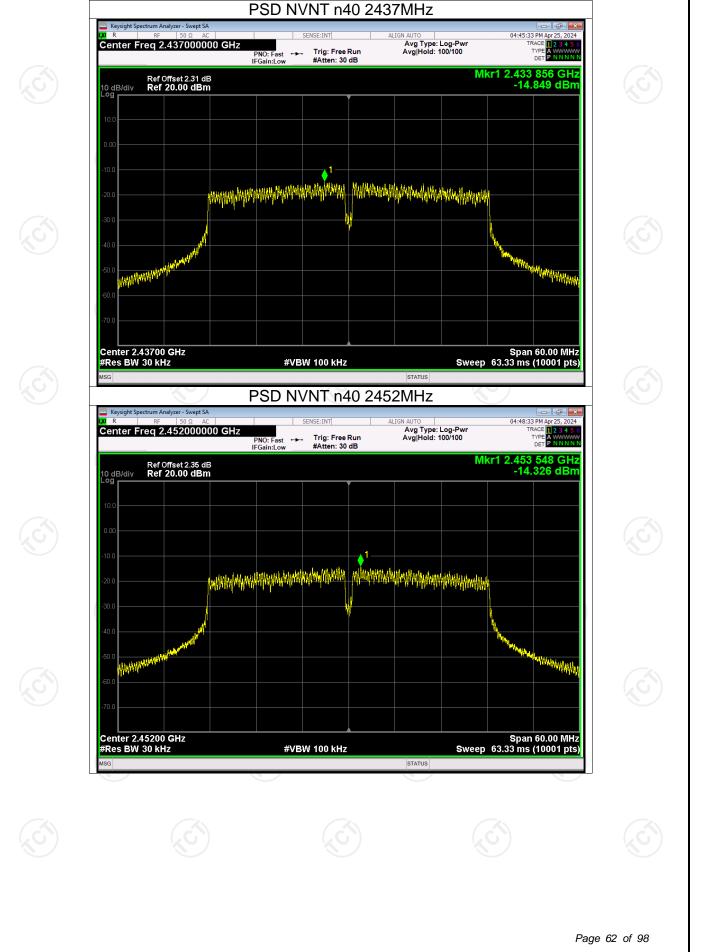
AI IGN

Avg Type: Log-Pwr Avg|Hold: 100/100

TCT 通测检测 TESTING CENTRE TECHNOLOGY

0 R

Keysight Spectrum Analyzer - Swept SA


Center Freg 2.462000000 GHz

Ref Offset 2.37 dB Ref 20.00 dBm

Report No.: TCT240418E009

04:37:48 PM Apr 25, 2024 TRACE 1 2 3 4 5 (TYPE A WWWWW DET P N N N N

