FCC
Certification
Test Report

FCC Certification Test Report for

Blast Technology ApS FCC ID: RZC-WDMX

April 12, 2004

Prepared for:

Blast Technology ApS Toftevej 51 Horning 8362 Denmark

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

FCC Certification Test Program

FCC Certification Test Report for the Blast Technology ApS WDMX-512 Wireless Router FCC ID: RZC-WDMX

April 12, 2004

WLL JOB# 8033

Prepared by:

Brian J. Dettling

Documentation Specialist

Reviewed by:

Gregory M. Snyder Chief EMC Engineer Document 8033-01, Rev. 0 FCC ID: RZC -WDMX

Abstract

This report has been prepared on behalf of Blast Technology ApS to support the attached Application for Equipment Authorization. The test report and application are submitted for a Spread Spectrum Transceiver under Part 15.247 of the FCC Rules and Regulations. This Federal Communication Commission (FCC) Certification Test Report documents the test configuration and test results for a Blast TechnologyTT8870 Radio Card.

Blast Technology ApS wishes to have this device approved as a module. An Attestation letter and required consumer information are found in the exhibits related to this application.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

The Blast Technology ApS WDMX-512 complies with the limits for a Direct Sequence Spread Spectrum Transmitter device under Part 15.247 of the FCC Rules and Regulations.

The Blast Technology ApS WDMX-512 is equivalent to the ZCOM Module (FCC ID: M4Y-0325) as the basis for its 802.11 functionality.

Table of Contents

Abst	ract11
1	Introduction1
1.1	1 Compliance Statement1
1.2	2 Test Scope1
1.3	3 Contract Information1
1.4	4 Test Dates
1.5	5 Test and Support Personnel1
1.6	5 Abbreviations2
2	Equipment Under Test3
2.	EUT Identification & Description
2.2	2 Test Configuration
2.3	3 Testing Algorithm3
2.4	4 Test Location
2.5	5 Measurements4
	2.5.1 References
2.0	6 Measurement Uncertainty4
3	Test Equipment5
4	Test Results6
4.	Duty Cycle CorrectionError! Bookmark not defined.
4.2	
4.3	Occupied Bandwidth: (FCC Part §2.1049)8
4.4	Channel Spacing and Number of Hop Channels (FCC Part §15247(a)(1)Error! Bookmark not de
4.5	Conducted Spurious Emissions at Antenna Terminals (FCC Part §2.1051)10
4.6	
	4.6.1 Test Procedure
List	of Tables
Table	e 1. Device Summary
	e 2: Test Equipment List
	e 3. RF Power Output6
	e 4. Occupied Bandwidth Results
	e 5: Radiated Emission Test Data, Low Frequency Data (Restricted Bands) 19
	e 6: Radiated Emission Test Data, High Frequency Data (Restricted Bands) 20
	e 7: Radiated Emission Test Data, Channel 1 Harmonics
	e 8: Radiated Emission Test Data, Channel 5 Harmonics Error! Bookmark not
	defined.
	e 9: Radiated Emission Test Data, Channel 11 Harmonics Error! Bookmark not
	defined.

List of Figures

Figure 4-1. Duty Cycle Plot	Frror! Rookmark not defined
Figure 4-2. RF Peak Power, Low Channel	
Figure 4-3. RF Peak Power, Mid Channel	
Figure 4-4. RF Peak Power, High Channel	Error! Bookmark not defined.
Figure 4-5. Occupied Bandwidth, Low Channel	9
Figure 4-6. Occupied Bandwidth, Mid Channel	9
Figure 4-7. Occupied Bandwidth, High Channel	
Figure 4-8, Channel Spacing	
Figure 4-9, Number of Channels, Plot 1	
Figure 4-10, Number of Channels, Plot 2	Error! Bookmark not defined.
Figure 4-11. Conducted Spurious Emissions, Low	Channel 30 – 2.425GHz 11
Figure 4-12. Conducted Spurious Emissions, Low	Channel 2.4GHz – 2.9214GHz 12
Figure 4-13. Conducted Spurious Emissions, Low	
Figure 4-14. Conducted Spurious Emissions, Low	Channel 10GHz - 25GHz 13
Figure 4-15. Conducted Spurious Emissions, Mid	Channel 30MHz – 2.5GHz 13
Figure 4-16. Conducted Spurious Emissions, Mid	Channel 2.4GHz - 2.914 14
Figure 4-17. Conducted Spurious Emissions, Mid	Channel 2.679GHz - 10GHz 14
Figure 4-18. Conducted Spurious Emissions, Mid	Channel 10GHz – 25GHz 15
Figure 4-19. Conducted Spurious Emissions, High	Channel 30MHz – 2.472GHz 15
Figure 4-20. Conducted Spurious Emissions, High	Channel 2.4GHz – 2.9GHz 16
Figure 4-21. Conducted Spurious Emissions, High	Channel 2.9GHz – 10GHz 16
Figure 4-22. Conducted Spurious Emissions, High	

1 Introduction

1.1 Compliance Statement

The Blast Technology ApS WDMX-512 complies with the limits for a Direct Sequence Spread Spectrum Transmitter device under Part 15.247 of the FCC Rules and Regulations.

1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance with FCC Public Notice DA 00-705 and the 2001 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer: Blast Technology ApS

Toftevej 51

Horning 8362 Denmark

Quotation Number: 61476

1.4 Test Dates

Testing was performed from March 15, 2004 to March 18, 2004.

