

TE	EST REPORT		
Report Reference No	TRE18110197 R/C: 68830		
IC:	906A-MRHH150		
Applicant's name:	Cobra Electronics Corporation		
Address	6500 West Cortland Street Chicago, IL 60707, USA		
Manufacturer	Cobra Electronics Corporation		
Address	6500 West Cortland Street Chicago, IL 60707, USA		
Test item description:	VHF Marine Radio		
Trade Mark	Cobra		
Model/Type reference:	MRHH150FLT		
Listed Model(s)			
Standard:	RSS-182/RSS-Gen Issue 5		
Date of receipt of test sample:	Nov. 26, 2018		
Date of testing	Nov. 26, 2018- Dec.09, 2018		
Date of issue	Dec.10, 2018		
Result	PASS		
Compiled by (position+printedname+signature):	File administrators Fanghui Zhu		
Supervised by (position+printedname+signature):	Project Engineer Jerry Wang RF Manager Hans Hu		
Approved by (position+printedname+signature):	RF Manager Hans Hu		
Testing Laboratory Name:	Shenzhen Huatongwei International Inspection Co., Ltd		
Address	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND TEST DESCRIPTION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Test frequency list	6
3.4.	EUT operation mode	6
3.5.	EUT configuration	7
<u>4.</u>	TEST ENVIRONMENT	8
4.1.	Address of the test laboratory	8
4.2.	Test Facility	8
4.3.	Environmental conditions	9
4.4.	Statement of the measurement uncertainty	9
4.5.	Equipments Used during the Test	10
<u>5.</u>	TEST CONDITIONS AND RESULTS	12
5.1.	Frequency Plan and Channel Spacing	12
5.2.	Required Operating Frequencies	12
5.3.	Transmitter Output Powers	13
5.4.	Types of Modulation and Equipment Characteristics	14
5.5.	Emission Mask	15
5.6.	FM Modulation Limiting and Audio Low-Pass Filter for Coast Station Equipment	17
5.7.	Frequency Stability Test VS Temperature	18
5.8.	Frequency Stability Test VS Voltage	20
5.9.	Spurious Emission on Antenna Port	22
5.10.	Transmitter Radiated Spurious Emission	23
5.11.	Radiated Emission	29
5.12.	Conducted Emissions	33
6.	APPENDIX REPORT	33

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

<u>RSS-182 Issue 5 January 2012</u>: Maritime Radio Transmitters and Receivers in the Band 156-162.5 MHz <u>RSS-Gen Issue 5, April 2018</u>: General Requirements for compliance of Radio Apparatus <u>TIA/EIA 603 D:June 2010</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

1.2. Report version

Revised No.	Date of issue	Description
N/A	2018-12-10	Original

2. <u>Test Description</u>

Transmitter Requirement				
Test item	Standards requirement	Result	Test Engineer	
Frequency Plan and Channel Spacing	RSS-182 § 7.1	PASS	Gaosheng Pan	
Required Operating Frequencies	RSS-182 § 7.2	PASS	Gaosheng Pan	
Types of Modulation and Equipment Characteristics	RSS-182 § 7.3	PASS	Gaosheng Pan	
Frequency Stability Test V.S. Temperature Frequency Stability Test V.S. Voltage	RSS-182 § 7.4	PASS	Gaosheng Pan	
Transmitter Output Powers	RSS-182 § 7.5	PASS	Gaosheng Pan	
Transport Canada Specifications	RSS-182 § 7.6	PASS	Gaosheng Pan	
VHF AIS Transponders	RSS-182 § 7.7	PASS	Gaosheng Pan	
FM Modulation Limiting and Audio Low- Pass Filter for Coast Station Equipment (Voice Modulation)	RSS-182 § 7.8	PASS	Gaosheng Pan	
Transmitter Radiated Spurious Emssion	RSS-182 § 7.9	PASS	Gaosheng Pan	
Spurious Emssion On Antenna Port	RSS-182 § 7.9	PASS	Gaosheng Pan	
Emission Mask	RSS-182 § 7.9	PASS	Shower Dai	
Receiver Requirement				
Test item	Standards requirement	Result	Test Engineer	
Radiated Emssion	RSS-Gen	PASS	Shower Dai	
Conducted Emission	RSS-Gen	N/A	N/A	

Note:

N/A means not applicable

3. SUMMARY

3.1. Client Information

Applicant:	Cobra Electronics Corporation	
Address:	6500 West Cortland Street Chicago, IL 60707, USA	
Manufacturer:	Cobra Electronics Corporation	
Address:	6500 West Cortland Street Chicago, IL 60707, USA	

3.2. Product Description

Name of EUT:	VHF Marine Radio		
Trade mark:	Cobra		
Mode No.:	MRHH150FLT		
Listed Model(s):	-		
Power supply:	DC 6.0V		
Hardware Version:	V1.2		
Software Version:	V0.28		
Radio Specification			
Operation Frequency Banger	TX: 156.025MHz to 157.425MHz		
Operation Frequency Range:	RX: 156.05MHz to 162MHz		
Rated Output Power:	High Power: 3W (43.98dBm) 🛛 Low Power 0.5W (30.00dBm)		
Modulation Type:	Analog Voice: FM		
Channel Separation:	Analog Voice: 🗌 12.5kHz 🛛 25kHz		
Emission Designator:	Analog Voice: 12.5kHz Channel Separation: 25kHz Channel Separation: 16K0G3E		
Antenna Type:	External		

3.3. Test frequency list

Mode	Modulation	Operation Frequency Range	Te	Test Frequency (MHz)	
	Analog PM			CH∟	Tx: 156.025(CH60) Rx: 160.625(CH60)
Analog		Tx: 156.025MHz to 157.425MHz Rx: 156.05MHz to 162MHz	CH_{M2}	Tx: 156.8(CH16) Rx: 156.8(CH16)	
			СН _н	Tx: 157.425(CH88) Rx: 157.425(CH88)	

Note:

In section RSS-Gen Table1, regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above listed frequency for testing.

Tx means transmitting mode, Rx means receiving mode.

3.4. EUT operation mode

Test mode	Transmitting	Popoiving	Powe	r level	Analog Voice/FM
Test mode	Transmining	Receiving	High	Low	25kHz
TX-AWH-	\checkmark		\checkmark		\checkmark
TX-AWL	\checkmark			\checkmark	\checkmark
RX-AW		\checkmark			\checkmark

 \checkmark : is operation mode.

Modulation Type	Description	
UM	Un-modulation	
AM2	Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.	
AM6	Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, then increase the level from the audio generator by 20 dB	
AM5	Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation.	
DM	A 511 bit binary pseudo-random bit sequence based on ITU-T Rec. 0.153	

Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report.

Test item	Modulation Type	Test mode (Worse case mode)
Conducted Output Power	UM	TX-AWH, TX-AWL
99% Occupied Bandwidth & 26dB bandwidth	AM6	TX-AWH, TX-AWL
Emission Mask	AM5	TX-AWH, TX-AWL
Modulation Limit	AM6	TX-AWH
Audio Frequency Response	AM2	TX-AWH
Audio Frequency Response	AM2	TX-AWH
Frequency Stability VS Temperature	UM	TX-AWH, TX-AWL
Frequency Stability VS Voltage	UM	TX-AWH, TX-AWL
Transmit Conducted Spurious Emission	AM5	TX-AWH
Transmit Radiated Spurious Emission	AM5	TX-AWH
AC Power Line Conducted Emission	-	RX-GPS
Radiated Emission	-	RX-GPS

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

• - supplied by the manufacturer

 \bigcirc - supplied by the lab

ullet	DC Power Cable	Length (m) :	/
		Shield :	Unshielded
		Detachable :	Undetachable
0	Multimeter	Manufacturer :	/
		Model No. :	/

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered byCertification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

Normal Conditon		
Relative humidity: 25 % to 75 %.		
Air Pressure:	86~106kPa	
Ambient temperature :	15℃~35℃	

