

Page 1 of 57

	TE:	ST REPORT		
	Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result	 : N/A : EED32O8024889 : 2A45F-CV292 : Mar. 07, 2022 : 47 CFR Part 155 : PASS 	01 Subpart C	
	Room5c 5th Building2,Ba Street, Nanshan I Centre Testing Hongwei Indust Shenzhe TEL:	botong Technology anDao Chengbang District shenzhen 5 Prepared by: International Grou trial Zone, Bao'an en, Guangdong, Ch +86-755-3368 3668 +86-755-3368 3385	Garden 2th, Shek 18000 China p Co., Ltd. 70 District, iina	ou
ENTRE TESTING	Compiled by:	• Reviewed by:	Aaron Ma Aaron Ma Mar. 07, 2022 Check No.:47	23240222
3				

1 Contents

			i uge
1 CONTENTS		••••••	2
2 VERSION			
3 TEST SUMMARY		<u></u>	
4 GENERAL INFORMATION			
4.1 CLIENT INFORMATION			5
4.2 GENERAL DESCRIPTION OF EUT			5
4.3 TEST CONFIGURATION			
4.4 Test Environment			
4.5 DESCRIPTION OF SUPPORT UNITS			8
5 TEST RESULTS AND MEASUREMENT DATA			12
5.1 ANTENNA REQUIREMENT			12
5.2 MAXIMUM CONDUCTED OUTPUT POWER			
5.3 20DB Emission Bandwidth			
5.4 CARRIER FREQUENCY SEPARATION			
5.5 NUMBER OF HOPPING CHANNEL			
5.6 TIME OF OCCUPANCY			
5.7 Band edge Measurements 5.8 Conducted Spurious Emissions			
5.9 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE			
5.9 PSEUDORANDOM PREQUENCY HOPPING SEQUENCE 5.10 RADIATED SPURIOUS EMISSION & RESTRICTED BAI			
6 APPENDIX A			44
7 PHOTOGRAPHS OF TEST SETUP			
8 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DE	ETAILS		
	7 6	1	G

2 Version

a	Version No.	Date		Desc	ription	(D)
C	00	Mar. 07, 2022	C	Or	iginal	C
	(A)	(F)			(A)	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

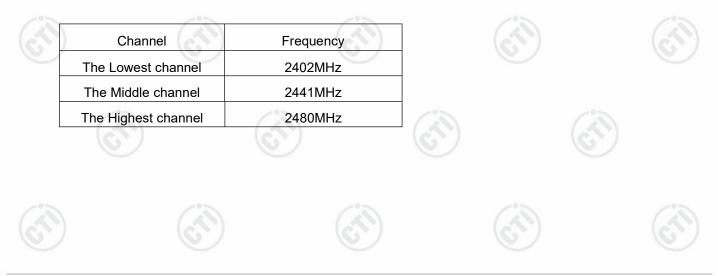
4 General Information

4.1 Client Information

Applicant:		Shenzhen Chebotong Technology Co	o., Ltd.
Address of App	olicant:	Room5c 5th Building2, BanDao Cher Nanshan District shenzhen 518000 C	
Manufacturer:		Shenzhen Chebotong Technology Co	o., Ltd.
Address of Ma	nufacturer:	Room5c 5th Building2, BanDao Cher Nanshan District shenzhen 518000 C	C C
Factory:		Shenzhen Chebotong Technology Co	o., Ltd.
Address of Fac	tory:	Room5c 5th Building2, BanDao Cher Nanshan District shenzhen 518000 C	

4.2 General Description of EUT

-01	Product Name:	Vgate vLinker MC		~
	Model No.:	CV292		(A)
2	Trade Mark:	Vgate、vLinker		U
	Product Type:	Fix Location		
	Operation Frequency:	2402MHz~2480MHz	-15	
	Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
	Modulation Type:	GFSK, π/4DQPSK, 8DPSK	S	
	Number of Channel:	79		
	Hopping Channel Type:	Adaptive Frequency Hopping systems		
2	Antenna Type:	PCB antenna		
থ	Test Software of EUT:	HCITester Tool_TI		(O)
	Antenna Gain:	3.5dBi		
	Power Supply:	DC 12V		
	Test Voltage:	DC 12V		
	Sample Received Date:	Feb. 25, 2022	V	
	Sample tested Date:	Feb. 25, 2022 to Mar. 05, 2022		
	- 11-			



Page 6 of 57

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

4.3 Test Configuration

EUT Test Software Settings	s:				
Software:	HCITester Tool_	TI			
EUT Power Grade:	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to set the le transmitting of the EUT.	owest frequency, the	middle free	quency and th	ne highest frequ	iency keep
Mode	c	hannel	1000	Frequ	ency(MHz)
		CH0		(2402
DH1/DH3/DH5		CH39	U		2441
		CH78			2480
		CH0		~~~	2402
2DH1/2DH3/2DH5	(СН39			2441
		CH78			2480
		CH0			2402
3DH1/3DH3/3DH5	(°)	CH39	(3)		2441
(c.S.)	$(c^{(n)})$	CH78	(\tilde{c})	(2480

4.4 Test Environment

Operating Environment	:		
Radiated Spurious Emi	ssions:		
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH		13
Atmospheric Pressure:	1010mbar	(3)	6
RF Conducted:			
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH	5	
Atmospheric Pressure:	1010mbar	(2)	
		0)

4.5 Description of Support Units

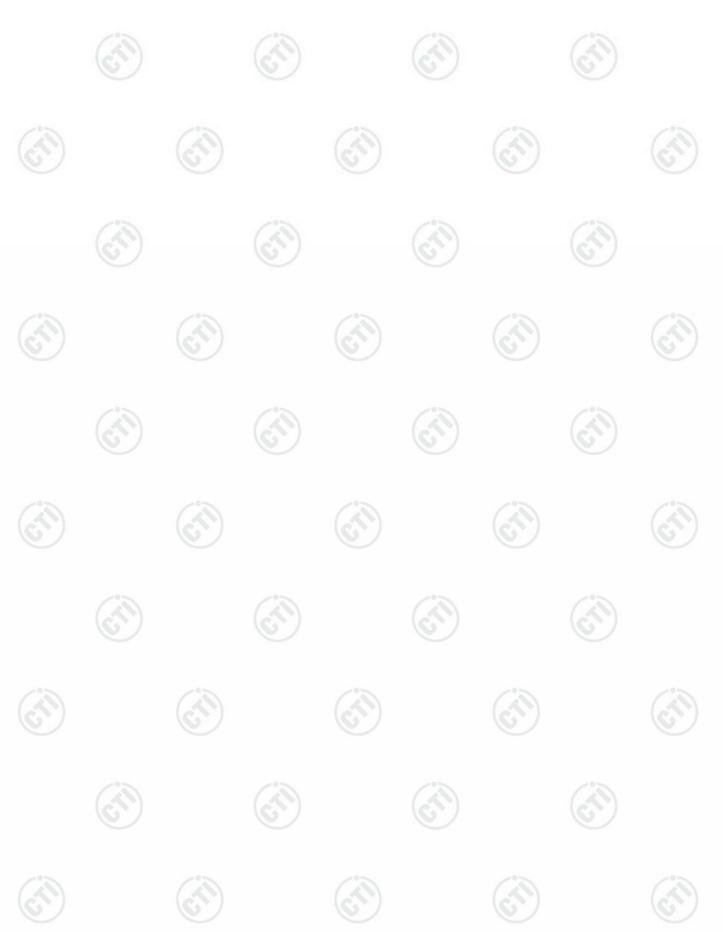
The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	CTI

4.6 Test Location

All tests were performed at:

(F)


Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	RF power, conducted	0.46dB (30MHz-1GHz)	
2	Kr power, conducted	0.55dB (1GHz-40GHz)	
		3.3dB (9kHz-30MHz)	
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spundus emission test	4.5dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

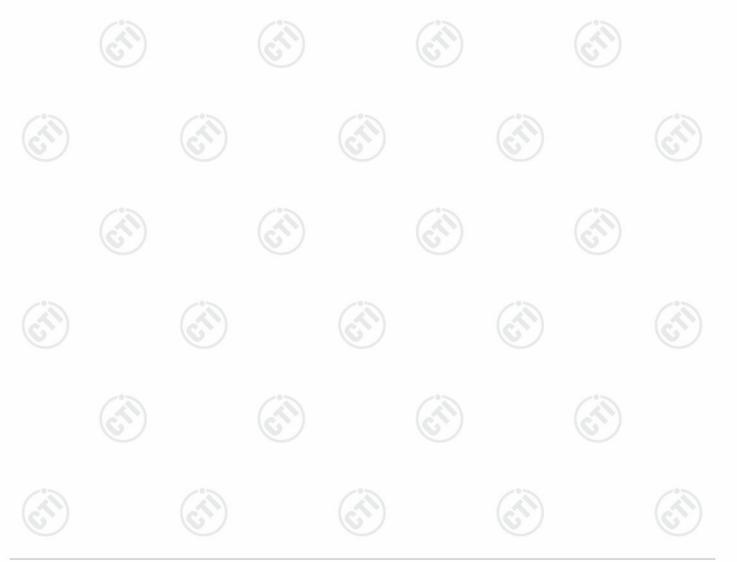
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

4.8 Equipment List

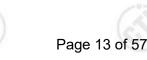
	1			2. J.		
RF test system						
Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Keysight	N9010A	MY54510339	12-24-2021	12-23-2022		
Keysight	N5182B	MY53051549	12-24-2021	12-23-2022		
Agilent	N5181A	MY46240094	12-24-2021	12-23-2022		
Keysight	E3642A	MY56376072	12-24-2021	12-23-2022		
R&S	OSP120	101374	12-24-2021	12-23-2022		
JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022		
R&S	CMW500	120765	08-04-2021	08-03-2022		
Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022		
biaozhi	HM10	1804186	06-24-2021	06-23-2022		
JS Tonscend	JS1120-3	2.6.77.0518				
	Keysight Keysight Agilent Agilent R&S JS Tonscend R&S Dong Guang Qin Zhuo biaozhi	ManufacturerMode No.KeysightN9010AKeysightN5182BAgilentN5181AKeysightE3642AR&SOSP120JS TonscendJS0806-2R&SCMW500Dong Guang Qin ZhuoLK-80GAbiaozhiHM10	KeysightN9010AMY54510339KeysightN5182BMY53051549AgilentN5181AMY46240094KeysightE3642AMY56376072R&SOSP120101374JS TonscendJS0806-2158060006R&SCMW500120765Dong Guang Qin ZhuoLK-80GAQ220150611879biaozhiHM101804186	Manufacturer Mode No. Serial Number Cal. Date (mm-dd-yyyy) Keysight N9010A MY54510339 12-24-2021 Keysight N5182B MY53051549 12-24-2021 Agilent N5181A MY46240094 12-24-2021 Keysight E3642A MY56376072 12-24-2021 R&S OSP120 101374 12-24-2021 JS Tonscend JS0806-2 158060006 12-24-2021 Dong Guang Qin Zhuo LK-80GA QZ20150611879 12-24-2021 biaozhi HM10 1804186 06-24-2021		

	3M Semi-an	echoic Chamber (2)	Radiated distu	rbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/24/2019	05/23/2022
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/23/2019	05/22/2022
Multi device Controller	maturo	NCD/070/10711112		- 0	0
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Spectrum Analyzer	R&S	FSP40	100416	04/29/2021	04/28/2022
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022

			(2)	6	12	
3M full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		- 0	
Receiver	Keysight	N9038A	MY57290136	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022	
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022	
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022	
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		(2	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003			
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	- (<u>-</u>	
Cable line	Times	EMC104-NMNM-1000	SN160710		9	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001			
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		(2	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001			
				(

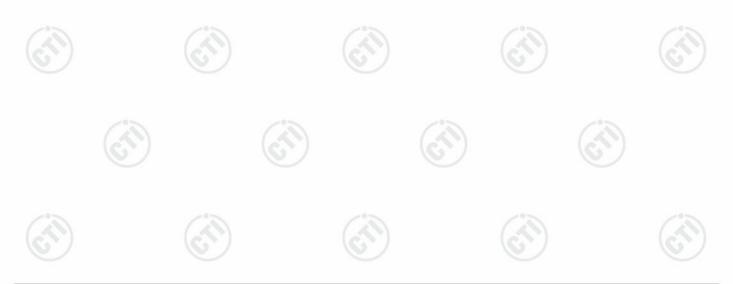


5 Test results and Measurement Data


5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	a designed to ansure that no entenne other than that furnished by the
responsible party shall be use antenna that uses a unique c	be designed to ensure that no antenna other than that furnished by the ed with the device. The use of a permanently attached antenna or of an ecoupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or ited.
15.247(b) (4) requirement: The conducted output power	limit specified in paragraph (b) of this section is based on the use of
section, if transmitting antenn	ns that do not exceed 6 dBi. Except as shown in paragraph (c) of this has of directional gain greater than 6 dBi are used, the conducted output diator shall be reduced below the stated values in paragraphs (b)(1),
(b)(2), and (b)(3) of this section antenna exceeds 6 dBi.	on, as appropriate, by the amount in dB that the directional gain of the

EUT Antenna:	Please see Internal photos
The antenna is PCB antenna	a. The best case gain of the antenna is 3.5dBi.



5.2 Maximum Conducted Output Power

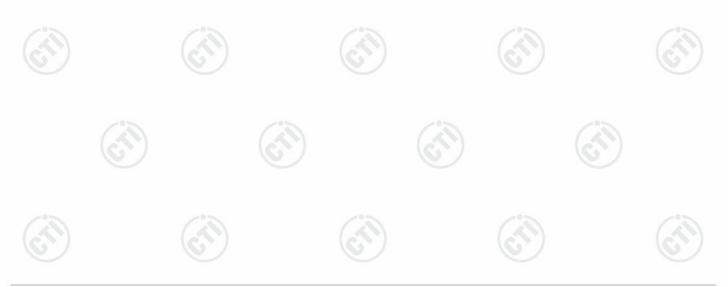
	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
ŝ	Test Setup:	Control Computer Computer Power Suppl Power TemPERATURE CABINET Table
		Remark: Offset=Cable loss+ attenuation factor.
5	Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
S .	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix A

5.3 20dB Emission Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) Test Method: ANSI C63.10:2013 Test Setup: Image: Compare the section of the	(STI
Test Setup:	(T)
RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.	(T)
Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure: 1. The RF output of EUT was connected to the spectrum analyzer cable and attenuator. The path loss was compensated to the result measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidt measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered	lts for each t th
hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3F Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.	
Limit: NA	
Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of	f data type
Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case modulation type, 2-DH5 of data type is the worst case of modulation type, 3-DH5 of data type is the worst case of 8DPSK type.	π/4DQPSk
Test Results: Refer to Appendix A	

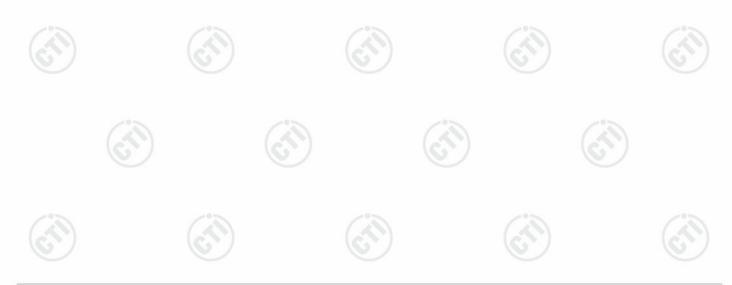
5.4 Carrier Frequency Separation

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
C	Test Setup:	RF test System Power Supply Table RF test System Instrument
1		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode	Hopping transmitting with all kind of modulation and all kind of data type
6	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Y	Test Results:	Refer to Appendix A



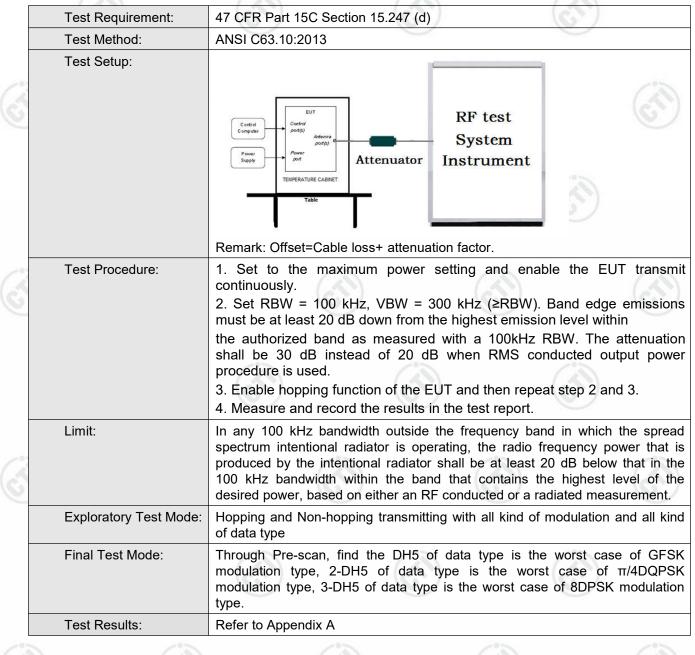
5.5 Number of Hopping Channel

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
	Test Method:	ANSI C63.10:2013		
Č	Test Setup:	Control Control Control Power Supply TemPERATURE CABNET Table		
2	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for		
		each measurement.2. Set to the maximum power setting and enable the EUT transmit continuously.3. Enable the EUT hopping function.		
		4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold.		
3		5. The number of hopping frequency used is defined as the number of total channel.6. Record the measurement data in report.		
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.		
	Test Mode:	Hopping transmitting with all kind of modulation		
	Test Mode.			



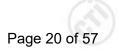
5.6 Time of Occupancy

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
	Test Method:	ANSI C63.10:2013		
5 (()	Test Setup:	Control Computer Computer Supply Former Supply Table RF test System Instrument		
101	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor.1. The RF output of EUT was connected to the spectrum analyzer by RF		
20 C		 cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. 5. Measure and record the results in the test report. 		
2	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.		
	Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.		
	Test Results:	Refer to Appendix A		
	S			



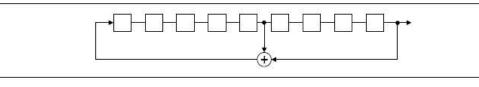
5.7 **Band edge Measurements**

Hotline:400-6788-333



5.8 Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (c	(b)
Test Method:	ANSI C63.10:2013	
Test Setup:	Control Computer Supply TemPerature CABINET Table	RF test System Instrument
	Remark: Offset=Cable loss+ attenu	lation factor.
Test Procedure:	 cable and attenuator. The path loss measurement. 2. Set to the maximum power continuously. 3. Set RBW = 100 kHz, VBW = 30 harmonics / spurs must be at lease level within the authorized band as 4. Measure and record the results in 	
Limit:	spectrum intentional radiator is opproduced by the intentional radiato 100 kHz bandwidth within the bar	e the frequency band in which the spread erating, the radio frequency power that is r shall be at least 20 dB below that in the nd that contains the highest level of the er an RF conducted or a radiated
Exploratory Test Mode:	Non-hopping transmitting with all ki	nd of modulation and all kind of data type
Final Test Mode:	modulation type, 2-DH5 of data	of data type is the worst case of GFSK type is the worst case of π /4DQPSK be is the worst case of 8DPSK modulation
	51	
	Test Method: Test Setup: Test Setup: Test Procedure: Limit: Limit:	Test Method: ANSI C63.10:2013 Test Setup: Image: Comparison of the set



5.9 Pseudorandom Frequency Hopping Sequence

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement: **Test Requirement:** The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9

- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the

Report No. : EED32O80248801

pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

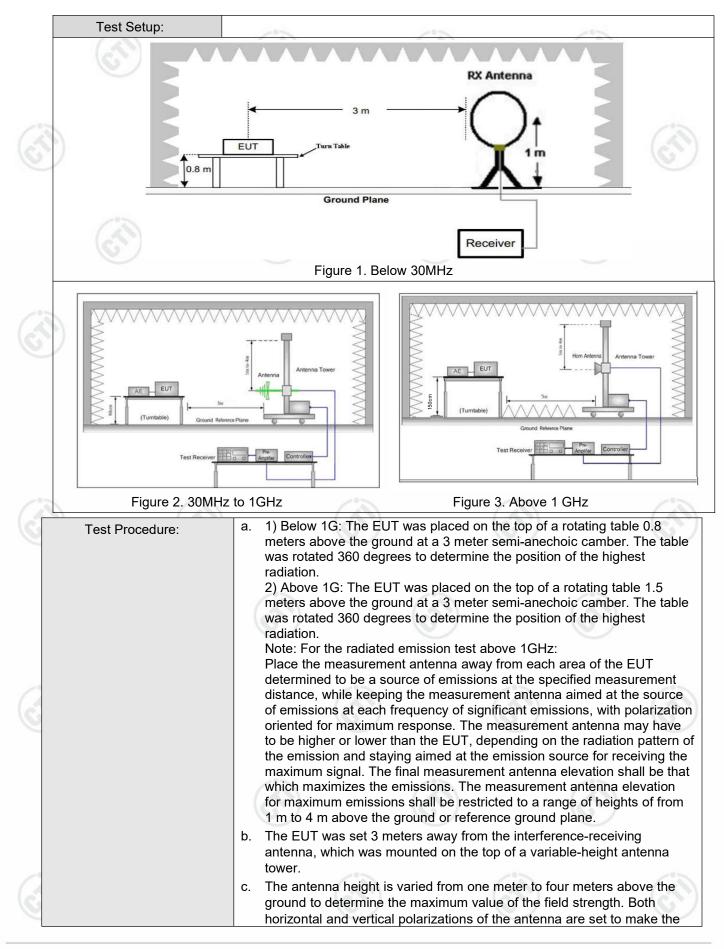
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

5.10 Radiated Spurious Emission & Restricted bands

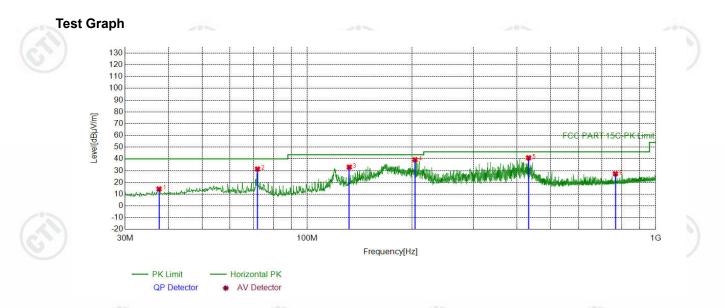
						1
	Test Requirement:	47 CFR Part 15C Secti	on 15.209 and 15	.205	C	
	Test Method:	ANSI C63.10: 2013				
	Test Site:	Measurement Distance	: 3m (Semi-Anec	hoic Cham	ber)	100
<u> </u>	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
2		0.009MHz-0.090MH	z Peak	10kHz	30kHz	Peak
		0.009MHz-0.090MH	z Average	10kHz	30kHz	Average
		0.090MHz-0.110MH	z Quasi-peak	10kHz	30kHz	Quasi-peak
		0.110MHz-0.490MH	z Peak	10kHz	30kHz	Peak
		0.110MHz-0.490MH	z Average	10kHz	30kHz	Average
		0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
		30MHz-1GHz	Peak	100 kH	z 300kHz	Peak
23		Above 1GHz	Peak	1MHz	3MHz	Peak
3			Peak	1MHz	10kHz	Average
	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m
		0.009MHz-0.490MHz	2400/F(kHz)	-	-/3	300
		0.490MHz-1.705MHz	24000/F(kHz)	-	(A)	30
		1.705MHz-30MHz	30	-		30
		30MHz-88MHz	100	40.0	Quasi-peak	3
-		88MHz-216MHz	150	43.5	Quasi-peak	3
		216MHz-960MHz	200	46.0	Quasi-peak	3
2		960MHz-1GHz	500	54.0	Quasi-peak	3
		Above 1GHz	500	54.0	Average	3
		Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	above the maxinequipment under	num permi test. This p	tted average	emission limit



Page 23 of 57

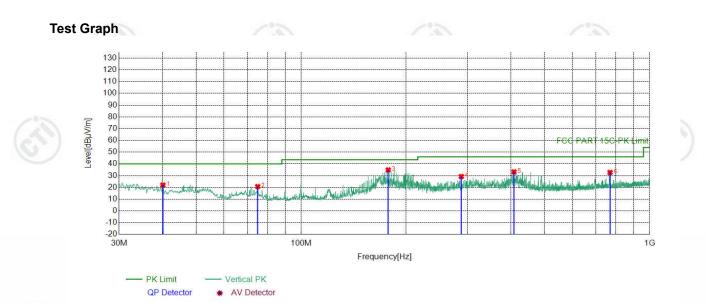
Report No. : EED32O80248801

		measurement.
		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
C		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
(a)		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
		 g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		i. Repeat above procedures until all frequencies measured was complete.
Q	Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
		Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
		Only the worst case is recorded in the report.
	Test Results:	Pass



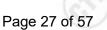
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.



Suspec	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	37.5668	-18.80	33.26	14.46	40.00	25.54	PASS	Horizontal	PK
2	72.0052	-21.15	52.55	31.40	40.00	8.60	PASS	Horizontal	PK
3	132.0542	-21.66	54.70	33.04	43.50	10.46	PASS	Horizontal	PK
4	203.9384	-17.75	57.05	39.30	43.50	4.20	PASS	Horizontal	PK
5	432.0082	-12.22	53.13	40.91	46.00	5.09	PASS	Horizontal	PK
6	766.6917	-6.85	34.21	27.36	46.00	18.64	PASS	Horizontal	PK

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	40.0890	-18.01	40.06	22.05	40.00	17.95	PASS	Vertical	PK
2	75.0125	-21.68	42.40	20.72	40.00	19.28	PASS	Vertical	PK
3	177.7458	-19.96	54.87	34.91	43.50	8.59	PASS	Vertical	PK
4	288.0458	-15.76	45.03	29.27	46.00	16.73	PASS	Vertical	PK
5	408.0468	-12.76	46.01	33.25	46.00	12.75	PASS	Vertical	PK
6	769.6990	-6.82	39.57	32.75	46.00	13.25	PASS	Vertical	PK



Hotline:400-6788-333

Radiated Spurious Emission above 1GHz:

_										
Mc	ode:		GFSK Tra	nsmitting			Channel	:	2402 MHz	
NC	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1330.4330	1.16	44.02	45.18	74.00	28.82	Pass	н	PK	
2	1992.8993	4.51	41.27	45.78	74.00	28.22	Pass	Н	PK	
3	3373.0249	-20.09	57.74	37.65	74.00	36.35	Pass	Н	PK	
4	5055.1370	-15.74	54.19	38.45	74.00	35.55	Pass	Н	PK	
5	7206.2804	-11.83	57.75	45.92	74.00	28.08	Pass	Н	PK	
6	11869.5913	-5.92	52.51	46.59	74.00	27.41	Pass	Н	PK	
7	1327.4327	1.15	47.17	48.32	74.00	25.68	Pass	V	PK	
8	1997.6998	4.54	45.27	49.81	74.00	24.19	Pass	V	PK	
9	3333.0222	-19.93	62.70	42.77	74.00	31.23	Pass	V	PK	
10	4791.1194	-16.26	62.63	46.37	74.00	27.63	Pass	V	PK	
11	7205.2804	-11.83	56.53	44.70	74.00	29.30	Pass	V	PK	
12	2 14363.7576	0.62	48.77	49.39	74.00	24.61	Pass	V	PK	

Mode	e:		GFSK Tra	nsmitting			Channe	:	2441 MHz
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1328.8329	1.16	44.20	45.36	74.00	28.64	Pass	н	PK
2	1986.8987	4.48	40.92	45.40	74.00	28.60	Pass	Н	PK
3	3919.0613	-19.06	56.25	37.19	74.00	36.81	Pass	Н	PK
4	5716.1811	-13.86	54.29	40.43	74.00	33.57	Pass	Н	PK
5	7327.2885	-11.64	56.45	44.81	74.00	29.19	Pass	Н	PK
6	11972.5982	-5.41	51.28	45.87	74.00	28.13	Pass	Н	PK
7	1234.4234	0.89	41.81	42.70	74.00	31.30	Pass	V	PK
8	1890.6891	3.96	40.56	44.52	74.00	29.48	Pass	V	PK
9	3791.0527	-19.30	56.73	37.43	74.00	36.57	Pass	V	PK
10	6675.2450	-12.57	53.03	40.46	74.00	33.54	Pass	V	PK
11	9894.4596	-7.09	51.18	44.09	74.00	29.91	Pass	V	PK
12	13736.7158	-1.72	49.79	48.07	74.00	25.93	Pass	V	PK