1.5 Test and Support Personnel

Washington Laboratories: Steve Koster, Ken Gemmell

1.6 Abbreviations

A Ampere

Ac alternating current
AM Amplitude Modulation

Amps Amperes b/s bits per second BW Bandwidth

CE Conducted Emission

cm centimeter

CW Continuous Wave

dB decibel

dc direct current

EMI Electromagnetic Interference
EUT Equipment Under Test
FM Frequency Modulation

G giga - prefix for 10⁹ multiplier

Hz Hertz

IF Intermediate Frequency
 k kilo - prefix for 10³ multiplier
 M Mega - prefix for 10⁶ multiplier

m Meter

μ micro - prefix for 10⁻⁶ multiplier

NB Narrowband

LISN Line Impedance Stabilization Network

RE Radiated Emissions
RF Radio Frequency
rms root-mean-square
SN Serial Number
S/A Spectrum Analyzer

V Volt

2 Equipment Under Test

2.1 EUT Identification & Description

The Blast Technology ApS WDMX-512 is a Wi-Fi enable lighting control device employing a ZCOM PCMCIA Card (FCC ID: M4Y-0325) and a Nearson Model 151 antenna. The unit uses 11 channels in the 2.4GHz ISM band. The direct sequence spread spectrum signal is modulated using one of the following methods: DQPSK, DBPSK or CCK. The Wireless Router is an IEEE 802.11b Wireless LAN adapter that is used to connect to networked resources such as Internet and Internal LAN resources.

ITEM DESCRIPTION Manufacturer: Blast Technology ApS **RZC-WDMX** FCC ID Number **EUT Name:** Wireless Router WDMX-512 Model: FCC Rule Parts: §15.247 Frequency Range: 2412MHz - 2462MHzMaximum Output Power: 0.1W (20 dBm) Modulation: DQPSK, DBPSK or CCK Occupied Bandwidth: 11.6 MHz Keying: Automatic Type of Information: Data Number of Channels: 11 Power Output Level Fixed Antenna Connector **MMCX** 5dBi Omni Type (Whip) Antenna Type PCMCIA Slot Interface: Power Source & Voltage: 120VAC

Table 1. Device Summary

2.2 Test Configuration

The WDMX-512 was configured with an extender card attached to a laptop PC and a 5dBi antenna.

2.3 Testing Algorithm

The WDMX-512 was programmed for continuous transmission at the highest power level. The unit was set to transmit on the lowest channel, highest channel, and a mid channel.

Worst-case emission levels are provided in the test results data.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file

with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

FCC Public Notice DA 00-705, Filing and Measurement Guidelines for Direct Sequence Spread Spectrum Systems

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is ± 2.3 dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

Total Uncertainty =
$$(A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, Total Uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3 \text{ dB}$.

Test Equipment

Table 2 shows a list of the test equipment used for measurements along with the calibration information.

Table 2: Test Equipment List

Manufacturer	Model/Type	Function	Identification	Cal. Due
HP	8568B	Spectrum Analyzer	2634A02888	7/07/04
HP	85650A	Quasi-Peak Adapter	3303A01786	7/08/04
HP	HP 8593A	Spectrum Analyzer	3009A00739	6/25/04
HP	8449B	Microwave Preamp	3008A00385	9/29/05
Solar	8012-50-R-24BNC	LISN	8379493	6/30/04
Narda	V638	Horn Antenna	210	7/22/04
ARA	LPB-2520	BiconiLog Antenna	1044	6/20/04
ARA	DRG118/A	Microwave Horn Antenna	1236	4/17/04
HP	85685A	RF Preselector	3221A01395	7/07/04
EMCO	3110B	Biconical Antenna	9808-1078	6/20/04
EMCO	3146A	Log Periodic Antenna	8912-1129	6/20/04
Tektronix	TDS 220	Oscilloscope	00333	8/18/04
HP	8648C Signal	Generator	00075	4/30/04
Agilent	8474B	Diode Detector	00416	12/19/04
HP	438A	Power Meter	00394	3/10/04

3 Test Results

3.1 RF Power Output: (FCC Part §2.1046)

The output power was measured a low, high and middle channel.

The power measurement was made using the substitution method. The output of the EUT was connected to a diode detector, which was connected to the input of an oscilloscope. When the radio was turned on, the deflection of the oscilloscope was noted. Then, a signal generator, set to the same frequency as the radio, was connected to the input of the diode and the signal adjusted to get the same deflection as caused by the radio. The output of the signal generator was then connected to the input of a power meter and the resultant power measured. This represents the conducted output power from the radio, which is summarized in the following table.

Channel and/or Frequency Measured Measured Rated Limit Level Level (Watts) (dBm) (Watts) (Watts) Channel 1- 2412 MHz 19.84 0.100 1 0.096 Channel 5 – 2432 MHz 20.08 0.102 0.100 1 Channel 11- 2462 MHz 19.77 0.095 0.100 1

Table 3. RF Power Output

3.2 Power Spectral Density

For DSSS devices, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band.

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system.

Frequency	Level	Limit	Pass/Fail
Low Channel 2412 MHz	-4.68 dBm	8 dBm	Pass
Mid Channel 2432MHz	-4.55 dBm	8 dBm	Pass
High Channel 2462 MHz	-4.77 dBm	8 dBm	Pass

