FCC PART 15.239

EMI MEASUREMENT AND TEST REPORT

For

First International Digital, Inc.

135 W. Central Rd, Schaumburg IL, USA

FCC ID: RFG410FM

January 20, 2005

ncerns:	Equipment Type:				
ort	Portable low power				
	FM Transmitter (410FM)				
Jandy Su					
RSZ05011201					
January 18, 2005					
Chris Zeng					
6/F, the 3nd Phase Road, FuTian Free 518038, P.R.China Tel: +86-755-33320					
	January 18, 2005 Chris Zeng Bay Area Compli 6/F, the 3nd Phase				

Note: The test report is specially limited to the above company and the product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	3
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	4
EXTERNAL I/O CABLE	4
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EQUIPMENT MODIFICATIONS	5
CONFIGURATION OF TEST SYSTEM	
TEST SETUP BLOCK DIAGRAM	5
SUMMARY OF TEST RESULTS	6
§15.209/§15.35/§15.239- RADIATED EMISSION	7
STANDARD APPLICABLE	7
MEASUREMENT UNCERTAINTY	7
EUT SETUP	
SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
§15.239 –FREQUENCY RANGE	11
MEASUREMENT UNCERTAINTY	11
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	11
PLOT(S) OF TEST DATA	11

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The First International Digital, Inc. 's product, model X268 or the "EUT" as referred to in this report is a Portable low power FM Transmitter (410FM), the frequency range is 88 MHz to 108 MHz, which measures approximately 7.0cm L x 5.0cm W x 2.0cm H, rated input voltage: DC 3V battery.

* The test data gathered are from an engineering sample, serial number: 0501006, provided by the manufacturer.

Objective

This document is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4 - 2003.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.209, 15.35, 15.205, and 15.239 rules.

Related Submittal(s)/Grant(s)

No Related Submittals

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 - 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Local Support Equipment List and Details

Manufacturer	Description Model		Serial Number	FCC ID
NANYAN	Audio Generator	NY2201	007727	DoC

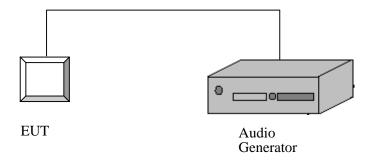
External I/O Cable

Cable Description	Length (M)	From/Port	То
Shielded Detachable Audio Cable	1.0	Audio input port	EUT

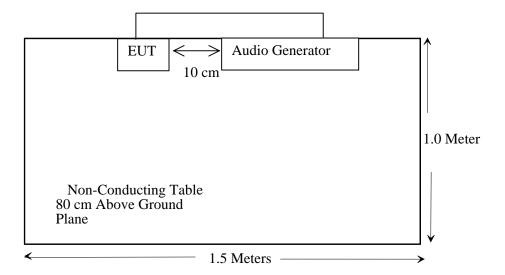
SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing according to ANSI C63.4 - 2003.


The final qualification test was performed with the EUT operating at normal operation mode

Equipment Modifications


No modifications were made to the EUT.

Configuration of Test System

.

Test Setup Block Diagram

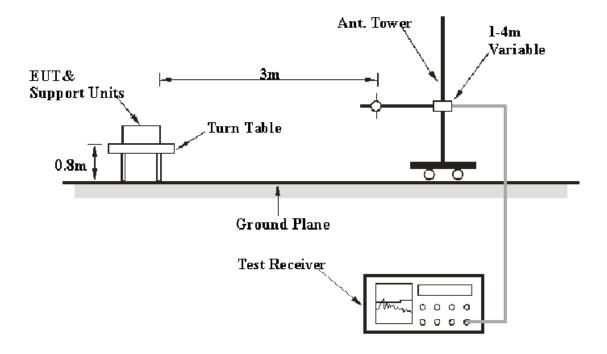
SUMMARY OF TEST RESULTS

FCC RULES	FCC RULES DESCRIPTION OF TEST		
§15.209/§15.35/§15.239	Radiated Emission	Pass	
§15.239	Frequency range	Pass	
§15.205	Restricted Band of operation	Pass	

§15.209/§15.35/§15.239- RADIATED EMISSION

Standard Applicable

The field strength of any emissions within the permitted 200 kHz band shall not exceed 250 microvolts meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply.


The field strength of any emissions radiated on any frequency outside of the specified 200 kHz band shall not exceed the general radiated emission limits in §15.209.

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3-meter chamber, using the setup accordance with the ANSI C63.4 - 2003. The specification used was the FCC 15.209 and 15 .239 Limits.

Spectrum Analyzer Setup

The system was investigated from 30 MHz to 1 GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Range	RBW	VBW
30 – 1000 MHz	100 kHz	100 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Antenna	JB1	A040904-1	2004-4-19	2005-4-18
HP	Spectrum Analyzer	8593A	29190A00242	2004-4-19	2005-4-18
THERMAX	Coaxial Cable	RGS-142	EC002	2004-11-20	2005-11-19
HP	Preamplifier	8449B	3008A00277	2004-10-30	2005-10-29

^{*} Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of –7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Test Data

S/N:

Date of Test: January 18, 2005 Temperature: 25°C Portable low power FM Transmitter (410FM) EUT: Humidity: 50% M/N: X268 Operating Mode: High Channel Jandy Su

0501006

Test Engineer:

Frequency	Reading	Detector	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifer	Correction Factor	FCC 15.239	FCC 15.239
MHz	dBuV/m	PK/AV	Degree	Meter	H/V	dB/m	dB	dB	dBuV/m	Limit dBuV/m	Margin dB
33.790	40.4	PK	60	1.0	h	24.1	0.6	26.29	40.8	40.00	-1.2
33.250	40.45	PK	60	1.2	٧	24.1	0.6	26.29	41.2	40.00	-1.2
143.090	44.38	PK	45	1.0	h	13.8	1.1	25.58	33.7	43.50	-9.8
143.090	44.38	PK	45	1.0	٧	13.8	1.1	25.58	33.7	43.50	-9.8
40.820	38.77	PK	45	1.2	٧	14.3	0.6	26.25	27.4	40.00	-12.6
139.840	39.84	PK	45	1.0	h	14.2	1.1	25.74	29.4	43.50	-14.1
50.560	42.21	PK	45	1.2	h	8.5	0.7	26.24	25.2	40.00	-14.8
215.590	40.73	PK	180	1.2	h	11.4	1.3	25.06	28.4	43.50	-15.1
146.870	35.77	PK	90	1.2	٧	13.4	1.1	25.60	24.7	43.50	-18.8
107.500 (FUND)	43.10	AV	45	1.0	h	11.0	1.0	25.89	29.2	47.96	-18.8
107.500 (FUND)	40.00	AV	45	1.0	V	11.0	1.0	25.89	26.1	47.96	-21.9
215.590	33.58	PK	180	1.2	٧	11.4	1.3	25.06	21.2	43.50	-22.3
107.500 (FUND)	43.93	PK	45	1.0	h	11.0	1.0	25.89	30.0	67.96	-37.9
107.370 (FUND)	41.98	PK	270	1.0	V	11.0	1.0	25.89	28.1	67.96	-39.9

Date of Test: January 18, 2005 Temperature: 25℃ Portable low power FM Transmitter (410FM) EUT: Humidity: 50% M/N: X268 Operating Mode: Low Channel Test Engineer: Jandy Su 0501006 S/N:

										FCC	FCC
						Antenna	Cable		Correction	15.239	15.239
Frequency	Reading	Detector	Direction	Height	Polar	Loss	loss	Amplifer	Factor	10.200	10.200
	J			Ū				•		Limit	Margin
MHz	dBuV/m	PK/AV	Degree	Meter	H/V	dB/m	dB	dB	dBuV/m	dBuV/m	dB
33.790	40.58	PK	192	1.2	h	24.1	0.6	26.29	39.0	40.00	-1.0
144.710	53.02	PK	60	1.0	٧	13.8	1.1	25.58	42.3	43.50	-1.2
139.300	52.55	PK	267	1.0	h	14.2	1.1	25.74	42.1	43.50	-1.4
144.710	51.33	PK	60	1.2	h	13.8	1.1	25.58	40.7	43.50	-2.9
33.250	36.76	PK	40	1.0	٧	24.1	0.6	26.29	35.1	40.00	-4.9
140.380	44.83	PK	47	1.2	h	13.8	1.1	25.58	34.2	43.50	-9.4
140.920	42.25	PK	47	1.2	٧	13.8	1.1	25.58	31.6	43.50	-11.9
40.820	38.75	PK	192	1.2	٧	14.3	0.6	26.25	27.4	40.00	-12.7
88.500	46.40	AV	267	1.0	٧	8.1	0.9	25.94	29.5	47.96	-18.5
50.020 (FUND)	38.55	PK	46	1.0	V	8.5	0.7	26.24	21.5	40.00	-18.5
88.500 (FUND)	45.10	AV	40	1.0	V	8.1	0.9	25.94	28.2	47.96	-19.8
149.040	34.70	PK	46	1.0	h	13.4	1.1	25.6	23.6	43.50	-19.9
88.500 (FUND)	47.80	PK	267	1.0	V	8.1	0.9	25.94	30.9	67.96	-37.1
88.500 (FUND)	46.20	PK	267	1.2	h	8.1	0.9	25.94	29.3	67.96	-38.7

Test Result: Pass

§15.239 –FREQUENCY RANGE

Measurement Uncertainty

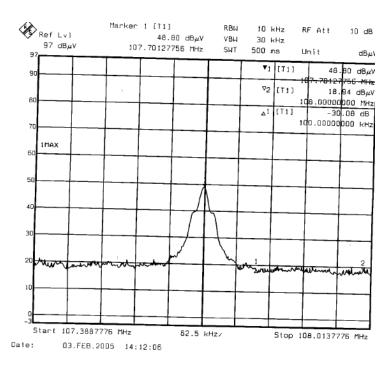
Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88–108 MHz.

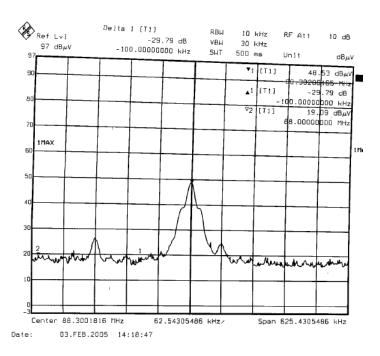
The field strength of any emissions radiated on any frequency outside of the specified 200 kHz band shall not exceed the general radiated emission limits in §15.209.

Test Procedure

With the EUT's antenna attached, the EUT's radiated emission power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

Test Equipment List and Details


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Antenna	JB1	A040904-1	2004-4-19	2005-4-18
R/S	Spectrum Analyzer	FSEM30	849739/009	2004-4-19	2005-4-18
THERMAX	Coaxial Cable	RGS-142	EC002	2004-11-20	2005-11-19
HP	Preamplifier	8447E	1937A01046	2004-8-24	2005-8-23


^{*} Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Plot(s) of Test Data

Plot(s) of Test Data is presented hereinafter as reference.

Test Result: Pass

Note: The field strength of any emissions radiated on any frequency outside of the specified 200 kHz band is below the general radiated emission limits in §15.209.