Page 28 of 57

Mod	۵.		GFSK Tra	nemitting			Channel		2480 MHz
WOU	e.						Channe	•	2400 1011 12
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1332.0332	1.17	43.68	44.85	74.00	29.15	Pass	Н	PK
2	1999.7000	4.55	41.47	46.02	74.00	27.98	Pass	Н	PK
3	4524.1016	-16.89	54.65	37.76	74.00	36.24	Pass	Н	PK
4	7440.2960	-11.34	62.45	51.11	74.00	22.89	Pass	Н	PK
5	9919.4613	-7.10	54.47	47.37	74.00	26.63	Pass	Н	PK
6	12513.6342	-4.73	51.39	46.66	74.00	27.34	Pass	Н	PK
7	1327.6328	1.15	46.25	47.40	74.00	26.60	Pass	V	PK
8	1995.4996	4.53	46.79	51.32	74.00	22.68	Pass	V	PK
9	4794.1196	-16.25	60.68	44.43	74.00	29.57	Pass	V	PK
10	7440.2960	-11.34	61.96	50.62	74.00	23.38	Pass	V	PK
11	8982.3988	-8.60	52.87	44.27	74.00	29.73	Pass	V	PK
12	14374.7583	0.80	47.80	48.60	74.00	25.40	Pass	V	PK
					6				

Mode	:		π/4DQPS	SK Transmitt	ing		Channel	:	2402 MHz
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1328.8329	1.16	43.54	44.70	74.00	29.30	Pass	Н	PK
2	1806.6807	3.33	42.41	45.74	74.00	28.26	Pass	Н	PK
3	4546.1031	-16.83	55.17	38.34	74.00	35.66	Pass	Н	PK
4	7206.2804	-11.83	63.37	51.54	74.00	22.46	Pass	Н	PK
5	9608.4406	-7.37	53.13	45.76	74.00	28.24	Pass	Н	PK
6	11951.5968	-5.53	52.61	47.08	74.00	26.92	Pass	Н	PK
7	1333.0333	1.17	46.74	47.91	74.00	26.09	Pass	V	PK
8	1999.2999	4.55	47.45	52.00	74.00	22.00	Pass	V	PK
9	4982.1321	-15.89	59.44	43.55	74.00	30.45	Pass	V	PK
10	7205.2804	-11.83	62.78	50.95	74.00	23.05	Pass	V	PK
11	8984.3990	-8.59	54.81	46.22	74.00	27.78	Pass	V	PK
12	11900.5934	-5.83	51.56	45.73	74.00	28.27	Pass	V	PK
	NO 1 2 3 4 5 6 7 8 9 10 11	NO [MHz] 1 1328.8329 2 1806.6807 3 4546.1031 4 7206.2804 5 9608.4406 6 11951.5968 7 1333.0333 8 1999.2999 9 4982.1321 10 7205.2804 11 8984.3990	NOFreq. [MHz]Ant Factor [dB]11328.83291.1621806.68073.3334546.1031-16.8347206.2804-11.8359608.4406-7.37611951.5968-5.5371333.03331.1781999.29994.5594982.1321-15.89107205.2804-11.83118984.3990-8.59	NOFreq. [MHz]Ant Factor [dB]Reading [dBµV]11328.83291.1643.5421806.68073.3342.4134546.1031-16.8355.1747206.2804-11.8363.3759608.4406-7.3753.13611951.5968-5.5352.6171333.03331.1746.7481999.29994.5547.4594982.1321-15.8959.44107205.2804-11.8362.78118984.3990-8.5954.81	NOFreq. [MHz]Ant Factor [dB]Reading [dBµV]Level [dBµV]11328.83291.1643.5444.7021806.68073.3342.4145.7434546.1031-16.8355.1738.3447206.2804-11.8363.3751.5459608.4406-7.3753.1345.76611951.5968-5.5352.6147.0871333.03331.1746.7447.9181999.29994.5547.4552.0094982.1321-15.8959.4443.55107205.2804-11.8362.7850.95118984.3990-8.5954.8146.22	NOFreq. [MHz]Ant Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]11328.83291.1643.5444.7074.0021806.68073.3342.4145.7474.0034546.1031-16.8355.1738.3474.0047206.2804-11.8363.3751.5474.0059608.4406-7.3753.1345.7674.00611951.5968-5.5352.6147.0874.0071333.03331.1746.7447.9174.0081999.29994.5547.4552.0074.0094982.1321-15.8959.4443.5574.00107205.2804-11.8362.7850.9574.00118984.3990-8.5954.8146.2274.00	NOFreq. [MHz]Ant Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]Margin [dBµV/m]11328.83291.1643.5444.7074.0029.3021806.68073.3342.4145.7474.0028.2634546.1031-16.8355.1738.3474.0028.2647206.2804-11.8363.3751.5474.0022.4659608.4406-7.3753.1345.7674.0028.24611951.5968-5.5352.6147.0874.0026.9271333.03331.1746.7447.9174.0026.0981999.29994.5547.4552.0074.0022.0094982.1321-15.8959.4443.5574.0023.05107205.2804-11.8362.7850.9574.0023.05118984.3990-8.5954.8146.2274.0027.78	NOFreq. [MHz]Ant Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]Margin [dBµV/m]Result11328.83291.1643.5444.7074.0029.30Pass21806.68073.3342.4145.7474.0028.26Pass34546.1031-16.8355.1738.3474.0035.66Pass47206.2804-11.8363.3751.5474.0028.24Pass59608.4406-7.3753.1345.7674.0028.24Pass611951.5968-5.5352.6147.0874.0026.92Pass71333.03331.1746.7447.9174.0026.09Pass81999.29994.5547.4552.0074.0022.00Pass94982.1321-15.8959.4443.5574.0030.45Pass107205.2804-11.8362.7850.9574.0023.05Pass118984.3990-8.5954.8146.2274.0027.78Pass	NO Freq. [MHz] Ant Factor [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] Margin [dBµ Result Polarity 1 1328.8329 1.16 43.54 44.70 74.00 29.30 Pass H 2 1806.6807 3.33 42.41 45.74 74.00 28.26 Pass H 3 4546.1031 -16.83 55.17 38.34 74.00 35.66 Pass H 4 7206.2804 -11.83 63.37 51.54 74.00 28.24 Pass H 5 9608.4406 -7.37 53.13 45.76 74.00 28.24 Pass H 6 11951.5968 -5.53 52.61 47.08 74.00 26.92 Pass H 7 1333.0333 1.17 46.74 47.91 74.00 26.09 Pass V 8 1999.2999 4.55 47.45 52.00 74.00 30.45 Pass V

CTI华测检测 Report No. : EED32O80248801

Page 29 of 57

Mode	:		π/4DQPS	SK Transmitt	ing		Channel	:	2441 MHz
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1332.4332	1.17	43.45	44.62	74.00	29.38	Pass	Н	PK
2	1991.4992	4.51	41.80	46.31	74.00	27.69	Pass	Н	PK
3	4367.0911	-17.11	55.33	38.22	74.00	35.78	Pass	Н	PK
4	7322.2882	-11.65	63.38	51.73	74.00	22.27	Pass	Н	PK
5	9764.4510	-7.50	57.62	50.12	74.00	23.88	Pass	Н	PK
6	14382.7589	0.93	47.87	48.80	74.00	25.20	Pass	Н	PK
7	1332.0332	1.17	46.28	47.45	74.00	26.55	Pass	V	PK
8	1991.4992	4.51	47.90	52.41	74.00	21.59	Pass	V	PK
9	4791.1194	-16.26	60.98	44.72	74.00	29.28	Pass	V	PK
10	7322.2882	-11.65	58.29	46.64	74.00	27.36	Pass	V	PK
11	10315.4877	-6.43	51.33	44.90	74.00	29.10	Pass	V	PK
12	13679.7120	-1.74	48.99	47.25	74.00	26.75	Pass	V	PK
		51		6			ST/		6