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability & Occupied Bandwidth	18Hz for <1GHz 69Hz for >1GHz	(1)
Conducted Output Power	0.63dB	(1)
ERP / EIRP / RSE	2.38dB for <1GHz 3.45dB for >1GHz	(1)
Conducted Emission 9KHz-30MHz	3.35 dB	(1)
Radiated Emission 30~1000MHz	4.80 dB	(1)
Radiated Emission 1~18GHz	5.16 dB	(1)
Radiated Emission 18-40GHz	5.54 dB	(1)
FM deviation	25 Hz	(1)
Audio level	0.62 dB	(1)
Low Pass Filter Response	0.76 dB	(1)
Modulation Limiting	0.42 %	(1)
Transient Frequency Behavior	6.8 %	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

•	Conducted Emis	ssion				
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	ESCI	101247	2018/10/27	2019/10/26
•	Artificial Mains	SCHWARZBECK	NNLK 8121	573	2018/10/27	2019/10/26
•	Pulse Limiter	R&S	ESH3-Z2	100499	2018/10/27	2019/10/26
•	RF Connection Cable	HUBER+SUHNER	EF400	N/A	2018/11/15	2019/11/14
•	Test Software	R&S	ES-K1	N/A	N/A	N/A
0	Single Balanced Telecom Pair ISN	FCC	FCC-TLISN-T2-02	20371	2018/10/28	2019/10/27
0	Two Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T4-02	20373	2018/10/28	2019/10/27
0	Four Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T8-02	20375	2018/10/28	2019/10/27
0	V-Network	R&S	ESH3-Z6	100211	2018/10/27	2019/10/26
0	V-Network	R&S	ESH3-Z6	100210	2018/10/27	2019/10/26
0	2-Line V-Network	R&S	ESH3-Z5	100049	2018/10/27	2019/10/26

4.5. Equipments Used during the Test

•	Radiated Emission-6th test site					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-02	N/A	2018/09/30	2021/09/29
•	EMI Test Receiver	R&S	ESCI	100900	2018/10/28	2019/10/27
0	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19
•	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	546	2017/04/05	2020/04/04
•	Pre-Amplifer	SCHWARZBECK	BBV 9742	N/A	2018/11/15	2019/11/14
•	RF Connection Cable	HUBER+SUHNER	N/A	N/A	2018/09/28	2019/09/27
•	RF Connection Cable	HUBER+SUHNER	SUCOFLEX104	501184/4	2018/09/28	2019/09/27
•	Test Software	R&S	ES-K1	N/A	N/A	N/A
•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
٠	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

•	TS8613 Test sys	stem				
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2018/09/29	2019/09/28
•	Signal & Spectrum Analyzer	R&S	FSW26	103440	2018/10/28	2019/10/27
•	RF Communication Test Set	HP	8920A	3813A10206	2018/10/28	2019/10/27
•	Digital intercom communication tester	Aeroflex	3920B	1001682041	2018/10/28	2019/10/27
•	Signal Generator	R&S	SML02	100507	2018/10/27	2019/10/26
•	Signal Generator	IFR	2032	203002\100	2018/11/11	2019/11/10
٠	RF Control Unit	Tonscend	JS0806-2	N/A	N/A	N/A
•	Fliter-VHF	Microwave	N26460M1	498702	2018/03/19	2019/03/18

Shenzhen Huatongwei International Inspection Co., Ltd.

Report Template Version: V01 (2018-01)

Report No : TRE18110197

Page 11 of 33

0	Fliter-UHF	Microwave	N25155M2	498704	2018/03/19	2019/03/18
0	Power Divider	Microwave	OPD1040-N-4	N/A	2018/11/15	2019/11/14
0	Attenuator	JFW	50FH-030-100	N/A	2018/11/15	2019/11/14
0	Attenuator	JFW	50-A-MFN-20	0322	2018/11/15	2019/11/14
•	Test software	HTW	Radio ATE	N/A	N/A	N/A

•	Auxiliary Equipment					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Climate chamber	ESPEC	GPL-2	N/A	2018/11/08	2019/11/07
•	DC Power Supply	Gwinstek	SPS-2415	GER835793	2018/10/28	2019/10/27

•	Radiated Spurio	us Emission				
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29
•	Spectrum Analyzer	R&S	FSP40	100597	2018/10/27	2019/10/26
•	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19
•	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	538	2017/04/05	2020/04/04
•	Horn Antenna	SCHWARZBECK	9120D	1011	2017/04/01	2020/03/31
0	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2017/03/27	2020/03/26
0	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13
•	Pre-amplifier	CD	PAP-0102	12004	2018/11/14	2019/11/13
•	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-248	2018/04/28	2019/04/27
•	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14
•	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14
•	EMI Test Software	Audix	E3	N/A	N/A	N/A
•	Turntable	MATURO	TT2.0	N/A	N/A	N/A
•	Antenna Mast	MATURO	TAM-4.0-P	N/A	N/A	N/A

•	Auxiliary Equipment					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
0	Radio communication tester	R&S	CMW500	137688-Lv	2018/09/29	2019/09/28
0	Universal Radio Communication	R&S	CMU200	112012	2018/10/28	2019/10/27
0	High pass filter	Wainwright	WHKX3.0/18G-10SS	38	2018/11/14	2019/11/13
0	Band rejection filter	Microwave	N/A	N/A	2018/11/14	2019/11/13

5. TEST CONDITIONS AND RESULTS

5.1. Frequency Plan and Channel Spacing

According to RSS-182 Section 7.1

The channel spacing for maritime VHF radio communication is 25 kHz. However, equipment with a spacing of 12.5 kHz is permitted provided that the equipment has a mode which can inter-operate with the 25 kHz standard channel spacing and that the equipment complies with all technical requirements of this RSS. The channel frequency plan for Canadian maritime radiocommunications, based on the 25 kHz channel spacing, is set forth in RBR-2 and the frequency plan for international maritime radiocommunications is set forth in Appendix 18 of the ITU's Radio Regulations.

Result: Complies

5.2. Required Operating Frequencies

According to RSS-182 Section 7.2

Equipment for radiotelephony used in survival craft stations shall be able to transmit and receive standard IMO class G3E emissions on the 156.8 MHz (channel 16, distress) frequency and at least one other frequency in the band 156- 162.5 MHz.

Equipment for radiotelephony used in ships other than survival craft shall be able to transmit and receive standard IMO class G3E emissions on the 156.8 MHz (channel 16, distress), 156.3 MHz (channel 6, inter-ship safety) and 156.65 MHz (channel 13, bridge-to-bridge) frequencies, as well as on all the frequencies necessary for their service.

VHF radiotelephone equipment designated with a "D" shall be able to transmit and receive standard IMO class G3E/F3E emissions on the 156.8 MHz (channel 16, distress), 156.3 MHz (channel 6, inter-ship safety) and 156.65 MHz (channel 13, bridge-to-bridge) frequencies, as well as on all the frequencies necessary for their service.

DSC equipment shall be able to transmit and receive standard IMO class G2B emissions on the 156.525 MHz (channel 70) frequency.

Result: Complies

5.3. Transmitter Output Powers

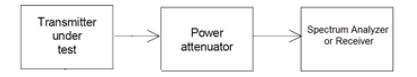
The conducted carrier power output rating for a transmitter is the power available at the output terminals of the transmitter when the output terminals are connected to the standard transmitter load.

<u>LIMIT</u>

RSS-182 Section 7.5

The output power shall be within ± 1.0 dB of the manufacturer's rated power and not exceed the limits listed in Table 3, unless indicated otherwise.

Table 3 lists typical transmitter output powers for equipment certified under this standard.


Table 3 — Transmitter Power		
Stations	Typical Power	
Coast stations	50 W	
Ship stations		
Minimum	6 W	
Maximum	25 W	
Hand-held portable transmitters	5 W	
Survival two-way radiotelephones	Should have a minimum <u>e.i.r.p.</u> of 0.25 watts	

TEST PROCEDURE

Measurements shall be made to establish the radio frequency power delivered by the transmitter the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted bellow:

If the power output is adjustable, measurements shall be made for the highest and lowest power levels. Connect the equipment as illustrated.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

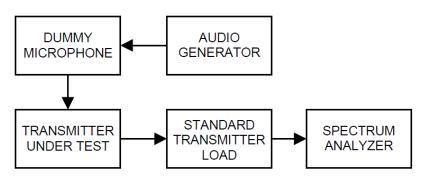
TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix A on the section 8 appendix report

5.4. Types of Modulation and Equipment Characteristics

VHF radiocommunication shall employ G3E or F3E modulation for voice communication and G2B for DSC signals.


