

Product

FCC ID

**Trade mark** 

**Serial Number** 

**Report Number** 

Date of Issue

**Test result** 

**Test Standards** 

Model/Type reference



Page 1 of 53



- TEST REPORT
  - WCDMA Digital Mobile Phone 2
  - RugGear 2
  - RG310, RG310EX, RG320EX 2
  - N/A
  - : EED32I00185903
  - : ZLE-RG310
  - Jul. 18, 2016
  - 47 CFR Part 15Subpart C (2015)
  - PASS •

Prepared for: Power Idea Technology Limited. 4th Floor, A Section, Languang Science&technology Xinxi RD, Hi-Tech Industrial Park North, Nanshan, ShenZhen, China

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By: Date Seal

TOM-

Tom chen (Test Project)

Sheek Luo (Reviewer)

Jul. 18, 2016

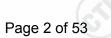
Compiled by:

Approved by:

Kevin yang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.: 2384307786




Hotline: 400-6788-333



# 2 Version





|   | Version No. |   | Date         |  | Descriptio | n |     |
|---|-------------|---|--------------|--|------------|---|-----|
| - | 00          | J | ul. 18, 2016 |  | Original   |   |     |
| 3 |             |   |              |  | (A)        |   | (Th |
|   |             |   |              |  |            |   |     |
|   |             |   |              |  |            |   |     |
|   |             |   |              |  |            |   |     |
|   |             |   |              |  |            |   |     |
|   |             |   |              |  |            |   |     |
|   |             |   |              |  |            |   |     |
|   |             |   |              |  |            |   |     |
|   |             |   |              |  |            |   |     |

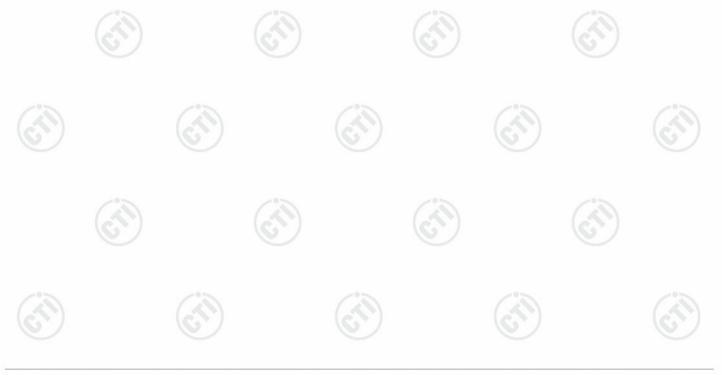


## **3 Test Summary**





| Test Item                                                               | Test Requirement                                     | Test method                               | Result<br>PASS |  |
|-------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|----------------|--|
| Antenna Requirement                                                     | 47 CFR Part 15Subpart C Section<br>15.203/15.247 (c) | ANSI C63.10-2013                          |                |  |
| AC Power Line Conducted<br>Emission                                     | 47 CFR Part 15Subpart C Section<br>15.207            | ANSI C63.10-2013                          | PASS           |  |
| Conducted Peak Output<br>Power                                          | 47 CFR Part 15Subpart C Section<br>15.247 (b)(3)     | ANSI C63.10-2013/<br>KDB 558074 D01v03r05 | PASS           |  |
| 6dB Occupied Bandwidth                                                  | 47 CFR Part 15Subpart C Section<br>15.247 (a)(2)     | ANSI C63.10-2013/<br>KDB 558074 D01v03r05 | PASS           |  |
| Power Spectral Density                                                  | 47 CFR Part 15Subpart C Section<br>15.247 (e)        | ANSI C63.10-2013/<br>KDB 558074 D01v03r05 | PASS           |  |
| Band-edge for RF<br>Conducted Emissions                                 | 47 CFR Part 15Subpart C Section<br>15.247(d)         | ANSI C63.10-2013/<br>KDB 558074 D01v03r05 | PASS           |  |
| RF Conducted Spurious<br>Emissions                                      | 47 CFR Part 15Subpart C Section<br>15.247(d)         | ANSI C63.10-2013/<br>KDB 558074 D01v03r05 | PASS           |  |
| Radiated Spurious<br>Emissions                                          | 47 CFR Part 15Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013                          | PASS           |  |
| Restricted bands around<br>fundamental frequency<br>(Radiated Emission) | 47 CFR Part 15Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013                          | PASS           |  |


#### Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

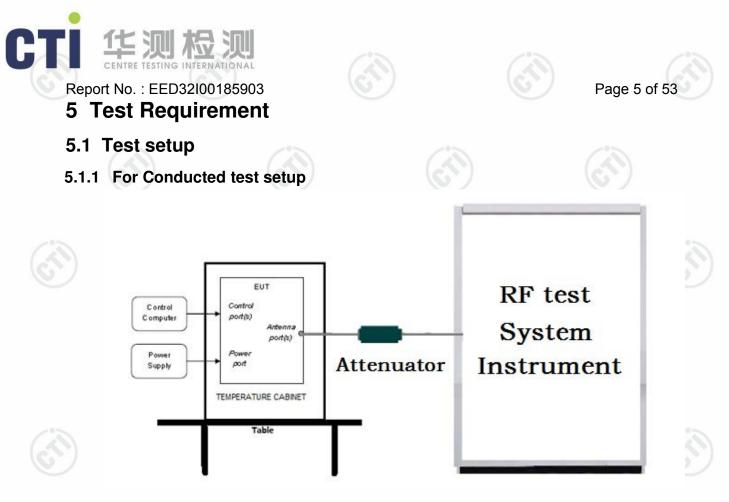
The tested sample and the sample information are provided by the client.

Model No.: RG310, RG310EX, RG320EX

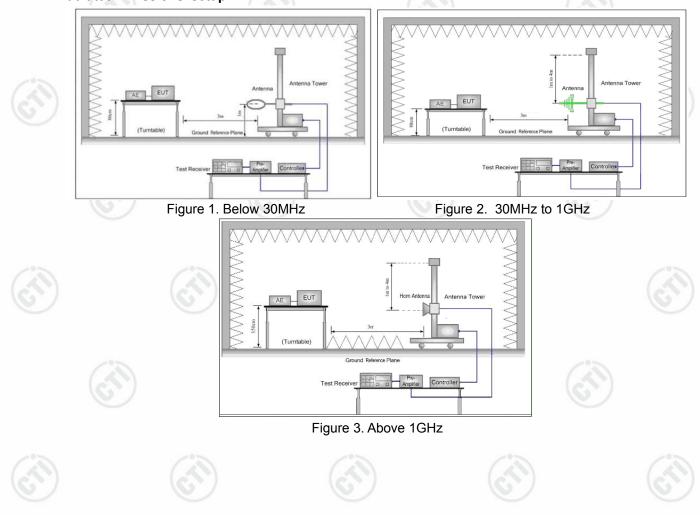
Only the model RG310 was tested, the PCB, Schematic, Hardware etc were identical for the above models, Only different model name due to difference agent and marketing purposes.





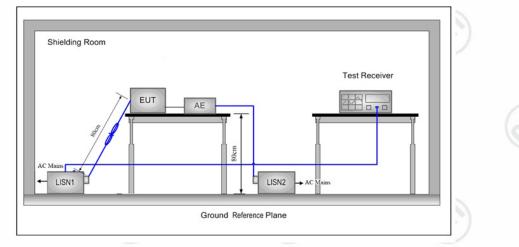

#### 4 Content






C

Page 4 of 53




#### 5.1.2 For Radiated Emissions test setup Radiated Emissions setup:

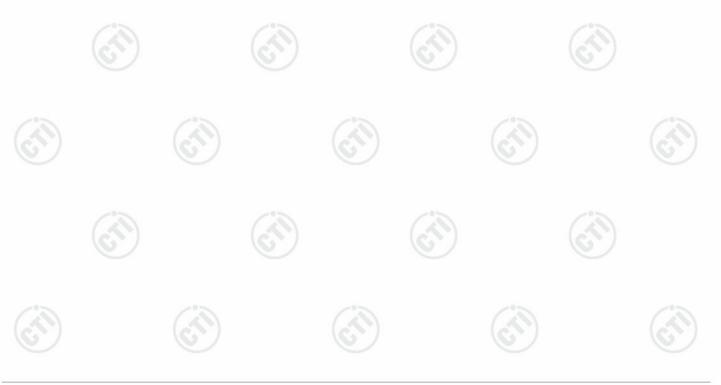




#### Report No. : EED32I00185903 5.1.3 For Conducted Emissions test setup Conducted Emissions setup



Page 6 of 53


# 5.2 Test Environment

| <b>Operating Environment:</b> |          |      |     |
|-------------------------------|----------|------|-----|
| Temperature:                  | 21°C     | (25) | (2) |
| Humidity:                     | 54% RH   |      | e   |
| Atmospheric Pressure:         | 1010mbar |      |     |

# 5.3 Test Condition

#### Test channel:

|  | Test Mode          | Ти                           | RF Channel |            |            |  |
|--|--------------------|------------------------------|------------|------------|------------|--|
|  | Test Mode          | Тх                           | Low(L)     | Middle(M)  | High(H)    |  |
|  | OFOK               |                              | Channel 1  | Channel 20 | Channel 40 |  |
|  | GFSK               | 2402MHz ~2480 MHz            | 2402MHz    | 2440MHz    | 2480MHz    |  |
|  | Transmitting mode: | Keep the EUT at Transmit mod | le.        |            | $\sim$     |  |





6





## Report No. : EED32I00185903 **General Information**

# 6.1 Client Information

| Power Idea Technology Limited.                                                                                      |
|---------------------------------------------------------------------------------------------------------------------|
| 4th Floor, A Section, Languang Science&technology Xinxi RD, Hi-Tech Industrial Park North, Nanshan, ShenZhen, China |
| Power Idea Technology Limited.                                                                                      |
| 4th Floor, A Section, Languang Science&technology Xinxi RD, Hi-Tech Industrial Park North, Nanshan, ShenZhen, China |
|                                                                                                                     |

# 6.2 General Description of EUT

| Product Name:                    | WCDMA Digital Mobile Phone                                                   |     |     |     |
|----------------------------------|------------------------------------------------------------------------------|-----|-----|-----|
| Mode No.(EUT):                   | RG310, RG310EX, RG320EX                                                      |     | -   |     |
| Test Mode No.:                   | RG310                                                                        |     |     |     |
| Trade Mark:                      | RugGear                                                                      |     | ( ) |     |
| EUT Supports Radios application: | Bluetooth V4.0 BLE                                                           |     |     |     |
| Power Supply:                    | Model: HKC0055010-2D<br>Input: 100-240V~ 50/60Hz 0.2A<br>Output: 5.0V ==1.0A | (I) |     | (S) |
| Battery                          | Li-ion 3.7V/3600mAh                                                          |     |     |     |
| Sample Received Date:            | Jun. 30, 2016                                                                |     |     |     |
| Sample tested Date:              | Jun. 30, 2016 to Jul. 18, 2016                                               |     |     |     |
|                                  |                                                                              |     |     |     |

# 6.3 Product Specification subjective to this standard

| Operation Frequency:   | 2402MHz~2480MHz     |            |                 |       |
|------------------------|---------------------|------------|-----------------|-------|
| Bluetooth Version:     | 4.0                 |            |                 | 13    |
| Modulation Type:       | GFSK                | (67)       |                 | 6     |
| Number of Channel:     | 40                  | $\bigcirc$ |                 | U     |
| Sample Type:           | Portable production |            |                 |       |
| Test Power Grade:      | N/A                 | (°>>       | 12              |       |
| Test Software of EUT:  | Engineer Mode       |            | $(\mathcal{A})$ |       |
| Antenna Type and Gain: | Integral antenna    |            | V               |       |
| Antenna Gain:          | 1.8dBi              |            |                 |       |
| Test Voltage:          | AC 120V/60Hz        | -05        |                 | -0-   |
|                        |                     |            |                 | 7.0.4 |

| Operation F | requency eac | h of channe |           |         |           |         |           |  |
|-------------|--------------|-------------|-----------|---------|-----------|---------|-----------|--|
| Channel     | Frequency    | Channel     | Frequency | Channel | Frequency | Channel | Frequency |  |
| 1           | 2402MHz      | 11          | 2422MHz   | 21      | 2442MHz   | 31      | 2462MHz   |  |
| 2           | 2404MHz      | 12          | 2424MHz   | 22      | 2444MHz   | 32      | 2464MHz   |  |
| 3           | 2406MHz      | 13          | 2426MHz   | 23      | 2446MHz   | 33      | 2466MHz   |  |
| 4           | 2408MHz      | 14          | 2428MHz   | 24      | 2448MHz   | 34      | 2468MHz   |  |
| 5           | 2410MHz      | 15          | 2430MHz   | 25      | 2450MHz   | 35      | 2470MHz   |  |
| 6           | 2412MHz      | 16          | 2432MHz   | 26      | 2452MHz   | 36      | 2472MHz   |  |
| 7           | 2414MHz      | 17          | 2434MHz   | 27      | 2454MHz   | 37      | 2474MHz   |  |



| ep |    | ED321001038 | 000 |         |    |         | га |         |
|----|----|-------------|-----|---------|----|---------|----|---------|
|    | 8  | 2416MHz     | 18  | 2436MHz | 28 | 2456MHz | 38 | 2476MHz |
|    | 9  | 2418MHz     | 19  | 2438MHz | 29 | 2458MHz | 39 | 2478MHz |
|    | 10 | 2420MHz     | 20  | 2440MHz | 30 | 2460MHz | 40 | 2480MHz |

# 6.4 Description of Support Units

The EUT has been tested independently.

## 6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

# 6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:



#### CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

#### A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

#### FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

#### IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

#### IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

#### NEMKO-Aut. No.: ELA503



Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.



#### VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Page 9 of 53

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

## 6.7 Deviation from Standards

None.

## 6.8 Abnormalities from Standard Conditions

None.

## 6.9 Other Information Requested by the Customer

None.

# 6.10 Measurement Uncertainty (95% confidence levels, k=2)

| No.            | Item                            | Measurement Uncertainty                                                                                        |
|----------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1              | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>                                                                                         |
| 1<br>2<br>3 Ra |                                 | 0.31dB (30MHz-1GHz)                                                                                            |
| 2              | RF power, conducted             | 0.57dB (1GHz-18GHz)                                                                                            |
| 2              | Dedicted Sourious emission test | 4.5dB (30MHz-1GHz)                                                                                             |
| 3              | Radiated Spurious emission test | 4.8dB (1GHz-12.75GHz)                                                                                          |
|                | Conduction emission             | 3.6dB (9kHz to 150kHz)                                                                                         |
| 4              | Conduction emission             | 7.9 x 10 <sup>-8</sup><br>0.31dB (30MHz-1GHz<br>0.57dB (1GHz-18GHz<br>4.5dB (30MHz-1GHz<br>4.8dB (1GHz-12.75GH |
| 5              | Temperature test                | 0.64°C                                                                                                         |
| 6              | Humidity test                   | 2.8%                                                                                                           |
| 7              | DC power voltages               | 0.025%                                                                                                         |
|                | (IS) (IS)                       | (25)                                                                                                           |



# 7 Equipment List





| Equipment<br>Signal Generator<br>Communication<br>test set test set<br>Dectrum Analyzer<br>Signal Generator<br>High-pass filter | Manufacturer<br>Keysight<br>Agilent<br>Keysight<br>Keysight                                                                                                                                        | Mode No.<br>E8257D<br>N4010A<br>N9010A                                                                                                                                                                                                                               | Serial<br>Number           MY53401106           MY51400230                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cal. Date<br>(mm-dd-yyyy)<br>04-01-2016<br>04-01-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cal. Due date<br>(mm-dd-yyyy)<br>03-31-2017<br>03-31-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communication<br>test set test set<br>bectrum Analyzer<br>signal Generator                                                      | Agilent<br>Keysight                                                                                                                                                                                | N4010A                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| test set test set<br>bectrum Analyzer<br>Signal Generator                                                                       | Keysight                                                                                                                                                                                           |                                                                                                                                                                                                                                                                      | MY51400230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04-01-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02 21 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Signal Generator                                                                                                                |                                                                                                                                                                                                    | N9010A                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03-31-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                                                                                                               | Keysight                                                                                                                                                                                           |                                                                                                                                                                                                                                                                      | MY54510339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04-01-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03-31-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| High-pass filter                                                                                                                |                                                                                                                                                                                                    | N5182B                                                                                                                                                                                                                                                               | MY53051549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04-01-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03-31-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                                                                                                                               | Sinoscite                                                                                                                                                                                          | FL3CX03WG18<br>NM12-0398-002                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01-12-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01-11-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| High-pass filter                                                                                                                | MICRO-<br>TRONICS                                                                                                                                                                                  | SPA-F-63029-4                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01-12-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01-11-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| and rejection filter                                                                                                            | Sinoscite                                                                                                                                                                                          | FL5CX01CA09C<br>L12-0395-001                                                                                                                                                                                                                                         | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01-12-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01-11-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| and rejection filter                                                                                                            | Sinoscite                                                                                                                                                                                          | FL5CX01CA08C<br>L12-0393-001                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01-12-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01-11-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| and rejection filter                                                                                                            | Sinoscite                                                                                                                                                                                          | FL5CX02CA04C<br>L12-0396-002                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01-12-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01-11-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| and rejection filter                                                                                                            | Sinoscite                                                                                                                                                                                          | FL5CX02CA03C<br>L12-0394-001                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01-12-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01-11-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DC Power                                                                                                                        | Keysight                                                                                                                                                                                           | E3642A                                                                                                                                                                                                                                                               | MY54436035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04-01-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03-31-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PC-1                                                                                                                            | Lenovo                                                                                                                                                                                             | R4960d                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04-01-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03-31-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| power meter & power sensor                                                                                                      | R&S                                                                                                                                                                                                | OSP120                                                                                                                                                                                                                                                               | 101374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04-01-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03-31-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RF control unit                                                                                                                 | JS Tonscend                                                                                                                                                                                        | JS0806-2                                                                                                                                                                                                                                                             | 158060006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04-01-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03-31-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BT&WI-FI<br>Automatic test<br>software                                                                                          | JS Tonscend                                                                                                                                                                                        | JS1120-2                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04-01-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03-31-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                 | Ind rejection filter<br>Ind rejection filter<br>Ind rejection filter<br>Ind rejection filter<br>DC Power<br>PC-1<br>power meter &<br>power sensor<br>RF control unit<br>BT&WI-FI<br>Automatic test | Hign-pass filterTRONICSind rejection filterSinosciteind rejection filterSinosciteind rejection filterSinosciteind rejection filterSinosciteDC PowerKeysightPC-1Lenovopower meter &<br>power sensorR&SRF control unitJS TonscendBT&WI-FI<br>Automatic testJS Tonscend | High-pass filterMICRO-<br>TRONICSSPA-F-63029-4Ind rejection filterSinosciteFL5CX01CA09C<br>L12-0395-001Ind rejection filterSinosciteFL5CX01CA08C<br>L12-0393-001Ind rejection filterSinosciteFL5CX02CA04C<br>L12-0396-002Ind rejection filterSinosciteFL5CX02CA04C<br>L12-0396-002Ind rejection filterSinosciteFL5CX02CA04C<br>L12-0394-001DC PowerKeysightE3642APC-1LenovoR4960dpower meter &<br>power sensorR&SOSP120RF control unitJS TonscendJS0806-2BT&WI-FI<br>Automatic testJS TonscendJS1120-2 | High-pass filterMICRO-<br>TRONICSSPA-F-63029-4Ind rejection filterSinosciteFL5CX01CA09C<br>L12-0395-001Ind rejection filterSinosciteFL5CX01CA08C<br>L12-0393-001Ind rejection filterSinosciteFL5CX02CA04C<br>L12-0396-002Ind rejection filterSinosciteFL5CX02CA04C<br>L12-0396-002Ind rejection filterSinosciteFL5CX02CA03C<br>L12-0394-001Ind rejection filterSinosciteFL5CX02CA03C<br>L12-0394-001DC PowerKeysightE3642AMY54436035PC-1LenovoR4960dpower meter &<br>power sensorR&SOSP120101374RF control unitJS TonscendJS0806-2158060006BT&WI-FI<br>Automatic testJS TonscendJS1120-2 | High-pass filterMICRO-<br>TRONICSSPA-F-63029-401-12-2016Ind rejection filterSinosciteFL5CX01CA09C<br>L12-0395-00101-12-2016Ind rejection filterSinosciteFL5CX01CA08C<br>L12-0393-00101-12-2016Ind rejection filterSinosciteFL5CX02CA04C<br>L12-0396-00201-12-2016Ind rejection filterSinosciteFL5CX02CA04C<br>L12-0396-00201-12-2016Ind rejection filterSinosciteFL5CX02CA03C<br>L12-0394-00101-12-2016DC PowerKeysightE3642AMY5443603504-01-2016PC-1LenovoR4960d04-01-2016power sensorR&SOSP12010137404-01-2016RF control unitJS TonscendJS0806-215806000604-01-2016BT&WI-FI<br>Automatic testJS TonscendJS1120-204-01-2016 |

#### Conducted disturbance Test

| Equipment                          | Manufacturer | Mode No. | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |  |  |  |
|------------------------------------|--------------|----------|------------------|---------------------------|-------------------------------|--|--|--|
| Receiver                           | R&S          | ESCI     | 100009           | 06-16-2016                | 06-15-2017                    |  |  |  |
| Temperature/ Humidity<br>Indicator | TAYLOR       | 1451     | 1905             | 04-27-2016                | 04-26-2017                    |  |  |  |
| Communication test set             | Agilent      | E5515C   | GB47050534       | 04-01-2016                | 03-31-2017                    |  |  |  |
| Communication test set             | R&S          | CMW500   | 152394           | 04-01-2016                | 03-31-2017                    |  |  |  |
| LISN                               | R&S          | ENV216   | 100098           | 06-16-2016                | 06-15-2017                    |  |  |  |
| LISN                               | schwarzbeck  | NNLK8121 | 8121-529         | 06-16-2016                | 06-15-2017                    |  |  |  |
| Voltage Probe                      | R&S          | ESH2-Z3  |                  | 07-09-2014                | 07-07-2017                    |  |  |  |
| Current Probe                      | R&S          | EZ17     | 100106           | 06-16-2016                | 06-15-2017                    |  |  |  |
| ISN                                | TESEQ GmbH   | ISN T800 | 30297            | 01-29-2015                | 01-27-2017                    |  |  |  |







Page 11 of 53

|                                     | 3M                | Semi/full-anech              | oic Chamber      |                           |                               |
|-------------------------------------|-------------------|------------------------------|------------------|---------------------------|-------------------------------|
| Equipment                           | Manufacturer      | Mode No.                     | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| 3M Chamber &<br>Accessory Equipment | ТДК               | SAC-3                        |                  | 06-05-2016                | 06-05-2019                    |
| TRILOG Broadband<br>Antenna         | SCHWARZBECK       | VULB9163                     | 9163-484         | 05-23-2016                | 05-22-2017                    |
| Microwave Preamplifier              | Agilent           | 8449B                        | 3008A02425       | 02-04-2016                | 02-03-2017                    |
| Horn Antenna                        | ETS-LINDGREN      | 3117                         | 00057410         | 06-30-2015                | 06-28-2018                    |
| Horn Antenna                        | A.H.SYSTEMS       | SAS-574                      | 374              | 06-30-2015                | 06-28-2018                    |
| Loop Antenna                        | ETS               | 6502                         | 00071730         | 07-30-2015                | 07-28-2017                    |
| Spectrum Analyzer                   | R&S               | FSP40                        | 100416           | 06-16-2016                | 06-15-2017                    |
| Receiver                            | R&S               | ESCI                         | 100435           | 06-16-2016                | 06-15-2017                    |
| Multi device Controller             | maturo            | NCD/070/10711<br>112         | _                | 01-12-2016                | 01-11-2017                    |
| LISN                                | schwarzbeck       | NNBM8125                     | 81251547         | 06-16-2016                | 06-15-2017                    |
| LISN                                | schwarzbeck       | NNBM8125                     | 81251548         | 06-16-2016                | 06-15-2017                    |
| Signal Generator                    | Agilent           | E4438C                       | MY45095744       | 04-01-2016                | 03-31-2017                    |
| Signal Generator                    | Keysight          | E8257D                       | MY53401106       | 04-01-2016                | 03-31-2017                    |
| Temperature/ Humidity<br>Indicator  | TAYLOR            | 1451                         | 1905             | 04-27-2016                | 04-26-2017                    |
| Communication test set              | Agilent           | E5515C                       | GB47050534       | 04-01-2016                | 03-31-2017                    |
| Cable line                          | Fulai(7M)         | SF106                        | 5219/6A          | 01-12-2016                | 01-11-2017                    |
| Cable line                          | Fulai(6M)         | SF106                        | 5220/6A          | 01-12-2016                | 01-11-2017                    |
| Cable line                          | Fulai(3M)         | SF106                        | 5216/6A          | 01-12-2016                | 01-11-2017                    |
| Cable line                          | Fulai(3M)         | SF106                        | 5217/6A          | 01-12-2016                | 01-11-2017                    |
| Communication test set              | R&S               | CMW500                       | 152394           | 04-01-2016                | 03-31-2017                    |
| High-pass filter(3-<br>18GHz)       | Sinoscite         | FL3CX03WG18<br>NM12-0398-002 |                  | 01-12-2016                | 01-11-2017                    |
| High-pass filter(6-<br>18GHz)       | MICRO-<br>TRONICS | SPA-F-63029-4                |                  | 01-12-2016                | 01-11-2017                    |
| band rejection filter               | Sinoscite         | FL5CX01CA09C<br>L12-0395-001 | $(\mathcal{A})$  | 01-12-2016                | 01-11-2017                    |
| band rejection filter               | Sinoscite         | FL5CX01CA08C<br>L12-0393-001 |                  | 01-12-2016                | 01-11-2017                    |
| band rejection filter               | Sinoscite         | FL5CX02CA04C<br>L12-0396-002 |                  | 01-12-2016                | 01-11-2017                    |
| band rejection filter               | Sinoscite         | FL5CX02CA03C<br>L12-0394-001 |                  | 01-12-2016                | 01-11-2017                    |





# 8 Radio Technical Requirements Specification

#### **Reference documents for testing:**

| No. | Identity           | Document Title                                                    |
|-----|--------------------|-------------------------------------------------------------------|
| 1   | FCC Part15C (2015) | Subpart C-Intentional Radiators                                   |
| 2   | ANSI C63.10-2013   | American National Standard for Testing Unlicesed Wireless Devices |

Page 12 of 53

#### Test Results List:

| est nesults List.                    | 2°5 2                  |                                                                         |         | 2°2         |
|--------------------------------------|------------------------|-------------------------------------------------------------------------|---------|-------------|
| Test Requirement                     | Test method            | Test item                                                               | Verdict | Note        |
| Part15C Section<br>15.247 (a)(2)     | ANSI C63.10/KDB 558074 | 6dB Occupied Bandwidth                                                  | PASS    | Appendix A) |
| Part15C Section<br>15.247 (b)(3)     | ANSI C63.10/KDB 558074 | Conducted Peak Output<br>Power                                          | PASS    | Appendix B) |
| Part15C Section<br>15.247(d)         | ANSI C63.10/KDB 558074 | Band-edge for RF Conducted<br>Emissions                                 | PASS    | Appendix C) |
| Part15C Section<br>15.247(d)         | ANSI C63.10/KDB 558074 | RF Conducted Spurious<br>Emissions                                      | PASS    | Appendix D) |
| Part15C Section<br>15.247 (e)        | ANSI C63.10/KDB 558074 | Power Spectral Density                                                  | PASS    | Appendix E) |
| Part15C Section<br>15.203/15.247 (c) | ANSI C63.10            | Antenna Requirement                                                     | PASS    | Appendix F) |
| Part15C Section<br>15.207            | ANSI C63.10            | AC Power Line Conducted<br>Emission                                     | PASS    | Appendix G) |
| Part15C Section 15.205/15.209        | ANSI C63.10            | Restricted bands around<br>fundamental frequency<br>(Radiated Emission) | PASS    | Appendix H) |
| Part15C Section 15.205/15.209        | K ANSI C63.10          | Radiated Spurious Emissions                                             | PASS    | Appendix I) |







Page 13 of 53

# Appendix A): 6dB Occupied Bandwidth

| <b>Test Result</b> |  |
|--------------------|--|
|--------------------|--|

| Mode | Channel | 6dB Bandwidth [MHz] | 99% OBW[MHz] | Verdict | Remar   |  |
|------|---------|---------------------|--------------|---------|---------|--|
| BLE  | LCH     | 0.6898              | 1.0273       | PASS    | Deale   |  |
| BLE  | MCH     | 0.6873              | 1.0287       | PASS    | Peak    |  |
| BLE  | HCH     | 0.6842              | 1.0306       | PASS    | detecto |  |
|      |         |                     |              |         |         |  |



































## Page 14 of 53

## **Test Graphs**

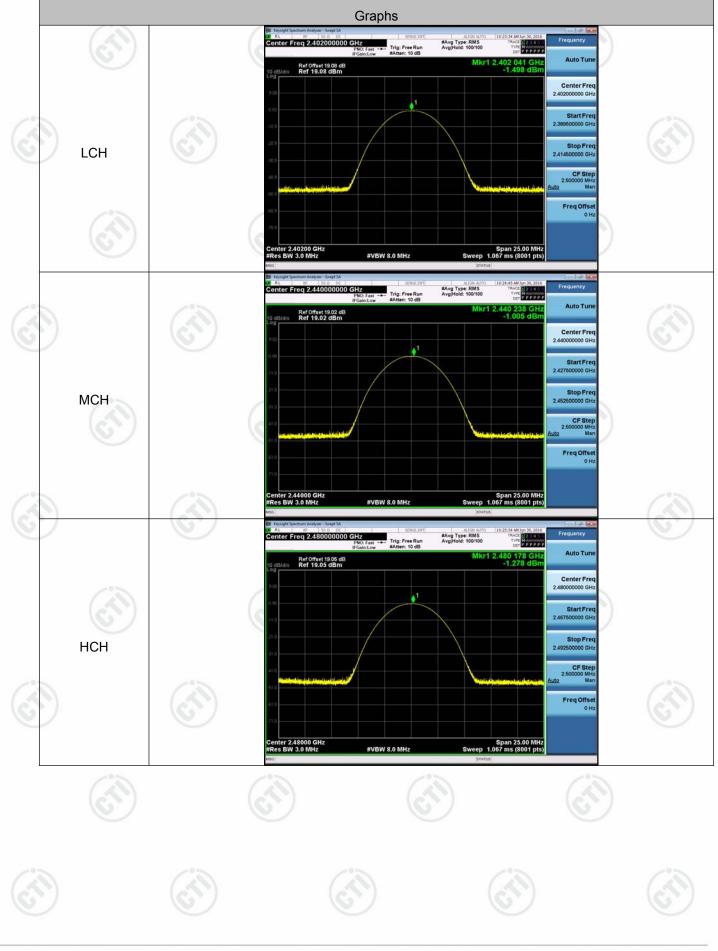




Page 15 of 53

#### Appendix R). Conducted Peak Out

|   | Mode | 0 | Channel | Conduct Pea | k Power[dBm | ı] | Verdict |
|---|------|---|---------|-------------|-------------|----|---------|
|   | BLE  |   | LCH     | -1.         | 498         |    | PASS    |
|   | BLE  |   | MCH     | <br>-1.     | 005         |    | PASS    |
| 0 | BLE  |   | HCH     | -1.         | 278         |    | PASS    |
|   |      |   |         |             |             |    |         |
|   |      |   |         |             |             |    |         |
|   |      |   |         |             |             |    |         |
|   |      |   |         |             |             |    |         |
|   |      |   |         |             |             |    |         |
|   |      |   |         |             |             |    |         |








## Page 16 of 53

# Test Graphs



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 17 of 53

# Appendix C): Band-edge for RF Conducted Emissions

| Resu | It Table |                    |                             |             |         |
|------|----------|--------------------|-----------------------------|-------------|---------|
| Mode | Channel  | Carrier Power[dBm] | Max.Spurious Level<br>[dBm] | Limit [dBm] | Verdict |
| BLE  | LCH      | -2.204             | -60.812                     | -22.2       | PASS    |
| BLE  | нсн      | -2.097             | -59.672                     | -22.1       | PASS    |
|      |          |                    |                             |             |         |

## **Test Graphs**







# **Appendix D): RF Conducted Spurious Emissions**

| _   |     | _  |     |
|-----|-----|----|-----|
| Res | ult | Та | ble |

| nooun |         |            |                                      | <u> </u> |
|-------|---------|------------|--------------------------------------|----------|
| Mode  | Channel | Pref [dBm] | Puw[dBm]                             | Verdict  |
| BLE   | LCH     | -2.296     | <limit< td=""><td>PASS</td></limit<> | PASS     |
| BLE   | МСН     | -1.826     | <limit< td=""><td>PASS</td></limit<> | PASS     |
| BLE   | HCH     | -2.094     | <limit< td=""><td>PASS</td></limit<> | PASS     |

## Test Graphs

|                |     | BLE_LCH_Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                            |    |
|----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (T)            |     | IFGain:Low #Atten: 20 dB<br>Ref Offset 19.08 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Allow Auro (19222) 443 Jun 30, 2010<br>Wa Type RMS (19222) 443 Jun 30, 2010<br>Frequency<br>Mkr1 2.401 997 5 GHz<br>-2.2296 dBm                                                                                                                                                                                                                            | )  |
| Pref/BLE/LCH   |     | 10 dBMay         Ref 20.00 dBm           10 dBMay         10 dBMay           10 dBMay         10 dBMay | -2.296 dBm<br>Center Freq<br>2.40200000 GHz<br>Start Freq<br>2.40000000 GHz<br>Stop Freq<br>2.40400000 GHz<br>Stop Freq<br>2.40400000 GHz<br>Man<br>Freq Offset<br>0 Hz<br>Sweep 1.067 ms (8001 pts)                                                                                                                                                       |    |
|                | (T) | MSG<br>BR Koyogid Spectrum Analyzer - Swept SA<br>BR 4 - Status - Social control - Status - Social - Status - Social - Status - Social - Status - Social - Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Allow Auto     19 22 30 AM 3m 30, 3016     Frequency     Tree     Max     Tree     Max     Tree     Auto     Tree     Start     Frequency     Auto     Tree     Start     Frequency     Auto     Tree     Start     Freq     30,000000     MHz | CT |
| Puw/BLE/LCH    |     | 200<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stop Freq<br>25.0000000 GHz<br>2.49700000 GHz<br>2.49700000 GHz<br>Auto Man<br>Freq Offset<br>0 Hz<br>Sweep 2.387 s (8001 pts)                                                                                                                                                                                                                             |    |
| C <sup>O</sup> | C   | C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C.                                                                                                                                                                                                                                                                                                                                                         | S  |
|                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                            |    |
|                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                            |    |







# Page 19 of 53









# Page 20 of 53



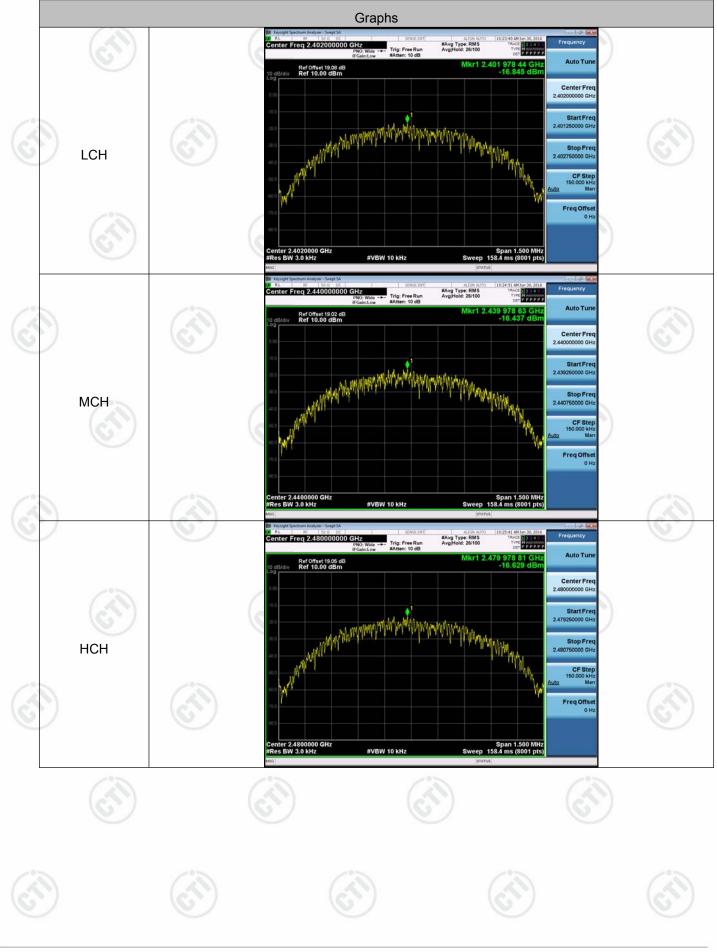





# Appendix E): Power Spectral Density

| _   | Result Ta | ble 🧹   |                |                  |         |
|-----|-----------|---------|----------------|------------------|---------|
|     | Mode      | Channel | PSD [dBm/3kHz] | Limit [dBm/3kHz] | Verdict |
|     | BLE       | LCH     | -16.845        | 8                | PASS    |
| 120 | BLE       | МСН     | -16.437        | 8                | PASS    |
| 3   | BLE       | нсн     | -16.629        | 8                | PASS    |










## Page 22 of 53

# Test Graphs







# Appendix F): Antenna Requirement

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentiona radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.8dBi.

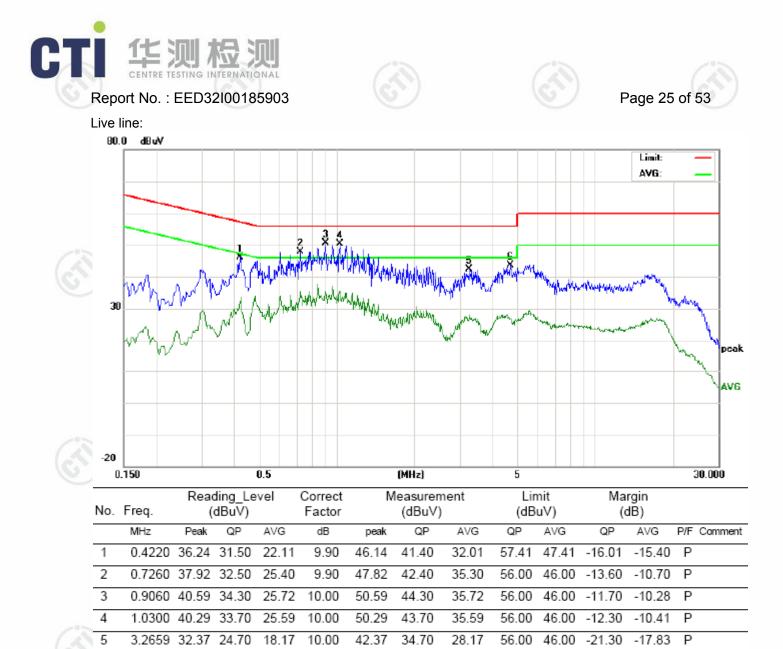






Page 24 of 53

Report No. : EED32I00185903


# Appendix G): AC Power Line Conducted Emission

| Test Procedure: | Test frequency range :150KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -30MHz                                                                                                                   |                                                                                                                   |                                                                                      |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
|                 | 1)The mains terminal disturban                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ce voltage test was c                                                                                                    | onducted in a shield                                                                                              | led room.                                                                            |  |  |  |
|                 | 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + $5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not |                                                                                                                          |                                                                                                                   |                                                                                      |  |  |  |
|                 | <ul> <li>exceeded.</li> <li>3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,</li> </ul>                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                                   |                                                                                      |  |  |  |
|                 | <ul> <li>4) The test was performed with EUT shall be 0.4 m from the reference plane was bonder 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.</li> </ul>                                                                                                                                                                                                                                                                  | e vertical ground refe<br>d to the horizontal gro<br>he boundary of the u<br>or LISNs mounted o<br>etween the closest po | rence plane. The ver<br>ound reference plar<br>unit under test and<br>n top of the grour<br>pints of the LISN 1 a | ertical groun<br>ne. The LIS<br>bonded to<br>nd reference<br>and the EU <sup>-</sup> |  |  |  |
|                 | 5) In order to find the maximun<br>of the interface cables r<br>conducted measurement.                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                                   |                                                                                      |  |  |  |
| Limit:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |                                                                                                                   |                                                                                      |  |  |  |
| (5)             | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit (dBµV)                                                                                                             |                                                                                                                   |                                                                                      |  |  |  |
|                 | Frequency range (Miriz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quasi-peak                                                                                                               | Average                                                                                                           |                                                                                      |  |  |  |
|                 | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66 to 56*                                                                                                                | 56 to 46*                                                                                                         |                                                                                      |  |  |  |
|                 | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56                                                                                                                       | 46                                                                                                                | ~>>                                                                                  |  |  |  |
| (1)             | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                       | 50                                                                                                                |                                                                                      |  |  |  |
|                 | * The limit decreases linearly<br>MHz to 0.50 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | with the logarithm of cable at the transition                                                                            |                                                                                                                   | e range 0.1                                                                          |  |  |  |

#### **Measurement Data**

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.







6

4.7060

33.72

25.20

16.98

10.00

43.72

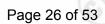
35.20

26.98

56.00

46.00

-20.80


-19.02

Ρ



Neutral line:





80.0 dBuV Limit AVG: 3 **1** 30 peak AVG -20 0.5 (MHz) 30.000 0.150 5 Correct Reading\_Level Measurement Limit Margin No. Freq. (dBuV) Factor (dBuV) (dBuV) (dB) MHz Peak QP AVG dB QP AVG QP AVG QP AVG P/F Comment peak 41.50 0.4300 35.84 31.60 22.79 45.74 32.69 57.25 47.25 -15.75 Ρ 1 9.90 -14.56 2 0.4940 35.03 31.00 23.55 44.93 33.45 -15.20 9.90 40.90 56.10 46.10 -12.65 Ρ 3 0.8100 36.57 28.40 20.30 9.91 46.48 38.31 30.21 56.00 46.00 -17.69 Ρ -15.79 0.8980 37.30 29.90 22.67 47.30 32.67 56.00 46.00 4 10.00 39.90 -16.10 -13.33 Ρ 5 4.2540 33.68 26.20 18.12 10.00 43.68 36.20 28.12 56.00 46.00 -19.80 -17.88 Ρ -22.40 6 5.2420 33.84 27.60 20.30 10.00 43.84 37.60 30.30 60.00 50.00 -19.70 Ρ

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.





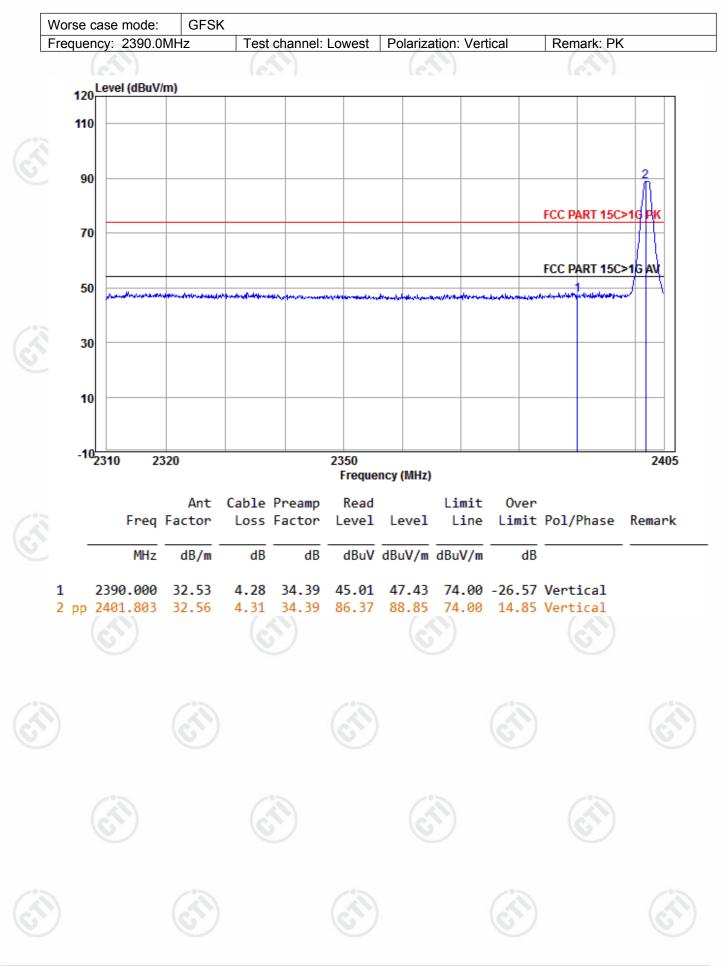


# Appendix H): Restricted bands around fundamental frequency (Radiated)

| Receiver Setup: | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detector                                                                                                                                                                                                                                                                                                                                                                      | RBW                                                                                                                                                          | VBW                                                                                                                                                                                     | Remark                                                                                                                                                                                                     |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                    | 120kHz                                                                                                                                                       | 300kHz                                                                                                                                                                                  | Quasi-peak                                                                                                                                                                                                 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                         | 3MHz                                                                                                                                                                                    | Peak                                                                                                                                                                                                       |
|                 | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                         | 10Hz                                                                                                                                                                                    | Average                                                                                                                                                                                                    |
| Fest Procedure: | <ul> <li>Below 1GHz test proced<br/>a. The EUT was placed<br/>at a 3 meter semi-and<br/>determine the positio</li> <li>b. The EUT was set 3 m<br/>was mounted on the</li> <li>c. The antenna height is<br/>determine the maxim<br/>polarizations of the a</li> <li>d. For each suspected of<br/>the antenna was tune<br/>was turned from 0 de</li> <li>e. The test-receiver sys<br/>Bandwidth with Maxin</li> <li>f. Place a marker at the<br/>frequency to show co<br/>bands. Save the spec<br/>for lowest and highes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dure as below:<br>on the top of a re-<br>echoic camber. The<br>n of the highest ra-<br>neters away from<br>top of a variable-h<br>s varied from one<br>um value of the fi-<br>ntenna are set to<br>emission, the EUT<br>ed to heights from<br>grees to 360 deg<br>tem was set to Per-<br>mum Hold Mode.<br>e end of the restrict<br>ompliance. Also me<br>ctrum analyzer plo- | tating table<br>table wa<br>adiation.<br>the interfer<br>meter to for<br>eld strength<br>make the r<br>was arran<br>1 meter to<br>rees to find<br>eak Detect | e 0.8 meter<br>is rotated 3<br>ence-recei<br>nna tower.<br>our meters<br>n. Both hor<br>neasureme<br>iged to its<br>4 meters<br>the maxin<br>Function a<br>closest to th<br>y emissions | rs above the gr<br>360 degrees to<br>iving antenna,<br>above the grou<br>rizontal and ve<br>ent.<br>worst case and<br>and the rotatal<br>num reading.<br>and Specified<br>he transmit<br>s in the restrict |
|                 | <ul> <li>Above 1GHz test process</li> <li>g. Different between about to fully Anechoic Chan 18GHz the distance in the intervention of the EUT in the intervention of the radiation measure that is the radiation measure for the term of t</li></ul> | ove is the test site<br>mber change forr<br>s 1 meter and tab<br>lowest channel,<br>rements are perfo<br>nd found the X as                                                                                                                                                                                                                                                    | n table 0.8<br>le is 1.5 me<br>the Highes<br>rmed in X,<br>kis position                                                                                      | meter to 1<br>ter).<br>t channel<br>Y, Z axis p<br>ing which i                                                                                                                          | .5 meter( Abov<br>positioning for<br>t is worse case                                                                                                                                                       |
| Limit:          | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit (dBµV                                                                                                                                                                                                                                                                                                                                                                   | /m @3m)                                                                                                                                                      | Rei                                                                                                                                                                                     | mark                                                                                                                                                                                                       |
|                 | 30MHz-88MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.                                                                                                                                                                                                                                                                                                                                                                           | C                                                                                                                                                            | Quasi-p                                                                                                                                                                                 | eak Value                                                                                                                                                                                                  |
|                 | 88MHz-216MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                            | Quasi-pe                                                                                                                                                                                | eak Value                                                                                                                                                                                                  |
|                 | 216MHz-960MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46.                                                                                                                                                                                                                                                                                                                                                                           | C                                                                                                                                                            | Quasi-p                                                                                                                                                                                 | eak Value                                                                                                                                                                                                  |
|                 | 960MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.0                                                                                                                                                                                                                                                                                                                                                                          | C                                                                                                                                                            | Quasi-pe                                                                                                                                                                                | eak Value                                                                                                                                                                                                  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.0                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                            | Averac                                                                                                                                                                                  |                                                                                                                                                                                                            |
|                 | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               | J                                                                                                                                                            | / Wordg                                                                                                                                                                                 | ge Value                                                                                                                                                                                                   |

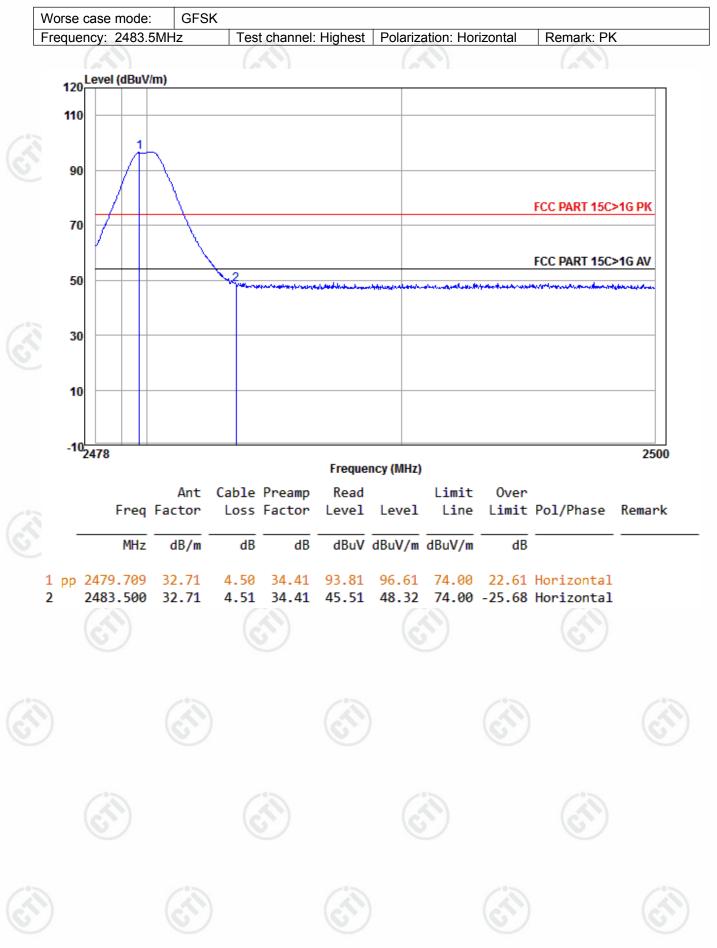






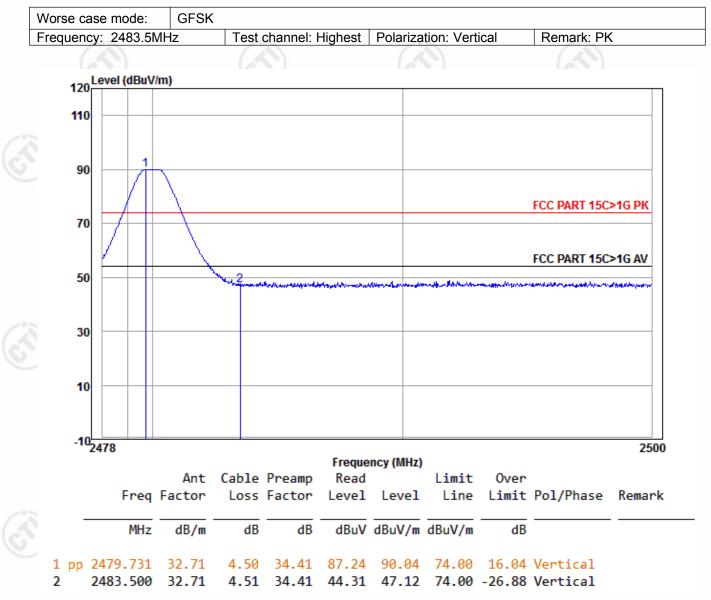



| <b>est plot as follow</b><br>/orse case mode: | GFSK           |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|-----------------------------------------------|----------------|---------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------|-------------|---------------|--------------------------|--------|
| requency: 2390.0                              | MHz            | Test ch | nannel: I                                                                                                        | Lowest                                                                                                         | Polariza        | ation: Hori | zontal        | Remark: PK               |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
| 120 Level (dBuV                               | (m)            | 1       |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
| 110                                           |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          | 2      |
| 90                                            |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               | FCC PART 15C             | >1G PK |
| 70                                            |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
| 50                                            |                |         |                                                                                                                  |                                                                                                                |                 |             |               | FCC PART 15C>            | >1G AV |
| 30 Warden to Man                              | Sund have made |         | and the second | enter annual | el renne estade | ~~          | gemen address | en abreventeren generen  |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
| 30                                            |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
| 10                                            |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
| -10 <mark>23102</mark>                        | 320            |         |                                                                                                                  | 2350<br>Freque                                                                                                 | ncy (MHz)       |             |               |                          | 240    |
|                                               | Δnt            | Cable P | reamn                                                                                                            | Read                                                                                                           | 103 (11112)     | Limit       | 0ver          |                          |        |
| Freq                                          | Factor         |         | -                                                                                                                |                                                                                                                | Level           |             |               | Pol/Phase                | Remark |
| MHz                                           |                | dB –    | dB                                                                                                               | dBuV                                                                                                           | dBuV/m          | dBuV/m      | dB            |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
| 1 2390.000<br>2 pp 2401.803                   | 32.53<br>32.56 |         | 34.39<br>34.39                                                                                                   | 45.59<br>91.92                                                                                                 | 48.01<br>94.40  |             |               | Horizontal<br>Horizontal |        |
| 2 pp 2401.005                                 | 52.50          | 4.51    | 54.55                                                                                                            | 51.52                                                                                                          | 54.40           | 74.00       | 20.40         | norizontai               |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |
|                                               |                |         |                                                                                                                  |                                                                                                                |                 |             |               |                          |        |


















#### Note:

 The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor







# Page 32 of 53

# **Appendix I): Radiated Spurious Emissions**

| <b>Receiver Setup:</b> | Frequency         | Detector   | RBW    | VBW    | Remark     |
|------------------------|-------------------|------------|--------|--------|------------|
| $(\mathcal{A})$        | 0.009MHz-0.090MHz | Peak       | 10kHz  | 30kHz  | Peak       |
|                        | 0.009MHz-0.090MHz | Average    | 10kHz  | 30kHz  | Average    |
|                        | 0.090MHz-0.110MHz | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |
|                        | 0.110MHz-0.490MHz | Peak       | 10kHz  | 30kHz  | Peak       |
|                        | 0.110MHz-0.490MHz | Average    | 10kHz  | 30kHz  | Average    |
|                        | 0.490MHz -30MHz   | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |
|                        | 30MHz-1GHz        | Quasi-peak | 120kHz | 300kHz | Quasi-peak |
|                        |                   | Peak       | 1MHz   | 3MHz   | Peak       |
|                        | Above 1GHz        | Peak       | 1MHz   | 10Hz   | Average    |
| Test Procedure:        | (C)               | 2)         | 57.1   |        | (67)       |

#### Test Procedure:

Limit:

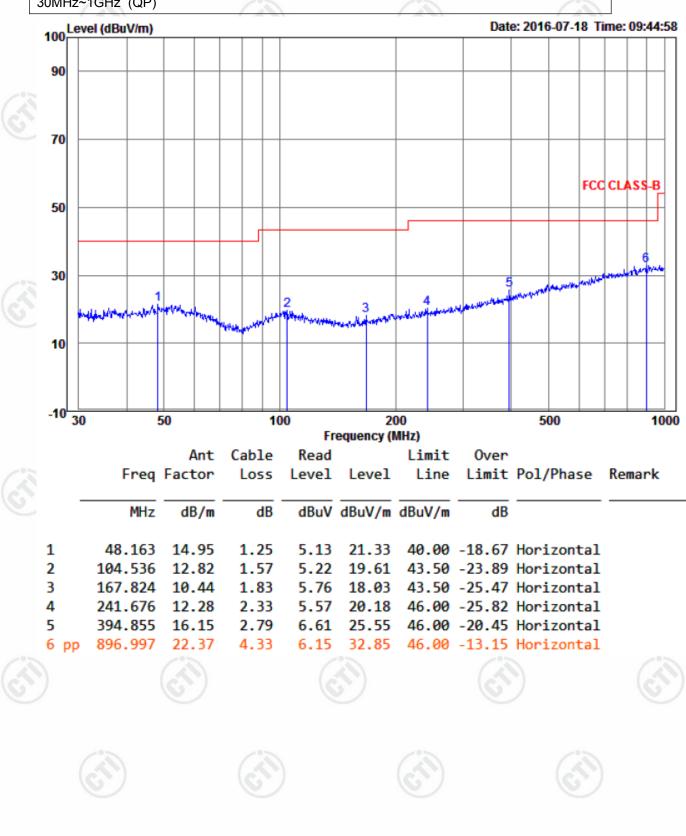
#### Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
  f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter( Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

| Frequency         | Field strength<br>(microvolt/meter) | Limit<br>(dBµV/m)  | Remark     | Measurement<br>distance (m) |
|-------------------|-------------------------------------|--------------------|------------|-----------------------------|
| 0.009MHz-0.490MHz | 2400/F(kHz)                         | $\underline{\sim}$ | -          | 300                         |
| 0.490MHz-1.705MHz | 24000/F(kHz)                        | -                  | -          | 30                          |
| 1.705MHz-30MHz    | 30                                  | -                  | 25         | 30                          |
| 30MHz-88MHz       | 100                                 | 40.0               | Quasi-peak | 3                           |
| 88MHz-216MHz      | 150                                 | 43.5               | Quasi-peak | 3                           |
| 216MHz-960MHz     | 200                                 | 46.0               | Quasi-peak | 3                           |
| 960MHz-1GHz       | 500                                 | 54.0               | Quasi-peak | 3                           |
| Above 1GHz        | 500                                 | 54.0               | Average    | 3                           |


emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Report No. : EED32l00185903 **Radiated Spurious Emissions test Data:** 

## **Radiated Emission below 1GHz**

30MHz~1GHz (QP)




Page 33 of 53













| Worse case         | mode:                       | GFSK                  |                        | Test chai               | nnel:             | Lowest                 | owest              |        |                    |  |
|--------------------|-----------------------------|-----------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------|--------------------|--|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result | Antenna<br>Polaxis |  |
| 1360.714           | 30.59                       | 2.69                  | 34.80                  | 45.98                   | 44.46             | 74                     | -29.54             | Pass   | Horizontal         |  |
| 1894.450           | 31.54                       | 3.15                  | 34.37                  | 43.87                   | 44.19             | 74                     | -29.81             | Pass   | Horizontal         |  |
| 3225.037           | 33.40                       | 5.57                  | 34.53                  | 43.60                   | 48.04             | 74                     | -25.96             | Pass   | Horizontal         |  |
| 4804.000           | 34.69                       | 5.11                  | 34.35                  | 42.93                   | 48.38             | 74                     | -25.62             | Pass   | Horizontal         |  |
| 7206.000           | 36.42                       | 6.66                  | 34.90                  | 40.15                   | 48.33             | 74                     | -25.67             | Pass   | Horizontal         |  |
| 9608.000           | 37.88                       | 7.73                  | 35.08                  | 39.04                   | 49.57             | 74                     | -24.43             | Pass   | Horizontal         |  |
| 1129.964           | 30.05                       | 2.43                  | 35.04                  | 46.06                   | 43.50             | 74                     | -30.50             | Pass   | Vertical           |  |
| 1510.402           | 30.89                       | 2.84                  | 34.66                  | 44.50                   | 43.57             | 74                     | -30.43             | Pass   | Vertical           |  |
| 3616.451           | 33.08                       | 5.50                  | 34.56                  | 44.18                   | 48.20             | 74                     | -25.80             | Pass   | Vertical           |  |
| 4804.000           | 34.69                       | 5.11                  | 34.35                  | 43.07                   | 48.52             | 74                     | -25.48             | Pass   | Vertical           |  |
| 7206.000           | 36.42                       | 6.66                  | 34.90                  | 40.88                   | 49.06             | 74                     | -24.94             | Pass   | Vertical           |  |
| 9608.000           | 37.88                       | 7.73                  | 35.08                  | 38.32                   | 48.85             | 74                     | -25.15             | Pass   | Vertical           |  |

Page 35 of 53

| Worse case         | mode:                       | GFSK                  |                     | Test cha                | Test channel:     |                        | Middle                |        |                    |  |
|--------------------|-----------------------------|-----------------------|---------------------|-------------------------|-------------------|------------------------|-----------------------|--------|--------------------|--|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Gain (dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit<br>(dB) | Result | Antenna<br>Polaxis |  |
| 1521.981           | 30.91                       | 2.85                  | 34.65               | 45.79                   | 44.90             | 74                     | -29.10                | Pass   | Horizontal         |  |
| 3662.775           | 33.04                       | 5.50                  | 34.57               | 44.40                   | 48.37             | 74                     | -25.63                | Pass   | Horizontal         |  |
| 4880.000           | 34.85                       | 5.08                  | 34.33               | 43.71                   | 49.31             | 74                     | -24.69                | Pass   | Horizontal         |  |
| 6094.137           | 35.95                       | 7.33                  | 34.36               | 40.26                   | 49.18             | 74                     | -24.82                | Pass   | Horizontal         |  |
| 7320.000           | 36.43                       | 6.77                  | 34.90               | 41.68                   | 49.98             | 74                     | -24.02                | Pass   | Horizontal         |  |
| 9760.000           | 38.05                       | 7.60                  | 35.05               | 38.89                   | 49.49             | 74                     | -24.51                | Pass   | Horizontal         |  |
| 1464.963           | 30.80                       | 2.79                  | 34.70               | 44.64                   | 43.53             | 74                     | -30.47                | Pass   | Vertical           |  |
| 3662.775           | 33.04                       | 5.50                  | 34.57               | 44.08                   | 48.05             | 74                     | -25.95                | Pass   | Vertical           |  |
| 4880.000           | 34.85                       | 5.08                  | 34.33               | 42.28                   | 47.88             | 74                     | -26.12                | Pass   | Vertical           |  |
| 6017.064           | 35.91                       | 7.41                  | 34.31               | 40.58                   | 49.59             | 74                     | -24.41                | Pass   | Vertical           |  |
| 7320.000           | 36.43                       | 6.77                  | 34.90               | 41.67                   | 49.97             | 74                     | -24.03                | Pass   | Vertical           |  |
| 9760.000           | 38.05                       | 7.60                  | 35.05               | 38.69                   | 49.29             | 74                     | -24.71                | Pass   | Vertical           |  |
|                    |                             | 51                    |                     | 6                       | /                 | 0                      | /                     | 1      |                    |  |







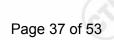




| Worse case         | mode:                       | GFSK                  |                        | Test ch                 | nannel:           | Highest                |                       |        |                    |
|--------------------|-----------------------------|-----------------------|------------------------|-------------------------|-------------------|------------------------|-----------------------|--------|--------------------|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit<br>(dB) | Result | Antenna<br>Polaxis |
| 1589.289           | 31.04                       | 2.91                  | 34.60                  | 44.17                   | 43.52             | 74                     | -30.48                | Pass   | Horizontal         |
| 2013.795           | 31.73                       | 3.27                  | 34.30                  | 44.12                   | 44.82             | 74                     | -29.18                | Pass   | Horizontal         |
| 4034.777           | 32.89                       | 5.42                  | 34.59                  | 42.61                   | 46.33             | 74                     | -27.67                | Pass   | Horizontal         |
| 4960.000           | 35.02                       | 5.05                  | 34.31                  | 41.65                   | 47.41             | 74                     | -26.59                | Pass   | Horizontal         |
| 7440.000           | 36.45                       | 6.88                  | 34.90                  | 41.44                   | 49.87             | 74                     | -24.13                | Pass   | Horizontal         |
| 9920.000           | 38.22                       | 7.47                  | 35.02                  | 39.29                   | 49.96             | 74                     | -24.04                | Pass   | Horizontal         |
| 1502.732           | 30.88                       | 2.83                  | 34.67                  | 46.52                   | 45.56             | 74                     | -28.44                | Pass   | Vertical           |
| 2060.463           | 31.84                       | 3.41                  | 34.31                  | 44.31                   | 45.25             | 74                     | -28.75                | Pass   | Vertical           |
| 4181.159           | 33.26                       | 5.36                  | 34.54                  | 42.56                   | 46.64             | 74                     | -27.36                | Pass   | Vertical           |
| 4960.000           | 35.02                       | 5.05                  | 34.31                  | 42.10                   | 47.86             | 74                     | -26.14                | Pass   | Vertical           |
| 7440.000           | 36.45                       | 6.88                  | 34.90                  | 41.34                   | 49.77             | 74                     | -24.23                | Pass   | Vertical           |
| 9920.000           | 38.22                       | 7.47                  | 35.02                  | 39.69                   | 50.36             | 74                     | -23.64                | Pass   | Vertical           |

#### Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

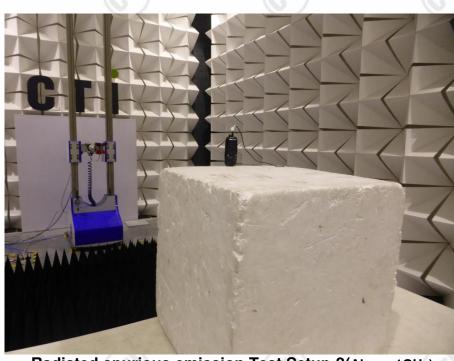

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.








PHOTOGRAPHS OF TEST SETUP

Test mode No.: RG310



Radiated spurious emission Test Setup-1(Below 1GHz)



Radiated spurious emission Test Setup-2(Above 1GHz)





# Page 38 of 53



#### Conducted Emissions Test Setup









# Page 40 of 53







# Page 41 of 53









## Page 42 of 53







### Page 43 of 53







## Page 44 of 53







## Page 45 of 53



View of Product-13




View of Product-14







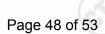
#### Page 46 of 53







# Page 47 of 53







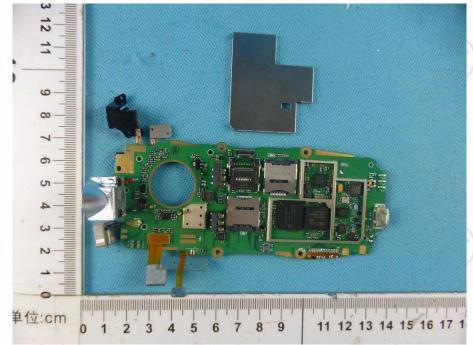
View of Product-18












View of Product-20



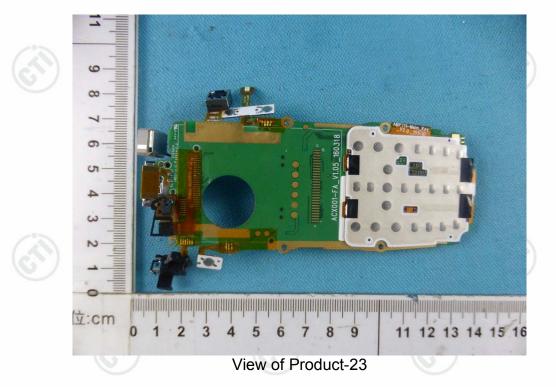


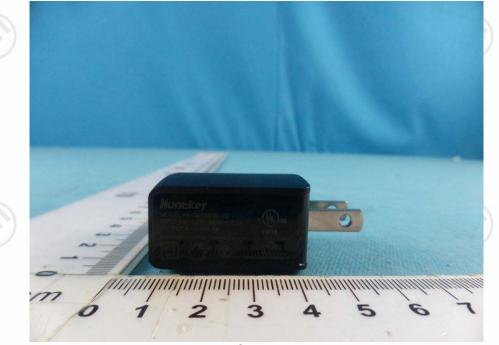




View of Product-21




View of Product-22








## Page 50 of 53





View of Product-24





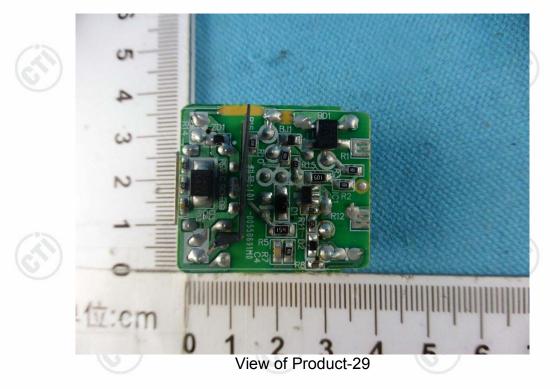


# Page 51 of 53



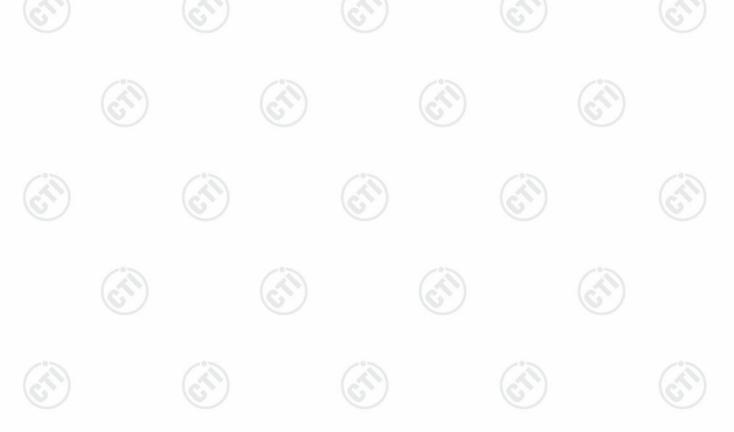





## Page 52 of 53








#### Page 53 of 53



#### \*\*\* End of Report \*\*\*

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