Table 4. RF Power Output

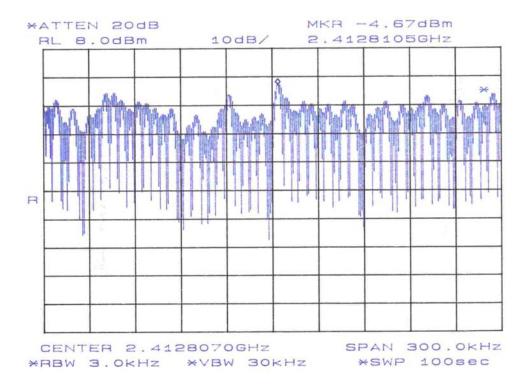


Figure 1: Power Spectral Density Plot, Channel 1

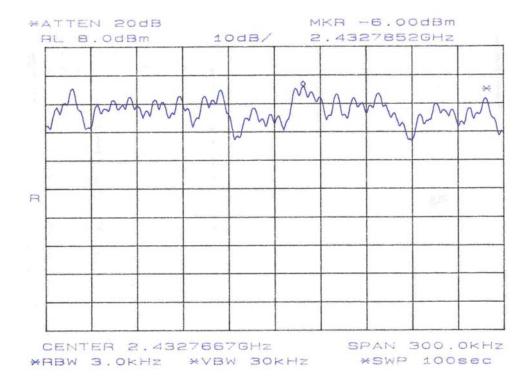


Figure 2: Power Spectral Density Plot, Channel 5

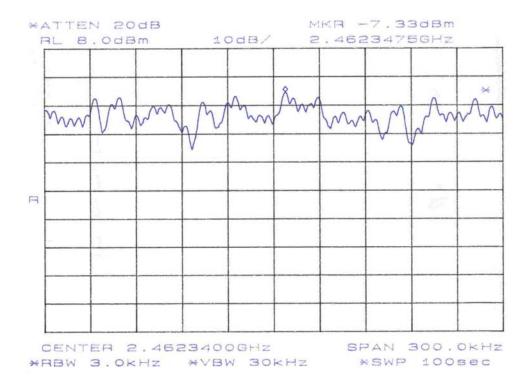


Figure 3: Power Spectral Density Plot, Channel 11

3.3 Occupied Bandwidth: (FCC Part §2.1049)

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

For Direct Sequence Spread Spectrum Systems, FCC Part 15.247 requires that the minimum 6 dB bandwidth be at least 500 kHz. Three channels were measured with the data shown in Figure 4 through Figure 6. At full modulation, the occupied bandwidth was measured as shown:

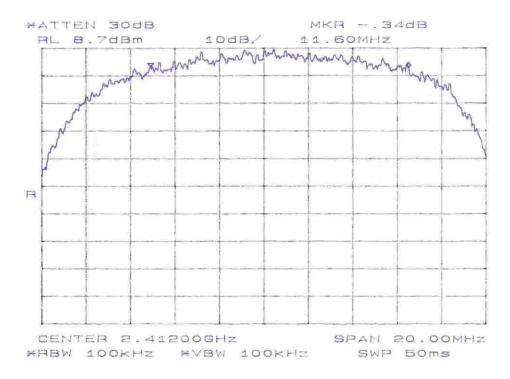


Figure 4. Occupied Bandwidth, Low Channel

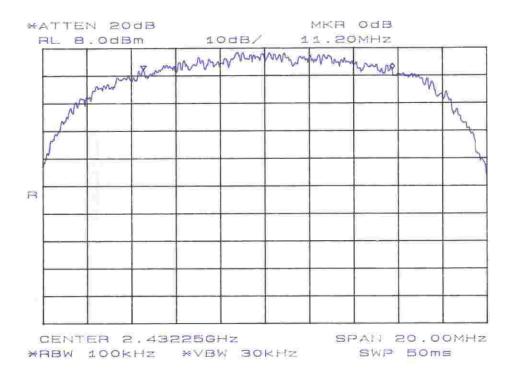


Figure 5. Occupied Bandwidth, Mid Channel

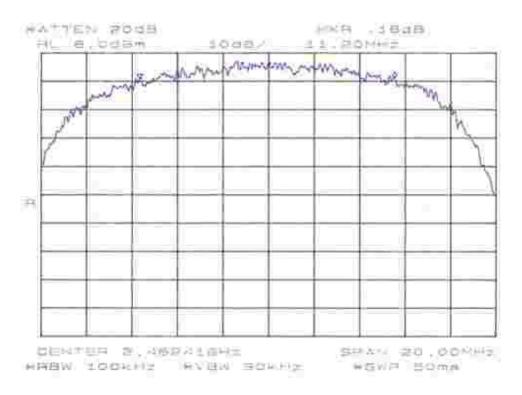


Figure 6. Occupied Bandwidth, High Channel

Table 5 provides a summary of the Occupied Bandwidth Results.

Pass/Fail Frequency Bandwidth Limit Channel 1- 2412MHz 11.60MHz > 500kPass Channel 5- 2432MHz 11.20MHz > 500kPass Channel 11- 2462MHz 11.20MHz > 500kPass

Table 5. Occupied Bandwidth Results

3.4 Conducted Spurious Emissions at Antenna Terminals (FCC Part §2.1051)

The EUT must comply with requirements for spurious emissions at antenna terminals. Per §15.247(c) all spurious emissions in any 100 kHz bandwidth outside the frequency band in which the spread spectrum device is operating shall be attenuated 20 dB below the highest power level in a 100 kHz bandwidth within the band containing the highest level of the desired power.

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 10 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer

resolution bandwidth was set to 100 kHz and the video bandwidth was set to 100 kHz. The amplitude of the EUT carrier frequency was measured to determine the emissions limit (20 dB below the carrier frequency amplitude). The emissions outside of the allocated frequency band were then scanned from 30 MHz up to the tenth harmonic of the carrier.

The following are plots of the conducted spurious emissions data.