Mkr1 2.459 165 GHz -12.323 dBm

TCT通测检测 TESTING CENTRE TECHNOLOGY

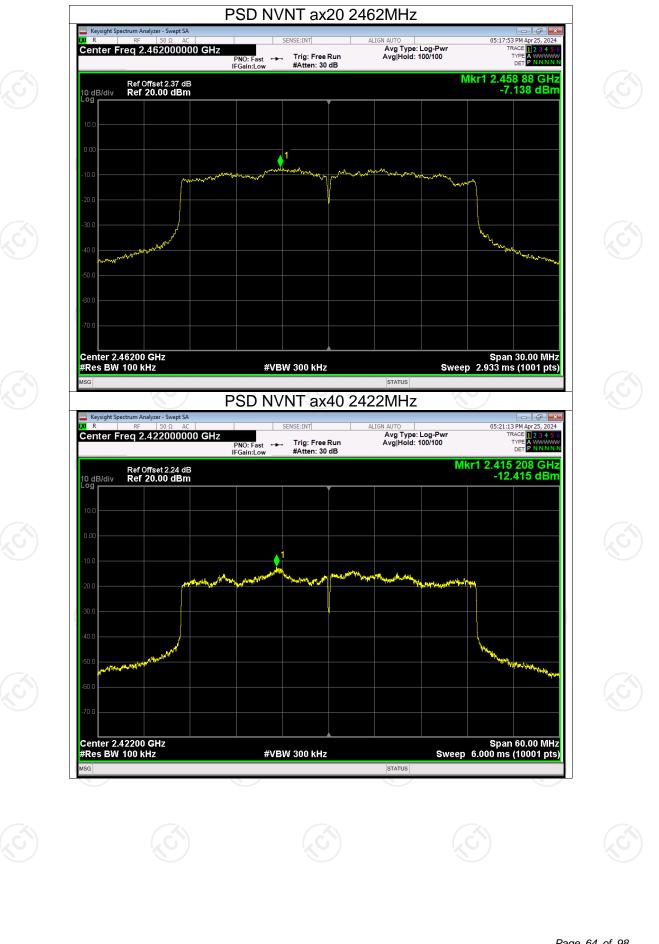
PSD NVNT ax20 2412MHz

Trig: Free Run #Atten: 30 dB

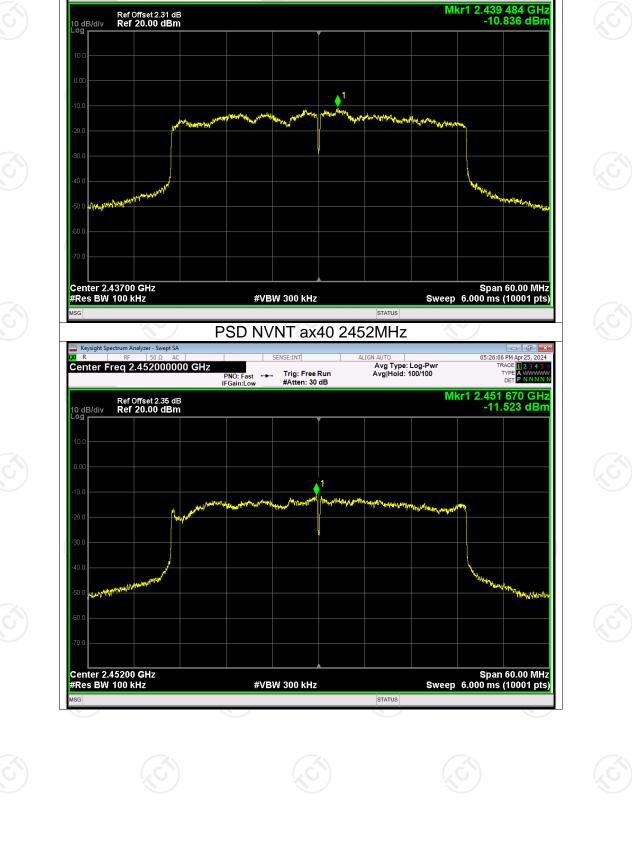
PNO: Fast ↔→ IFGain:Low Avg Type: Log-Pwr Avg|Hold: 100/100

