

FCC Test Report FCC ID: 2AOAF-510

Product: Dual Wireless Charger Trade Name: TYLT Model Number: QISDBLBK-AT Serial Model: QISDBLXX-AT(XX=RD,BL,GY,Which the XX represent the different colour) Report No.: SEE180522401001E

Prepared for

TYLT, inc.

685 Cochran St. Suite 200 Simi Valley CA93065 US

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China
 Tel.: +86-0755-61156588 Fax.: +86-0755-61156599 Website: www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name	TYLT, inc.			
Address	685 Cochr	an St. Suite 200 Simi Valley CA93065 US		
Manufacturer's Name	SHENZHE	EN GOODWIN TECHNOLOGY CO.,LTD		
Address	4/F,Buiding A, Huayuan Industrial park, Fenghuang No.1 Industrial Area, Fuyong, Baoan Dist., Shenzhen, China			
Product description				
Product name:	Dual Wirel	ess Charger		
Model and/or type reference :	QISDBLB	K-AT		
Standards		15C:2018 .10:2013 by Shenzhen NTEK Testing Technology Co., Ltd., and the test		
results show that the equipment un applicable only to the tested sample This report shall not be reproduced	der test (El e identified except in f t may be a	JT) is in compliance with the FCC requirements. And it is in the report. ull, without the written approval of Shenzhen NTEK Testing Itered or revised by Shenzhen NTEK Testing Technology Co.,		
The test results of this report relate Date of Test		tested sample identified in this report.		
Date (s) of performance of tests	:	22 May.2018 ~ 06 Jun.2018		
Date of Issue	:	15 Jun.2018		
Test Result	:	Pass		
Testing Engine	er :	Eileen Wu.		
		(Eileen Liu)		
Technical Man	ager :	Jason duen		
		(Jason Chen)		
Authorized Sig	natory:	(Jason Chen) Sam, Chew		
		Acmy. Croche		
		(Sam Chen)		
		20 0		
		20 0		
		20 0		
		20 0		
		20 0		

Table of Contents	Page
1. TEST SUMMARY	4
1.1 FACILITIES AND ACCREDITATIONS	5
1.2 LABORATORY ACCREDITATIONS AND LISTINGS	5
1.3 MEASUREMENT UNCERTAINTY	5
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST SETUP	9
2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	10
2.4 MEASUREMENT INSTRUMENTS LIST	11
3 . EMC EMISSION TEST	12
 3.1 CONDUCTED EMISSION MEASUREMENT 3.1.1 POWER LINE CONDUCTED EMISSION 3.1.2 TEST PROCEDURE 3.1.3 TEST SETUP 3.1.4 EUT OPERATING CONDITIONS 3.1.5 TEST RESULTS 3.2 RADIATED EMISSION MEASUREMENT	12 12 13 13 13 14 18
 3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 3.2.2 TEST PROCEDURE 3.2.3 TEST SETUP 3.2.4 TEST RESULTS 4. ANTENNA APPLICATION 4.1 Antenna Requirement 	18 19 20 21 31 31
4.2 Result	31

1. TEST SUMMARY

Test procedures according to the technical standards:

EMC Emission					
Standard	Test Item	FCC Rules	Limit	Judgment	Remark
	Conducted Emission	§15.207	Class B	PASS	
FCC part 15C:2018 ANSI C63.10:2013	Radiated Emission	§15.209	Class B	PASS	
	ANTENNA APPLICATION	§15.203	/	PASS	

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report

(2) For client's request and manual description, the test will not be executed.

1.1 FACILITIES AND ACCREDITATIONS

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

1.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description		
CNAS-Lab.	The Laboratory has been assessed and proved to be in	compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)	
	The Certificate Registration Number is L5516.	
IC-Registration	The Certificate Registration Number is 9270A-1.	
FCC- Accredited	Test Firm Registration Number: 463705.	
	Designation Number: CN1184	
A2LA-Lab.	The Certificate Registration Number is 4298.01	
	This laboratory is accredited in accordance with the reco International Standard ISO/IEC 17025:2005 General rec the competence of testing and calibration laboratories. This accreditation demonstrates technical competence f scope and the operation of a laboratory quality manager (refer to joint ISO-ILAC-IAF Communiqué dated 8 Januar	quirements for or a defined ment system
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.	
Site Location	1/F, Building E, Fenda Science Park, Sanwei Communit	y, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.	