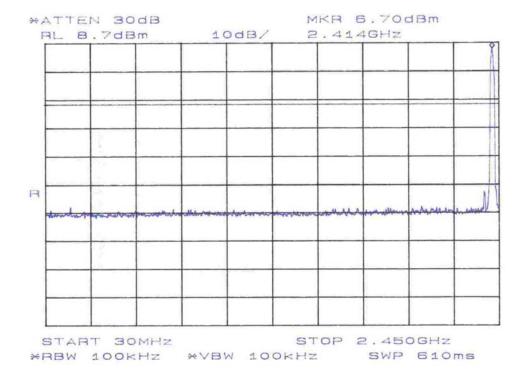


Figure 7. Conducted Spurious Emissions, Low Channel 30 – 2.450GHz

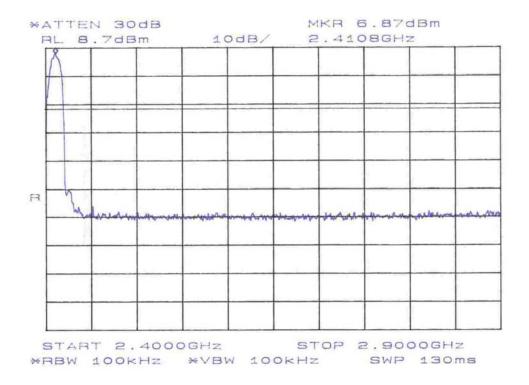


Figure 8. Conducted Spurious Emissions, Low Channel 2.4GHz – 2.9GHz

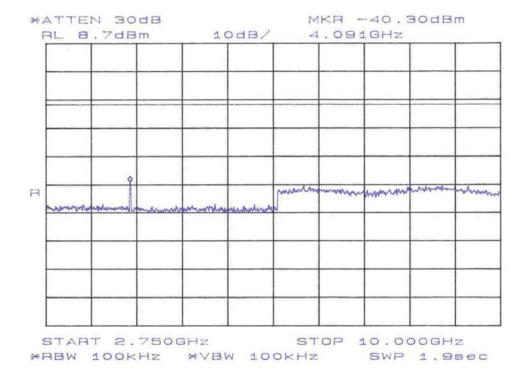


Figure 9. Conducted Spurious Emissions, Low Channel 2.75 – 10GHz

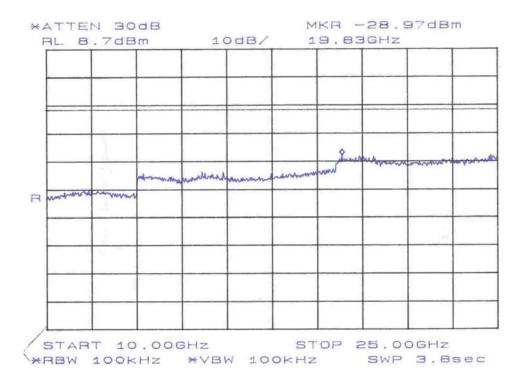


Figure 10. Conducted Spurious Emissions, Low Channel 10GHz - 25GHz

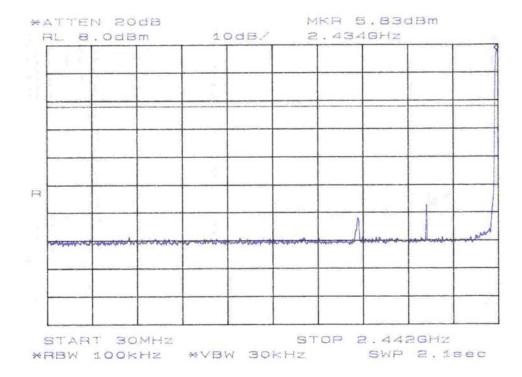


Figure 11. Conducted Spurious Emissions, Mid Channel 30MHz – 2.442GHz

Figure 12. Conducted Spurious Emissions, Mid Channel 2.4GHz - 2.9GHz

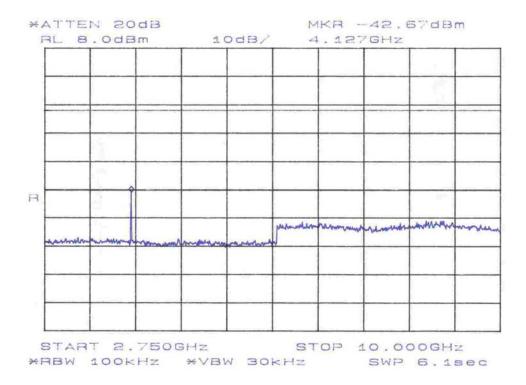


Figure 13. Conducted Spurious Emissions, Mid Channel 2.75GHz - 10GHz

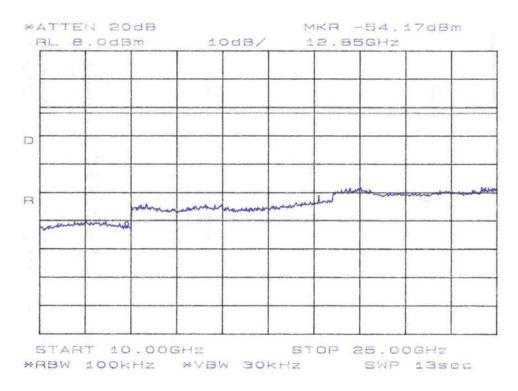


Figure 14. Conducted Spurious Emissions, Mid Channel 10GHz - 25GHz

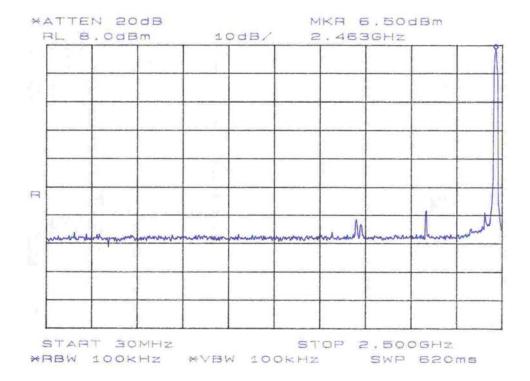


Figure 15. Conducted Spurious Emissions, High Channel 30MHz – 2.5GHz

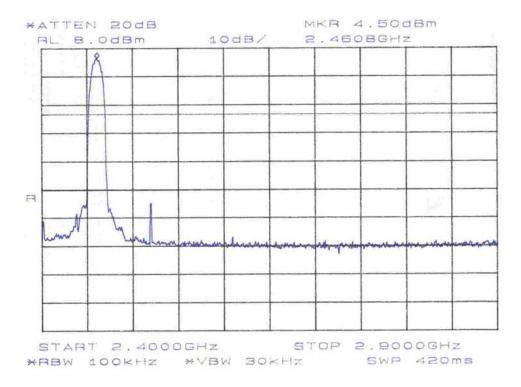


Figure 16. Conducted Spurious Emissions, High Channel 2.4GHz - 2.9GHz

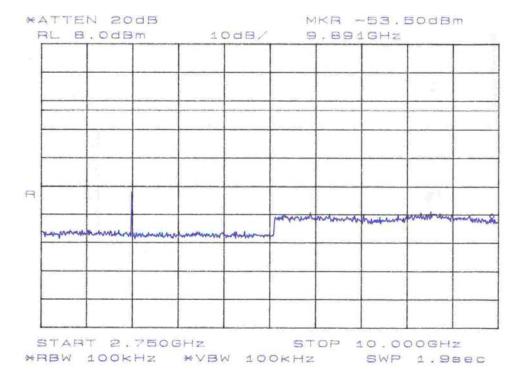


Figure 17. Conducted Spurious Emissions, High Channel 2.75GHz – 10GHz

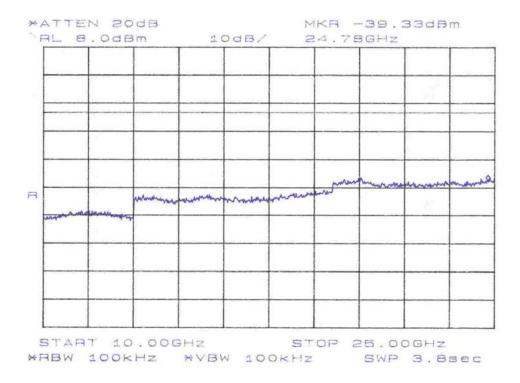


Figure 18. Conducted Spurious Emissions, High Channel 10GHz – 25GHz

3.5 Radiated Spurious Emissions: (FCC Part §2.1053)

The EUT must comply with the requirements for radiated spurious emissions that fall within the restricted bands. These emissions must meet the limits specified in §15.209 and §15.35(b) for peak measurements.

3.5.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-2001. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The emissions were measured using the following resolution bandwidths:

Frequency Range	Resolution Bandwidth	Video Bandwidth
30MHz-1000 MHz	120kHz	>100 kHz
>1000 MHz	1 MHz	<30 Hz (Avg.)
		1MHz (Peak)

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-2001. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