	Mode	:		π/4DQPS	SK Transmitt	ing		Channel	:	2480 MHz
	NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1328.4328	1.15	43.87	45.02	74.00	28.98	Pass	Н	PK
	2	1678.6679	2.80	40.89	43.69	74.00	30.31	Pass	Н	PK
	3	4791.1194	-16.26	55.35	39.09	74.00	34.91	Pass	Н	PK
	4	7440.2960	-11.34	58.72	47.38	74.00	26.62	Pass	Н	PK
/	5	9920.4614	-7.10	59.47	52.37	74.00	21.63	Pass	Н	PK
	6	12546.6364	-4.49	51.60	47.11	74.00	26.89	Pass	Н	PK
	7	1333.2333	1.17	46.07	47.24	74.00	26.76	Pass	V	PK
	8	1991.4992	4.51	51.82	56.33	74.00	17.67	Pass	V	PK
	9	4795.1197	-16.25	61.91	45.66	74.00	28.34	Pass	V	PK
	10	7439.2960	-11.34	60.66	49.32	74.00	24.68	Pass	V	PK
	11	9920.4614	-7.10	53.00	45.90	74.00	28.10	Pass	V	PK
	12	12442.6295	-4.75	50.67	45.92	74.00	28.08	Pass	V	PK

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 30 of 57

Mode	e:		8DPSK -	Transmitting			Channel	:	2402 MHz
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1333.2333	1.17	46.07	47.24	74.00	26.76	Pass	Н	PK
2	1991.4992	4.51	51.82	56.33	74.00	17.67	Pass	Н	PK
3	4795.1197	-16.25	61.91	45.66	74.00	28.34	Pass	Н	PK
4	7439.2960	-11.34	60.66	49.32	74.00	24.68	Pass	Н	PK
5	9920.4614	-7.10	53.00	45.90	74.00	28.10	Pass	Н	PK
6	12442.6295	-4.75	50.67	45.92	74.00	28.08	Pass	Н	PK
7	1331.6332	1.16	46.87	48.03	74.00	25.97	Pass	V	PK
8	1997.2997	4.54	47.60	52.14	74.00	21.86	Pass	V	PK
9	4796.1197	-16.24	61.43	45.19	74.00	28.81	Pass	V	PK
10	7206.2804	-11.83	62.42	50.59	74.00	23.41	Pass	V	PK
11	8985.3990	-8.58	53.98	45.40	74.00	28.60	Pass	V	PK
12	10816.5211	-6.25	51.70	45.45	74.00	28.55	Pass	V	PK
	0				/	1			Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.

	Mode	:		8DPSK	Fransmitting			Channel:		2441 MHz
	NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1263.8264	0.97	41.39	42.36	74.00	31.64	Pass	Н	PK
	2	1740.6741	3.08	41.28	44.36	74.00	29.64	Pass	Н	PK
	3	5371.1581	-14.62	54.68	40.06	74.00	33.94	Pass	Н	PK
)	4	7323.2882	-11.65	63.88	52.23	74.00	21.77	Pass	Н	PK
	5	9764.4510	-7.50	58.21	50.71	74.00	23.29	Pass	Н	PK
	6	13272.6848	-3.36	50.74	47.38	74.00	26.62	Pass	Н	PK
	7	1327.6328	1.15	46.40	47.55	74.00	26.45	Pass	V	PK
	8	1999.2999	4.55	47.87	52.42	74.00	21.58	Pass	V	PK
	9	4791.1194	-16.26	61.89	45.63	74.00	28.37	Pass	V	PK
	10	7323.2882	-11.65	58.23	46.58	74.00	27.42	Pass	V	PK
	11	10279.4853	-6.60	51.40	44.80	74.00	29.20	Pass	V	PK
	12	14365.7577	0.65	48.22	48.87	74.00	25.13	Pass	V	PK
<u> </u>			1							

Page 31 of 57

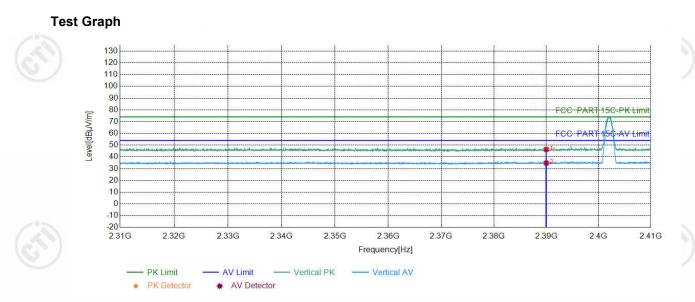
Freq. [MHz]	Ant Factor	Reading						
	[dB]	[dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1332.0332	1.17	44.49	45.66	74.00	28.34	Pass	Н	PK
1991.6992	4.51	42.92	47.43	74.00	26.57	Pass	Н	PK
4960.1307	-15.97	54.65	38.68	74.00	35.32	Pass	Н	PK
7440.2960	-11.34	62.44	51.10	74.00	22.90	Pass	Н	PK
9919.4613	-7.10	58.53	51.43	74.00	22.57	Pass	Н	PK
15392.8262	0.44	49.16	49.60	74.00	24.40	Pass	Н	PK
1328.8329	1.16	46.36	47.52	74.00	26.48	Pass	V	PK
1992.4993	4.51	48.58	53.09	74.00	20.91	Pass	V	PK
4792.1195	-16.26	59.75	43.49	74.00	30.51	Pass	V	PK
6638.2426	-12.70	57.00	44.30	74.00	29.70	Pass	V	PK
9919.4613	-7.10	52.30	45.20	74.00	28.80	Pass	V	PK
13753.7169	-1.69	49.99	48.30	74.00	25.70	Pass	V	PK
	1991.69924960.13077440.29609919.461315392.82621328.83291992.49934792.11956638.24269919.4613	1991.69924.514960.1307-15.977440.2960-11.349919.4613-7.1015392.82620.441328.83291.161992.49934.514792.1195-16.266638.2426-12.709919.4613-7.10	1991.69924.5142.924960.1307-15.9754.657440.2960-11.3462.449919.4613-7.1058.5315392.82620.4449.161328.83291.1646.361992.49934.5148.584792.1195-16.2659.756638.2426-12.7057.009919.4613-7.1052.30	1991.69924.5142.9247.434960.1307-15.9754.6538.687440.2960-11.3462.4451.109919.4613-7.1058.5351.4315392.82620.4449.1649.601328.83291.1646.3647.521992.49934.5148.5853.094792.1195-16.2659.7543.496638.2426-12.7057.0044.309919.4613-7.1052.3045.20	1991.69924.5142.9247.4374.004960.1307-15.9754.6538.6874.007440.2960-11.3462.4451.1074.009919.4613-7.1058.5351.4374.0015392.82620.4449.1649.6074.001328.83291.1646.3647.5274.001992.49934.5148.5853.0974.004792.1195-16.2659.7543.4974.006638.2426-12.7057.0044.3074.009919.4613-7.1052.3045.2074.00	1991.69924.5142.9247.4374.0026.574960.1307-15.9754.6538.6874.0035.327440.2960-11.3462.4451.1074.0022.909919.4613-7.1058.5351.4374.0022.5715392.82620.4449.1649.6074.0024.401328.83291.1646.3647.5274.0026.481992.49934.5148.5853.0974.0020.914792.1195-16.2659.7543.4974.0030.516638.2426-12.7057.0044.3074.0029.709919.4613-7.1052.3045.2074.0028.80	1032.03321.1144.4345.0014.0020.0414.041991.69924.5142.9247.4374.0026.57Pass4960.1307-15.9754.6538.6874.0035.32Pass7440.2960-11.3462.4451.1074.0022.90Pass9919.4613-7.1058.5351.4374.0022.57Pass15392.82620.4449.1649.6074.0024.40Pass1328.83291.1646.3647.5274.0026.48Pass1992.49934.5148.5853.0974.0020.91Pass4792.1195-16.2659.7543.4974.0030.51Pass6638.2426-12.7057.0044.3074.0029.70Pass9919.4613-7.1052.3045.2074.0028.80Pass	1332.0332 1.17 44.43 40.00 74.00 20.34 1.00 11 1991.6992 4.51 42.92 47.43 74.00 26.57 Pass H 4960.1307 -15.97 54.65 38.68 74.00 35.32 Pass H 7440.2960 -11.34 62.44 51.10 74.00 22.90 Pass H 9919.4613 -7.10 58.53 51.43 74.00 22.57 Pass H 15392.8262 0.44 49.16 49.60 74.00 24.40 Pass H 1328.8329 1.16 46.36 47.52 74.00 26.48 Pass V 1992.4993 4.51 48.58 53.09 74.00 20.91 Pass V 4792.1195 -16.26 59.75 43.49 74.00 30.51 Pass V 6638.2426 -12.70 57.00 44.30 74.00 29.70 Pass V 9919.4613 -7.10 52.30 45.20 74.00 28.80 Pass V

Remark:

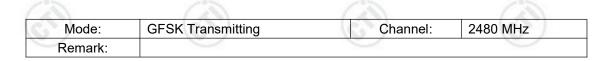
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

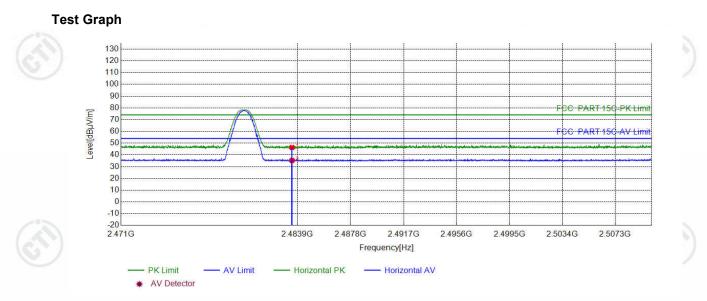
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


	Mode:	GF	SK Transmi	tting		Channel:	240	2 MHz
	Remark:				I			
Test	Graph							
	130							
	120							
	100							
	90						F	CC PART 15C-PK L
	ш, 70 60 50 40							
		and the strength of the streng	and the second		u de compegnituite à la	and and the second	-	CC PART 150-AV L
	40 30				-			
	20							
	10							
	-10							
		2.33	3G 2.34G	2.35G	2.36G 2.37	G 2.38G	2.39G	2.4G
	2.31G 2.32G	2.5	2.010			2.000		
	2.31G 2.32G	2.0.		Free	quency[Hz]	2.000		
	PK Limit	— A	V Limit Ho	Free		2.000		
		— A		Free	quency[Hz]	2.000		
Susp	← PK Limit ★ PK Detect	— A	V Limit Ho	Free	quency[Hz]			_
Susp	← PK Limit ★ PK Detect ected List	— A	V Limit Ho AV Detector	Free	quency[Hz] — Horizontal AV			
	← PK Limit ★ PK Detect	A\ or *	V Limit Ho	Free	quency[Hz]	Margin [dB]	Result	Polarity
Susp NO 1	← PK Limit ★ PK Detect ected List Freq.	ے۔ or * Factor	V Limit Ho AV Detector Reading	Free prizontal PK	quency[Hz] — Horizontal AV Limit	Margin	Result	Polarity Horizontal

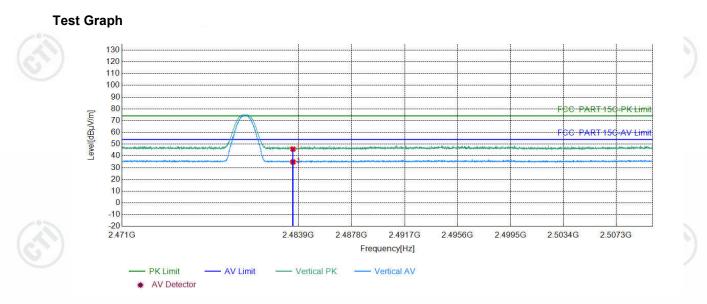



			6.0			10			
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.56	46.33	74.00	27.67	PASS	Vertical	PK
2	2390.0000	5.77	29.02	34.79	54.00	19.21	PASS	Vertical	AV
				0)				



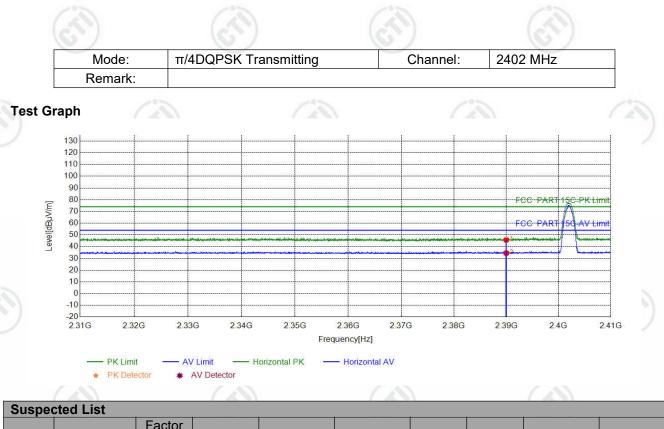
Page 34 of 57

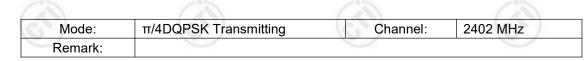
1 2483.50								
2403.30	00 6.57	39.79	46.36	74.00	27.64	PASS	Horizontal	PK
2 2483.50	00 6.57	28.72	35.29	54.00	18.71	PASS	Horizontal	AV

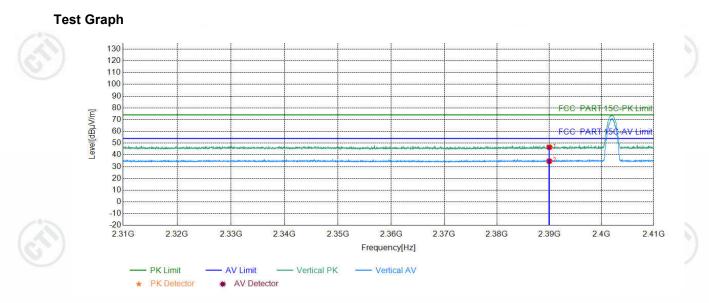

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 35 of 57

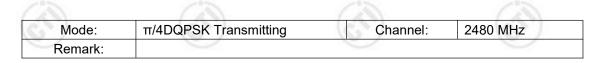
	NO	c ted List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	39.25	45.82	74.00	28.18	PASS	Vertical	PK
i.	2	2483.5000	6.57	28.31	34.88	54.00	19.12	PASS	Vertical	AV
S	°)		(\sim)		64)	(c	<u>()</u>		(\mathcal{A})

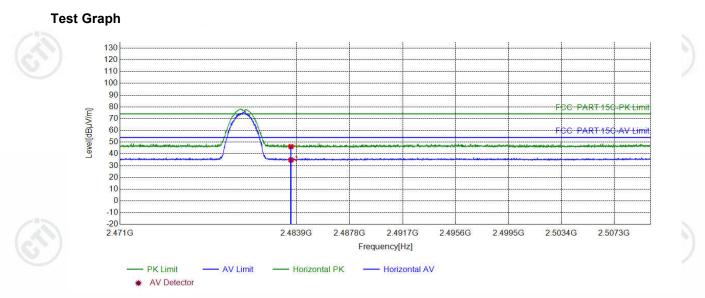





	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
13	1	2390.0000	5.77	39.96	45.73	74.00	28.27	PASS	Horizontal	PK
6	2	2390.0000	5.77	28.74	34.51	54.00	19.49	PASS	Horizontal	AV
· · · · ·	1							1.1		

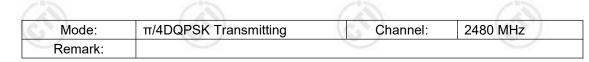
	[MHz]		[dBµV]	[dBµV/m]	[dBµV/m]	Margin [dB]	Result	Polarity	Remark
1 239	90.0000	5.77	40.77	46.54	74.00	27.46	PASS	Vertical	PK
2 239	90.0000	5.77	28.89	34.66	54.00	19.34	PASS	Vertical	AV

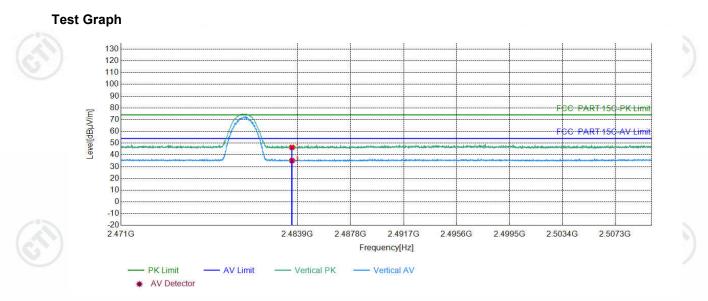




Page 38 of 57

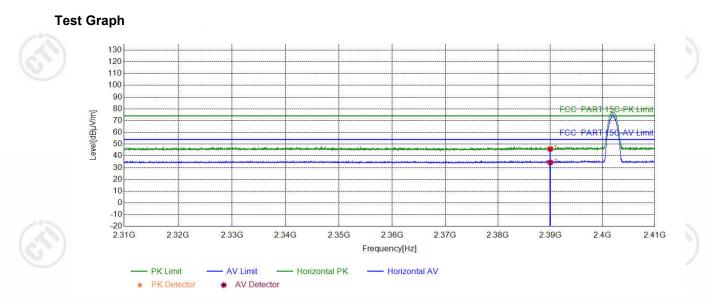
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.65	46.22	74.00	27.78	PASS	Horizontal	PK
2	2483.5000	6.57	28.28	34.85	54.00	19.15	PASS	Horizontal	AV





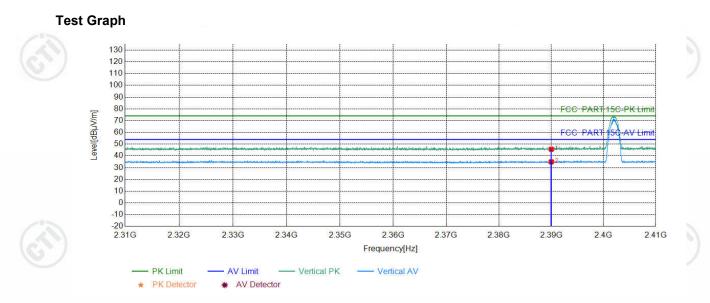
Page 39 of 57

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.84	46.41	74.00	27.59	PASS	Vertical	PK
2	2483.5000	6.57	28.55	35.12	54.00	18.88	PASS	Vertical	AV
\sum	2-00.0000	0.01	20.00	00.12	04.00	10.00	17,00	Vertical	

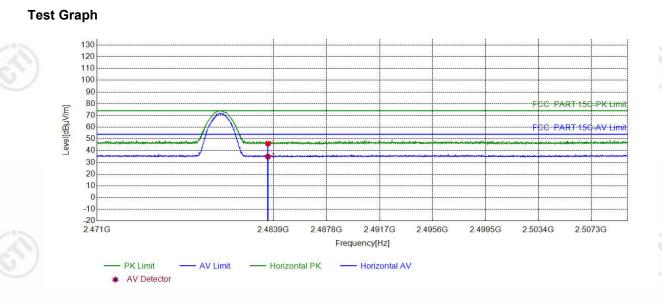


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

	NO	Freq. Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Γ	1	2390.0000	5.77	40.09	45.86	74.00	28.14	PASS	Horizontal	PK
ö.,	2	2390.0000	5.77	28.65	34.42	54.00	19.58	PASS	Horizontal	AV
Ş)		(~`)		(S))	(d	<u>()</u>		(\mathcal{A})

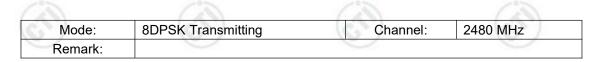


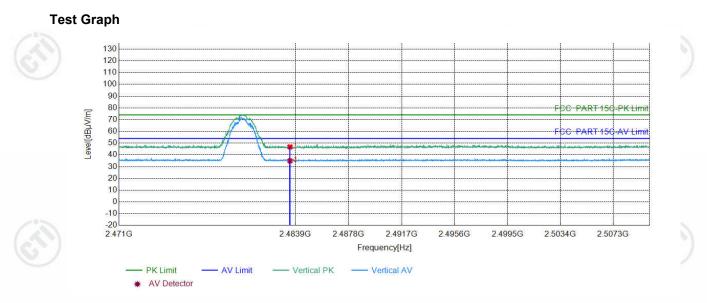
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Γ	1	2390.0000	5.77	39.91	45.68	74.00	28.32	PASS	Vertical	PK
6.	2	2390.0000	5.77	29.16	34.93	54.00	19.07	PASS	Vertical	AV
Ş)		(S)		(S))	(6	<u>()</u>		(\checkmark)



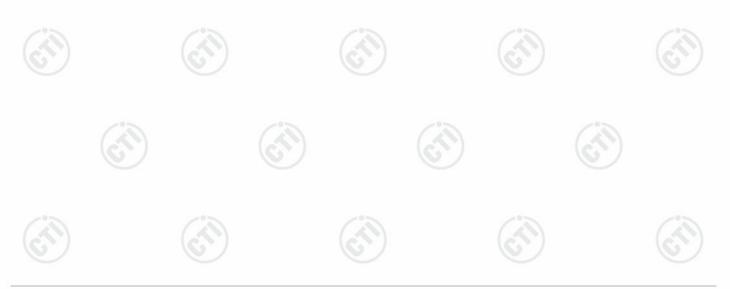
Mode:	8DPSK Transmitting	Channel:	2480 MHz
Remark:		(G*)	G

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.46	46.03	74.00	27.97	PASS	Horizontal	PK
2	2483.5000	6.57	28.35	34.92	54.00	19.08	PASS	Horizontal	AV
		10.00		10.00			0.00		1000





Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com


	[MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1 2	2483.5000	6.57	40.24	46.81	74.00	27.19	PASS	Vertical	PK
2 2	2483.5000	6.57	28.40	34.97	54.00	19.03	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Page 44 of 57

6 Appendix A

Refer to Appendix: Bluetooth Classic of EED32O80248801