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
NTEKC01	ANSI	150 KHz ~ 30MHz	3.2	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
NTEKA01	ANSI	30MHz ~ 1000MHz	4.7	
		1GHz ~12.4GHz	5.0	

Report No.: SEE180522401001E

Revision History

Report No.	Version	Description	Issued Date
SEE180522401001E	Rev.01	Initial issue of report	15 Jun.2018
	1		

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

	Product Feature and Specification			
Equipment	Dual Wireless Charger			
Trade Name	TYLT			
FCC ID	2AOAF-510			
Model No.	QISDBLBK-AT			
Serial Model	QISDBLXX-AT(XX=RD,BL,GY,Which the XX represent the different colour)			
Model Difference	All the model are the same circuit and RF module, except the model No. and colour.			
Operating Frequency	110KHz~205KHz			
Modulation Technique	Induction			
Antenna Type	Induction coil			
	DC supply: DC 12V/2.5A from Adapter			
Power supply	Adapter: Model: SAW30-120-2500U Input: 100-240V~ 50/60Hz 0.8A Output: DC 12V 2.5A			
Output	DC 5V/2A Or DC 9V/1A			
HW Version	N/A			
SW Version	N/A			

2.1.1 DESCRIPTION OF TEST MODES

EUT Configuration

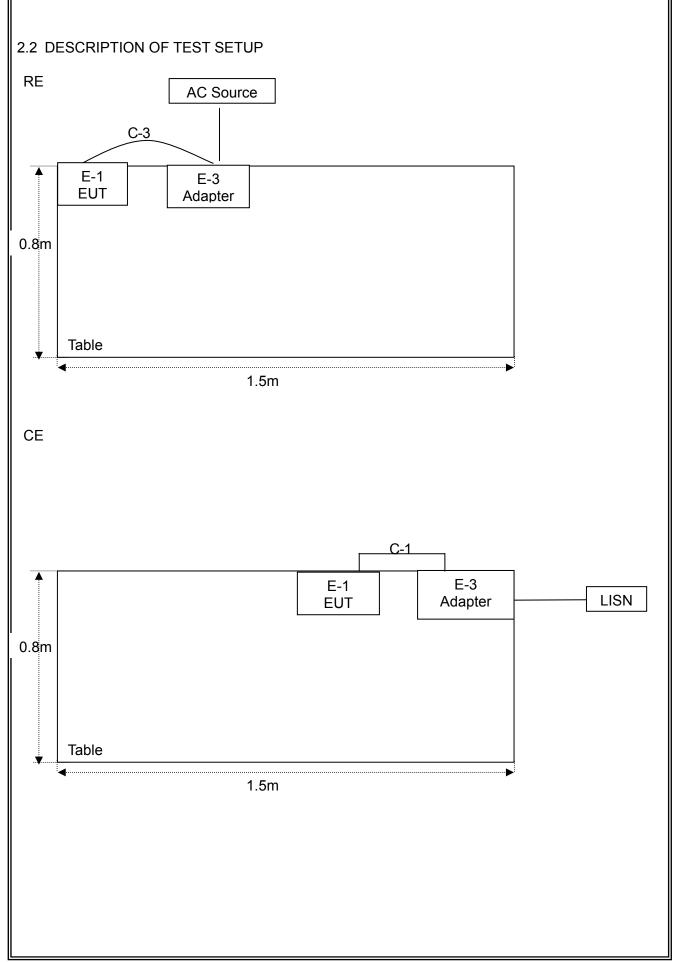
The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: Max load*	
Radiated Test Cases	Mode 1: Max load	


(*)EUT can only access the specified load, can not adjust the size of the load

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
1	0.110
2	0.157
3	0.205

The EUT supports two voltage inputs and outputs. The EUT performs two voltage mode pretests. Only the worst case of the two voltage modes is recorded in the report.

2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Dual Wireless Charger	N/A	QISDBLBK-AT	N/A	EUT
E-2	Adapter	N/A	SAW30-120-2500U	N/A	
E-3	Load	N/A	N/A	N/A	

Item	Cable Type	Shielded Type	Ferrite Core	Length	Note
C-1	USB Cable	unshielded	NO	1.2m	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" means "shielded" "with core"; "NO" means "unshielded" "without core".

2.4 MEASUREMENT INSTRUMENTS LIST

Radiation Test equipment

	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2018.06.05	2019.06.04	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2017.10.26	2018.10.25	1 year
4	Test Receiver	R&S	ESPI	101318	2018.06.05	2019.06.04	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2018.04.08	2019.04.07	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.06.05	2019.06.04	1 year
7	Amplifier	EMC	EMC051835 SE	980246	2017.08.09	2018.08.08	1 year
8	Amplifier	MITEQ	TTA1840-35- HG	177156	2018.06.05	2019.06.04	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2018.06.05	2019.06.04	1 year
10	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
11	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2018.06.05	2019.06.04	1 year
2	LISN	R&S	ENV216	101313	2018.04.18	2019.04.17	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2018.06.05	2019.06.04	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.06.05	2019.06.04	1 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150KHz-30MHz)

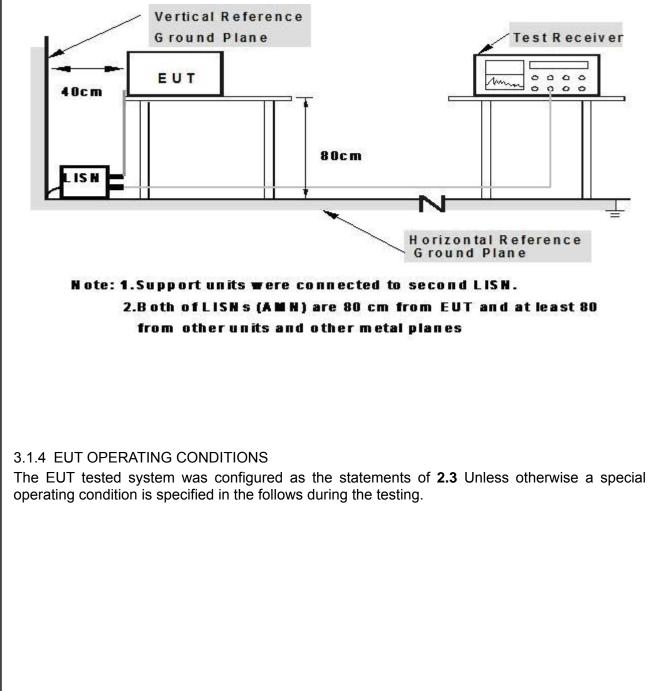
	limit			
FREQUENCY (MHz)	Quasi-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

Note:

(1) The tighter limit applies at the band edges.

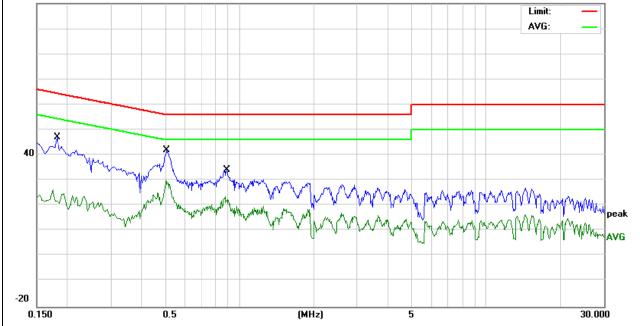
(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.


3.1.3 TEST SETUP

3.1.5 TEST RESULTS

•	/lid frequency) From Adapter /	·	Relativ Test D Phase	ve Humidity: ate:	54% 2018-06-04	
Mode 1(N	/lid frequency)	·		ate:	2018-06-04	
•		·	Dhasa			
DC 12V F	From Adapter		i nasc	:	L	
		AC 120\	//60Hz		-	
ding Level	Correct Factor	Measure	-ment	Limits	Margin	Demerile
dBµV)	(dB)	(dBµ	ιV)	(dBµV)	(dB)	Remark
37.17	9.82	46.9	99	64.39	-17.40	QP
16.48	9.82	26.3	30	54.39	-28.09	AVG
32.14	9.83	41.9	97	56.00	-14.03	QP
19.98	9.83	29.8	81	46.00	-16.19	AVG
24.23	9.89	34.1	12	56.00	-21.88	QP
13.65	9.89	23.5	54	46.00	-22.46	AVG
	•	».				
	37.17 16.48 32.14 19.98 24.23 13.65 si-Peak and	37.17 9.82 16.48 9.82 32.14 9.83 19.98 9.83 24.23 9.89 13.65 9.89	37.17 9.82 46.9 16.48 9.82 26.3 32.14 9.83 41.9 19.98 9.83 29.8 24.23 9.89 34.3 13.65 9.89 23.9 si-Peak and Average values. 24.23	37.17 9.82 46.99 16.48 9.82 26.30 32.14 9.83 41.97 19.98 9.83 29.81 24.23 9.89 34.12 13.65 9.89 23.54 si-Peak and Average values. 5	37.17 9.82 46.99 64.39 16.48 9.82 26.30 54.39 32.14 9.83 41.97 56.00 19.98 9.83 29.81 46.00 24.23 9.89 34.12 56.00 13.65 9.89 23.54 46.00 si-Peak and Average values. 56.00 56.00	37.17 9.82 46.99 64.39 -17.40 16.48 9.82 26.30 54.39 -28.09 32.14 9.83 41.97 56.00 -14.03 19.98 9.83 29.81 46.00 -16.19 24.23 9.89 34.12 56.00 -21.88 13.65 9.89 23.54 46.00 -22.46

	Dual Wire	eless Charger	Mode	el Name. :	QISDBLBK-A	<u>\</u>
Temperature: 26 ℃ Pressure: 1010hPa			Relat	ive Humidity:	54%	
				Date:	2018-06-04	
		Mid frequency)			N	
Test Voltage:	DC 12V F	From Adapter	AC 120V/60H	Z		
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1700	37.57	9.92	47.49	64.96	-17.47	QP
0.1700	20.16	9.92	30.08	54.96	-24.88	AVG
0.5060	31.95	9.93	41.88	56.00	-14.12	QP
0.5060	23.52	9.93	33.45	46.00	-12.55	AVG
0.8739	22.10	9.93	32.03	56.00	-23.97	QP
0.8739	13.85	9.93	23.78	46.00	-22.22	AVG
40 MM	WMMM Provide	www.mithing	M M M		mun phan bu	
40 Minne	WM MM Mark	Walter and the same of the sam		Marin Marine Contraction of the	m Jorn	ſ ^{ſſŴ} Ĭ ^{ſſŴ} ĮvŴĮwwn ŊſŶ ^ĸ ĨĮVĮŴĮwwŋAVG
40 × M M M M M M M M M M M M M M M M M M	0.5	Walk we have have have have have have have hav	(MHz)	5	www.haran	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	n						AT.
EUT:	Dual Wir	eless Charger		Model	Name. :	QISDBLBK-	AI
Temperature:	26 °C			Relativ	e Humidity:	54%	
Pressure:	1010hPa	l		Test D	Test Date: 2018-06-04		
Test Mode: Mode 1(Mid frequency)				Phase		L	
Test Voltage:	DC 12V	From Adapter	AC 240\	//60Hz			
Frequency	Reading Level	Correct Factor	Measure	-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµ	VL)	(dBµV)	(dB)	
0.4140	27.16	9.83	36.9	99	57.57	-20.58	QP
0.4140	14.95	9.83	24.7	78	47.57	-22.79	AVG
0.5180	34.82	9.83	44.6	65	56.00	-11.35	QP
0.5180	21.85	9.83	31.6	68	46.00	-14.32	AVG
1.0100	26.50	9.93	36.4	43	56.00	-19.57	QP
1.0100	14.95	9.93	24.8	88	46.00	-21.12	AVG
100.0 dBu¥	tion Loss + Cable						nit: /G:
							/G:
100.0 dBu¥			(MH2)				/G:

EUT:	Dual Wir	eless Charger	N	/lodel l	Name.:	QISDBLBK-	
emperature:	26 ℃		R	Relative	e Humidity:	54%	
Pressure: 1010hPa Test Mode: Mode 1(Mid frequency)				Test Date: 2018-06-04			
est Mode:	-		·	Phase		N	
est Voltage:	DC 12V	From Adapter	AC 240V/6	60Hz			
Frequency	Reading Level	Correct Factor	Measure-m	nent	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV	′)	(dBµV)	(dB)	
0.4299	27.08	9.93	37.01		57.25	-20.24	QP
0.4299	19.28	9.93	29.21		47.25	-18.04	AVG
0.5140	33.33	9.93	43.26	6	56.00	-12.74	QP
0.5140	25.37	9.93	35.30)	46.00	-10.70	AVG
1.0060	25.45	9.93	35.38	3	56.00	-20.62	QP
1.0060	17.21	9.93	27.14	+	46.00	-18.86	AVG
100.0 dBuV	rtion Loss + Cable					AVG	
100.0 dBuV							
100.0 dBuV							

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Notes:

- (1) Measurement was performed at an antenna to the closed point of EUT distance of meters.
- (2) Emission level (dBuV/m)=20log Emission level (uV/m).
- (3) Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of 15.205, and the emissions located in restricted bands also comply with 15.209 limit.
- (4) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

3.2.2 TEST PROCEDURE

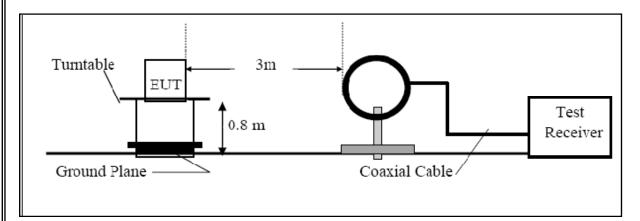
Test Arrangement for Radiated Emissions up to 1 GHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited test facility. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna(Blow 30M, use loop antenna), and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

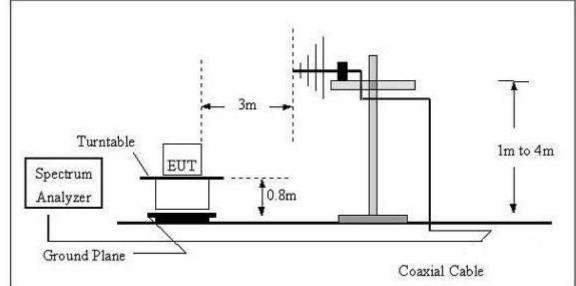
Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency below 1GHz.

Test Arrangement for Radiated Emissions above 1 GHz.

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.


During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Use the following receiver/spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW=200Hz for 9KHz to 150KHz, RBW=9kHz for 150KHz to 30MHz, RBW=120KHz for 30MHz to 1GHz VBW \geq 3*RBW Sweep = auto Detector function = QP Trace = max hold



3.2.3 TEST SETUP

For Radiated Emission Test Set-Up, Frequency Below 30MHz

For Radiated Emission 30~1000MHz

3.2.4 TEST RESULTS

TEST RESULTS (9KHz~30MHz)

	,		
EUT:	Dual Wireless Charger	Model Name. :	QISDBLBK-AT
Temperature:	24 °C	Relative Humidity:	54%
Pressure:	1010 hPa	Test Date :	2018-06-05
Test Mode :	Low frequency/Max Load	Polarization :	Х
Test Power :	Output: DC 5V,Input: DC 12V F	rom Adapter AC 120	V/60Hz

Frequency	Ant.Pol.	Emissio	Limits	Margin	Remark
		n Level			
(MHz)		(dBuV/	(dBuV/m	(dB)	
		m))		
0.038	Х	47.38	116.009	-68.63	Avg
0.110	х	62.38	106.776	-44.40	Avg(fundamenta
0.110	~	02.50	100.770	-44.40	l frequency)
0.728	Х	43.254	70.362	-27.11	QP
3.354	Х	41.045	57.093	-16.05	QP
7.273	Х	42.358	69.542	-27.18	QP
20.675	Х	36.330	69.542	-33.21	QP

Note:

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

EUT:	Dual Wireless Charger	Model Name. :	QISDBLBK-AT		
Temperature:	24 ℃	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Date :	2018-06-04		
Test Mode :	Mid frequency/Max Load Polarization : X				
Test Power :	Output: DC 5V,Input: DC 12V From Adapter AC 120V/60Hz				

Frequency	Ant.Pol.	Emission	Limits	Margin	Remark	
		Level				
(MHz)		(dBuV/m)	(dBuV/m)	(dB)		
0.048	Х	41.58	113.9794	-72.40	Avg	
0.157	×	77.48	103.6862	-26.21	Avg(fundamental	
0.157	Χ	77.40	100.0002	-20.21	frequency)	
0.655	Х	38.540	71.279	-32.74	QP	
1.224	Х	33.544	65.849	-32.30	QP	
5.278	Х	32.784	69.542	-36.76	QP	
9.254	Х	44.058	69.542	-25.48	QP	

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

EUT:	Dual Wireless Charger	Model Name. :	QISDBLBK-AT		
Temperature:	24 °C	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Date :	2018-06-04		
Test Mode :	High frequency/Max Load Polarization : X				
Test Power :	Output: DC 5V,Input: DC 12V From Adapter AC 120V/60Hz				

Frequenc y	Ant.Pol.	Level		Remark	
(MHz)		(dBuV/m)	(dBuV/m)	(dB)	
0.045	Х	42.574	114.5981	-72.02	Avg
0.205	×	80.16	101.3691	-21.21	Avg(fundamental frequency)
0.518	Х	43.287	73.318	-30.03	QP
2.285	X	36.282	60.427	-24.14	QP
6.374	X	35.162	69.542	-34.38	QP
10.256	Х	32.584	69.542	-36.96	QP

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

EUT:	Dual Wireless Charger	Model Name. :	QISDBLBK-AT		
Temperature:	24 °C	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Date :	2018-06-04		
Test Mode :	Low frequency/Max Load Polarization : X				
Test Power :	Output: DC 9V,Input: DC 12V From Adapter AC 120V/60Hz				

Frequency	Ant.Pol.	Emissio	Limits	Margin	Remark
		n Level			
(MHz)		(dBuV/	(dBuV/m	(dB)	
		m))		
0.044	Х	41.258	114.735	-73.48	Avg
0.110	х	78.144	106.776	-28.63	Avg(fundamenta
0.110		70.144	100.770	-20.00	l frequency)
0.625	Х	41.058	71.687	-30.63	QP
2.335	Х	40.874	60.238	-19.36	QP
5.667	Х	40.881	69.542	-28.66	QP
8.034	Х	35.264	69.542	-34.28	QP

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

EUT:	Dual Wireless Charger	Model Name. :	QISDBLBK-AT		
Temperature:	24 ℃	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Date :	2018-06-04		
Test Mode :	Mid frequency/Max Load Polarization : X				
Test Power :	Output: DC 9V,Input: DC 12V From Adapter AC 120V/60Hz				

Frequency	Ant.Pol.	Emission	Limits	Margin	Remark
		Level			
(MHz)		(dBuV/m)	(dBuV/m)	(dB)	
0.042	Х	40.588	115.1392	-74.55	Avg
0.157	х	79.336	103.6862	-24.35	Avg(fundamental
0.137	~	79.550	103.0002	-24.55	frequency)
0.628	Х	37.568	71.645	-34.08	QP
0.817	Х	33.655	69.360	-35.70	QP
1.556	Х	31.226	69.542	-38.32	QP
5.337	Х	41.252	69.542	-28.29	QP