Emissions were scanned up to the 10^{th} harmonic of the fundamental frequency. Worst case emissions are reported in the data table. Band Edge data are included in Table 9 followed by plots of the band edge emissions.

The following is a sample calculation used in the data tables for calculating the final field strength of spurious emissions and comparing these levels to the specified limits.

Sample Calculation:

Spectrum Analyzer Voltage (SA Level): VdBµV
Antenna Factor (Ant Corr): AFdB/m
Cable Loss Correction (Cable Corr): CCdB
Amplifier Gain: GdB

Electric Field (Corr Level): $EdB\mu V/m = VdB\mu V + AFdB/m + CCdB - GdB$

To convert to linear units: $E\mu V/m = antilog (EdB\mu V/m/20)$

Table 6: Radiated Emission Test Data, Low Frequency Data (Restricted Bands)

CLIENT: Blast Tech DATE: 3/15/2004 TESTER: Steve Koster JOB #: 8033

EUT Information:

<u>Test Requirements:</u>
TEST STANDARD: FCC Part 15

EUT: PCMCIA Radio TEST STANDARD: FCC CONFIGURATION: 802.11 radio DISTANCE: 3m CLOCKS: 2.4 GHz CLASS: B

S/N: X32638NU00040

Test Equipment/Limit:

ANTENNA: A_00007

LIMIT: LFCC_3m_Class_B

CABLE: CSITE2_3m

AMPLIFIER (dB) None

Frequency	Polarity	Azimuth	Ant. Hght	SA Level (QP)	Ant. Corr.	Cable Corr.	Corr. Level	Corr. Level	Limit	Margin
(MHz)	H/V	Degree	m	dBμV	dB/m	dB	dBμV/m	μV/m	μV/m	dB
73.80	V	225.0	1.0	14.3	6.6	1.5	22.4	13.2	100.0	-17.6
110.01	V	180.0	1.0	19.6	10.0	1.7	31.3	36.9	150.0	-12.2
133.45	V	180.0	1.0	17.0	10.2	1.9	29.1	28.6	150.0	-14.4
110.00	Н	0.0	4.0	21.8	10.0	1.7	33.5	47.5	150.0	-10.0
131.99	Н	0.0	4.0	21.5	10.4	1.9	33.8	48.9	150.0	-9.7
133.46	Н	180.0	4.0	20.8	10.2	1.9	32.9	44.3	150.0	-10.6
263.98	Н	0.0	1.5	17.0	13.1	2.4	32.6	42.5	200.0	-13.5
270.34	Н	0.0	1.5	17.5	13.8	2.5	33.8	48.8	200.0	-12.3
330.00	Н	0.0	1.5	15.4	14.0	2.7	32.1	40.4	200.0	-13.9

Table 7: Radiated Emission Test Data, (Restricted Bands >1GHz): Average

CLIENT: Blast Tech DATE: 3/15/2004 TESTER: Steve Koster JOB #: 8033 **Test Requirements:**

EUT Information:

FCC Part 15 EUT: PCMCIA Radio TEST STANDARD:

CONFIGURATION: 802.11 radio DISTANCE: 3m CLOCKS: 2.4 GHz В CLASS:

S/N: X32638NU00040

Test Equipment/Limit:

ANTENNA: A_00425 CABLE: CSITE2_3m LIMIT: LFCC_3m_Class_B AMPLIFIER (dB) #00066

Average Data

Frequency	Polarity	Azimuth	Ant.	SA	Ant.	Cable	Amp	Corr.	Corr.	Limit	Margin
			Hght	Level	Corr.	Corr.	Gain	Level	Level		
				(Avg.)							
(MHz)	H/V	Degree	m	dBμV	dB/m	dB	dB	dBμV/m	μV/m	μV/m	dB
(IVIIIE)	11/ 1	Degree	111	аБр т	GD/III	u.b	u.D	συμ τ/π	μνγιιι	μνγιιι	u.b
Chan 1											
4092.0	Н	180.0	1.0	33.4	31.7	3.1	35.5	32.7	43.2	500.0	-21.3
4092.0	V	180.0	1.0	35.9	31.7	3.1	35.5	35.2	57.5	500.0	-18.8
4824.0	Н	0.0	1.0	29.8	33.3	4.2	35.9	31.4	37.2	500.0	-22.6 a
4824.0	V	0.0	1.0	28.7	33.3	4.2	35.9	30.3	32.7	500.0	-23.7 a
7236.0	Н	0.0	1.0	27.2	37.6	4.5	35.9	33.4	46.8	500.0	-20.6 a
7236.0	V	0.0	1.0	27.0	37.6	4.5	35.9	33.2	45.7	500.0	-20.8 a
12060.00	Н	0.0	1.0	27.6	41.4	5.2	35.8	38.4	83.2	500.0	-15.6 a
12060.00	V	0.0	1.0	27.1	41.4	5.2	35.8	37.9	78.5	500.0	-16.1 a
14472.00	Н	0.0	1.0	30.5	40.8	7.6	34.8	44.1	160.3	500.0	-9.9 a
14472.00	V	0.0	1.0	30.4	40.8	7.6	34.8	44.0	158.5	500.0	-10.0 a
19296.00	Н	0.0	1.0	37.0	39.7	7.8	35.4	49.1	285.1	500.0	-4.9 a
19296.00	V	0.0	1.0	35.3	39.7	7.8	35.4	47.4	234.4	500.0	-6.6 a
Chan 5											
1552.80	Н	270.0	1.0	36.6	27.8	2.6	35.8	31.2	36.3	500.0	-22.8
1552.80	V	270.0	1.0	38.5	27.8	2.6	35.8	33.1	45.2	500.0	-20.9
4127.30	Н	90.0	1.0	39.4	31.5	3.0	35.5	38.4	83.2	500.0	-15.6
4127.30	V	90.0	1.0	44.7	31.5	3.0	35.5	43.7	153.1	500.0	-10.3
4864.00	Н	0.0	1.0	30.1	33.4	4.3	36.0	31.8	38.9	500.0	-22.2 a
4864.00	V	0.0	1.0	28.6	33.4	4.3	36.0	30.3	32.7	500.0	-23.7 a
7296.00	Н	0.0	1.0	26.2	37.7	4.6	35.9	32.6	42.7	500.0	-21.4 a
7296.00	V	0.0	1.0	26.4	37.7	4.6	35.9	32.8	43.7	500.0	-21.2 a
12160.00	Н	0.0	1.0	26.7	41.3	5.4	35.7	37.7	76.7	500.0	-16.3 a
12160.00	V	0.0	1.0	27.4	41.3	5.4	35.7	38.4	83.2	500.0	-15.6 a
19456.00	Н	0.0	1.0	37.3	39.7	7.8	35.3	49.5	298.5	500.0	-4.5 a
19456.00	V	0.0	1.0	37.5	39.7	7.8	35.3	49.7	305.5	500.0	-4.3 a
Chan 11											
1721.00	Н	180.0	1.0	39.4	28.3	2.9	35.7	34.9	55.9	500.0	-19.0

Frequency	Polarity	Azimuth	Ant.	SA	Ant.	Cable	Amp	Corr.	Corr.	Limit	Margin
			Hght	Level	Corr.	Corr.	Gain	Level	Level		
				(Avg.)							
(MHz)	H/V	Degree	m	dΒμV	dB/m	dB	dB	dBµV/m	μV/m	μV/m	dB
4200.00	Н	180.0	1.0	38.4	31.7	3.1	35.5	37.8	77.3	500.0	-16.2
4200.00	V	180.0	1.0	40.0	31.7	3.1	35.5	39.4	93.0	500.0	-14.6
4924.00	V	0.0	1.0	26.7	33.5	4.4	36.0	28.6	26.9	500.0	-25.4 a
4924.00	Н	0.0	1.0	27.0	33.5	4.4	36.0	28.9	27.9	500.0	-25.1 a
7386.00	V	0.0	1.0	26.5	37.8	4.6	35.9	33.0	44.7	500.0	-21.0 a
7386.00	Н	0.0	1.0	27.3	37.8	4.6	35.9	33.8	49.0	500.0	-20.2 a
12310.00	V	0.0	1.0	27.1	41.1	5.6	35.5	38.3	82.2	500.0	-15.7 a
12310.00	Н	0.0	1.0	27.9	41.1	5.6	35.5	39.1	90.2	500.0	-14.9 a
19696.00	V	0.0	1.0	35.4	39.7	7.8	35.3	47.6	239.9	500.0	-6.4 a
19696.00	Н	0.0	1.0	35.7	39.7	7.8	35.3	47.9	248.3	500.0	-6.1 a
22158.00	V	0.0	1.0	36.0	40.5	8.4	35.0	49.9	312.6	500.0	-4.1 a
22158.00	Н	0.0	1.0	36.2	40.5	8.4	35.0	50.1	319.9	500.0	-3.9 a

a = ambient reading

Table 8: Radiated Emission Test Data, (Restricted Bands >1GHz): Peak

CLIENT: Blast Tech DATE: 3/15/2004 TESTER: Steve Koster JOB #: 8033

EUT Information: Test Requirements:

EUT: PCMCIA Radio TEST STANDARD: FCC Part 15

CONFIGURATION: 802.11 radio DISTANCE: 3m CLOCKS: 2.4 GHz CLASS: B

S/N: X32638NU00040

Test Equipment/Limit:

ANTENNA: A_00425 CABLE: CSITE2_3m LIMIT: LFCC_3m_Class_B AMPLIFIER (dB) #00066

Peak Data

Frequency	Polarity	Azimuth	Ant.	SA	Ant.	Cable	Amp	Corr.	Corr.	Limit	Margin
			Hght	Level	Corr.	Corr.	Gain	Level	Level		
				(Peak)							
(MHz)	H/V	Degree	m	dBμV	dB/m	dB	dB	dBµV/m	μV/m	μV/m	dB
(IVIII)	11,	208100		G2 pr 1	GD /111			02 pt 17111	pt 1,111	p. 1722	<u> </u>
Chan 1											
4092.0	Н	180.0	1.0	47.3	31.7	3.1	35.5	46.6	213.8	5000.0	-27.4
4092.0	V	180.0	1.0	48.6	31.7	3.1	35.5	47.9	248.3	5000.0	-26.1
4824.0	Н	0.0	1.0	44.6	33.3	4.2	35.9	46.2	204.2	5000.0	-27.8 a
4824.0	V	0.0	1.0	42.1	33.3	4.2	35.9	43.7	153.1	5000.0	-30.3 a
7236.0	Н	0.0	1.0	35.6	37.6	4.5	35.9	41.8	123.0	5000.0	-32.2 a
7236.0	V	0.0	1.0	35.0	37.6	4.5	35.9	41.2	114.8	5000.0	-32.8 a
12060.00	Н	0.0	1.0	35.5	41.4	5.2	35.8	46.3	206.5	5000.0	-27.7 a
12060.00	V	0.0	1.0	34.3	41.4	5.2	35.8	45.1	179.9	5000.0	-28.9 a
14472.00	Н	0.0	1.0	40.3	40.8	7.6	34.8	53.9	495.5	5000.0	-20.1 a
14472.00	V	0.0	1.0	40.5	40.8	7.6	34.8	54.1	507.0	5000.0	-19.9 a
19296.00	Н	0.0	1.0	48.3	39.7	7.8	35.4	60.4	1047.1	5000.0	-13.6 a
19296.00	V	0.0	1.0	46.2	39.7	7.8	35.4	58.3	822.2	5000.0	-15.7 a
Chan 5											
1552.80	Н	270.0	1.0	50.6	27.8	2.6	35.8	45.2	182.0	5000.0	-28.8
1552.80	V	270.0	1.0	48.7	27.8	2.6	35.8	43.3	146.2	5000.0	-30.7
4127.30	Н	90.0	1.0	51.3	31.5	3.0	35.5	50.3	327.3	5000.0	-23.7
4127.30	V	90.0	1.0	54.6	31.5	3.0	35.5	53.6	478.6	5000.0	-20.4
4864.00	Н	0.0	1.0	36.5	33.4	4.3	36.0	38.2	81.3	5000.0	-35.8 a
4864.00	V	0.0	1.0	39.9	33.4	4.3	36.0	41.6	120.2	5000.0	-32.4 a
7296.00	Н	0.0	1.0	31.1	37.7	4.6	35.9	37.5	75.0	5000.0	-36.5 a
7296.00	V	0.0	1.0	35.4	37.7	4.6	35.9	41.8	123.0	5000.0	-32.2 a
12160.00	Н	0.0	1.0	35.5	41.3	5.4	35.7	46.5	211.3	5000.0	-27.5 a
12160.00	V	0.0	1.0	39.2	41.3	5.4	35.7	50.2	323.6	5000.0	-23.8 a
19456.00	Н	0.0	1.0	46.7	39.7	7.8	35.3	58.9	881.0	5000.0	-15.1 a
19456.00	V	0.0	1.0	46.8	39.7	7.8	35.3	59.0	891.3	5000.0	-15.0 a

Frequency	Polarity	Azimuth	Ant.	SA	Ant.	Cable	Amp	Corr.	Corr.	Limit	Margin
			Hght	Level	Corr.	Corr.	Gain	Level	Level		
				(Peak)							
(MHz)	H/V	Degree	m	dΒμV	dB/m	dB	dB	dBµV/m	μV/m	μV/m	dB
Chan 11											
1721.00	Н	180.0	1.0	53.8	28.3	2.9	35.7	49.3	293.4	5000.0	-24.6
4200.00	Н	180.0	1.0	51.7	31.7	3.1	35.5	51.1	357.6	5000.0	-22.9
4200.00	V	180.0	1.0	52.9	31.7	3.1	35.5	52.3	410.6	5000.0	-21.7
4924.00	V	0.0	1.0	33.8	33.5	4.4	36.0	35.7	61.0	5000.0	-38.3 a
4924.00	Н	0.0	1.0	39.8	33.5	4.4	36.0	41.7	121.6	5000.0	-32.3 a
7386.00	V	0.0	1.0	37.5	37.8	4.6	35.9	44.0	158.5	5000.0	-30.0 a
7386.00	Н	0.0	1.0	38.5	37.8	4.6	35.9	45.0	177.8	5000.0	-29.0 a
12310.00	V	0.0	1.0	34.4	41.1	5.6	35.5	45.6	190.5	5000.0	-28.4 a
12310.00	Н	0.0	1.0	34.5	41.1	5.6	35.5	45.7	192.8	5000.0	-28.3 a
19696.00	V	0.0	1.0	49.7	39.7	7.8	35.3	61.9	1244.5	5000.0	-12.1 a
19696.00	Н	0.0	1.0	50.3	39.7	7.8	35.3	62.5	1333.5	5000.0	-11.5 a
22158.00	V	0.0	1.0	49.3	40.5	8.4	35.0	63.2	1445.4	5000.0	-10.8 a
22158.00	Н	0.0	1.0	49.7	40.5	8.4	35.0	63.6	1513.6	5000.0	-10.4 a

a = ambient reading

Table 9; FCC Part 15.247 Band Edge Radiated Emissions Test Data Sheet

CLIENT: BlastTechnology DATE: 4/5/2004 TESTER: Greg Snyder JOB #: 8033

EUT Information:

Test Requirements:

EUT: PCMCIA Module TEST STANDARD: FCC Part 15

CONFIGURATION: Transmitting DISTANCE: 3m

CLOCKS: 2.412GHz (Channel 1) and 2.462 GHz (Channel 11)

Test Equipment/Limit:

ANTENNA: A 00425

LIMIT: LFCC_3m_Class_B CABLE: CSITE1_HF

AMPLIFIER (dB) A_00066

Frequency	Pol	Az	Ant.	SA	Ant.	Cable	Amp	Corr.	Corr.	Limit	Margin	Notes
			Hght	Level	Corr.	Corr.	Gain	Level	Level			
(MHz)	H/V	Degree	(m)	$(dB\mu V)$	(dB/m)	(dB)	(dB)	$(dB\muV/m)$	(\muV/m)	$(\mu V/m)$	dB	
2499.00	V	90.0	1.0	64.0	30.0	3.0	35.6	61.4	1178.6	5000.0	-12.6	Peak
2487.60	V	90.0	1.0	45.5	30.0	3.0	35.6	42.9	139.7	500.0	-11.1	Avg
2310.00	V	270.0	1.0	69.3	29.7	2.9	35.6	66.3	2073.0	5000.0	-7.6	Peak
2362.00	V	270.0	1.0	44.8	29.8	2.9	35.6	41.9	125.1	500.0	-12.0	Avg