<u>LIMIT</u>

RSS-182 Section 7.3

Maritime VHF transceivers shall have the following characteristics:

- (a) 25 kHz channel spacing;
- (b) frequency modulation with a pre-emphasis of 6 dB/octave (phase modulation (PM)) shall be used;
- (c) the frequency deviation corresponding to 100% modulation shall approach ±5 kHz as nearly as practicable and in no event shall the frequency deviation exceed ±5 kHz;
- (d) the audio-frequency band shall be 3000 Hz;
- (e) the authorized channel bandwidth for voice shall be 16 kHz; and
- (f) the authorized channel bandwidth for data shall be 20 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1 The EUT was modulated by 2.5kHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5kHz channel spacing) and 5 kHz (25 kHz channel spacing).
- 2 Set EUT as normal operation.

1)Set SPA Center Frequency = fundamental frequency, RBW=100Hz, VBW=300Hz,span=50kHz for 12.5kHz channel spacing.

2)Set SPA Center Frequency = fundamental frequency, RBW=300Hz, VBW=1kHz,span=50kHz for 25kHz channel spacing.

- 3 Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.
- 4 Set SPA Center Frequency=fundamental frequency, set =100Hz, VBW=300Hz, span=50kHz for 12.5kHz channel spacing.

Set SPA Center Frequency=fundamental frequency, set =300Hz,VBW=1kHz,span=50kHz for 25kHz channel spacing.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix B on the section 8 appendix report

5.5. Emission Mask

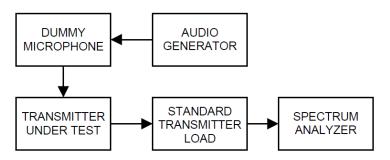
Transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section.

LIMIT

RSS-182 Section 7.9.1 and 7.9.2

Emission Mask B for Equipment with 25 kHz Channel Spacing

This mask is for FM or PM modulation equipment with 25 kHz channel spacing, an authorized bandwidth of 16 kHz for voice or 20 kHz for data, and equipped with or without an audio low-pass filter. The power of any emission shall be attenuated below the transmitter output power (P, in dBW) as follows:


- (a) on any frequency removed from the carrier frequency by more than 50%, but not more than 100% of the authorized bandwidth: at least 25 dB, measured with a bandwidth of 300 Hz;
- (b) on any frequency removed from the carrier frequency by more than 100%, but not more than 250% of the authorized bandwidth: at least 35 dB, measured with a bandwidth of 300 Hz; and
- (c) on any frequency removed from the carrier frequency by more than 250% of the authorized bandwidth: at least 43 + 10 log10 p(watts) dB, measured with a bandwidth of 30 kHz.

Emission Mask C for equipment with 12.5 kHz Channel Spacing

This mask is for equipment with channel spacing of 12.5 kHz, an authorized bandwidth of 11.25 kHz, equipped with or without an audio low-pass filter. The power of any emission shall be attenuated below the transmitter power (P, in dBW) as follows:

- (a) on any frequency removed from the carrier frequency fc up to a displacement frequency of 5.625 kHz: 0 dB, measured with a bandwidth of 100 Hz;
- (b) on any frequency removed from the carrier frequency by a displacement frequency (fd in kHz) of more than 5.625 kHz, but no more than 12.5 kHz: at least 7.27 (fd – 2.88 kHz) dB, measured with a bandwidth of 100 Hz; and
- (c) on any frequency removed from the carrier frequency by a displacement frequency (fd in kHz) of more than 12.5 kHz: at least 50 + 10 log10 p(watts) dB or 70 dB, whichever is the lesser attenuation, measured with a bandwidth of 100 Hz for a displacement frequency of more than 12.5 kHz, but no more than 50 kHz, and measured with a bandwidth of 10 kHz for a displacement frequency of more than 50 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was modulated by 2.5kHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5kHz channel spacing) and 5kHz (25 kHz channel spacing).
- 2. Set EUT as normal operation.
 - 1)Set SPA Center Frequency = fundamental frequency, RBW=100Hz, VBW=300Hz,span=120kHz for 12.5kHz channel spacing.
 - 2)Set SPA Center Frequency = fundamental frequency, RBW=300Hz, VBW=1kHz,span=150kHz for 25kHz channel spacing.

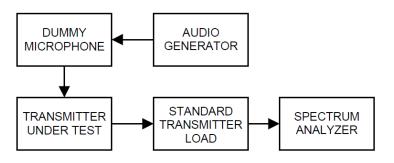
TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix C on the section 8 appendix report


5.6. FM Modulation Limiting and Audio Low-Pass Filter for Coast Station Equipment

LIMIT

RSS-182 Section 7.8

Coast station transmitters shall be equipped with a limiter followed by an audio low-pass filter. A 6 dB preemphasis network is required; it is to be connected before the deviation limiter in the transmit path

TEST CONFIGURATION

TEST PROCEDURE

- 1) Configure the EUT as shown in figure .
- 2) Adjust the audio input for 20% of rated system deviation at 1kHz using this level as a reference.
- 3) Vary the Audio frequency from 300Hz to 3 kHz and record the frequency deviation.
- 4) Audio Frequency Response =20log10 (VFREQ/VREF).

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix D on the section 8 appendix report

5.7. Frequency Stability Test VS Temperature

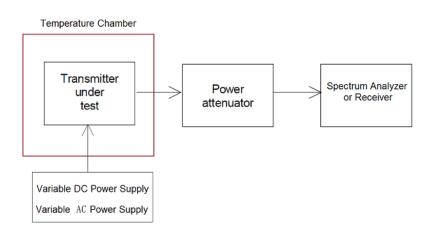
The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

<u>LIMIT</u>

RSS-182 Section 7.4

With the exception of DSC emissions, the RF carrier frequency shall not depart from the reference frequency in excess of the limits listed in Table 2.

Table 2 — Frequency Stability Limits		
Type of Equipment	Frequency Stability Limit	
Coast stations	$\pm 10.0 \text{ ppm}$ for transmitter power less than 3 watts $\pm 5.0 \text{ ppm}$ for transmitter power between 3 and 100 watts $\pm 2.5 \text{ ppm}$ for transmitter power exceeding 100 watts	
Ship stations	±10 ppm	


TEST PROCEDURE

According to RSS-182 Section 5.1

In addition to the measurement method described in RSS-Gen, the equipment's unmodulated carrier frequency shall be measured under the conditions specified in Table 1. A sufficient stabilization period at each temperature shall be used prior to each frequency measurement.

Table 1 — Environmental Conditions for Frequency Stability Test				
	Voltage Conditions			
Equipment Type	V _{nom} -10%	nominal voltage (V _{nom})	V _{nom} +10%	
Type G protected from weather	-15° <u>C</u>	+20°C	+55°C	
Type G portable equipment	-20°C	+20°C	+55°C	
Type G exposed to weather	-25°C	+20°C	+55°C	
Type D equipment	+20°C	−15°C, +20°C, +55°C	+20°C	

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix E on the section 8 appendix report

5.8. Frequency Stability Test VS Voltage

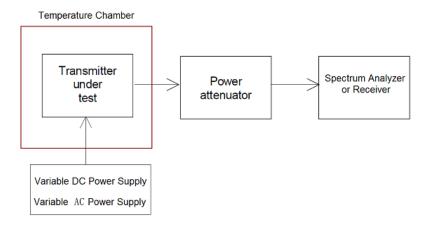
The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

<u>LIMIT</u>

RSS-182 Section 7.4

With the exception of DSC emissions, the RF carrier frequency shall not depart from the reference frequency in excess of the limits listed in Table 2.

Table 2 — Frequency Stability Limits		
Type of Equipment	Frequency Stability Limit	
Coast stations	±10.0 <u>ppm</u> for transmitter power less than 3 watts ±5.0 ppm for transmitter power between 3 and 100 watts ±2.5 ppm for transmitter power exceeding 100 watts	
Ship stations	±10 ppm	


TEST PROCEDURE

According to RSS-182 Section 5.1

In addition to the measurement method described in RSS-Gen, the equipment's unmodulated carrier frequency shall be measured under the conditions specified in Table 1. A sufficient stabilization period at each temperature shall be used prior to each frequency measurement.

Table 1 — Environmental Conditions for Frequency Stability Test					
	Voltage Conditions				
Equipment Type	nominal voltage V _{nom} −10% (V _{nom})		V _{nom} +10%		
Type G protected from weather	-15°C	+20°C	+55°C		
Type G portable equipment	-20°C	+20°C	+55°C		
Type G exposed to weather	-25°C	+20°C	+55°C		
Type D equipment	+20°C	−15°C, +20°C, +55°C	+20°C		

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix F on the section 8 appendix report

5.9. Spurious Emission on Antenna Port

Conducted spurious emissions are emissions at the antenna terminals on a frequency or frequencies that are outside a band sufficient to ensure transmission of information of required quality for the class of communication desired

<u>LIMIT</u>

RSS Gen, (12.5 kHz bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

 $50 + 10 \log (Pwatts)$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is P(dBm).

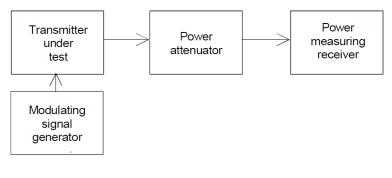
Limit (dBm) = P(dBm)-50-10 log (Pwatts) = -20dBm

RSS Gen, (25 kHz bandwidth only):

On any frequency removed from the center of the assigned channel by more than 250 percent at least: 43 + 10 log (Pwatts)

Calculation: Limit (dBm) =EL-43-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,


In this application, the EL is P(dBm).

Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm

TEST PROCEDURE

- 1. The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation.
- The resolution bandwidth of the spectrum analyzer was set to 100 kHz. Sufficient scans were taken to show any out of band emission up to 10th. Harmonic for the lower and the highest frequency range. Set RBW 100 kHz, VBW 300 kHz in the frequency band 30MHz to 1GHz, while set RBW=1MHz.VBW=3MHz from the 1GHz to 10th Harmonic.
- 3. The audio input was set to 0 to get the unmodulated carrier, the resulting picture is print out for each channel separation.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix G on the section 8 appendix report

5.10. Transmitter Radiated Spurious Emission

Conducted spurious emissions are emissions at the antenna terminals on a frequency or frequencies that are outside a band sufficient to ensure transmission of information of required quality for the class of communication desired

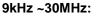
<u>LIMIT</u>

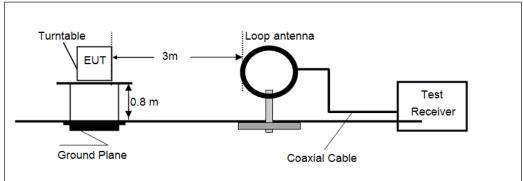
RSS Gen, (12.5 kHz bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

50 + 10 log (Pwatts)

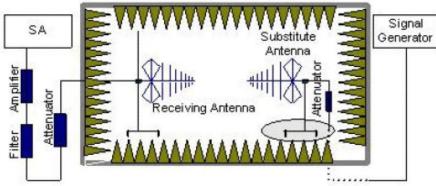
Note: In general, the worse case attenuation requirement shown above was applied. Calculation: Limit (dBm) =EL-50-10log10 (TP)

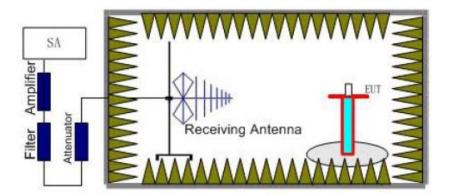
Notes: EL is the emission level of the Output Power expressed in dBm, In this application, the EL is P(dBm). Limit (dBm) = P(dBm)-50-10 log (Pwatts) = -20dBm

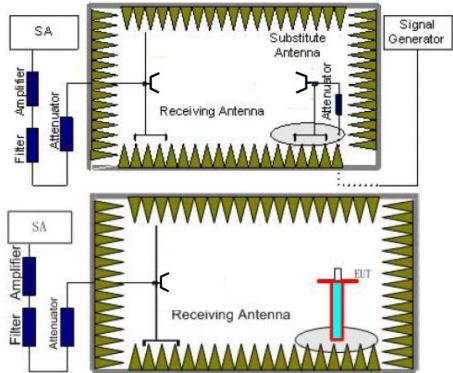

RSS Gen, (25 kHz bandwidth only):


On any frequency removed from the center of the assigned channel by more than 250 percent at least: 43 + 10 log (Pwatts)

Calculation: Limit (dBm) =EL-43-10log10 (TP)


Notes: ÉL is the emission level of the Output Power expressed in dBm, In this application, the EL is P(dBm). Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm


TEST CONFIGURATION



Below 1GHz:

Above 1GHz:

TEST PROCEDURE

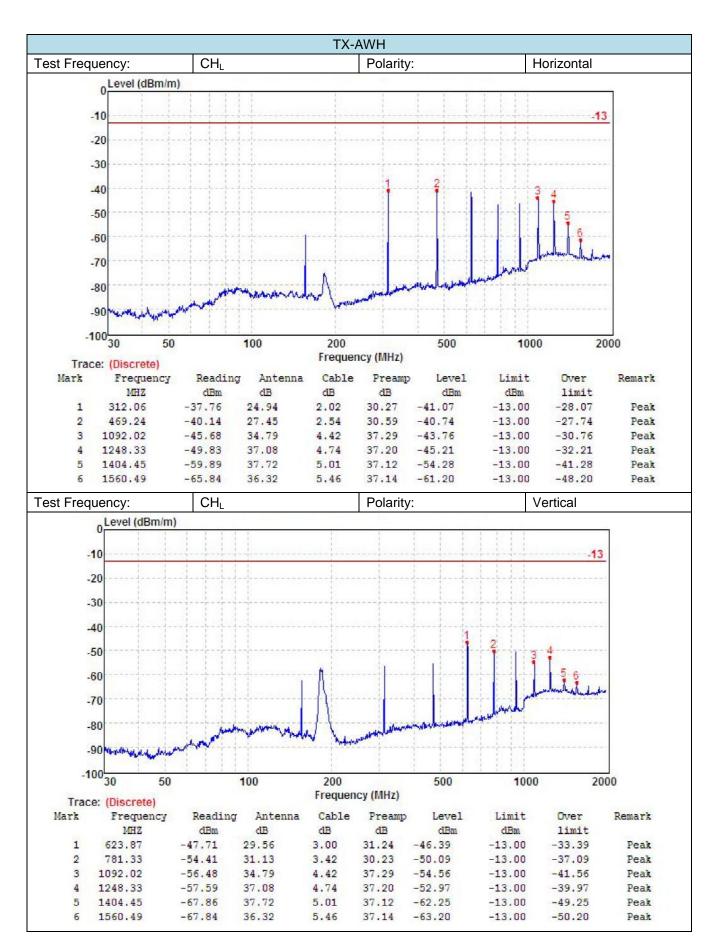
- EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz ,RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, RBW=1kHz,VBW=3kHz for 9kHzHz to 150kHz and RBW=10kHz,VBW=30kHz for 150kHz to 30MHz.And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

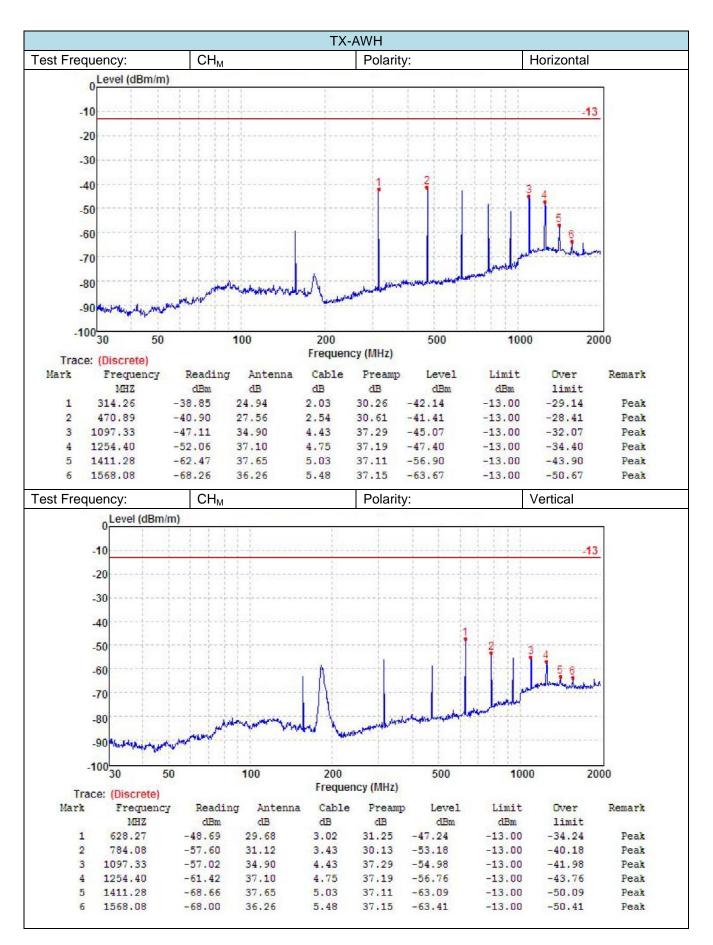
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}- P_{Ag} P_{cl} G_a We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=P_{Mea}- P_{cl} G_a
 This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

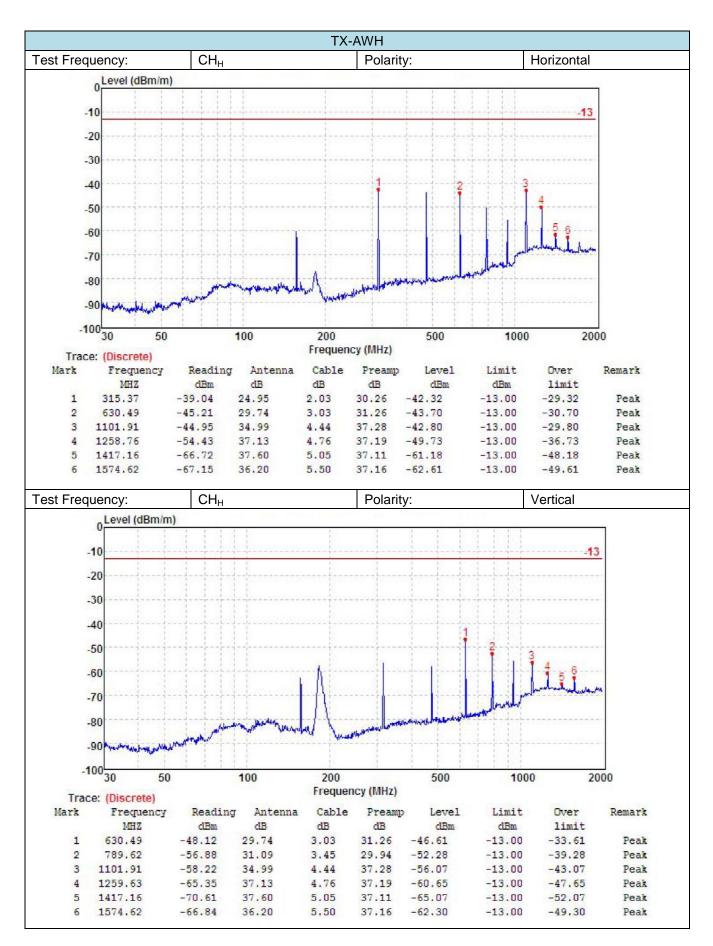
TEST MODE:

Please reference to the section 2.4

TEST RESULTS


☑ Passed □ Not Applicable


Note:

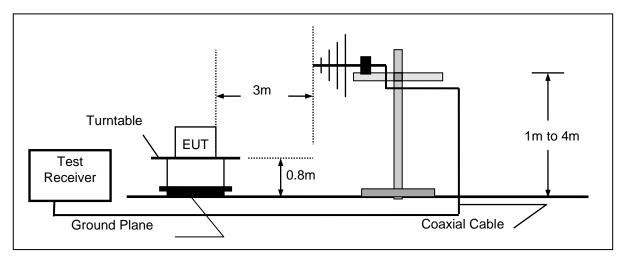

1. In general, the worse case attenuation requirement shown above was applied.

2. The measurement frequency range from 30MHz to 2 GHz.

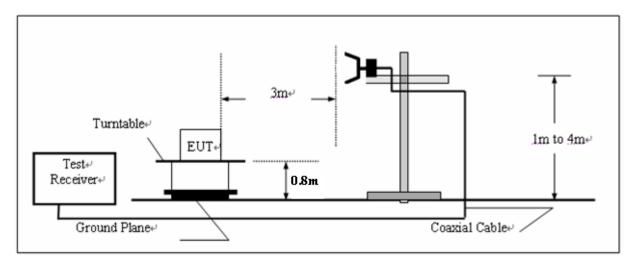
3.We tested TX-AWH and TX-AWL, recorded worst case TX-AWH mode.

5.11. Radiated Emission

<u>LIMIT</u>


For unintentional device, according to RSS-Gen, except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency below 1000MHz

(B) Radiated Emission Test Set-Up, Frequency above 1000MHz

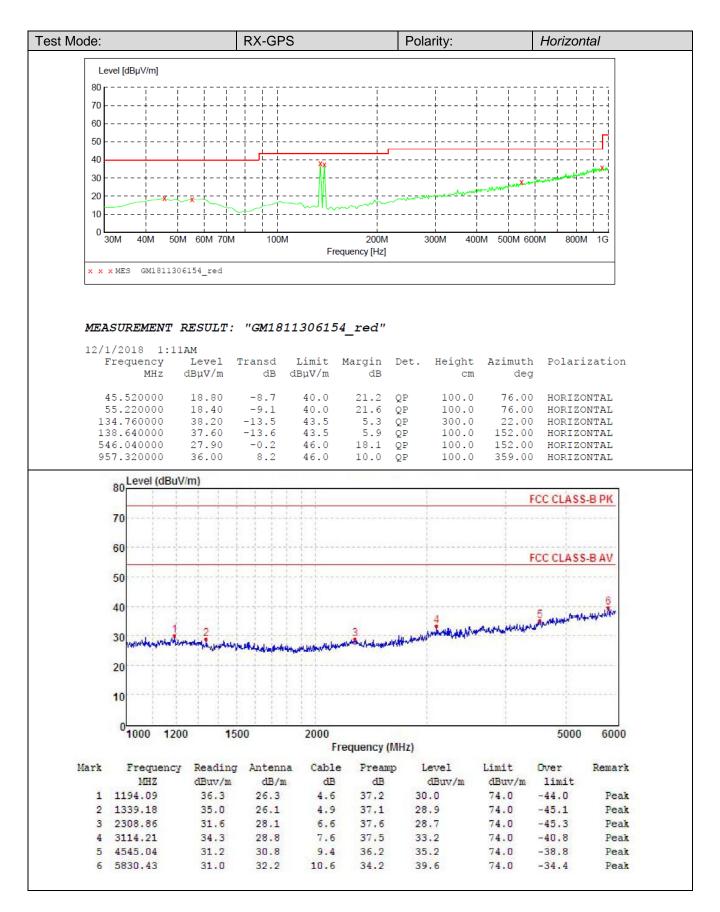
TEST PROCEDURE

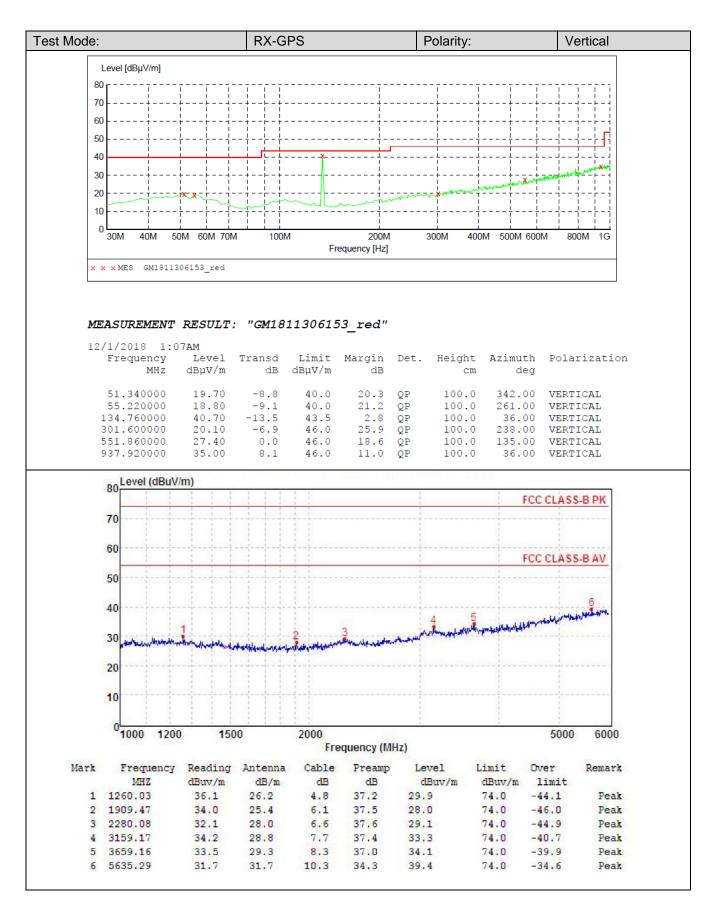
- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT

- 3 And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4 Repeat above procedures until all frequency measurements have been completed.

