CALIBRATION REPORT F.1 E-Field Probe # **COMOSAR E-Field Probe Calibration Report** Ref: ACR.79.18.20.SATU.A SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD, NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055 MVG COMOSAR DOSIMETRIC E-FIELD PROBE **SERIAL NO.: SN 34/15 EPGO265** Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 12/10/2020 ## Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions. ## COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.79.18.20,SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 12/10/2020 | Jes | | Checked by : | Jérôme LUC | Product Manager | 12/10/2020 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 12/10/2020 | them thethough | | | Customer Name | | |---------------|---------------|--| | | SHENZHEN | | | Distribution: | BALUN | | | Distribution: | TECHNOLOGY | | | | Co.,Ltd. | | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 12/10/2020 | Initial release | | | | | | | | | | | | | | | | | Ref: ACR.79.18.20.SATU.A ## TABLE OF CONTENTS | 1 1 | Device Under Test | | |-----|--|--| | 2 F | Product Description | | | 2.1 | 7 700 7 70 700 700 700 700 700 700 700 | | | 3 N | Measurement Method4 | | | 3.1 | Linearity | | | 3.2 | 2 Sensitivity | | | 3.3 | Lower Detection Limit | | | 3.4 | lsotropy | | | 3.5 | Boundary Effect | | | | Measurement Uncertainty5 | | | 5 (| Calibration Measurement Results | | | 5,1 | Sensitivity in air | | | 5.2 | 2. Linearity | | | 5.3 | Sensitivity in liquid | | | 5.4 | Isotropy | | | | List of Equipment | | Ref: ACR.79.18.20.SATU.A #### 1 DEVICE UNDER TEST | Device Under Test | | | | | |--|----------------------------------|--|--|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | | | Manufacturer | MVG | | | | | Model | SSE2 | | | | | Serial Number | SN 34/15 EPGO265 | | | | | Product Condition (new / used) | Used | | | | | Frequency Range of Probe | 0.15 GHz-6GHz | | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.192 MΩ | | | | | | Dipole 2: R2=0.229 MΩ | | | | | | Dipole 3: R3=0.202 MΩ | | | | A yearly calibration interval is recommended. #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. Figure 1 – MVG COMOSAR Dosimetric E field Dipole | Probe Length | 330 mm | | |--|--------|--| | Length of Individual Dipoles | 2 mm | | | Maximum external diameter | 8 mm | | | Probe Tip External Diameter | 2.5 mm | | | Distance between dipoles / probe extremity | 1 mm | | #### 3 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. #### 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01 W/kg to 100 W/kg. Page: 4/10 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.79.18.20.SATU.A #### 3.2 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. #### 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. #### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. #### 3.5 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. #### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | Uncertainty analysis of the probe calibration in waveguide | | | | | | |--|-----------------------|-----------------------------|------------|----|-----------------------------| | ERROR SOURCES | Uncertainty value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | | Incident or forward power | 3,00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | Reflected power | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | Liquid conductivity | 5.00% | Rectangular | $\sqrt{3}$ | 1 | 2.887% | | Liquid permittivity | 4.00% | Rectangular | $\sqrt{3}$ | 1 | 2.309% | | Field homogeneity | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | Field probe positioning | 5.00% | Rectangular | $\sqrt{3}$ | 1 | 2.887% | Page: 5/10 Ref: ACR.79.18.20,SATU.A | Field probe linearity | 3,00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | |--|-------|-------------|------------|---|--------| | Combined standard uncertainty | | | 1 | | 5.831% | | Expanded uncertainty 95 % confidence level k = 2 | | | - | | 12.0% | ## 5 CALIBRATION MEASUREMENT RESULTS | | Calibration Parameters | | |--------------------|------------------------|--| | Liquid Temperature | 21 °C | | | Lab Temperature | 21 °C | | | Lab Humidity | 45 % | | ## 5.1 SENSITIVITY IN AIR | | Normy dipole | | |------------------------------------|----------------------------------|------------------------------------| | 1 (μV/(V/m) ²)
