TEST REPORT Dt&C Co., Ltd. 42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664. Fax: 031-321-1664 1. Report No: DRTFCC2312-0164(1) 2. Customer • Name (FCC): MOTREX CO., LTD. Address (FCC): Seoyoung Bldg. 25, Hwangsaeul-ro 258beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea 3. Use of Report: FCC Original Grant 4. Product Name / Model Name: SMART DISPLAY / MH300L-K01 FCC ID: BP9-MH300LK01 5. FCC Regulation(s): Part 15.407 Test Method used: KDB789033 D02v02r01, KDB662911 D01v02r01, ANSI C63.10-2013 6. Date of Test: 2023.10.10 ~ 2023.11.28 8. Testing Environment: See appended test report. 9. Test Result: Refer to the attached test result. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report is not related to KOLAS accreditation. Tested by Affirmation Name: SeokHo Han **Technical Manager** (Signature) Name: JaeJin Lee 2024.01.03. Dt&C Co., Ltd. If this report is required to confirmation of authenticity, please contact to report@dtnc.net # **Test Report Version** | Test Report No. | Date | Description | Revised by | Reviewed by | |--------------------|---------------|---------------|---------------|-------------| | DRTFCC2312-0164 | Dec. 08, 2023 | Initial issue | JaeHyeok Bang | JaeJin Lee | | DRTFCC2312-0164(1) | Jan. 03, 2024 | Correct typo | SeokHo Han | JaeJin Lee | ## **CONTENTS** | 1. General Information | 4 | |--|----| | 1.1. Description of EUT | | | 1.3. Testing Laboratory | | | 1.4. Testing Environment | | | 1.5. Measurement Uncertainty | 5 | | 1.6. Test Equipment List | 6 | | 2. Test Methodology | 7 | | 2.1. EUT Configuration | 7 | | 2.2. EUT Exercise | 7 | | 2.3. General Test Procedures | 7 | | 2.4. Instrument Calibration | | | 2.5. Description of Test Modes | | | 3. Antenna Requirements | 10 | | 4. Summary of Test Result | 11 | | 5. TEST RESULT | 12 | | 5.1. Emission Bandwidth (26 dB Bandwidth) | 12 | | 5.2. Minimum Emission Bandwidth (6 dB Bandwidth) | 25 | | 5.3. Maximum Conducted Output Power | 39 | | 5.4. Maximum Power Spectral Density | | | 5.5 Unwanted Emissions | | | 5.6 AC Power-Line Conducted Emissions | | | APPENDIX I | 75 | | APPENDIX II | 76 | | APPENDIX III | 79 | ## 1. General Information ## 1.1. Description of EUT | Equipment Class | Unlicensed National Information Infrastructure TX(NII) | | | |---|---|--|--| | Product Name | SMART DISPLAY | | | | Model Name | MH300L-K01 | | | | Add Model Name | - | | | | Firmware Version
Identification Number | Rev 0.1 | | | | EUT Serial Number | No Specified | | | | Power Supply | DC 12 V | | | | Modulation Technique | OFDM | | | | Antenna Specification | Antenna Type: Chip Antenna
Antenna Gain: Refer to the clause 3 in test report. | | | Report No.: DRTFCC2312-0164(1) | Band | Mode | Tx. frequency(MHz) | Max. conducted power(dBm) | |-----------|-----------------|--------------------|---------------------------| | | 802.11a | 5 180 ~ 5 240 | 15.57 | | | 802.11n(HT20) | 5 180 ~ 5 240 | 16.70 | | U-NII 1 | 802.11ac(VHT20) | 5 180 ~ 5 240 | 16.61 | | U-INII I | 802.11n(HT40) | 5 190 ~ 5 230 | 12.85 | | | 802.11ac(VHT40) | 5 190 ~ 5 230 | 12.74 | | | 802.11ac(VHT80) | 5 210 | 10.57 | | | 802.11a | 5 745 ~ 5 825 | 14.61 | | | 802.11n(HT20) | 5 745 ~ 5 825 | 15.55 | | II AIII 2 | 802.11ac(VHT20) | 5 745 ~ 5 825 | 15.44 | | U-NII 3 | 802.11n(HT40) | 5 755 ~ 5 795 | 11.68 | | | 802.11ac(VHT40) | 5 755 ~ 5 795 | 11.58 | | | 802.11ac(VHT80) | 5 775 | 9.93 | FCC ID: BP9-MH300LK01 1.2. Declaration by the applicant / manufacturer N/A #### 1.3. Testing Laboratory #### Dt&C Co., Ltd. The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of Part 2.948 according