TEST MODE:

Please reference to the section 2.4

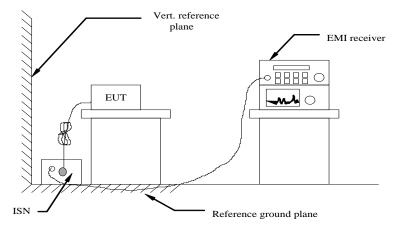

TEST RESULTS


☑ Passed □ Not Applicable

Note:

The Radiated Measurement (Standby mode /Receiver mode) are performed to the three channels (the high channel, the middle channel and the low channel), the datum recorded below is the worst case for each channel separation ;and the EUT shall be scanned from 30 MHz to the 5th harmonic of the highest oscillator frequency in the digital devices or 1 GHz whichever is higher.

Please refer to the below test data:


5.12. Conducted Emissions

The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm / 50 u Henry as specified by section 5.1 of ANSI C63.4-2014. Cables and peripherals were moved to find the maximum emission levels for each frequency.

<u>Limit</u> RSS-Gen:

Frequency of Emission (MHz)	Conducted	Conducted Limit (dBµV)		
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2014.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2014.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2014.
- 4 If a EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Passed
 Not Applicable

6. APPENDIX Report

Operation Mode	Modulation Type	Test Channel	Measured Power(dBm)	Rated Power(W)	Difference(dB)	Limit (dB)	Result
TX-AWH	FM	CH_{L}	34.7	3.00	-0.1	±1	PASS
TX-AWH	FM	CH _M	34.7	3.00	-0.1	±1	PASS
TX-AWH	FM	СН _н	34.7	3.00	-0.1	±1	PASS
TX-AWL	FM	CH_{L}	27.2	0.50	0.2	±1	PASS
TX-AWL	FM	CH _M	27.0	0.50	0.0	±1	PASS
TX-AWL	FM	CH _H	27.0	0.50	0.0	±1	PASS

Appendix A:Maximum Transmitter Power

Appendix B:Occupied Bandwidth

Operation	Modulation	Test	Occupied Bandwidth		99% Limit(kHz)	Result
Mode	Туре	Channel	99%(kHz)	26dB(kHz)	9976 LITIII(KTZ)	Result
TX-AWH	FM	CH_{L}	15.053	15.710	≤20	PASS
TX-AWH	FM	CH _M	15.081	15.710	≤20	PASS
TX-AWH	FM	СН _н	<u>15.100</u>	15.720	≤20	PASS
TX-AWL	FM	CH_L	15.074	15.710	≤20	PASS
TX-AWL	FM	CH _M	15.106	15.730	≤20	PASS
TX-AWL	FM	СН _Н	<u>15.126</u>	15.730	≤20	PASS

Appendix B:Occupied Bandwidth

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CHL	Opdigit Spectrum Audyor - Orcanded BW Center Free 100 2000 MHz Center Free 100 2000 MHz Frequency Center Free 156.025000 MHz Center Free Run AvgHold>1002 H140 0000,200 Radio Std: None Radio Std: None Radio Davies: BTS MFGaint Jow Tig: Free Run AvgHold>1000 Radio Std: None Center Freq 10 dBJdiv Ref 25.46 dBm Center Freq Generation of the state of t
TX-AWH	FM	CH _M	Mail System Analyzer - Discreted BY Center Freq: 156.800000 MHz Center Freq Source Colspan="2">Center Freq: 156.800000 MHz Center Freq: 156.800000 MHz Source Colspan="2">Center Freq: 156.800000 MHz Center Freq: 156.80000 MHz Center 156.8 MHz Frequency Center Treq Source Colspan="2">Center Freq: 156.80000 MHz Center 156.8 MHz Freq Office Colspan="2">Source Center Source Center 156.8 MHz Transmit Freq Error 315 Hz OBW Power 99.00 % X dB Bandwidth <th< td=""></th<>
TX-AWH	FM	СН _Н	Allow Spectrum Analyzer Occupied BV ALL 100 BOOM DC 1000 DC 1

Appendix B:Occupied Bandwidth

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWL	FM	CHL	Visite Sector Autor Interfere Autor Interfere Autor Radie Std: None Center Freq 156.025000 MHz Visite Trig: Free Run AvgHeid Radie Std: None Radie Std: None Radie Davice: BTS Radie Davice: BTS Radie Std: None Radie Std: None Center Freq 10 dBjdiv Ref 18.53 dBm Center Freq Center Freq Center Freq Center Freq 10 dBjdiv Ref 18.53 dBm Center Freq Std: None Radie Std: None Center Freq 10 dBjdiv Ref 18.53 dBm Center Freq Std: None Std: None Center Freq 10 dBjdiv Ref 18.53 dBm Center Freq Std: None Std: None Center Freq 10 dBjdiv Ref 18.53 dBm Center Freq Std: None Std: None Std: None 10 dBjdiv Ref 18.53 dBm Center Freq Std: None Std: None Std: None 10 dBjdiv Ref 18.53 dBm Center Freq Std: None Std: None Std: None 10 dBjdiv #VEW 1 kHz Std: None Std: None Std: None Std: None 10 dB andwidth Total Power 15.3 dBm Std: None Otal Otal 10 dB Bandwidth 15.71 kHz X dB
TX-AWL	FM	CH _M	Albert Spectrum Audyzer : Dicagled BW Albert Freq 156:000000 MHz Genter Freq 156:000000 MHz HFGalacLaw HFGGALAW HFGalacLaw HFGGALAW H
TX-AWL	FM	СН _Н	All control Analyzer Occupied BW Ref 15.4 25000 MHz BFGalacLow BFGGalacLow BFGGALAC BFGGA

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CH∟	Ref Center Freq South South Center Freq South Center Freq Center Center
TX-AWH	FM	CHL	Mellow Spectrum Analyzor Spectrum Entition Reak Center Freq 156.025000 MHz Center Freq 156.02500 MHz Center Freq 156.02500 MHz Center Freq 156.02500 MHz Center Freq 156.02500 MHz Center Fr
TX-AWH	FM	CH _M	Mailed Sections Mail/or - Spectrum Industor Mail Spectrum Industor Spectrum Industor Spectrum Industor Frequency PASS If GainLow

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CH _M	Applications Spectrum function Mail Application Application
TX-AWH	FM	СН _Н	Addition Spectrum Environmentation 1 <td< td=""></td<>
TX-AWH	FM	CH _H	Market System Market System Market System Market System Frequency Center Freq 157.425.000 MHz IFGelact.ov Augree Bade Sub None Rade Device: BTS PASS IFGelact.ov Augree Augree Center Freq Sub System Center System Center System Center System Sub System Center System Center System Center System Center System Center System Center System Sub System Center System Center System Center System Center System Center System <td< td=""></td<>

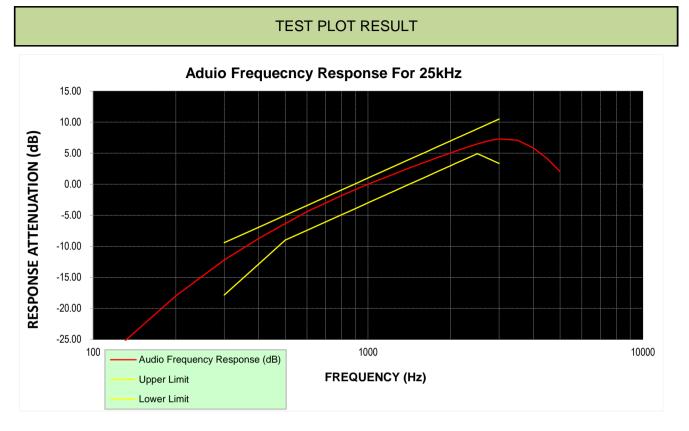
Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWL	FM	CHL	Addref Spectrum Analyzer, Spectrum (envision Mark, To the Spectrum (envision Mark, To the Spectrum (envision Mark, To the Spectrum (envision Mark, To the Spectrum (envision Mark, Tog Free Only (envision Mark, PASS) Spectrum (envision Mark, Tog Free Only (envision Mark, Tog Free Only (envision Mark, Frequency) Frequency PASS If Galacture (fig Free Only (envision Mark, PASS) Center Freq (fig Free Only (envision Mark, Paster Store Freq (fig Free Only (fig F
TX-AWL	FM	CHL	Ref State State Center Freq State State State
TX-AWL	FM	CH _M	Ended Spectrum Spectrum <t< td=""></t<>

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWL	FM	CH _M	Applicit Spectrum Analyzer, Spectrum Finkation Mail. Center Freq. 156.800000 MHz. 000 0
TX-AWL	FM	СН _н	Augent Spectrum Analyzer Spectrum Ensisten Ret Spectrum Ensisten Ret PASS IFCalled.ov State Freq. 157.42000 MHz Radio Std: None PASS IFCalled.ov Enter Freq. 157.42000 MHz Radio Device BTS I 0 BLdful Ref Offset 26 dB IfCalled.ov Enter Freq. 157.42000 MHz Radio Device BTS I 0 BLdful Ref Offset 26 dB IfCalled.ov Enter Freq. 157.42000 MHz IfCalled.ov I 0 BLdful Ref Offset 26 dB IfCalled.ov Enter Freq. 157.42000 MHz IfCalled.ov I 0 BLdful Ref Offset 26 dB IfCalled.ov IfCalled.ov
TX-AWL	FM	CH _H	Applend Spectrum Analyzer. Spectrum Finiskum Mail. Spectrum Finiskum Mail. Provide Spectrum Finiskum Mail. Center Freq 157.425000 MHz Carner Freq 157.425000 MHz Carner Freq 157.425000 MHz Radio Std: None PASS If Galaxiew Carner Freq 157.425000 MHz Radio Std: None Radio Std: None 10 dBidly Ref Offset 25 dd If Galaxiew Carner Freq 157.425000 MHz Radio Std: None 10 dBidly Ref Offset 25 dd If Galaxiew Carner Freq 157.425000 MHz Center Freq 157.425000 MHz 10 dBidly Ref Offset 25 dd If Galaxiew Span 120 kHz CF Step 157.25000 MHz 10 dBidly Ref Offset 25 dd If Galaxiew Span 120 kHz CF Step 12000 kHz 10 dBidly Ref Offset 25 dd If Galaxiew Span 120 kHz CF Step 12000 kHz 10 dBidly Stati Freq Stop Freq 18 dS dEm 0 0125 MHz Span 120 kHz Man 10 dBidly 9.476 6.469 2.166 k 9.476 6.469 2.166 k 9.473 0 Hz 0 Hz 0 Hz 10 dBidly 9.000 Hz 9.000 Hz 9.476 6.469 2.166 k

Appendix D:Modulation Limit

Operation	Modulation	Test	Test	Test	Test Modulation		Peal	k frequency	kHz)	Limit	
Mode	Туре	Channel	Level (dB)	300Hz	1004Hz	1500Hz	2500 Hz	(kHz)	Result		
TX-AWH	FM	CH _M	-20	0.71	0.353	0.473	0.685	5	PASS		
TX-AWH	FM	CH _M	-15	0.184	0.571	0.784	1.157	5	PASS		
TX-AWH	FM	CH _M	-10	0.276	0.981	1.374	2.015	5	PASS		
TX-AWH	FM	CH _M	-5	0.469	1.712	2.41	3.519	5	PASS		
TX-AWH	FM	CH _M	0	0.774	3.013	3.918	4.459	5	PASS		
TX-AWH	FM	CH _M	5	1.326	4.166	4.432	4.569	5	PASS		
TX-AWH	FM	CH _M	10	2.382	4.749	4.534	4.521	5	PASS		
TX-AWH	FM	CH _M	15	3.961	4.871	4.434	4.444	5	PASS		
TX-AWH	FM	CH _M	20	4.912	4.847	4.163	4.431	5	PASS		

Appendix D:Modulation Limit



Appendix E:Aduio Frequency Response

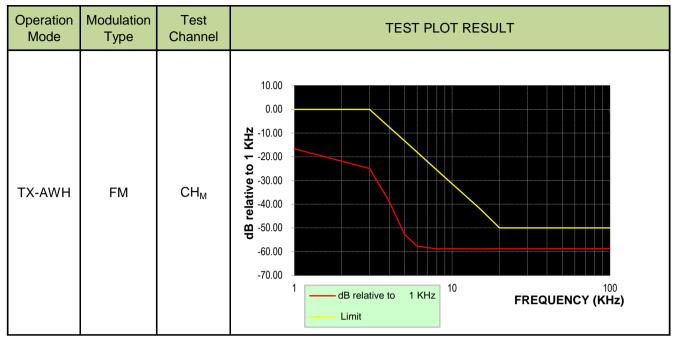
Operation Mode	Modulation Type	Test Channel	Frequency (Hz)	Audio Frequency Response (dB)	Lower Limit	Upper Limit	Result
TX-AWH	FM	CH _M	100	-29.77			PASS
TX-AWH	FM	СН _м	200	-17.99			PASS
TX-AWH	FM	СН _м	300	-12.19	-17.84	-9.42	PASS
TX-AWH	FM	CH _M	400	-8.74	-12.86	-6.93	PASS
TX-AWH	FM	СН _м	500	-6.36	-9.00	-5.00	PASS
TX-AWH	FM	СН _м	600	-4.42	-7.42	-3.42	PASS
TX-AWH	FM	СН _м	700	-3.05	-6.09	-2.09	PASS
TX-AWH	FM	СН _м	800	-1.82	-4.93	-0.93	PASS
TX-AWH	FM	CH _M	900	-0.86	-3.91	0.09	PASS
TX-AWH	FM	CH _M	1000	0.01	-3.00	1.00	PASS
TX-AWH	FM	CH _M	1200	1.38	-1.42	2.58	PASS
TX-AWH	FM	CH _M	1400	2.55	-0.09	3.91	PASS
TX-AWH	FM	CH _M	1600	3.51	1.07	5.07	PASS
TX-AWH	FM	CH _M	1800	4.33	2.09	6.09	PASS
TX-AWH	FM	СН _м	2000	5.07	3.00	7.00	PASS
TX-AWH	FM	CH _M	2100	5.40	3.42	7.42	PASS
TX-AWH	FM	CH _M	2200	5.70	3.83	7.83	PASS
TX-AWH	FM	CH _M	2300	5.99	4.21	8.21	PASS
TX-AWH	FM	СН _м	2400	6.25	4.58	8.58	PASS
TX-AWH	FM	CH _M	2500	6.50	4.93	8.93	PASS
TX-AWH	FM	CH _M	2600	6.72	4.59	9.27	PASS
TX-AWH	FM	CH _M	2700	6.91	4.27	9.60	PASS
TX-AWH	FM	СН _м	2800	7.07	3.95	9.91	PASS
TX-AWH	FM	CH _M	2900	7.19	3.65	10.22	PASS
TX-AWH	FM	СН _м	3000	7.29	3.35	10.51	PASS
TX-AWH	FM	СН _м	3500	7.09			PASS
TX-AWH	FM	CH _M	4000	5.84			PASS
TX-AWH	FM	CH _M	4500	4.07			PASS
TX-AWH	FM	CH _M	5000	2.04			PASS

Appendix E:Aduio Frequency Response

Note: The highest audio frequency response at 3kHz<3.125kHz, so meet the requirement.

Т

Т


Operation Mode	Modulation Type	Test Channel	Frequency (KHz)	dB relative to 1 KHz	Limit	Result
TX-AWH	FM	CH _M	1	-16.67	0.00	PASS
TX-AWH	FM	CH _M	3	-24.98	0.00	PASS
TX-AWH	FM	CH _M	4	-38.86	-7.50	PASS
TX-AWH	FM	CH _M	5	-52.74	-13.30	PASS
TX-AWH	FM	CH _M	6	-57.69	-18.10	PASS
TX-AWH	FM	CH _M	8	-58.89	-25.60	PASS
TX-AWH	FM	CH _M	10	-58.82	-31.40	PASS
TX-AWH	FM	CH _M	15	-58.87	-41.90	PASS
TX-AWH	FM	CH _M	20	-58.83	-50.00	PASS
TX-AWH	FM	CH _M	30	-58.79	-50.00	PASS
TX-AWH	FM	CH _M	40	-58.79	-50.00	PASS
TX-AWH	FM	CH _M	50	-58.79	-50.00	PASS
TX-AWH	FM	CH _M	60	-58.79	-50.00	PASS
TX-AWH	FM	CH _M	70	-58.79	-50.00	PASS
TX-AWH	FM	CH _M	80	-58.79	-50.00	PASS
TX-AWH	FM	CH _M	90	-58.79	-50.00	PASS
TX-AWH	FM	CH _M	100	-58.79	-50.00	PASS

Appendix F:Audio Low Pass Filter Response

T

`

Appendix F:Audio Low Pass Filter Response

ModeTypeVoltageTemperature CH_L CH_M CH_H (ppm)TX-AWHFM V_N -30-1.658-1.644 $\underline{-1.740}$ ± 10 TX-AWHFM V_N -20-1.519-1.613-1.602 ± 10 TX-AWHFM V_N -10-1.490-1.429-1.570 ± 10 TX-AWHFM V_N 0-1.331-1.307-1.369 ± 10 TX-AWHFM V_N 10-1.182-1.205-1.188 ± 10 TX-AWHFM V_N 20-0.993-1.021-1.061 ± 10 TX-AWHFM V_N 30-1.211-1.174-1.273 ± 10 TX-AWHFM V_N 40-1.271-1.307-1.369 ± 10 TX-AWHFM V_N 55-1.400-1.419-1.454 ± 10	PASS PASS PASS PASS PASS PASS
TX-AWH FM VN -20 -1.519 -1.613 -1.602 ±10 TX-AWH FM VN -10 -1.490 -1.429 -1.570 ±10 TX-AWH FM VN 0 -1.331 -1.307 -1.369 ±10 TX-AWH FM VN 0 -1.331 -1.205 -1.188 ±10 TX-AWH FM VN 10 -1.182 -1.205 -1.188 ±10 TX-AWH FM VN 20 -0.993 -1.021 -1.061 ±10 TX-AWH FM VN 300 -1.211 -1.174 -1.273 ±10 TX-AWH FM VN 40 -1.271 -1.369 ±10 1 TX-AWH FM VN 55 -1.400 -1.419 -1.454 ±10	PASS PASS PASS PASS
TX-AWHFM V_N -10-1.490-1.429-1.570 ± 10 TX-AWHFM V_N 0-1.331-1.307-1.369 ± 10 TX-AWHFM V_N 10-1.182-1.205-1.188 ± 10 TX-AWHFM V_N 20-0.993-1.021-1.061 ± 10 TX-AWHFM V_N 30-1.211-1.174-1.273 ± 10 TX-AWHFM V_N 40-1.271-1.307-1.369 ± 10 TX-AWHFM V_N 55-1.400-1.419-1.454 ± 10	PASS PASS PASS
TX-AWH FM VN 0 -1.331 -1.307 -1.369 ±10 TX-AWH FM VN 10 -1.182 -1.205 -1.188 ±10 TX-AWH FM VN 20 -0.993 -1.021 -1.061 ±10 TX-AWH FM VN 30 -1.211 -1.174 -1.273 ±10 TX-AWH FM VN 300 -1.211 -1.307 -1.369 ±10 TX-AWH FM VN 40 -1.271 -1.307 -1.369 ±10 TX-AWH FM VN 55 -1.400 -1.419 -1.454 ±10	PASS PASS
TX-AWH FM VN 10 -1.182 -1.205 -1.188 ±10 TX-AWH FM VN 20 -0.993 -1.021 -1.061 ±10 TX-AWH FM VN 30 -1.211 -1.174 -1.273 ±10 TX-AWH FM VN 40 -1.271 -1.307 -1.369 ±10 TX-AWH FM VN 55 -1.400 -1.419 -1.454 ±10	PASS
TX-AWH FM V _N 20 -0.993 -1.021 -1.061 ±10 TX-AWH FM V _N 30 -1.211 -1.174 -1.273 ±10 TX-AWH FM V _N 40 -1.271 -1.307 -1.369 ±10 TX-AWH FM V _N 55 -1.400 -1.419 -1.454 ±10	
TX-AWH FM VN 30 -1.211 -1.174 -1.273 ±10 TX-AWH FM VN 40 -1.271 -1.307 -1.369 ±10 TX-AWH FM VN 55 -1.400 -1.419 -1.454 ±10	DVCC
TX-AWH FM V _N 40 -1.271 -1.307 -1.369 ±10 TX-AWH FM V _N 55 -1.400 -1.419 -1.454 ±10	FA33
TX-AWH FM VN 55 -1.400 -1.419 -1.454 ±10	PASS
	PASS
TX-AWL FM V _N -30 -1.600 -1.579 -1.592 ±10	PASS
	PASS
TX-AWL FM V _N -20 -1.527 -1.475 -1.486 ±10	PASS
TX-AWL FM V _N -10 -1.414 -1.360 -1.412 ±10	PASS
TX-AWL FM V _N 0 -1.280 -1.255 -1.370 ±10	PASS
TX-AWL FM V _N 10 -1.218 -1.234 -1.244 ±10	PASS
TX-AWL FM V _N 20 -1.032 -1.046 -1.054 ±10	PASS
TX-AWL FM V _N 30 -1.269 -1.213 -1.286 ±10	PASS
TX-AWL FM V _N 40 -1.311 -1.308 -1.349 ±10	D 4 0 0
TX-AWL FM V _N 55 -1.455 -1.433 -1.476 ±10	PASS

Appendix G:Frequency Stability Test & Temperature

Operation	Modulation	Test	Conditions	Freque	ency error	Limit	Result	
Mode	Туре	Voltage	Temperature	CH_{L}	СН _М	CH _H	(ppm)	resour
TX-AWH	FM	VN	ΤN	-0.993	-1.021	-1.061	±10	PASS
TX-AWH	FM	VL	ΤN	-1.483	-1.511	<u>-1.521</u>	±10	PASS
TX-AWH	FM	Vн	ΤN	-1.223	-1.231	-1.261	±10	PASS
TX-AWL	FM	VN	ΤN	-1.032	-1.046	-1.054	±10	PASS
TX-AWL	FM	VL	ΤN	-1.282	-1.386	-1.404	±10	PASS
TX-AWL	FM	Vн	ΤN	-1.212	-1.276	-1.274	±10	PASS

Appendix H:Frequency Stability Test & Voltage

Appendix I:Spurious Emission On Antenna Port

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CH∟	Red Operation Audyor - Sweet 54 Proceeding Proceeding
TX-AWH	FM	CH∟	Contract Field Little Andrew Sweet 12 Field Ref Contract Sweet 12
TX-AWH	FM	CHм	Internet indexter Swap 56 Center Freq 515.000000 MHz The File Run The File Run Ref offset 26 dB Center Freq 515.000000 MHz The File Run The File Run The File Run Margheid: 220100 Center Freq Start Freq Stop 1.0000 GHz

Appendix I:Spurious Emission On Antenna Port

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CHм	Reference Frequency Processing Procesing Procesing
TX-AWH	FM	CH⊦	Internet independence
TX-AWH	FM	CH⊦	Contract Freq 1.2000 CHz Center Freq 1.207125000 CHz Frequency Auto Tune Center Freq 1.207125000 CHz Frequency Auto Tune Center Freq 1.207125000 CHz Start I.0000 CHZ