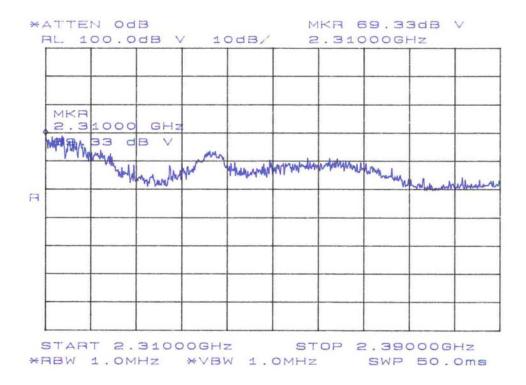


Figure 3-19. Channel 1 Band Edge, Peak

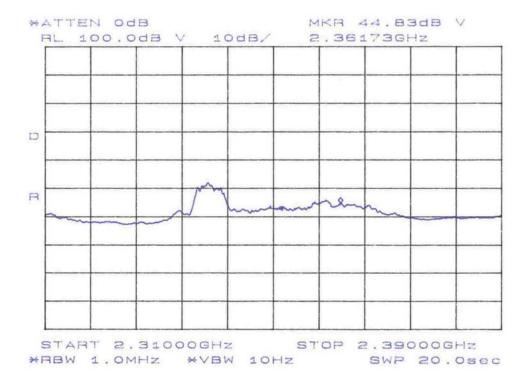


Figure 3-20. Channel 1 Band Edge, Average

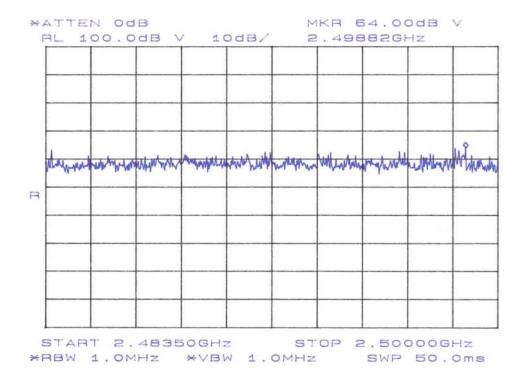


Figure 3-21. Channel 11 Band Edge, Peak

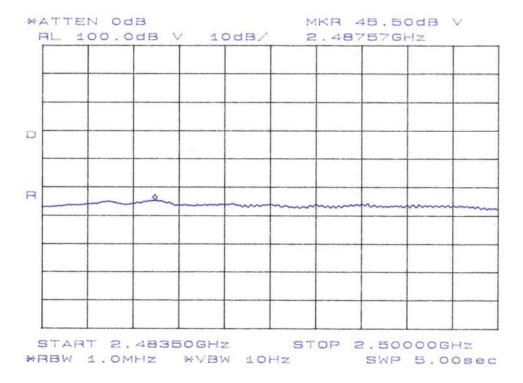


Figure 3-22. Channel 11 Band Edge, Average

3.6 AC Powerline Conducted Emissions: (FCC Part §15.207)

The EUT was placed on an 80 cm high 1 x 1.5 m non-conductive table above a ground plane. Power to the EUT was provided through a Solar Corporation 50 Ω /50 μ H Line Impedance Stabilization Network bonded to a 3 x 2 meter ground plane. The LISN has its AC input supplied from a filtered AC power source. Power and data cables were moved about to obtain maximum emissions.

The 50 Ω output of the LISN was connected to the input of the spectrum analyzer and the emissions in the frequency range of 150 kHz to 30 MHz were measured. The detector function was set to quasi-peak or peak, as appropriate, and the resolution bandwidth during testing was at least 9 kHz, with all post-detector filtering no less than 10 times the resolution bandwidth.

Data is recorded in Table 10.

Table 10, Conducted Emissions Test Data Sheet

CLIENT: Blast Technologies DATE: 03/17/04 FCC Part 15 TEST STANDARD: JOB #: 8033 MODEL: PCMIA Radio CLASS: FCC_B CSITE1_CE TESTER: James Ritter TEST SITE: 120 VAC TEST VOLTAGE:

LINE 1 - NEUTRAL

Frequency	Level	Cable	Limit	Margin	Level	Cable	Limit	Margin
_	QP	Loss	QP	QP	AVG	Loss	AVG	AVG
) ATT	dBu	ID	10. 17	ID.	1D. X7	1D	10. 17	ID.
MHz	V	dB	dBuV	dB	dBuV	dB	dBuV	dB
0.191	41.1	10.6	64.0	-12.3	27.2	10.6	54.0	-16.2
0.286	31.9	10.8	60.6	-18.0	21.5	10.8	50.6	-18.4
0.569	30.8	10.7	56.0	-14.5	24.9	10.7	46.0	-10.4
1.687	28.6	10.9	56.0	-16.5	18.4	10.9	46.0	-16.7
3.129	29.9	11.1	56.0	-15.0	18.8	11.1	46.0	-16.1
5.321	31.5	11.2	60.0	-17.3	22.4	11.2	50.0	-16.4
8.005	27.9	11.4	60.0	-20.7	27.9	11.4	50.0	-10.7
26.060	17.1	12.1	60.0	-30.8	17.1	12.1	50.0	-20.8

LINE 2 - PHASE

Frequency	Level QP	Cable Loss	Limit QP	Margin QP	Level AVG	Cable Loss	Limit AVG	Margin AVG
MHz	dBu V	dB	dBuV	dB	dBuV	dB	dBuV	dB
1,1112	<u> </u>	ш	abu v	СБ	uDu v	u.D	uDu v	<u></u>
0.191	40.7	10.6	64.0	-12.7	27.0	10.6	54.0	-16.4
0.287	31.1	10.8	60.6	-18.7	21.2	10.8	50.6	-18.6
0.569	31.2	10.7	56.0	-14.1	24.6	10.7	46.0	-10.7
1.687	28.6	10.9	56.0	-16.5	18.1	10.9	46.0	-17.0
3.129	29.3	11.1	56.0	-15.6	18.7	11.1	46.0	-16.2
5.321	31.0	11.2	60.0	-17.8	19.1	11.2	50.0	-19.7
8.000	27.5	11.4	60.0	-21.1	27.5	11.4	50.0	-11.1
11.140	22.9	11.5	60.0	-25.6	22.9	11.5	50.0	-15.6