to ANSI C63.4-2014. - FCC & IC MRA Designation No.: KR0034 - ISED#: 5740A | www.dtnc.net | | | |--------------|---|------------------| | Telephone | : | + 82-31-321-2664 | | FAX | : | + 82-31-321-1664 | ### 1.4. Testing Environment | Ambient Condition | | |---------------------------------------|-----------------| | Temperature | +21 °C ~ +24 °C | | Relative Humidity | +40 % ~ +43 % | ## 1.5. Measurement Uncertainty The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. | Parameter | Measurement uncertainty | |------------------------------------|--| | Antenna-port conducted emission | 1.0 dB (The confidence level is about 95 %, k = 2) | | Radiated emission (1 GHz Below) | 4.8 dB (The confidence level is about 95 %, k = 2) | | Radiated emission (1 GHz ~ 18 GHz) | 4.8 dB (The confidence level is about 95 %, k = 2) | | Radiated emission (18 GHz Above) | 4.9 dB (The confidence level is about 95 %, k = 2) | ## 1.6. Test Equipment List | Туре | Manufacturer | Model | Cal.Date
(yy/mm/dd) | Next.Cal.Date
(yy/mm/dd) | S/N | |--|------------------------|---------------------------------|------------------------|-----------------------------|--------------------| | Spectrum Analyzer | Agilent Technologies | N9020A | 23/06/23 | 24/06/23 | MY46471622 | | Spectrum Analyzer | Agilent Technologies | N9020A | 22/12/16 | 23/12/16 | MY48011700 | | Spectrum Analyzer | Agilent Technologies | N9020A | 23/06/23 | 24/06/23 | US47360812 | | Spectrum Analyzer | KEYSIGHT | N9030B | 22/12/16 | 23/12/16 | MY55480168 | | Receiver | Rohde Schwarz | ESCI3 | 23/06/23 | 24/06/23 | 100798 | | DC Power Supply | Agilent Technologies | 66332A | 23/06/23 | 24/06/23 | US37474125 | | DC Power Supply | SM techno | SDP30-5D | 23/06/23 | 24/06/23 | 305DMG288 | | Multimeter | FLUKE | 17B+ | 22/12/16 | 23/12/16 | 36390701WS | | Signal Generator | Rohde Schwarz | SMBV100A | 22/12/16 | 23/12/16 | 255571 | | Signal Generator | ANRITSU | MG3695C | 22/12/16 | 23/12/16 | 173501 | | Thermohygrometer | BODYCOM | BJ5478 | 22/12/16 | 23/12/16 | 120612-1 | | Thermohygrometer | BODYCOM | BJ5478 | 22/12/16 | 23/12/16 | 120612-2 | | Thermohygrometer | BODYCOM | BJ5478 | 23/06/23 | 24/06/23 | N/A | | Loop Antenna | ETS-Lindgren | 6502 | 22/04/22 | 24/04/22 | 00203480 | | Hybrid Antenna | Schwarzbeck | VULB 9160 | 22/12/16 | 23/12/16 | 3362 | | Horn Antenna | ETS-Lindgren | 3117 | 23/06/23 | 24/06/23 | 00143278 | | Horn Antenna | A.H.Systems Inc. | SAS-574 | 23/06/23 | 24/06/23 | 155 | | PreAmplifier | tsj | MLA-0118-B01-40 | 22/12/16 | 23/12/16 | 1852267 | | PreAmplifier | tsj | MLA-1840-J02-45 | 23/06/23 | 24/06/23 | 16966-10728 | | PreAmplifier | H.P | 8447D | 22/12/16 | 23/12/16 | 2944A07774 | | High Pass Filter | Wainwright Instruments | WHKX12-935-1000-
15000-40SS | 23/06/23 | 24/06/23 | 8 | | High Pass Filter | Wainwright Instruments | WHKX10-2838-3300-
18000-60SS | 23/06/23 | 24/06/23 | 1 | | High Pass Filter | Wainwright Instruments | WHNX8.0/26.5-6SS | 23/06/23 | 24/06/23 | 3 | | Attenuator | Hefei Shunze | SS5T2.92-10-40 | 23/06/23 | 24/06/23 | 16012202 | | Attenuator | Aeroflex/Weinschel | 56-3 | 23/06/23 | 24/06/23 | Y2370 | | Attenuator | SMAJK | SMAJK-2-3 | 23/06/23 | 24/06/23 | 3 | | Attenuator | SMAJK | SMAJK-2-3 | 23/06/23 | 24/06/23 | 2 | | Attenuator | Aeroflex/Weinschel | 86-10-11 | 23/06/23 | 24/06/23 | 408 | | Power Meter & Wide
Bandwidth Sensor | Anritsu | ML2496A
MA2411B | 22/12/16 | 23/12/16 | 1338004
1911481 | | Cable | Dt&C | Cable | 23/01/04 | 24/01/04 | G-2 | | Cable | HUBER+SUHNER | SUCOFLEX 100 | 23/01/04 | 24/01/04 | G-3 | | Cable | Dt&C | Cable | 23/01/04 | 24/01/04 | G-4 | | Cable | OMT | YSS21S | 23/01/04 | 24/01/04 | G-5 | | Cable | Junkosha | MWX241 | 23/01/03 | 24/01/03 | mmW-1 | | Cable | Junkosha | MWX241 | 23/01/03 | 24/01/03 | mmW-4 | | Cable | HUBER+SUHNER | SUCOFLEX100 | 23/01/04 | 24/01/04 | M-01 | | Cable | HUBER+SUHNER | SUCOFLEX100 | 23/01/04 | 24/01/04 | M-02 | | Cable | JUNKOSHA | MWX241/B | 23/01/04 | 24/01/04 | M-03 | | Cable | JUNKOSHA | J12J101757-00 | 23/01/04 | 24/01/04 | M-07 | | Cable | HUBER+SUHNER | SUCOFLEX106 | 23/01/04 | 24/01/04 | M-09 | | Cable | Radiall | TESTPRO3 | 23/01/04 | 24/01/04 | RFC-70 | | Test Software (Radiated) | tsj | EMI Measurement | NA | NA | Version 2.00.0185 | Report No.: DRTFCC2312-0164(1) Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by Dt&C itself. Report No.: **DRTFCC2312-0164(1)** FCC ID: **BP9-MH300LK01** ## 2. Test Methodology The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB789033 D02v02r01 were used in measurement of the EUT. The EUT was tested per the guidance of KDB789033 D02v02r01. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing. #### 2.1. EUT Configuration The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application. #### 2.2. EUT Exercise The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E. #### 2.3. General Test Procedures #### **Conducted Emissions** The power-line conducted emission test procedure is not described on the KDB789033 D02v02r01. So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013. The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector. #### **Radiated Emissions** Basically the radiated tests were performed with KDB789033 D02v02r01. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on KDB789033 D02v02r01. The EUT is placed on a non-conductive table, which is 0.8 m above ground plane. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 1 m or 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axis. #### 2.4. Instrument Calibration The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards. Pages: 7 / 94 ### 2.5. Description of Test Modes The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting. Report No.: DRTFCC2312-0164(1) #### **Transmitting Configuration of EUT** | | SISO | | MIMO (CDD) | MIMO (SDM) | |-----------------|----------------|----------------|----------------|----------------| | Mode | Ant 1 | Ant 2 | Ant 1 & 2 | Ant 1 & 2 | | | | | | | | 802.11a | 6~54Mbps | 6~54Mbps | 6~54Mbps | - | | 802.11n(HT20) | MCS 0 ~ 7 | MCS 0 ~ 7 | MCS 0 ~ 7 | MCS 8 ~ 15 | | 802.11ac(VHT20) | MCS 0 ~ 8(1SS) | MCS 0 ~ 8(1SS) | MCS 0 ~ 8(1SS) | MCS 0 ~ 8(2SS) | | 802.11n(HT40) | MCS 0 ~ 7 | MCS 0 ~ 7 | MCS 0 ~ 7 | MCS 8 ~ 15 | | 802.11ac(VHT40) | MCS 0 ~ 9(1SS) | MCS 0 ~ 9(1SS) | MCS 0 ~ 9(1SS) | MCS 0 ~ 9(2SS) | | 802.11ac(VHT80) | MCS 0 ~ 9(1SS) | MCS 0 ~ 9(1SS) | MCS 0 ~ 9(1SS) | MCS 0 ~ 9(2SS) | Note1: SDM = Spatial Diversity Multiplexing, CDD = Cycle Delay Diversity, SS = Spatial Streams ## **EUT Operation test setup** Test Software: Tera Term 4.104.0.0Power setting: Refer to the table below. | Don't | 802.11a | | | | |---------|---------|--------------------|---------------|--| | Band | Channel | Frequency
(MHz) | Power Setting | | | | 36 | 5 180 | 11 | | | U-NII 1 | 40 | 5 200 | 11 | | | | 48 | 5 240 | 11 | | | | 149 | 5 745 | 11 | | | U-NII 3 | 157 | 5 785 | 11 | | | | 165 | 5 825 | 11 | | | Donal | 802.11n(HT20) / 802.11ac(VHT20) | | | | |---------|---------------------------------|--------------------|---------------|--| | Band | Channel | Frequency
(MHz) | Power Setting | | | | 36 | 5 180 | 12 | | | U-NII 1 | 40 | 5 200 | 12 | | | | 48 | 5 240 | 12 | | | U-NII 3 | 149 | 5 745 | 12 | | | | 157 | 5 785 | 12 | | | | 165 | 5 825 | 12 | | | Dond | 802.11n(HT40) / 802.11ac(VHT40) | | | | |-----------|---------------------------------|--------------------|---------------|--| | Band | Channel | Frequency
(MHz) | Power Setting | | | LI NIII 1 | 38 | 5 190 | 8 | | | U-NII 1 | 46 | 5 230 | 8 | | | U-NII 3 | 151 | 5 755 | 8 | | | | 159 | 5 795 | 8 | | | Band | 802.11ac(VHT80) | | | | |---------|-----------------|--------------------|---------------|--| | Ballu | Channel | Frequency
(MHz) | Power Setting | | | U-NII 1 | 42 | 5 210 | 7 | | | U-NII 3 | 155 | 5 775 | 7 | | #### **Tested Mode** | Test Mode | | ANT configuration | Worst data rate | |-----------|---------------|---------------------------|-----------------| | TM 1 | 802.11a | CDD Multiple transmitting | 6Mbps | | TM 2 | 802.11n(HT20) | CDD Multiple transmitting | MCS0 | | TM 3 | 802.11n(HT40) | CDD Multiple transmitting | MCS0 | | TM 4 | 802.11n(HT80) | CDD Multiple transmitting | MCS0 | Report No.: DRTFCC2312-0164(1) Note 1: The worst case data rate is determined as above test mode according to the power measurements. Report No.: **DRTFCC2312-0164(1)** FCC ID: **BP9-MH300LK01** ## 3. Antenna Requirements #### According to Part 15.203 "An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section." The antenna is permanently attached on the device. Therefore this E.U.T complies with the requirement of Part 15.203 #### Directional antenna gain: | D | SISO | | MIMO (CDD) Note 1. | MIMO (SDM) Note 2 | | |----------|-------------|-------------|-----------------------|-----------------------|--| | Bands | ANT 1 [dBi] | ANT 2 [dBi] | Directional Gain[dBi] | Directional Gain[dBi] | | | U-NII 1 | -0.85 | -0.78 | 2.20 | -0.81 | | | U-NII 3 | -0.77 | -0.21 | 2.52 | -0.48 | | Note 1. Directional gain(correlated signal with unequal antenna gain and equal transmit power) $10 \log \left[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2 / N^{ANT} \right] dBi$ Note 2. Directional gain(completely uncorrelated signal with unequal antenna gain and equal transmit power) $10 \log \left[\left(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10} \right) / N^{ANT} \right] dBi$ ## 4. Summary of Test Result | FCC Part
Section(s) | Test Description | Limit | Test
Condition | Status
Note 1 | |-------------------------------|---|--|----------------------|------------------| | 15.407(a) | Emission Bandwidth
(26 dB Bandwidth) | N/A | | С | | 15.407(a) | Maximum Conducted Output Power | Part 15.407(a)
(Refer to section 5.3) | Conducted | С | | 15.407(a) | Maximum Power Spectral Density Part 15.407(a) (Refer to section 5) | | Conducted | С | | 15.407(h) | Dynamic Frequency Selection | Part 15.407(h) | | | | 15.205
15.209
15.407(b) | Unwanted Emissions | Part 15.209, 15.407(b)
(Refer to section 5.5) | Radiated | С | | 15.207 | AC Conducted Emissions | Part 15.207
(Refer to section 5.6) | AC Line
Conducted | NA Note 4 | | 15.203 | Antenna Requirements | Part 15.203
(Refer to section 3) | - | С | Report No.: DRTFCC2312-0164(1) Pages: 11 / 94 Note 1: C = Comply NC = Not Comply NT = Not Tested NA = Not Applicable Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS. Note 3: This device supports U-NII-1, U-NII 3 band only. Note 4: This device is installed in a car. Therefore the power source is a battery of car. #### 5. TEST RESULT #### 5.1. Emission Bandwidth (26 dB Bandwidth) #### **■ Test Requirements** - Emission Bandwidth (26 dB Bandwidth) The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies. The 26 dB bandwidth is used to determine the conducted output power limit. #### ■ Test Configuration Refer to the APPENDIX I. #### **■** Test Procedure - Emission Bandwidth (26 dB Bandwidth) The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB789033 D02v02r01. - 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW. - 2. Set the video bandwidth (VBW) > RBW. - 3. Detector = Peak. - 4. Trace mode = max hold. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %. #### **■ Test Results: Comply** | Test Mode | Band | Channel | Frequency(MHz) | 26 dB BW(MHz) | | |-----------|---------|---------|----------------|---------------|-------| | | | | | ANT 1 | ANT 2 | | | | 36 | 5 180 | 21.19 | 21.45 | | TM 1 | U-NII 1 | 40 | 5 200 | 20.92 | 21.05 | | | | 48 | 5 240 | 20.84 | 20.79 | | | | 36 | 5 180 | 21.13 | 21.06 | | TM 2 | U-NII 1 | 40 | 5 200 | 21.06 | 21.25 | | | | 48 | 5 240 | 21.44 | 21.10 | | TM 3 | U-NII 1 | 38 | 5 190 | 39.72 | 39.10 | | | | 46 | 5 230 | 39.39 | 38.96 | | TM 4 | U-NII 1 | 42 | 5 210 | 81.26 | 81.07 | Pages: 12 / 94 FCC ID: BP9-MH300LK01 Test Mode: TM 1 & ANT 1 & Ch.36 #### 26 dB Bandwidth #### Test Mode: TM 1 & ANT 1 & Ch.40 TRF-RF-233(04)210316 Pages: 13 / 94 #### Test Mode: TM 1 & ANT 1 & Ch.48 Pages: 14 / 94 #### Test Mode: TM 2 & ANT 1 & Ch.36 #### 26 dB Bandwidth #### Test Mode: TM 2 & ANT 1 & Ch.40 TRF-RF-233(04)210316 Pages: 15 / 94 #### Test Mode: TM 2 & ANT 1 & Ch.48 TRF-RF-233(04)210316 Pages: 16 / 94 #### 26 dB Bandwidth #### Test Mode: TM 3 & ANT 1 & Ch.46 Pages: 17 / 94 #### Test Mode: TM 4 & ANT 1 & Ch.42 TRF-RF-233(04)210316 Pages: 18 / 94 #### 26 dB Bandwidth #### Test Mode: TM 1 & ANT 2 & Ch.40 TRF-RF-233(04)210316 Pages: 19 / 94 Pages: 20 / 94 #### 26 dB Bandwidth #### Test Mode: TM 1 & ANT 2 & Ch.48 #### Test Mode: TM 2 & ANT 2 & Ch.36 #### 26 dB Bandwidth #### Test Mode: TM 2 & ANT 2 & Ch.40 TRF-RF-233(04)210316 Pages: 21 / 94 #### Test Mode: TM 2 & ANT 2 & Ch.48 TRF-RF-233(04)210316 Pages: 22 / 94 #### 26 dB Bandwidth #### Test Mode: TM 3 & ANT 2 & Ch.46 TRF-RF-233(04)210316 Pages: 23 / 94 #### Test Mode: TM 4 & ANT 2 & Ch.42 Pages: 24 / 94 Report No.: **DRTFCC2312-0164(1)** FCC ID: **BP9-MH300LK01** #### 5.2. Minimum Emission Bandwidth (6 dB Bandwidth) #### **■ Test Requirements** - Emission Bandwidth (6 dB Bandwidth) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz. #### **■** Test Configuration Refer to the APPENDIX I. #### **■ Test Procedure** - Emission Bandwidth (6 dB Bandwidth) The transmitter output is connected to the Spectrum Analyzer and used following test procedure of **KDB789033 D02v02r01**. - 1. Set resolution bandwidth (RBW) = 100 kHz - 2. Set the video bandwidth ≥ 3 x RBW. - 3. Detector = **Peak**. - 4. Trace mode = max hold. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Pages: 25 / 94 Pages: 26 / 94 #### **■ Test Results: Comply** | Test Mode | Band | Channel | Frequency(MHz) | 6 dB BW(MHz) | | |-----------|---------------------|---------|----------------|--------------|-------| | | | | | ANT 1 | ANT 2 | | | TM 1 U-NII 3 | 149 | 5 745 | 16.31 | 16.34 | | TM 1 | | 157 | 5 785 | 16.38 | 16.35 | | | | 165 | 5 825 | 16.36 | 16.38 | | | | 149 | 5 745 | 17.58 | 17.62 | | TM 2 | U-NII 3 | 157 | 5 785 | 17.58 | 17.61 | | | | 165 | 5 825 | 17.58 | 17.35 | | TM 3 | U-NII 3 | 151 | 5 755 | 35.44 | 35.25 | | | | 159 | 5 795 | 35.76 | 35.69 | | TM 4 | U-NII 3 | 155 | 5 775 | 75.33 | 75.81 | Report No.: DRTFCC2312-0164(1) #### 6 dB Bandwidth #### Test Mode: TM 1 & ANT 1 & Ch.157 TRF-RF-233(04)210316 Pages: 27 / 94 Pages: 28 / 94 #### 6 dB Bandwidth #### Test Mode: TM 2 & ANT 1 & Ch.157 TRF-RF-233(04)210316 Pages: 29 / 94 Pages: 30 / 94 #### 6 dB Bandwidth #### Test Mode: TM 3 & ANT 1 & Ch.159 TRF-RF-233(04)210316 Pages: 31 / 94 Pages: 32 / 94 #### 6 dB Bandwidth #### Test Mode: TM 1 & ANT 2 & Ch.157 TRF-RF-233(04)210316 Pages: 33 / 94 Pages: 34 / 94 #### 6 dB Bandwidth #### Test Mode: TM 1 & ANT 2 & Ch.165 #### 6 dB Bandwidth #### Test Mode: TM 2 & ANT 2 & Ch.157 TRF-RF-233(04)210316 Pages: 35 / 94 Pages: 36 / 94 #### 6 dB Bandwidth #### Test Mode: TM 2 & ANT 2 & Ch.165 #### 6 dB Bandwidth #### 6 dB Bandwidth #### Test Mode: TM 3 & ANT 2 & Ch.159 TRF-RF-233(04)210316 Pages: 37 / 94 # 6 dB Bandwidth ### Test Mode: TM 4 & ANT 2 & Ch.155 Pages: 38 / 94 FCC ID: BP9-MH300LK01 # 5.3. Maximum Conducted Output Power #### ■ Test Requirements Part. 15.407(a) #### (1) For the band 5.15 GHz - 5.25 GHz. - (i) For an outdoor access point operating in the band 5.15 GHz 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). - (ii) For an indoor access point operating in the band 5.15 GHz 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. - (iii) For fixed point-to-point access points operating in the band 5.15 GHz 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. - (iv) For mobile and portable client devices in the 5.15 GHz 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. - (2) For the 5.25 GHz 5.35 GHz and 5.47 GHz 5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. - (3) For the band 5.725 GHz 5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. FCC ID: BP9-MH300LK01 Pages: 40 / 94 # **■** Test Configuration Method PM-G #### **■** Test Procedure # Method PM-G of KDB789033 D02v02r01 Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required. Pages: 41 / 94 # **■ Test Results: Comply** - Output Power : CDD | Mode | Band | Channel | Frequency | Test Result [dBm] | | | | |----------|-----------|---------|-----------|-------------------|-------|---|--| | Wode | Dand | Channel | (MHz) | ANT 1 | ANT 2 | SUM | | | | | 36 | 5 180 | 12.41 | 12.57 | 15.50 | | | | U-NII 1 | 40 | 5 200 | 12.43 | 12.68 | 15.57 | | | 802.11a | | 48 | 5 240 | 12.57 | 12.54 | 15.57 | | | 602.11a | | 149 | 5 745 | 11.52 | 11.61 | 14.58 | | | | U-NII 3 | 157 | 5 785 | 11.51 | 11.66 | 14.60 | | | | | 165 | 5 825 | 11.42 | 11.78 | 14.61 | | | | | 36 | 5 180 | 13.58 | 13.72 | 16.66 | | | | U-NII 1 | 40 | 5 200 | 13.58 | 13.79 | 16.70 | | | 802.11n | | 48 | 5 240 | 13.41 | 13.39 | 16.41 | | | (HT20) | | 149 | 5 745 | 12.41 | 12.48 | 15.46 | | | | U-NII 3 | 157 | 5 785 | 12.63 | 12.45 | 15.55 | | | | | 165 | 5 825 | 12.47 | 12.38 | 15.44 | | | | | 36 | 5 180 | 13.49 | 13.61 | 16.56 | | | | U-NII 1 | 40 | 5 200 | 13.49 | 13.71 | 16.61 | | | 802.11ac | | 48 | 5 240 | 13.30 | 13.32 | 16.32 | | | (VHT20) | U-NII 3 | 149 | 5 745 | 12.28 | 12.32 | 15.31 | | | | | 157 | 5 785 | 12.51 | 12.34 | 15.44 | | | | | 165 | 5 825 | 12.42 | 12.27 | 15.36 | | | | U-NII 1 | 38 | 5 190 | 9.63 | 10.04 | 12.85 | | | 802.11n | U-INII I | 46 | 5 230 | 9.43 | 10.08 | 12.78 | | | (HT40) | LLNII | 151 | 5 755 | 8.45 | 8.87 | 11.68 | | | | U-NII 3 | 159 | 5 795 | 8.34 | 8.67 | 14.60
14.61
16.66
16.70
16.41
15.46
15.55
15.44
16.56
16.61
16.32
15.31
15.44
15.36
12.85