TCT通测检测 TESTING CENTRE TECHNOLOGY

0 R


Keysight Spectrum Analyzer - Swept S

Center Freg 2.412000000 GHz


Report No.: TCT240418E009

04:53:45 PM Apr 25, 2024 TRACE 1 2 3 4 5 (TYPE A WWWWW DET P N N N N

Report No.: TCT240418E009

TCT通测检测 TESTING CENTRE TECHNOLOGY

PSD NVNT ax40 2437MHz

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low

AI IGN

Avg Type: Log-Pwr Avg|Hold: 100/100

Report No.: TCT240418E009

05:23:52 PM Apr 25, 2024 TRACE 1 2 3 4 5 (TYPE A WWWWW DET P N N N N

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spectrum Analyzer - Swept S

Center Freg 2.437000000 GHz

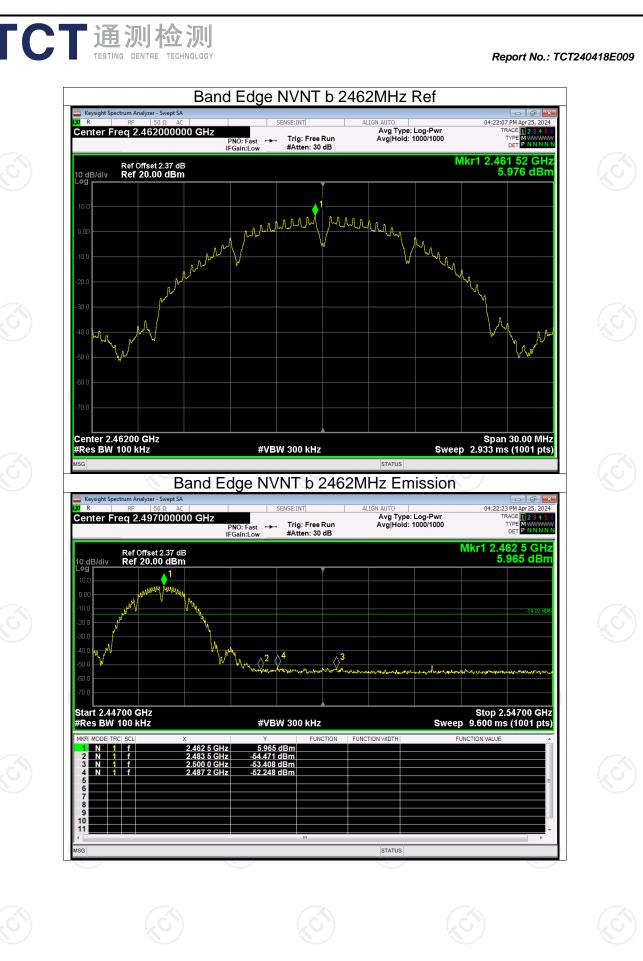
0 R

Band Edge								
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict			
NVNT	b	2412	-57.15	-20	Pass			
NVNT	b	2462	-58.22	-20	Pass			
NVNT	g	2412	-47.54	-20	Pass			
NVNT	g	2462	-47.36	-20	Pass			
NVNT	n20	2412	-46.11	-20	Pass			
NVNT	n20	2462	-42.07	-20	Pass			
NVNT 🔍	n40	2422	-39.70	-20	Pass			
NVNT	n40	2452	-37.18	-20	Pass			
NVNT	ax20	2412	-43.08	-20	Pass			
NVNT	ax20	2462	-43.16	-20	Pass			
NVNT	ax40	2422	-34.62	-20	Pass			
NVNT	ax40	2452	-33.01	-20	Pass			

TCT通测检测 TESTING CENTRE TECHNOLOGY

Hotline: 400-6611-140

Tel: 86-755-27673339


Page 66 of 98

Test Graphs Band Edge NVNT b 2412MHz Ref

N

Start 2.32700 GHz #Res BW 100 kHz Stop 2.42700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH -40.617 dBm -56.047 dBm -55.174 dBm 2.400 0 GHz 2.390 0 GHz 2.375 9 GHz STATUS

Page 68 of 98

Band Edge NVNT g 2462MHz Ref 🔤 Keysight Sp 04:31:09 PM Apr 25, 2024 TRACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N K/R Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.462000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Mkr1 2.463 29 GHz 3.561 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Loa **∮**¹ almar vuv multin Marth Mim the had Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT g 2462MHz Emission

zer - Swept SA

Keysight Sp d R

Report No.: TCT240418E009

04:31:26 PM Ap

FCT通测检测 TESTING CENTRE TECHNOLOGY

Band Edge NVNT n20 2412MHz Ref 🔤 Keysight Sp 04:13:25 PM Apr 25, 2024 TRACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N K/R Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.412000000 GHz Trig: Free Run #Atten: 20 dB PNO: Fast +++ Mkr1 2.413 29 GHz 1.827 dBm Ref Offset 2.22 dB Ref 10.00 dBm 10 dB/div Loa **N** month May ward marile man Winner walnu A.L.A. wi Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT n20 2412MHz Emission zer - Swept SA

Report No.: TCT240418E009

04:13:43 PM A

FCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Sp d R

FION

-1.686 dBm -33.312 dBm -42.538 dBm -41.356 dBm

V and and a hard and a second and a second a hardwale alma from to make a history weden Inderstych WIMP Center 2.42200 GHz #Res BW 100 kHz Span 60.00 MHz Sweep 5.800 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT n40 2422MHz Emission er - Swept SA Keysight Sp d R 04:42:34 PM A r25, _ Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.402000000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast IFGain:Low Mkr1 2.424 5 GHz -1.686 dBm Ref Offset 2.24 dB Ref 20.00 dBm 10 dB/div Log **r** - Jack Mark والمعاما والمعار ⟨∕<mark>4</mark>3 Start 2.35200 GHz #Res BW 100 kHz Stop 2.45200 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH

FCT通测检测 TESTING CENTRE TECHNOLOGY

PNO: Fast ↔→ IFGain:Low

🔤 Keysight S

10 dB/div Loa

1 f 1 f 1 f

N

Center Freg 2.422000000 GHz

Ref Offset 2.24 dB Ref 20.00 dBm

K/R

Band Edge NVNT n40 2422MHz Ref

Trig: Free Run #Atten: 30 dB

Avg Type: Log-Pwr Avg|Hold: 1000/1000

Report No.: TCT240418E009

04:42:16 PM Apr 25, 2024 TRACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N

Mkr1 2.424 52 GHz -1.651 dBm

er - Swept SA

Keysight Sp

Band Edge NVNT n40 2452MHz Emission

Page 74 of 98