0.71 | $\frac{2 (\mu V/(V/m)^2)}{0.77}$ | 3 (μV/(V/m) ²)
0.81 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3
(mV) | | |--------------|--------------|----------------------|--| | (mV) | (mV) | | | | 91 | 92 | 97 | | Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula: $$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$ Page: 6/10 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.79.18.20.SATU.A ## 5.2 LINEARITY Linearity:[I+/-1.98% (+/-0.09dB) ## 5.3 <u>SENSITIVITY IN LIQUID</u> | Līquid | Frequency
(MHz+/-
100MHz) | Permittivity | Epsilon (S/m) | ConvF | |--------|---------------------------------|--------------|---------------|-------| | HL750 | 750 | 40.02 | 0.90 | 1.89 | | BL750 | 750 | 56.79 | 1.00 | 1.96 | | HL850 | 835 | 42.13 | 0,90 | 1.93 | | BL850 | 835 | 54.66 | 1,01 | 1.98 | | HL900 | 900 | 42.09 | 1.01 | 1.95 | | BL900 | 900 | 55.24 | 1.08 | 2.02 | | HL1800 | 1800 | 41.65 | 1.46 | 2.18 | | BL1800 | 1800 | 53.88 | 1.46 | 2.25 | | HL1900 | 1900 | 38.45 | 1.45 | 2.46 | | BL1900 | 1900 | 53.32 | 1.56 | 2.57 | | HL2000 | 2000 | 38.26 | 1.38 | 2.24 | | BL2000 | 2000 | 52.70 | 1.51 | 2.31 | | HL2300 | 2300 | 39.44 | 1.62 | 2.58 | | BL2300 | 2300 | 54.52 | 1,77 | 2.65 | | HL2450 | 2450 | 37.50 | 1.80 | 2.55 | | BL2450 | 2450 | 53.22 | 1.88 | 2.63 | | HL2600 | 2600 | 39.80 | 1.99 | 2.38 | | BL2600 | 2600 | 52.52 | 2.23 | 2.46 | | HL5200 | 5200 | 35.64 | 4.67 | 2.09 | | BL5200 | 5200 | 48.64 | 5.51 | 2.14 | | HL5400 | 5400 | 36.44 | 4.87 | 2.04 | | BL5400 | 5400 | 46.52 | 5.77 | 2.12 | | HL5600 | 5600 | 36.66 | 5.17 | 2.20 | | BL5600 | 5600 | 46.76 | 5.76 | 2.27 | | HL5800 | 5800 | 35.32 | 5.30 | 2.17 | | BL5800 | 5800 | 47.03 | 6.10 | 2.22 | LOWER DETECTION LIMIT: 8mW/kg Page: 7/10 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.79.18.20.SATU.A ## 5.4 ISOTROPY #### HL900 MHz - Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.06 dB ## HL1800 MHz - Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.08 dB COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.79.18.20.SATU.A HL5600 MHz - Axial isotropy: $0.06~\mathrm{dB}$ - Hemispherical isotropy: 0.11 dB Ref: ACR.79.18.20.SATU.A ## 6 LIST OF EQUIPMENT | Flat Phantom MVG SN-20/09-SAM/1 required. required. | | | | | | | |---|---|--------------------|---|---|--|--| | | 0.0000000000000000000000000000000000000 | Identification No. | | | | | | Flat Phantom | MVG | SN-20/09-SAM71 | 2 South Color British Color (S. S.) | (Care alare 2 dr. 962 day | | | | COMOSAR Test Bench | Version 3 | NA | | | | | | Network Analyzer | | SN100132 | 02/2019 | 02/2022 | | | | Reference Probe | MVG | EP 94 SN 37/08 | 10/2020 | 10/2021 | | | | Multimeter | Keithley 2000 | 1188656 | 12/2019 | 12/2022 | | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2019 | 12/2022 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | HP E4418A | US38261498 | 12/2019 | 12/2022 | | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2019 | 12/2022 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Waveguide | Mega Industries | 069Y7-158-13-712 | Validated. No cal required. | Validated. No cal required. | | | | Waveguide Transition | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. | Validated. No cal required. | | | | Waveguide Termination | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. | Validated. No cal required. | | | | Temperature / Humidity