12.78 | | | | LI NIII 4 | 38 | 5 190 | 9.49 | 9.95 | 12.74 | | | 802.11ac | U-NII 1 | 46 | 5 230 | 9.36 | 10.02 | \$UM 15.50 15.57 15.57 14.58 14.60 14.61 16.66 16.70 16.41 15.46 15.55 15.44 16.56 16.61 16.32 15.31 15.44 15.36 12.85 12.78 11.68 11.52 12.74 12.71 11.58 11.45 10.57 | | | (VHT40) | LLNILO | 151 | 5 755 | 8.37 | 8.77 | 11.58 | | | | U-NII 3 | 159 | 5 795 | 8.27 | 8.61 | 11.45 | | | 802.11ac | U-NII 1 | 42 | 5 210 | 7.38 | 7.74 | 10.57 | | | (VHT80) | U-NII 3 | 155 | 5 775 | 6.84 | 6.99 | 9.93 | | Pages: 42 / 94 - Output Power : SDM | Mode | Band | Channel | Frequency | Test Result [dBm] | | | | |----------|-----------|---------|-----------|-------------------|-------|-------|--| | Mode | Bana | Onamici | (MHz) | | ANT 2 | SUM | | | | | 36 | 5 180 | 13.50 | 13.66 | 16.59 | | | | U-NII 1 | 40 | 5 200 | 13.43 | 13.64 | 16.55 | | | 802.11n | | 48 | 5 240 | 13.28 | 13.31 | 16.31 | | | (HT20) | | 149 | 5 745 | 12.28 | 12.42 | 15.36 | | | | U-NII 3 | 157 | 5 785 | 12.54 | 12.33 | 15.45 | | | | | 165 | 5 825 | 12.42 | 12.30 | 15.37 | | | | | 36 | 5 180 | 13.38 | 13.52 | 16.46 | | | | U-NII 1 | 40 | 5 200 | 13.38 | 13.63 | 16.52 | | | 802.11ac | | 48 | 5 240 | 13.22 | 13.23 | 16.24 | | | (VHT20) | | 149 | 5 745 | 12.16 | 12.22 | 15.20 | | | | U-NII 3 | 157 | 5 785 | 12.45 | 12.28 | 15.38 | | | | | 165 | 5 825 | 12.27 | 12.17 | 15.23 | | | | 11 1111 4 | 38 | 5 190 | 9.63 | 10.04 | 12.85 | | | 802.11n | U-NII 1 | 46 | 5 230 | 9.43 | 10.08 | 12.78 | | | (HT40) | LLNII 2 | 151 | 5 755 | 8.45 | 8.87 | 11.68 | | | | U-NII 3 | 159 | 5 795 | 8.34 | 8.67 | 11.52 | | | | U-NII 1 | 38 | 5 190 | 9.49 | 9.95 | 12.74 | | | 802.11ac | | 46 | 5 230 | 9.36 | 10.02 | 12.71 | | | (VHT40) | LLNIII 2 | 151 | 5 755 | 8.37 | 8.77 | 11.58 | | | | U-NII 3 | 159 | 5 795 | 8.27 | 8.61 | 11.45 | | | 802.11ac | U-NII 1 | 42 | 5 210 | 7.38 | 7.74 | 10.57 | | | (VHT80) | U-NII 3 | 155 | 5 775 | 6.84 | 6.99 | 9.93 | | Report No.: DRTFCC2312-0164(1) Report No.: **DRTFCC2312-0164(1)** FCC ID: **BP9-MH300LK01** # 5.4. Maximum Power Spectral Density #### **■** Test requirements #### Part. 15.407(a) - (1) For the band 5.15 GHz 5.25 GHz. - (i) For an outdoor access point operating in the band 5.15 GHz 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. note1 - (ii) For an indoor access point operating in the band 5.15 GHz 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. note1 - (iii) For fixed point-to-point access points operating in the band 5.15 GHz 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. - (iv) For mobile and portable client devices in the 5.15 GHz 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. note1 - (2) For the 5.25 GHz 5.35 GHz and 5.47 GHz 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. note1 - (3) For the band 5.725 GHz 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.note1,note2 - Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. - Note2: Fixed point to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. # **■ Test Configuration** Refer to the APPENDIX I. Report No.: **DRTFCC2312-0164(1)** FCC ID: **BP9-MH300LK01** #### **■** Test Procedure Maximum Power Spectral Density is measured using Measurement Procedure of KDB789033 D02v02r01 - 1) Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA 1, SA 2, SA 3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.) - 2) Use the peak search function on the instrument to find the peak of the spectrum and record its value. - 3) Make the following adjustments to the peak value of the spectrum, if applicable: # a) If Method SA - 2 or SA - 2 Alternative was used, add 10 log(1 / x), where x is the duty cycle, to the peak of the spectrum. - b) If Method SA 3 Alternative was used and the linear mode was used in step II.E.2.g (viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. - 4) The result is the Maximum PSD over 1 MHz reference bandwidth. - 5) For devices operating in the bands 5.15 GHz 5.25 GHz, 5.25 GHz 5.35 GHz, and 5.47 GHz 5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in §15.407(a). For devices operating in the band 5.725 GHz 5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply: - a) Set RBW ≥ 1 / T, where T is defined in section II.B.1.a). (Refer to Appendix II) - b) Set VBW ≥ 3 RBW. - c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log(500 kHz / RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement. - d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log(1 MHz / RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement. - e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle. Pages: 44 / 94 Pages: 45 / 94 # **■ Test Results: Comply** # - Multiple transmitting | Mode | Band | Channel | Frequency
[MHz] | Reading
[dBm] | | DCCF
[dB] | Test Result
[dBm] | |--------------|---------------------|---------|--------------------|------------------|-------|--------------|----------------------| | | | | | ANT 1 | ANT 2 | [db] | ANT1+ANT2+DCCF | | | | 36 | 5 180 | 2.45 | 2.51 | 0.21 | 5.70 | | TM 1 | TM 1 U-NII 1 | 40 | 5 200 | 2.17 | 2.27 | | 5.44 | | | | 48 | 5 240 | 1.71 | 2.50 | | 5.34 | | | | 36 | 5 180 | 3.08 | 3.45 | 0.22 | 6.50 | | TM 2 | TM 2 U-NII 1 | 40 | 5 200 | 2.99 | 2.69 | | 6.07 | | | | 48 | 5 240 | 2.54 | 2.16 | | 5.58 | | TM 3 U-NII 1 | LI NIII 1 | 38 | 5 190 | -3.56 | -3.42 | 0.45 | -0.03 | | | 0-1411 1 | 46 | 5 230 | -4.07 | -3.92 | | -0.53 | | TM 4 | U-NII 1 | 42 | 5 210 | -9.47 | -9.08 | 0.87 | -5.39 | | Mode | Band | Channel | Frequency
[MHz] | Reading
[dBm] | | DCCF
[dB] | Test Result
[dBm] | |------|---------------------|---------|--------------------|------------------|--------|--------------|----------------------| | | | | | ANT 1 | ANT 2 | [db] | ANT1+ANT2+DCCF | | | | 149 | 5 745 | -1.26 | -1.61 | 0.21 | 1.79 | | TM 1 | TM 1 U-NII 3 | 157 | 5 785 | -1.90 | -2.32 | | 1.12 | | | | 165 | 5 825 | -1.02 | -1.33 | | 2.05 | | | | 149 | 5 745 | -0.51 | -0.72 | 0.22 | 2.62 | | TM 2 | U-NII 3 | 157 | 5 785 | -1.38 | -1.54 | | 1.77 | | | | 165 | 5 825 | -0.31 | -1.06 | | 2.56 | | TM 3 | U-NII 3 | 151 | 5 755 | -7.64 | -8.13 | 0.45 | -4.42 | | | | 159 | 5 795 | -8.19 | -8.15 | | -4.71 | | TM 4 | U-NII 3 | 155 | 5 775 | -13.28 | -13.47 | 0.87 | -9.49 | Note 1: Power Spectral Density = Reading(Measurement Data) + DCCF Note 2: Where, DCCF = Duty Cycle Correction Factor For DCCF(Duty Cycle Correction Factor) please refer to appendix II. # **Maximum Power Spectral Density** TRF-RF-233(04)210316 Pages: 46 / 94 #### Test Mode: TM 1 & ANT 1 & Ch.48 Pages: 47 / 94 # **Maximum Power Spectral Density** Pages: 48 / 94 #### Test Mode: TM 1 & ANT 1 & Ch.165 Pages: 49 / 94 # **Maximum Power Spectral Density** Pages: 50 / 94 Pages: 51 / 94 # **Maximum Power Spectral Density** TRF-RF-233(04)210316 Pages: 52 / 94 #### Test Mode: TM 2 & ANT 1 & Ch.165 Pages: 53 / 94 # **Maximum Power Spectral Density** Pages: 54 / 94 # **Maximum Power Spectral Density** TRF-RF-233(04)210316 Pages: 55 / 94 # **Maximum Power Spectral Density** Pages: 56 / 94 # **Maximum Power Spectral Density** TRF-RF-233(04)210316 Pages: 57 / 94 #### Test Mode: TM 1 & ANT 2 & Ch.48 Pages: 58 / 94 # **Maximum Power Spectral Density** Pages: 59 / 94 #### Test Mode: TM 1 & ANT 2 & Ch.165 Pages: 60 / 94 # **Maximum Power Spectral Density** Pages: 61 / 94 #### Test Mode: TM 2 & ANT 2 & Ch.48 TRF-RF-233(04)210316 Pages: 62 / 94 # **Maximum Power Spectral Density** Pages: 63 / 94 #### Test Mode: TM 2 & ANT 2 & Ch.165 Pages: 64 / 94 # **Maximum Power Spectral Density** Pages: 65 / 94 # **Maximum Power Spectral Density** TRF-RF-233(04)210316 Pages: 66 / 94 # **Maximum Power Spectral Density** Pages: 67 / 94