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

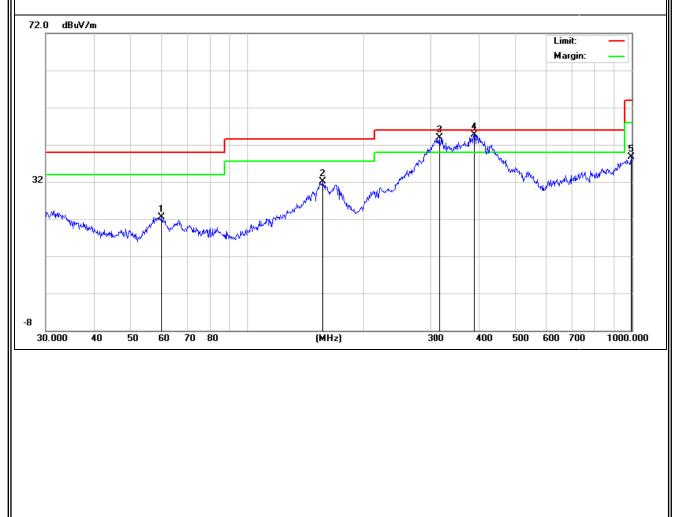
Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

EUT:	Dual Wireless Charger	Model Name. :	QISDBLBK-AT		
Temperature:	24 °C	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Date :	2018-06-04		
Test Mode :	High frequency/Max Load Polarization : X				
Test Power :	Output: DC 9V,Input: DC 12V From Adapter AC 120V/60Hz				

Frequenc y	Ant.Pol.	Emission Level	Limits	Margin	Remark
(MHz)		(dBuV/m)	(dBuV/m)	(dB)	
0.058	Х	41.28	112.3357	-71.06	Avg
0.205	×	81.07	101.3691	-20.30	Avg(fundamental frequency)
0.442	Х	42.552	74.696	-32.14	Avg
0.635	X	37.260	71.549	-34.29	QP
1.352	X	32.118	69.542	-37.42	QP
10.256	X	33.258	69.542	-36.28	QP

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

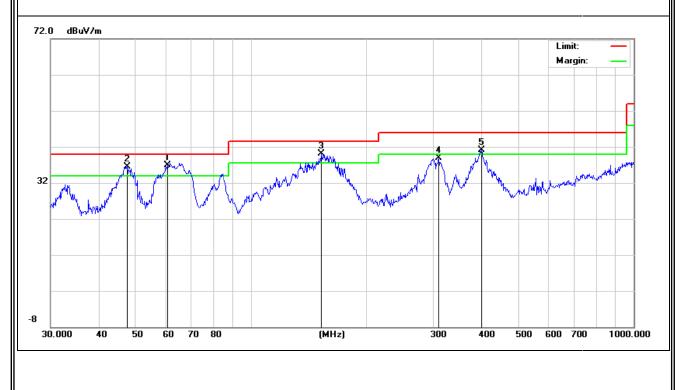
Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.



EUT:	Dual Wireless Charger	Model Name. :	QISDBLBK-AT		
Temperature:	24 ℃	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Date :	2018-06-05		
Test Mode :	High frequency/Max Load Polarization : Horizontal				
Test Power :	Output: DC 5V,Input: DC 12V From Adapter AC 120V/60Hz				

Polar (H/V) H H H H	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman
Н	60.0690	15.97	6.48	22.45	40.00	-17.55	QP
Н	157.0072	19.87	12.14	32.01	43.50	-11.49	QP
Н	316.5889	27.44	16.46	43.90	46.00	-2.10	QP
Н	389.3548	25.84	18.96	44.80	46.00	-1.20	QP
Н	996.4995	7.75	31.00	38.75	54.00	-15.25	QP

Remark:

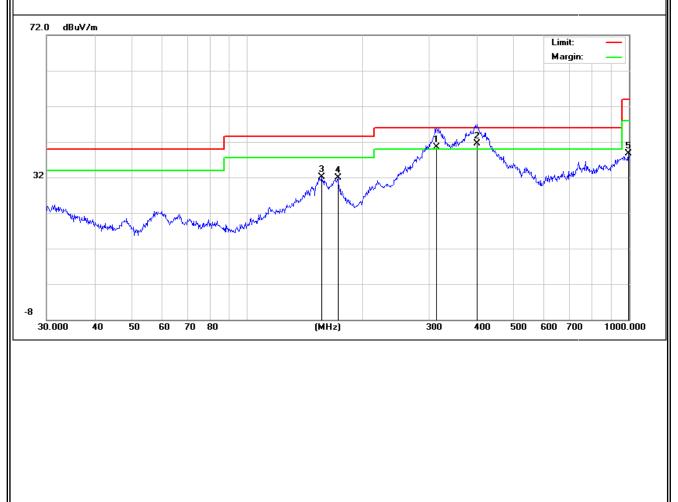


Report No.: SEE180522401001E

EUT:	Dual Wireless Charger	Model Name. :	QISDBLBK-AT			
Temperature:	24 °C	Relative Humidity:	54%			
Pressure:	1010 hPa	Test Date :	2018-06-05			
Test Mode :	High frequency/Max Load	Polarization : Vertical				
Test Power :	Output: DC 5V,Input: DC 12V From Adapter AC 120V/60Hz					

Polar (H/V) V V V V V	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman
V	60.7043	30.37	6.45	36.82	40.00	-3.18	QP
V	47.4917	25.30	11.30	36.60	40.00	-3.40	QP
V	153.2004	27.50	12.61	40.11	43.50	-3.39	QP
V	309.9977	22.49	16.35	38.84	46.00	-7.16	QP
V	400.4318	21.54	19.64	41.18	46.00	-4.82	QP

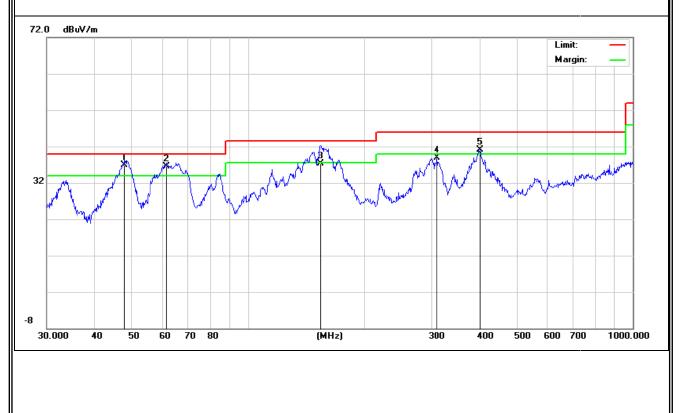
Remark:



EUT:	Dual Wireless Charger	Model Name. :	QISDBLBK-AT			
Temperature:	24 °C	Relative Humidity:	54%			
Pressure:	1010 hPa	Test Date :	2018-06-05			
Test Mode :	High frequency/Max Load	Polarization :	Horizontal			
Test Power :	Power : Output: DC 9V,Input: DC 12V From Adapter AC 120V/60Hz					

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman
Н	314.3765	24.09	16.41	40.50	46.00	-5.50	QP
Н	400.4319	21.96	19.64	41.60	46.00	-4.40	QP
Н	157.0073	19.87	12.14	32.01	43.50	-11.49	QP
Н	173.2050	20.95	11.00	31.95	43.50	-11.55	QP
Н	996.4995	7.75	31.00	38.75	54.00	-15.25	QP

Remark:



Report No.: SEE180522401001E

EUT:	Dual Wireless Charger	Model Name. :	QISDBLBK-AT		
Temperature:	24 °C	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Date :	2018-06-05		
Test Mode :	High frequency/Max Load	Max Load Polarization : Vertical			
Test Power :	Output: DC 9V,Input: DC 12V From Adapter AC 120V/60Hz				

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman
V	47.6586	25.69	11.31	37.00	40.00	-3.00	QP
V	61.5618	30.08	6.42	36.50	40.00	-3.50	QP
V	154.2786	24.74	12.56	37.30	43.50	-6.20	QP
V	309.9977	22.49	16.35	38.84	46.00	-7.16	QP
V	400.4319	21.54	19.64	41.18	46.00	-4.82	QP

Remark:

4. ANTENNA APPLICATION 4.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device. **4.2 Result**

The EUT antenna is permanent attached antenna. It comply with the standard requirement.

END REPORT