Sensor | Control Company | 150798832 | 10/2020 | 10/2023 | | | # **SAR Reference Dipole Calibration Report** Ref: ACR.77.7.21.MVGB.A # KUNSHAN BALUN COMMUNICATIONS TECHNOLOGY CO.,LTD. ROOM 101, BUILDING 5, NO. 1689, ZIZHU ROAD YUSHAN TOWN, KUNSHAN, JIANGSU, CHINA MVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 2450 MHZ SERIAL NO.: SN 08/21 DIP2G450-452 Calibrated at MVG MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/18/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR 77 7.21 MV GB. A | | Name | Function | Date | Signature | |---------------|----------------|-------------------------|-----------|--------------| | Prepared by: | Jérôme Le Gall | Measurement Responsible | 3/18/2021 | | | Checked by : | Jérôme Luc | Technical Manager | 3/18/2021 | JE | | Approved by : | Yann Toutain | Laboratory Director | 3/18/2021 | Gann Toutain | 2021.03.1 8 13:40:25 +01'00' | | Customer Name | | | |---------------|---------------|--|--| | | KUNSHAN | | | | | BALUN | | | | Distribution: | COMMUNICATIO | | | | Distribution: | NS | | | | | TECHNOLOGY | | | | | Co.,Ltd. | | | | Issue | Name | Date | Modifications | |-------|------------|-----------|-----------------| | A | Jérôme Luc | 3/18/2021 | Initial release | | | | | | | | | | | | - | | | - 1 | | | | | * | Ref: ACR 77.7.21 MV GB. A ## TABLE OF CONTENTS | 1 | Intr | oduction4 | | |---|------|--|----| | 2 | De | vice Under Test4 | | | 3 | Pro | duct Description4 | | | | 3.1 | General Information | 4 | | 4 | Me | asurement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Me | asurement Uncertainty | | | | 5.1 | Return Loss_ | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cal | ibration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 7 | | 7 | Val | idation measurement | | | | 7.1 | Head Liquid Measurement | 8 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 11 | | | 7.4 | SAR Measurement Result With Body Liquid | 12 | | 8 | Lis | t of Equipment 13 | | Ref: ACR.77.7.21.MVGB.A. #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST 2 | Device Under Test | | | | | |--------------------------------|-----------------------------------|--|--|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | | | Manufacturer | MVG | | | | | Model | SID2450 | | | | | Serial Number | SN 08/21 DIP2G450-452 | | | | | Product Condition (new / used) | Used | | | | #### 3 PRODUCT DESCRIPTION #### 3.1 **GENERAL INFORMATION** MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR 77.7.21.MVGB.A #### MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ## 4.1 <u>RETURN LOSS REQUIREMENTS</u> The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### MEASUREMENT UNCERTAINTY 5 All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Los | | | |----------------|------------------------------------|--|--| | 400-6000MHz | 0.08 LIN | | | ## 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | ## 5.3 <u>VALIDATION MEASUREMENT</u> The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. Ref: ACR.77.7.21.MVGB.A | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 19 % (SAR) | | 10 g | 19 % (SAR) | #### 6 CALIBRATION MEASUREMENT RESULTS ## 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID Frequency (MHz) Requirement (dB) Return Loss (dB) Impedance 49.3 Ω - 3.6 jΩ 2450 -28.61 -20 ### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 2450 | -24.09 | -20 | 52.8 Ω - 5.5 jΩ | Page: 6/13 Ref: ACR.77.7.21.MVGB.A #### 6.3 MECHANICAL DIMENSIONS | Frequency MHz | Ln | ım | hm | mm d mm | | nm | |---------------|--|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %, | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3,6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | 1 | 45.7 ±1 %. | | 3,6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 % | | | 1800 | 72.0 ±1 %. | - | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3,6 ±1 %. | | | 1950 | 66,3 ±1 %. | | 38,5 ±1 %. | | 3,6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3,6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | - | 3.6 ±1 % | * | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3300 | - 3 | | 3 | | 9 | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3900 | ; | | | | | | | 4200 | ÷ | | ÷ | | | | | 4600 | | + | | | - | | | 4900 | ************************************** | | | | - | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. Ref: ACR.77.7.21.MVGB.A #### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (ɛˌ²) | Conductiv | ity (σ) S/m | |------------------|--------------|-----------------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | - | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | - | 1.40 ±10 % | | | 2100 | 39.8 ±10 % | | 1.49 ±10 % | | | 2300 | 39.5 ±10 % | | 1.67 ±10 % | | | 2450 | 39.2 ±10 % | 41.9 | 1.80 ±10 % | 1.88 | | 2600 | 39.0 ±10 % | | 1.96 ±10 % | | | 3000 | 38.5 ±10 % | | 2.40 ±10 % | | | 3300 | 38.2 ±10 % | | 2.71 ±10 % | | | 3500 | 37.9 ±10 % | | 2.91 ±10 % | | | 3700 | 37.7 ±10 % | | 3.12 ±10 % | | | 3900 | 37.5 ±10 % | | 3.32 ±10 % | | | 4200 | 37.1 ±10 % | | 3.63 ±10 % | | | 4600 | 36.7 ±10 % | | 4.04 ±10 % | | | 4900 | 36.3 ±10 % | | 4.35 ±10 % | | ## 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Ref. ACR 77.7.21 MV GB.A. | Software | OPENSAR V5 | | |---|--|--| | Phantom | SN 13/09 SAM68 | | | Probe | SN 41/18 EPGO333 | | | Liquid | Head Liquid Values: eps': 41.9 sigma: 1.88 | | | Distance between dipole center and liquid | 10.0 mm | | | Area scan resolution | dx=8mm/dy=8mm | | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | | Frequency | 2450 MHz | | | Input power | 20 dBm | | | Liquid Temperature | 20 +/- 1 °C | | | Lab Temperature | 20 +/- 1 °C | | | Lab Humidity | 30-70 % | | | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|--------------|-------------------|-------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43,6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | 51.44 (5.14) | 24 | 23.18 (2.32 | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | 1 | 25.7 | | | 3300 | 18 | | la la | | | 3500 | 67.1 | | 25 | | | 3700 | 67.4 | | 24.2 | | | 3900 | les les | | 1 | | | 4200 | + | | | | | 4600 | 3-5-4 | | 1000 | | | 4900 | - | | 1720 | | ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.77.7.21.MVGB.A Ref. ACR 77.7.21 MV GB.A. ## 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (s,') | | Conductivity (σ) S/m | | |------------------|-----------------------------|------|----------------------|----------| | | required measured | | required | measured | | 150 | 61.9 ±10 % | | 0.80 ±10 % | | | 300 | 58.2 ±10 % | | 0.92 ±10 % | | | 450 | 56.7 ±10 % | | 0.94 ±10 % | | | 750 | 55.5 ±10 % | | 0.96 ±10 % | | | 835 | 55.2 ±10 % | | 0.97 ±10 % | | | 900 | 55.0 ±10 % | | 1.05 ±10 % | | | 915 | 55.0 ±10 % | | 1.06 ±10 % | | | 1450 | 54.0 ±10 % | | 1.30 ±10 % | | | 1610 | 53.8 ±10 % | | 1.40 ±10 % | | | 1800 | 53.3 ±10 % | | 1.52 ±10 % | | | 1900 | 53.3 ±10 % | | 1.52 ±10 % | | | 2000 | 53.3 ±10 % | | 1.52 ±10 % | | | 2100 | 53.2 ±10 % | - | 1.62 ±10 % | | | 2300 | 52.9 ±10 % | | 1.81 ±10 % | | | 2450 | 52.7 ±10 % | 53.4 | 1.95 ±10 % | 2.14 | | 2600 | 52.5 ±10 % | | 2.16 ±10 % | | | 3000 | 52.0 ±10 % | | 2.73 ±10 % | | | 3300 | 51.6 ±10 % | | 3.08 ±10 % | | | 3500 | 51.3 ±10 % | | 3.31 ±10 % | | | 3700 | 51.0 ±10 % | | 3.55 ±10 % | | | 3900 | 50.8 ±10 % | | 3.78 ±10 % | | | 4200 | 50.4 ±10 % | | 4.13 ±10 % | | | 4600 | 49.8 ±10 % | | 4.60 ±10 % | | | 4900 | 49.4 ±10 % | | 4.95 ±10 % | | | 5200 | 49.0 ±10 % | | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | | 6.00 ±10 % | | Ref: ACR.77.7.21.MVGB.A. ## 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V5 | | |---|--|--| | Phantom | SN 13/09 SAM68 | | | Probe | SN 41/18 EPGO333 | | | Liquid | Body Liquid Values: eps': 53.4 sigma: 2.14 | | | Distance between dipole center and liquid | 10.0 mm | | | Area scan resolution | dx=8mm/dy=8mm | | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | | Frequency | 2450 MHz | | | Input power | 20 dBm | | | Liquid Temperature | 20 +/- 1 °C | | | Lab Temperature | 20 +/- 1 °C | | | Lab Humidity | 30-70 % | | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | | |------------------|------------------|-------------------|--| | | m easured | measured | | | 2450 | 53.29 (5.33) | 23.16 (2.32) | | Ref: ACR.77.7.21.MVGB.A ## 8 LIST OF EQUIPMENT | Equipment | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration Date | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Description SAM Phantom | MVG | SN-13/09-SAM68 | Validated. No cal required. | Validated. No ca | | | COMOSAR Test Bench | Version 3 | NΔ | Validated. No cal required. | required.
Validated. No ca
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | |