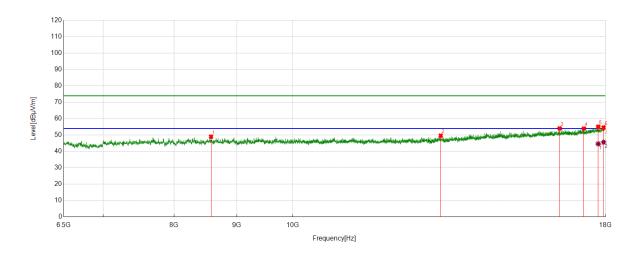


Test Mode	Channel	Polarization	Verdict	
11AX HE40	LCH	Horizontal	PASS	

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	7431.6165	44.10	4.24	48.34	74.00	-25.66	Horizontal
2	9687.3359	44.08	6.51	50.59	74.00	-23.41	Horizontal
3	14427.3659	38.45	12.89	51.34	74.00	-22.66	Horizontal
4	17344.4181	36.72	17.17	53.89	74.00	-20.11	Horizontal
5	17702.4003	36.37	18.29	54.66	74.00	-19.34	Horizontal
6	17932.4291	35.74	19.39	55.13	74.00	-18.87	Horizontal

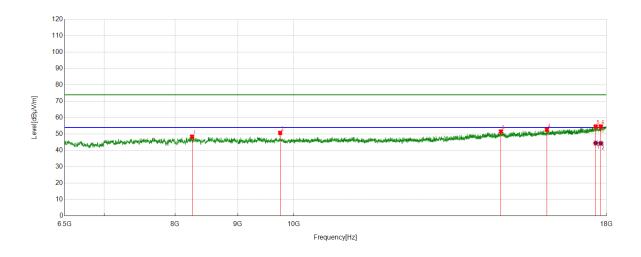

AV Result:

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	17702.4003	27.05	18.29	45.34	54.00	-8.66	Horizontal
2	17932.4291	26.55	19.39	45.94	54.00	-8.06	Horizontal

- Correct Factor = Antenna Factor + Loss (Cable + Filter) Amplifier Gain.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Test Mode	Channel	Polarization	Verdict	
11AX HE40	LCH	Vertical	PASS	

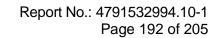
No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	8576.0095	42.65	6.35	49.00	74.00	-25.00	Vertical
2	13205.3382	39.55	10.04	49.59	74.00	-24.41	Vertical
3	16513.4392	38.10	15.94	54.04	74.00	-19.96	Vertical
4	17284.0355	37.01	16.94	53.95	74.00	-20.05	Vertical
5	17755.5944	36.46	18.54	55.00	74.00	-19.00	Vertical
6	17938.1798	35.14	19.43	54.57	74.00	-19.43	Vertical


AV Result:

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	17755.5944	26.07	18.54	44.61	54.00	-9.39	Vertical
2	17938.1798	26.19	19.43	45.62	54.00	-8.38	Vertical

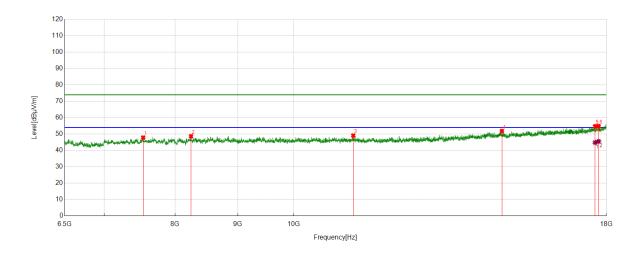
- Correct Factor = Antenna Factor + Loss (Cable + Filter) Amplifier Gain.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Test Mode	Channel	Polarization	Verdict	
11AX HE40	MCH	Horizontal	PASS	



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	8259.7200	42.27	6.11	48.38	74.00	-25.62	Horizontal
2	9747.7185	44.23	6.48	50.71	74.00	-23.29	Horizontal
3	14760.9076	38.60	12.96	51.56	74.00	-22.44	Horizontal
4	16092.1990	37.93	14.68	52.61	74.00	-21.39	Horizontal
5	17639.1424	36.55	18.01	54.56	74.00	-19.44	Horizontal
6	17807.3509	35.67	18.91	54.58	74.00	-19.42	Horizontal

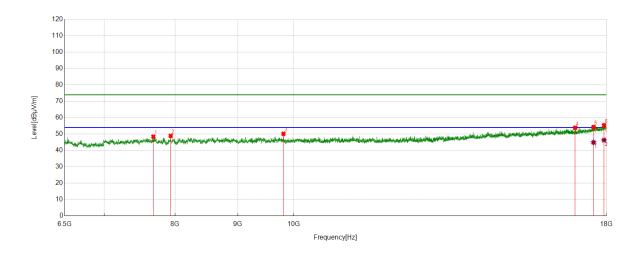
AV Result:


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	17639.1424	26.45	18.01	44.46	54.00	-9.54	Horizontal
2	17807.3509	25.39	18.91	44.30	54.00	-9.70	Horizontal

- Correct Factor = Antenna Factor + Loss (Cable + Filter) Amplifier Gain.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Test Mode	Channel	Polarization	Verdict	
11AX HE40	MCH	Vertical	PASS	

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	7535.1294	43.37	4.47	47.84	74.00	-26.16	Vertical
2	8243.9055	42.61	6.04	48.65	74.00	-25.35	Vertical
3	11182.5228	41.72	7.35	49.07	74.00	-24.93	Vertical
4	14786.7858	39.01	12.86	51.87	74.00	-22.13	Vertical
5	17620.4526	36.65	18.07	54.72	74.00	-19.28	Vertical
6	17732.5916	36.27	18.54	54.81	74.00	-19.19	Vertical

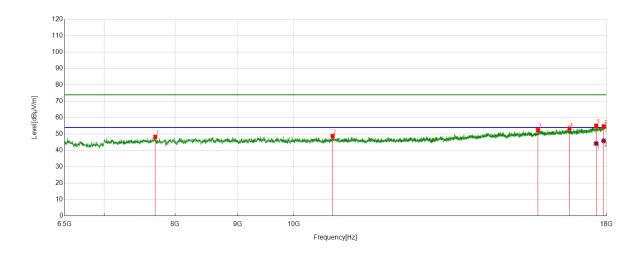

AV Result:

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	17620.4526	26.72	18.07	44.79	54.00	-9.21	Vertical
2	17732.5916	26.97	18.54	45.51	54.00	-8.49	Vertical

- Correct Factor = Antenna Factor + Loss (Cable + Filter) Amplifier Gain.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Test Mode	Channel	Polarization	Verdict
11AX HE40	HCH	Horizontal	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	7680.3350	43.04	5.33	48.37	74.00	-25.63	Horizontal
2	7934.8044	43.26	5.61	48.87	74.00	-25.13	Horizontal
3	9808.1010	43.77	6.37	50.14	74.00	-23.86	Horizontal
4	16972.0590	37.78	16.09	53.87	74.00	-20.13	Horizontal
5	17567.2584	36.38	17.87	54.25	74.00	-19.75	Horizontal
6	17916.6146	36.03	19.32	55.35	74.00	-18.65	Horizontal

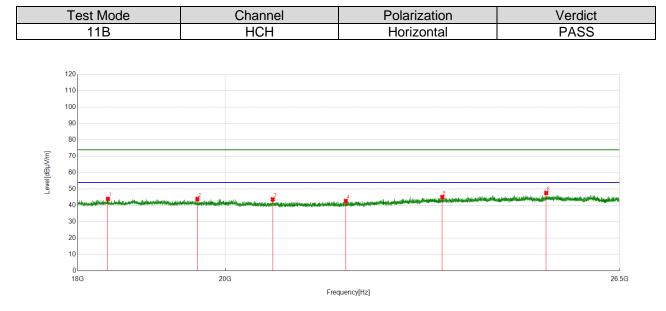

AV Result:

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	17567.2584	27.01	17.87	44.88	54.00	-9.12	Horizontal
2	17916.6146	26.96	19.32	46.28	54.00	-7.72	Horizontal

- Correct Factor = Antenna Factor + Loss (Cable + Filter) Amplifier Gain.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Test Mode	Channel	Polarization	Verdict
11AX HE40	HCH	Vertical	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	7707.6510	43.00	5.27	48.27	74.00	-25.73	Vertical
2	10756.9696	41.89	6.93	48.82	74.00	-25.18	Vertical
3	15824.7906	37.94	14.52	52.46	74.00	-21.54	Vertical
4	16788.0360	37.29	16.09	53.38	74.00	-20.62	Vertical
5	17654.9569	36.99	18.04	55.03	74.00	-18.97	Vertical
6	17905.1131	35.39	19.22	54.61	74.00	-19.39	Vertical


AV Result:

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	17654.9569	26.18	18.04	44.22	54.00	-9.78	Vertical
2	17905.1131	26.66	19.22	45.88	54.00	-8.12	Vertical

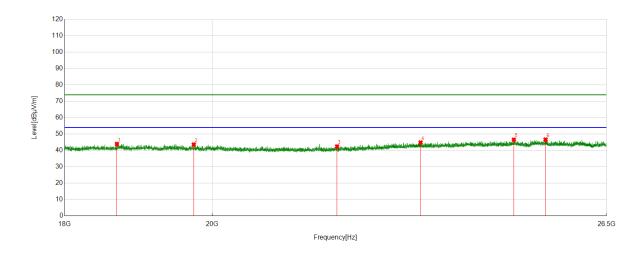
- Correct Factor = Antenna Factor + Loss (Cable + Filter) Amplifier Gain.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Part 3: 18GHz~26.5GHz

SPURIOUS EMISSIONS 18GHz TO 26.5GHz (WORST-CASE CONFIGURATION)

PK F	Result:						
No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	18394.4394	50.63	-6.67	43.96	74.00	-30.04	Horizontal
2	19606.6607	49.33	-5.43	43.90	74.00	-30.10	Horizontal
3	20689.6690	49.57	-5.88	43.69	74.00	-30.31	Horizontal
4	21798.1798	48.44	-5.75	42.69	74.00	-31.31	Horizontal
5	23351.2851	48.40	-3.27	45.13	74.00	-28.87	Horizontal
6	25148.3648	51.08	-3.46	47.62	74.00	-26.38	Horizontal

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

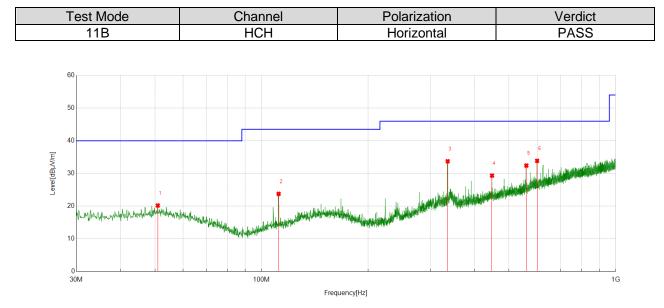

3. Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Loss (Cable) – Amplifier Gain.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Test Mode	Channel	Polarization	Verdict
11B	HCH	Vertical	PASS

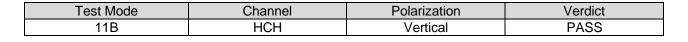
No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	18685.1685	50.21	-6.30	43.91	74.00	-30.09	Vertical
2	19738.4238	48.96	-5.38	43.58	74.00	-30.42	Vertical
3	21864.4864	48.14	-5.75	42.39	74.00	-31.61	Vertical
4	23206.7707	48.19	-3.40	44.79	74.00	-29.21	Vertical
5	24804.0804	49.85	-3.33	46.52	74.00	-27.48	Vertical
6	25371.9372	49.85	-3.27	46.58	74.00	-27.42	Vertical

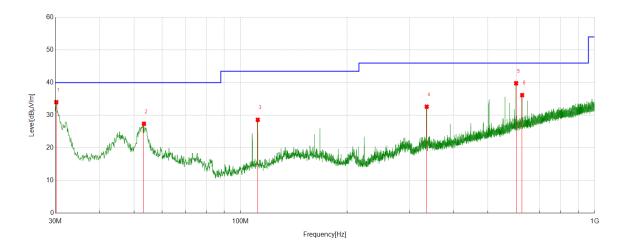

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable) – Amplifier Gain.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

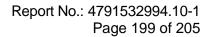
Part 4: 30MHz~1GHz




SPURIOUS EMISSIONS 30M TO 1GHz (WORST-CASE CONFIGURATION)

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	50.9541	-0.32	20.51	20.19	40.00	-19.81	Peak
2	111.7792	6.51	17.25	23.76	43.50	-19.74	Peak
3	335.4835	11.62	22.11	33.73	46.00	-12.27	Peak
4	447.5298	4.35	24.99	29.34	46.00	-16.66	Peak
5	559.4789	5.48	26.94	32.42	46.00	-13.58	Peak
6	600.0290	5.63	28.24	33.87	46.00	-12.13	Peak

- Note: 1. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. 2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
 - 3. Measurement = Reading Level + Correct Factor,
 - Correct Factor = Antenna Factor + Loss (Cable).



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1	30.1940	15.44	18.58	34.02	40.00	-5.98	Peak
2	53.3793	6.80	20.59	27.39	40.00	-12.61	Peak
3	111.8762	11.34	17.26	28.60	43.50	-14.90	Peak
4	335.5806	10.50	22.12	32.62	46.00	-13.38	Peak
5	600.0290	11.57	28.24	39.81	46.00	-6.19	Peak
6	624.0874	7.41	28.76	36.17	46.00	-9.83	Peak

Note: 1. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. 2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

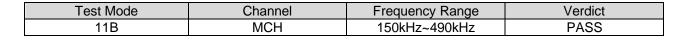
3. Measurement = Reading Level + Correct Factor,

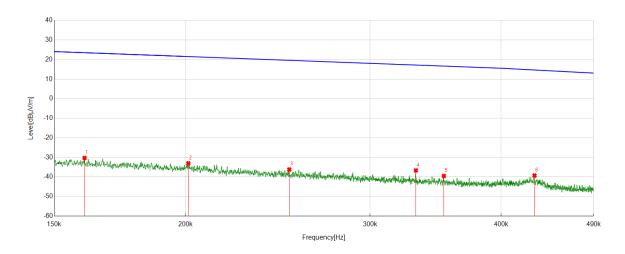
Correct Factor = Antenna Factor + Loss (Cable).

Part 5: 9kHz~30MHz

	16	st Mode	Channel			ency Range		Verdict
		11B	MCH		9kHz	z~150kHz		PASS
	60							
	50							
	40							
	30							
	20							
E	10							
Level[dBµV/m]	0							
vel[d	-10							
Le								
	-20	minimum	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm		. 5			
	-30		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mannanna	AMAN MUNIAMAN MUNIAMAN	With and the mention of the	ike dia idi.	
	-40					a service statements	a state and a state of the stat	all produces and the second section and
	-50							and the second se
	-60							
	9k		20k	30k	40k	60k	80k	150
				Free	uency[Hz]			

SPURIOUS EMISSIONS Below 30MHz (WORST CASE CONFIGURATION-FACE ON)

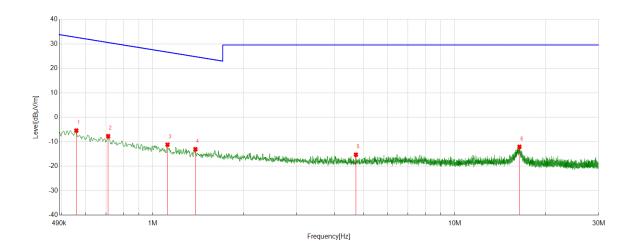

No.	Frequency	Reading Level	Correct Factor	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dBuA/m]	[dBuA/m]	[dB]	
1	0.0106	39.75	-61.89	-22.14	47.06	69.20	-4.44	-69.20	Peak
2	0.0115	39.35	-61.88	-22.53	46.36	68.89	-5.14	-68.89	Peak
3	0.0186	37.97	-61.77	-23.80	42.22	66.02	-9.28	-66.02	Peak
4	0.0266	36.00	-61.65	-25.65	39.12	64.77	-12.38	-64.77	Peak
5	0.0425	32.14	-61.60	-29.46	35.02	64.48	-16.48	-64.48	Peak
6	0.0680	29.08	-61.61	-32.53	30.95	63.48	-20.55	-63.48	Peak


Note: 1. Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Loss (Cable) + Distance Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

No.	Frequency	Reading Level	Correct Factor	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dBuA/m]	[dBuA/m]	[dB]	
1	0.1603	31.43	-61.75	-30.32	23.50	69.20	-28.00	-53.82	Peak
2	0.2013	28.71	-61.77	-33.06	21.52	68.89	-29.98	-54.58	Peak
3	0.2512	25.60	-61.80	-36.20	19.60	66.02	-31.90	-55.80	Peak
4	0.3317	25.13	-61.82	-36.69	17.19	64.77	-34.31	-53.88	Peak
5	0.3527	22.35	-61.83	-39.48	16.65	64.48	-34.85	-56.13	Peak
6	0.4303	22.58	-61.85	-39.27	14.67	63.48	-36.83	-53.94	Peak


Note: 1. Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Loss (Cable) + Distance Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

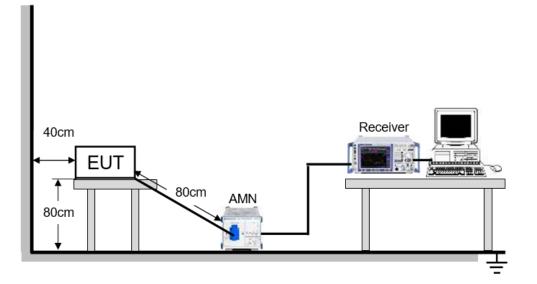
Test Mode	Channel	Frequency Range	Verdict
11B	MCH	490kHz~30MHz	PASS

No.	Frequency	Reading Level	Correct Factor	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dBuA/m]	[dBuA/m]	[dB]	
1	0.5579	16.44	-21.89	-5.45	32.67	69.20	-18.83	-38.12	Peak
2	0.7113	14.14	-21.87	-7.73	30.56	68.89	-20.94	-38.29	Peak
3	1.1186	10.64	-21.86	-11.22	26.63	66.02	-24.87	-37.85	Peak
4	1.3842	8.77	-21.84	-13.07	24.78	64.77	-26.72	-37.85	Peak
5	4.7074	6.46	-21.77	-15.31	29.54	64.48	-21.96	-44.85	Peak
6	16.3945	9.45	-21.53	-12.08	29.54	63.48	-21.96	-41.62	Peak

Note: 1. Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Loss (Cable) + Distance Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.


9. AC POWER LINE CONDUCTED EMISSIONS

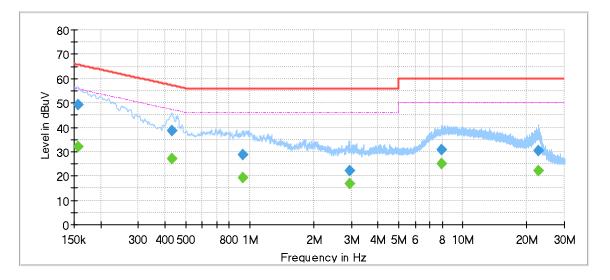
LIMITS

Please refer to FCC §15.207 (a)

FREQUENCY (MHz)	Limit (dBuV)					
	Quasi-peak	Average				
0.15 -0.5	66 - 56 *	56 - 46 *				
0.50 -5.0	56.00	46.00				
5.0 -30.0	60.00	50.00				

TEST SETUP AND PROCEDURE

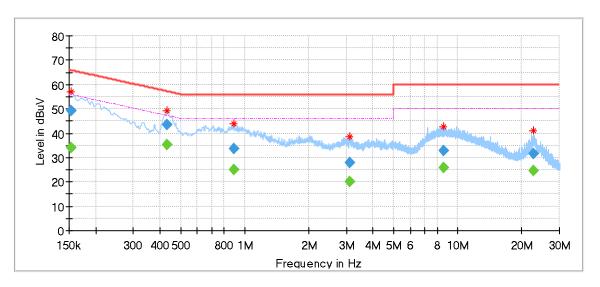
The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.


The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

LINE L RESULTS (WORST-CASE CONFIGURATION)


Final_Result

Frequency [MHz]	QuasiPeak [dBµV]	Average [dBµV]	Limit [dBµV]	Margin [dB]	Meas. Time [ms]	Bandwidth [kHz]	Line	Filter	Corr. [dB]
0.157463		31.90	55.60	23.70	1000.0	9.000	L1	OFF	9.6
0.157463	49.35		65.60	16.25	1000.0	9.000	L1	OFF	9.6
0.433575		27.18	47.18	20.01	1000.0	9.000	L1	OFF	9.5
0.433575	38.71		57.18	18.48	1000.0	9.000	L1	OFF	9.5
0.926100		19.36	46.00	26.64	1000.0	9.000	L1	OFF	9.5
0.926100	28.77		56.00	27.23	1000.0	9.000	L1	OFF	9.5
2.933513		16.64	46.00	29.36	1000.0	9.000	L1	OFF	9.5
2.933513	21.96		56.00	34.04	1000.0	9.000	L1	OFF	9.5
7.983138		25.21	50.00	24.79	1000.0	9.000	L1	OFF	9.5
7.983138	30.86		60.00	29.14	1000.0	9.000	L1	OFF	9.5
22.706650		22.21	50.00	27.79	1000.0	9.000	L1	OFF	9.5
22.706650	30.23		60.00	29.77	1000.0	9.000	L1	OFF	9.5

Note: 1. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 2. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 3. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.
- 4. The extension cord/outlet strip was calibrated with the LISN as required by ANSI C63.10:2013 Clause 6.2.2.
- 5. Pre-testing all test modes and channels, and find the MCH of 11B which is the worst case, so only the worst case is included in this test report.
- 6. Two models of docker will be collocated to the EUT, both of them have been test, only the worse case is recorded in this test report.

LINE N RESULTS (WORST-CASE CONFIGURATION)

Final_Result

Frequency [MHz]	QuasiPeak [dBµV]	Average [dBµV]	Limit [dBµV]	Margin [dB]	Meas. Time [ms]	Bandwidth [kHz]	Line	Filter	Corr. [dB]
0.152488		34.12	55.86	21.75	1000.0	9.000	N	OFF	9.6
0.152488	49.38		65.86	16.48	1000.0	9.000	Ν	OFF	9.6
0.433575		35.17	47.18	12.01	1000.0	9.000	Ν	OFF	9.5
0.433575	43.58		57.18	13.61	1000.0	9.000	Ν	OFF	9.5
0.886300		25.23	46.00	20.77	1000.0	9.000	Ν	OFF	9.4
0.886300	33.56		56.00	22.44	1000.0	9.000	Ν	OFF	9.4
3.095200		19.97	46.00	26.03	1000.0	9.000	Ν	OFF	9.4
3.095200	27.72		56.00	28.28	1000.0	9.000	Ν	OFF	9.4
8.595063		25.80	50.00	24.20	1000.0	9.000	Ν	OFF	9.5
8.595063	32.90		60.00	27.10	1000.0	9.000	Ν	OFF	9.5
22.724063		24.42	50.00	25.58	1000.0	9.000	Ν	OFF	9.4
22.724063	31.44		60.00	28.56	1000.0	9.000	Ν	OFF	9.4

Note: 1. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 2. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 3. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.
- 4. The extension cord/outlet strip was calibrated with the LISN as required by ANSI C63.10:2013 Clause 6.2.2.
- 5. Pre-testing all test modes and channels, and find the MCH of 11B which is the worst case, so only the worst case is included in this test report.
- 6. Two models of docker will be collocated to the EUT, both of them have been test, only the worse case is recorded in this test report.

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ANTENNA GAIN

The antenna gain of EUT is less than 6 dBi

END OF REPORT