

FCC RADIO TEST REPORT

FCC ID	:	2AEM4-71213573
Equipment	:	Wireless router/access point
Brand Name	:	eero
Model Name	:	S010001
Applicant	:	eero LLC 660 3rd Street, 4th Floor, San Francisco, CA 94107
Manufacturer	:	eero LLC 660 3rd Street, 4th Floor, San Francisco, CA 94107
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Aug. 10, 2021 and testing was started from Aug. 11, 2021 and completed on Oct. 19, 2021. We, Sporton International (USA) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (USA) Inc., the test report shall not be reproduced except in full.

Nil Kao

Approved by: Neil Kao

Sporton International (USA) Inc. 1175 Montague Expressway, Milpitas, CA 95035

Table of Contents

His	tory o	f this test report	3
Su	nmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	16
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	22
	3.5	Radiated Band Edges and Spurious Emission Measurement	28
	3.6	AC Conducted Emission Measurement	32
	3.7	Antenna Requirements	34
4	List c	of Measuring Equipment	35
5	Unce	rtainty of Evaluation	37
Ap	oendix	A. Conducted Test Results	
Ap	oendix	B. AC Conducted Emission Test Result	
Ap	oendix	C. Radiated Spurious Emission	
Ap	oendix	D. Radiated Spurious Emission Plots	
-			

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR210727001A	01	Initial issue of report	Nov. 17, 2021
FR210727001A	02	Revise some content of descriptions	Dec. 16, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	Under limit 0.14 dB at 2483.500 MHz
3.6	15.207	AC Conducted Emission	Pass	Under limit 10.48 dB at 0.492 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

TEL : 408 9043300	Page Number	: 4 of 37
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Issued Date	: Dec. 16, 2021
	Report Version	: 02

1 General Description

1.1 Product Feature of Equipment Under Test

The EUT is an indoor AP with radios including Bluetooth - LE, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac/ax, 802.15.4 (Zigbee), equipped with integrated antennas configured below:

Antenna configuration		
	WLAN 2.4GHz	
	<ant. 6="">: Flexible PCB Antenna</ant.>	
	<ant. 3="">: Flexible PCB Antenna</ant.>	
Antonno Tuno	WLAN 5GHz	
Antenna Type	<ant. 4="">: Flexible PCB Antenna</ant.>	
	<ant. 5="">: Flexible PCB Antenna</ant.>	
	Bluetooth - LE: Flexible PCB Antenna	
	Zigbee: Flexible PCB Antenna	
Antenna information		

Antenna information		
2400 MHz ~ 2483.5 MHz Pe	eak Gain (dBi)	3.24

Remark: The above EUT's information is declared by the manufacturer. Please refer to Comments and Explanations in report summary.

Specification of Accessories				
Adapter 1	Brand Name	eero	Model Name	C210001
Adapter 2	Brand Name	eero	Model Name	C210003
Adapter 3	Brand Name	eero	Model Name	C210004
Adapter 4	Brand Name	eero	Model Name	C210005

Remark: The manufacturer declares that all the power supplies listed are electrically identical from one another, the only difference between all the models are the plugs designed for use in different countries. All the test is performed with only one power supply, model C210001 as shown in this report.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International (USA) Inc.	
Test Site Location	1175 Montague Expressway, Milpitas, CA 95035 TEL : 408 9043300	
Test Site No.	Sporton Site No.	
Test Sile NO.	CO01-CA, 03CH02-CA, TH01-CA	

Note: The test site complies with ANSI C63.4 2014 requirement.

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards without any deviation during the test.
- 2. This EUT has also been tested and shown compliance with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
-	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

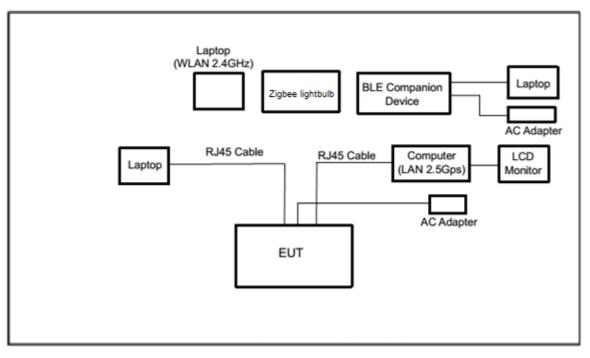
2.2 Test Mode

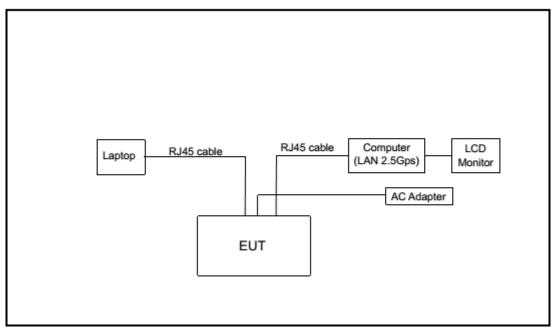
a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Radiated measurements are performed in one orientation which is plane X according to the prescribed placement of the device in normal operation declared by the manufacturer.

b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases
Test Item	Data Rate / Modulation
	Bluetooth – LE / GFSK
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
Conducted	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH38_2478 MHz_2Mbps
	Mode 7: Bluetooth Tx CH39_2480 MHz_2Mbps
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
Test Cases	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH38_2478 MHz_2Mbps
	Mode 7: Bluetooth Tx CH39_2480 MHz_2Mbps
AC	
Conducted	Mode 1: WLAN (2.4GHz) Link + Zigbee Link + LAN 1 Link + LAN 2 Link + Adapter
Emission	Mode 2: WLAN (2.4GHz) Link + Bluetooth Link + LAN 1 Link + LAN 2 Link + Adapter
Remark: The v	vorst case of conducted emission is mode 1; only the test data of it was reported.



2.3 Connection Diagram of Test System

<Radiated Emission Mode>

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Acer	PS548 G1	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
2.	Notebook	HP	14-dq1043cl	TX2-RTL8822 CE	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	Computer	Fractal	FD-C-DEF7A-01 (NETINTX550TR Intel X550T2BLK)	FCC DoC	N/A	Unshielded, 1.2 m
4.	LCD Monitor	Samsung	LS27E310HZG/ZA	FCC DoC	N/A	Unshielded, 1.2 m
5.	BLE Companion Device	eero	S010001	N/A	N/A	N/A
6.	Light Bulb for Zigbee	Philips	Hue	N/A	N/A	N/A
7.	Notebook	ThinkPad	ThinkPad X1 Carbon Gen 8	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "Radio Control Console V4.0.0.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 **Test Result**

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

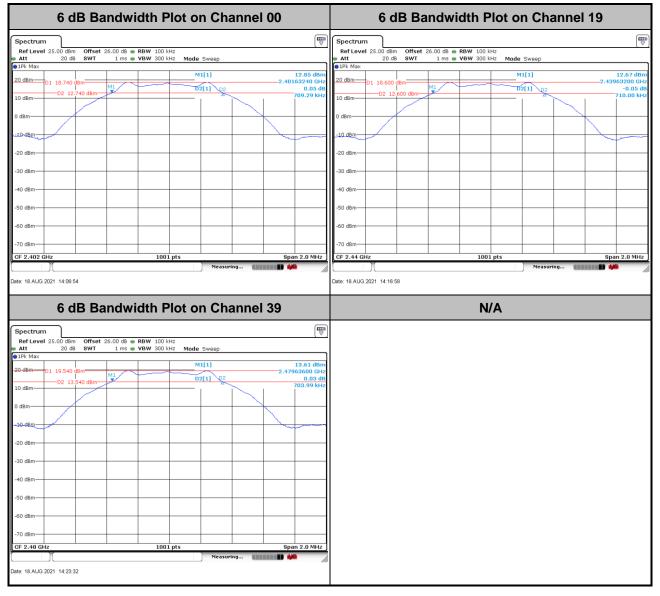
3.1.3 Test Procedures

- The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW). 1.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set the maximum power setting and enable the EUT to transmit continuously. 3.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 5. 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

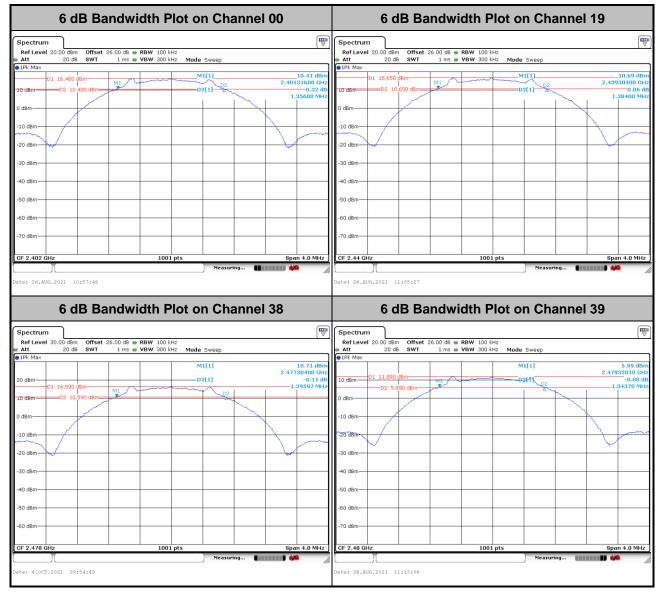
3.1.4 Test Setup

TEL: 408 9043300

EUT

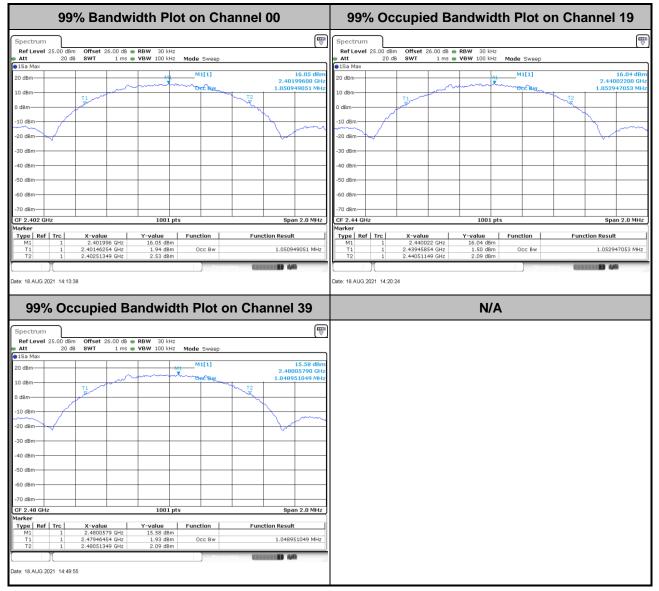

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth


Please refer to Appendix A.

<1Mbps>

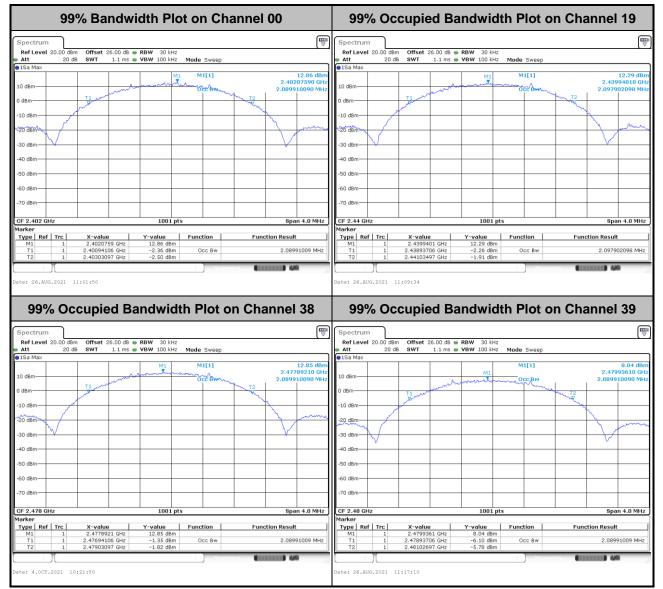
<2Mbps>



3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>



Note: The occupied channel bandwidth is maintained within the band of operation.

TEL : 408 9043300	Page Number	: 14 of 37
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Issued Date	: Dec. 16, 2021
	Report Version	: 02

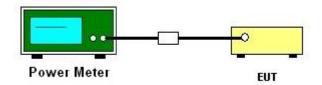
<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 3. The path loss was compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

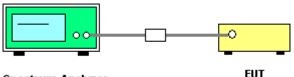
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

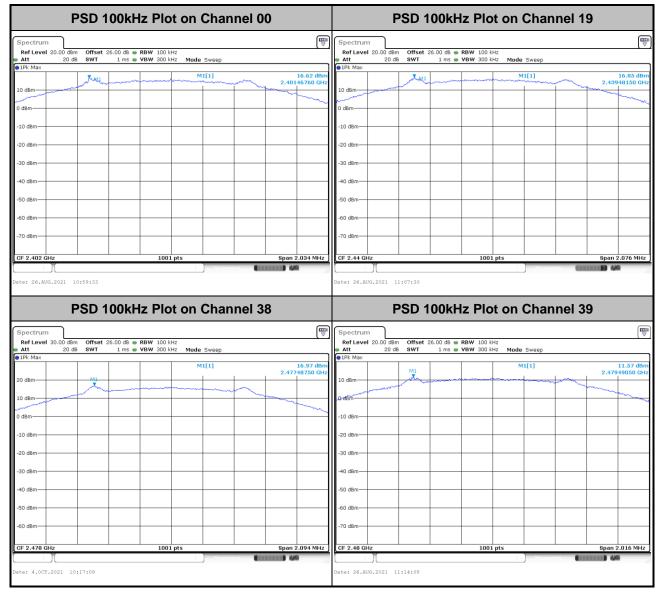
- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

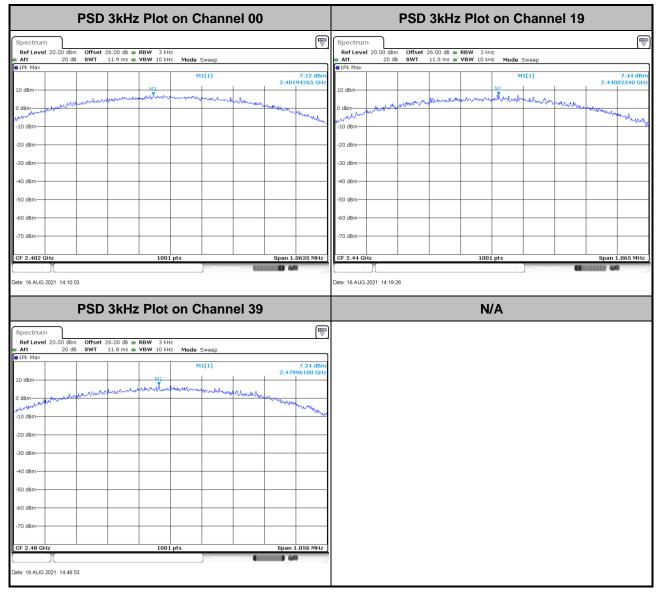
3.3.5 Test Result of Power Spectral Density

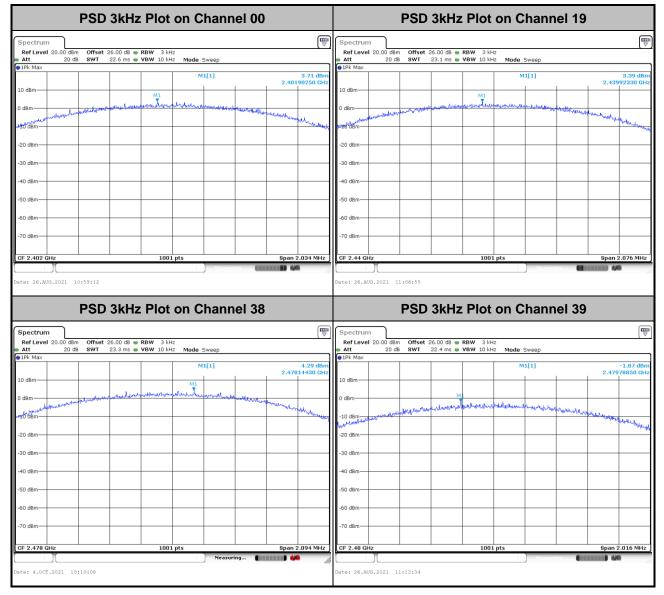
Please refer to Appendix A.


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

PSD 100	PS	D 100kHz P	ot on Chan	nel 19		
Att 20 dB SWT 1 ms	B e RBW 100 kHz s e VBW 300 kHz Mode Sweep	₩	Att 20 dB	Offset 26.00 dB — RBW 10 SWT 1 ms — VBW 30	0 kHz 0 kHz Mode Sweep	₩
10 dBm		18.68 dBm 2.40174383 GHz	e 1Pk Max	- M1	M1[1]	18.72 dBm 2.43974040 GHz
0 dBm			0 dBm			
-20 dBm			-20 dBm			
-40 dBm			-40 dBm			
-50 dBm			-50 dBm			
-70 dBm	1001 pts	Span 1.063935 MHz	-70 dBm	1	001 pts	Span 1.065 MHz
Date: 25.AUG.2021 10:01:00	Measur	ing (IIIIII) (A	Date: 25.AUG.2021 10:0	6:38	Measurin	(11111 1) 44
	kHz Plot on Chan				N/A	
Spectrum Ref Level 20.00 dBm Offset 26.00 dB Att 20 dB SWT 1 ms 1Pk Max	B RBW 100 kHz S VBW 300 kHz Mode Sweep	 				
10 dBm	MI[1]	18.40 dBm 2.47974051 GHz				
0 dBm						
-20 dBm						
-40 dBm						
-60 dBm						
CF 2.48 GHz	1001 pts	Span 1.055985 MHz				
Date: 25.AUG.2021 10:08:37						


<2Mbps>


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

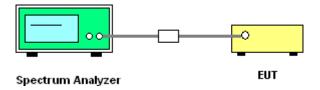
<1Mbps>

<2Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

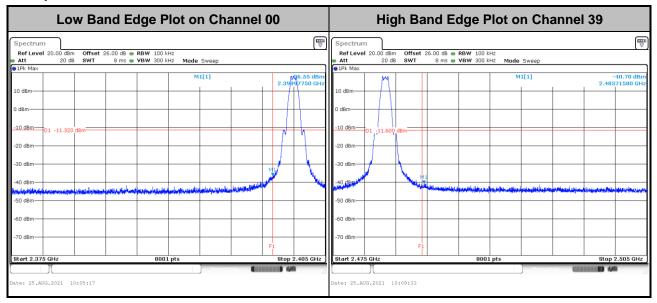
All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.1 General and 11.11.3 Emission level measurement.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

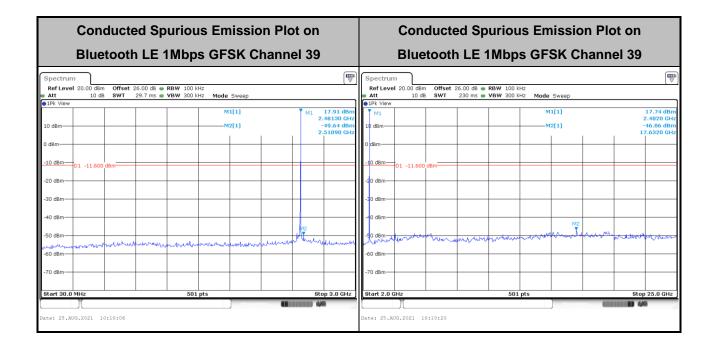

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>

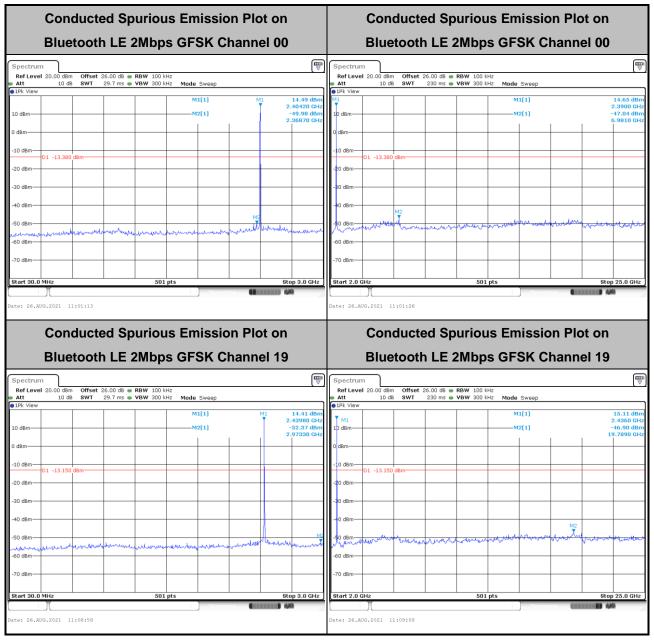
<2Mbps>

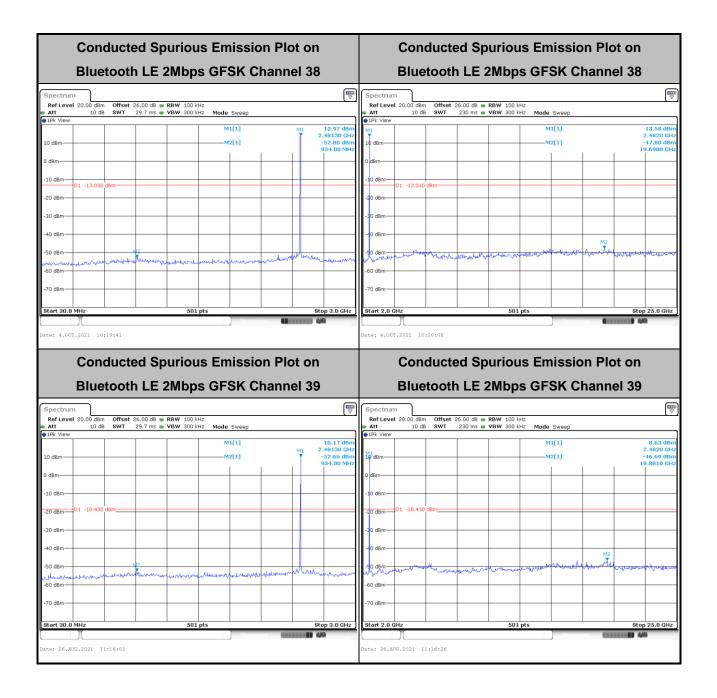
Low Ba	and Edge Plot on Cha	annel 00	High Band Edge Plot on Channel 39
Spectrum Ref Level 20.00 dBm Offset Att 20 dB SWT	26.00 d8 RBW 100 kHz 8 ms VBW 300 kHz Mode Sweep		RefLevel 20.00 dBm Offset 26.00 dB ● RBW 100 kHz w Att 20 dB SWT 8 ms ● VBW 300 kHz Mode Sweep ● IPk Max
10 dBm	Image: state		10 dBm 2.48368200 c 0 dBm 0 dBm
Date: 26.AUG.2021 11:00:57	Measure	(mana) (40	Date: 26.AUG.2021 11:15:23



3.4.6 Test Result of Conducted Spurious Emission Plots

<1Mbps>


Conducted Spurious	Conducted Spurious Emission Plot on						
Bluetooth LE 1Mbps 0	GFSK Chani	nel 00	Bluet	ooth LE 1Mbp	os GFSK	Channe	el 00
ectrum ef Level 20.00 dBm Offset 26.00 dB = RBW 100 kHz			Spectrum				
tt 10 dB SWT 29.7 ms 🖶 VBW 300 kHz	Mode Sweep		Att 10 dB	Offset 26.00 dB ● RBW 100 SWT 230 ms ● VBW 300			
Pk View	M1[1]	M1 18.26 dBm	1Pk View M1		M1[1]		16.84 dE
dBm	M2[1]		10 dBm		M2[1]		2.3900 G -46.70 dB
Bm		2.33900 GHz	0 dBm				18.4120 G
D1 -11.320 dBm			-10 dBm D1 -11.320 dB	m			
dBm			-20 dBm		+		
l dBm			-30 dBm				
dBm	M	12	-+0 dBm			M2	
I dBm		What many were	-50 dBm	mortingentertano	enter work further	mohowing	and the state of t
I dBm			-60 dBm			_	
dBm			-70 dBm				
art 30.0 MHz 501 pts		Stop 3.0 GHz	Start 2.0 GHz	50)1 pts		Stop 25.0 GH
Conducted Spurious		lot on		ucted Spurio	us Emiss		
		lot on	Cond		us Emiss		el 19
Conducted Spurious Bluetooth LE 1Mbps (lot on nel 19	Cond Bluete	ucted Spurio ooth LE 1Mbp	us Emiss os GFSK		el 19
Conducted Spurious Bluetooth LE 1Mbps (Petrum ef Level 20.00 dBm Offset 26.00 dB • RBW 100 kHz ef Level 20.00 dBm VI 29.7 ms • VBW 100 kHz		lot on nel 19	Cond Bluete Spectrum Ref Level 20.00 dBm Att 10 dB	ucted Spurio	us Emiss os GFSK (
Conducted Spurious Bluetooth LE 1Mbps (rectrum of Level 20.00 dBm Offset 26.00 dB • RBW 100 kHz	GFSK Chani	lot on nel 19	Cond Bluete Spectrum Ref Level 20.00 dBm Att 10 dB	ucted Spurio ooth LE 1Mbp	us Emiss os GFSK (el 19 [t
Conducted Spurious Bluetooth LE 1Mbps (ectrum of Level 20.00 dBm Offset 26.00 dB • RBW 100 kHz tt 10 dB SWT 29.7 ms • VBW 300 kHz k View	GFSK Chani	lot on nel 19	Cond Bluete Spectrum Ref Level 20.00 dBm Att 10 dB	ucted Spurio ooth LE 1Mbp	us Emiss os GFSK		15.75 dE 2.4360 G -47.04 dE
Conducted Spurious Bluetooth LE 1Mbps (Cectrum of Level 20.00 dBm Offset 26.00 dB ® RBW 100 kHz tt 10 dB SWT 29.7 ms ® VBW 300 kHz k View dBm	GFSK Chani	lot on nel 19 ♥ 10.5+dBm 2.43980 0Hr 2.43980 0Hr 2.41010 0Hr	Cond Bluete Spectrum Ref Level 20.00 dBm Att 10 dB SIPL View Y M1 10 dBm	ucted Spurio ooth LE 1Mbp	US Emiss DS GFSK		2 19 [t 15.75 dE 2.4360 G
Conducted Spurious Bluetooth LE 1Mbps (Bluevel 20.00 dBm Offset 26.00 dB @ RBW 100 kHz 10 dB SWT 29.7 ms @ VBW 300 kHz View	GFSK Chani	lot on nel 19 ♥ 10.5+dBm 2.43980 0Hr 2.43980 0Hr 2.41010 0Hr	Cond Bluete Spectrum Att 10 db SIPK View Y M1 10 dbm	ucted Spurio ooth LE 1Mbp	US Emiss DS GFSK		15.75 di 15.75 di 2.4360 G -47.04 di
Conducted Spurious Bluetooth LE 1Mbps (Bluevel 20.00 dBm Offset 26.00 dB @ RBW 100 kHz 10 dB SWT 29.7 ms @ VBW 300 kHz View	GFSK Chani	lot on nel 19 ♥ 10.5+dBm 2.43980 0Hr 2.43980 0Hr 2.41010 0Hr	Cond Bluete Spectrum Ref Level 20.00 dBm Att 10 dB SIPL View Y M1 10 dBm	ucted Spurio ooth LE 1Mbp	US Emiss DS GFSK		15.75 df 15.75 df 2.4360 G -47.04 df
Conducted Spurious Bluetooth LE 1Mbps (Detrum 10 dB Offset 26.00 dB RBW 100 kHz 10 dB SWT 29.7 ms VBW 300 kHz VBW Bm 01 -11.280 dBm	GFSK Chani	lot on nel 19 ♥ 10.5+dBm 2.43980 0Hr 2.43980 0Hr 2.41010 0Hr	Cond Bluete Spectrum Ref Level 20.00 dBm Att 10 dB 12 dBm 0 dBm	ucted Spurio ooth LE 1Mbp	US Emiss DS GFSK		15.75 di 15.75 di 2.4360 G -47.04 di
Conducted Spurious Bluetooth LE 1Mbps (Bluetooth LE 1Mbps (Conducted Spurious) Conducted Spurious Conducte	GFSK Chani	lot on nel 19 ♥ 10.5+dBm 2.43980 0Hr 2.43980 0Hr 2.41010 0Hr	Cond Bluete Spectrum Ref Level 20.00 dBm 11Pk View Y M1 12 dBm 0 dBm 0 dBm 01 -11.200 dB	ucted Spurio ooth LE 1Mbp	US Emiss DS GFSK		15.75 di 15.75 di 2.4360 G -47.04 di
Conducted Spurious Bluetooth LE 1Mbps (Conducted Spurious) Bluetooth LE 1Mbps (Conducted Spurious) Conducted Spurious Conduct	GFSK Chani	lot on nel 19 ♥ 10.5+dBm 2.43980 0Hr 2.43980 0Hr 2.41010 0Hr	Cond Bluete Spectrum Ref Level 20.00 dBm Att 10 dB PIP VIEW Y M1 10 dBm 0 dBm 0 dBm 0 1 -11.280 dB -20 dBm	ucted Spurio ooth LE 1Mbp	US Emiss DS GFSK		15.75 dl 15.75 dl 2.4360 C -47.04 dl
Conducted Spurious Bluetooth LE 1Mbps (Contruent 20.00 dBm Offset 26.00 dB * RBW 100 kHz t View dBm 01 -11.290 dBm dBm dBm	GFSK Chani	lot on nel 19 ♥ 10.5+dBm 2.43980 0Hr 2.43980 0Hr 2.41010 0Hr	Cond Bluete Spectrum Att 10 d8 9 FF VIEW Y M1 10 d8m 0 d8m 0 d8m 0 1 -11.280 d8 -20 d8m	ucted Spurio ooth LE 1Mbp	US Emiss DS GFSK		15.75 di 15.75 di 2.4360 G -47.04 di
Conducted Spurious Bluetooth LE 1Mbps (Conducted Spurious) Bluetooth LE 1Mbps (Conducted Spurious) (Conduct	Mode Sweep M1[1] 	Iot on nel 19 M1 16.54 dbm 2.43980 dHz - 43980 dHz	Cond Bluete Spectrum Ref Level 20.00 dBm Att 10 dB PIP VIew Y M1 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	ucted Spurio ooth LE 1Mbp	US Emiss DS GFSK (Channe	15.75 di 15.75 di 2.4360 G -47.04 di
Conducted Spurious Bluetooth LE 1Mbps (Conducted Spurious) Bluetooth LE 1Mbps (Conducted Spurious) Conducted Spurious Conduct	GFSK Chani	Iot on nel 19	Cond Bluete Spectrum Ref Level 20.00 dBm Att 10 dB PIP VIew Y M1 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	ucted Spurio ooth LE 1Mbp Offset 26:00 dB • RBW 100 SWT 2:30 ms • VBW 300	US Emiss DS GFSK (Channe	21 19 15.75 dt 2.4300 0 -47.04 dt 19.7440 0
Conducted Spurious Bluetooth LE 1Mbps (Conducted Spurious) Bluetooth LE 1Mbps (Conducted Switch (Conducte	Mode Sweep M1[1] 	Iot on nel 19	Cond Bluete	ucted Spurio ooth LE 1Mbp Offset 26:00 dB • RBW 100 SWT 2:30 ms • VBW 300	US Emiss DS GFSK (Channe	2 19 15.75 df 2.4300 G -47.04 df 19.7440 G
Conducted Spurious Bluetooth LE 1Mbps (Strum I Level 20.00 dBm Offset 26.00 dB WW 29.7 ms WBW 300 kHz I 0 dB SWT 29.7 ms WBW 300 kHz I 0 dB SWT 29.7 ms WBW 300 kHz I 0 dB SWT 29.7 ms WBW 300 kHz I 0 dB I 0	Mode Sweep M1[1] 	Iot on nel 19	Cond Bluete Spectrum Att 10 d8 DFF VIEW Y M1 10 d8m 0 d8m	ucted Spurio ooth LE 1Mbp Offset 26:00 dB • RBW 100 SWT 2:30 ms • VBW 300	US Emiss DS GFSK (Channe	2 19 15.75 df 2.4300 C -47.04 df 19.7440 C
Conducted Spurious Bluetooth LE 1Mbps (Mode Sweep M1[1] 	Iot on nel 19	Cond Bluete	ucted Spurio ooth LE 1Mbp offset 26.00 dB © RBW 100 swr 230 ms © VBW 300	US Emiss DS GFSK (Channe	2 19 15.75 df 2.4300 G -47.04 df 19.7440 G



<2Mbps>

TEL : 408 9043300	Page Number	: 26 of 37
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Issued Date	: Dec. 16, 2021
	Report Version	: 02

3.5 Radiated Band Edges and Spurious Emission Measurement

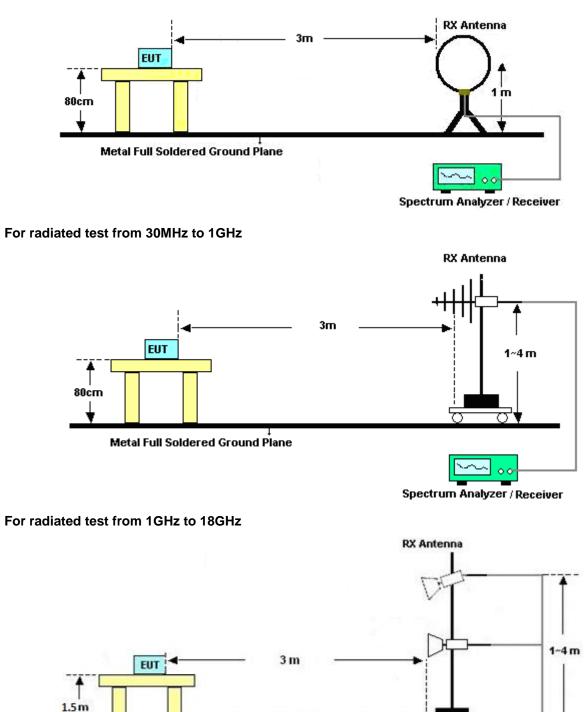
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands shall comply with the general field strength limits as following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

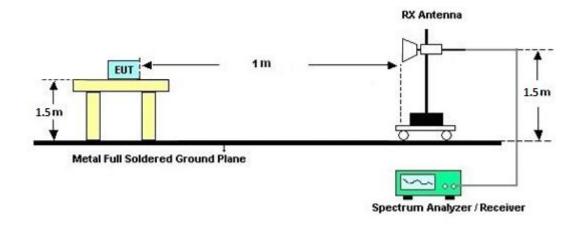
See list of measuring equipment of this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT was placed at distance 3 meter from measurement antenna which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1GHz was performed by adjusting the antenna tower from 1m to 4m and by rotating the turn table from 0degree to 360 degree to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1GHz was performed by adjusting the antenna tower from 1m to 4m and by rotating the turn table from 0 degree to 360 degree to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz



Metal Full Soldered Ground Plane

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

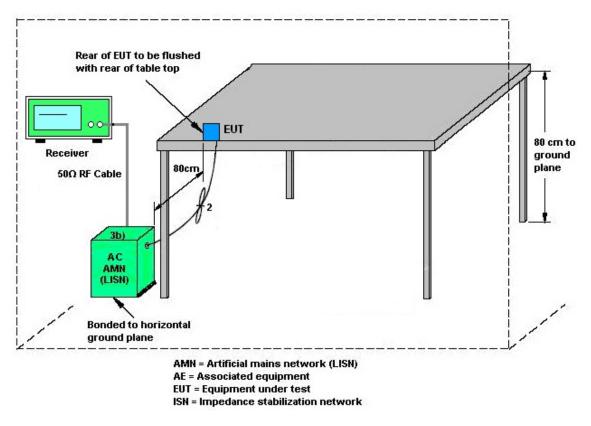
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power and power spectral density limit shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
LISN	TESEQ	NNB51	47407	N/A	Jul. 21, 2021	Aug. 16, 2021~ Oct. 19, 2021	Jul. 20, 2022	Conduction (CO01-CA)
LISN	TESEQ	NNB51	47415	N/A	Jun. 30, 2021	Aug. 16, 2021~ Oct. 19, 2021	Jun. 29, 2022	Conduction (CO01-CA)
EMI Test Receiver	R&S	ESR7	102177	9KHz~7GHz	Jun. 02, 2021	Aug. 16, 2021~ Oct. 19, 2021	Jun. 01, 2022	Conduction (CO01-CA)
Pulse limiter with 10dB attenuation	R&S	VTSD 9561-F N	9561-F- N00412	N/A	Jul. 07, 2021	Aug. 16, 2021~ Oct. 19, 2021	Jul. 06, 2022	Conduction (CO01-CA)
Test Software	R&S	EMC32 V10.30.0	N/A	N/A	N/A	Aug. 16, 2021~ Oct. 19, 2021	N/A	Conduction (CO01-CA)
Loop Antenna	R&S	HFH2-Z2E	100840	9kHz~30MHz	Jun. 21, 2021	Aug. 11, 2021~ Oct. 18, 2021	Jun. 20, 2022	Radiation (03CH02-CA)
Bilog Antenna	TESEQ	6111D	50392	30MHz~1GHz	Aug. 10, 2021	Aug. 11, 2021~ Oct. 18, 2021	Aug. 09, 2022	Radiation (03CH02-CA)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	02113	1GHz~18GHz	Jul. 08, 2021	Aug. 11, 2021~ Oct. 18, 2021	Jul. 07, 2022	Radiation (03CH02-CA)
Horn Antenna	SCHWARZBE CK	BBHA 9170D	00842	18GHz~40GHz	Jul. 20, 2021	Aug. 11, 2021~ Oct. 18, 2021	Jul. 19, 2022	Radiation (03CH02-CA)
Amplifier	SONOMA	310N	372240	N/A	Aug. 09, 2021	Aug. 11, 2021~ Oct. 18, 2021	Aug. 08, 2022	Radiation (03CH02-CA)
Preamplifier	Keysight	83017A	MY5327032 3	1GHz~26.5GHz	Jul. 27, 2021	Aug. 11, 2021~ Oct. 18, 2021	Jul. 26, 2022	Radiation (03CH02-CA)
Preamplifier	E-instrument	ERA-100M-18 G-56-01-A70	EC1900251	1GHz~18GHz	Mar. 30, 2021	Aug. 11, 2021~ Oct. 18, 2021	Mar. 29, 2022	Radiation (03CH02-CA)
Preamplifier	Jet-Power	JPA0118-55-30 3	1710001800 055004	1GHz~18GHz	Jul. 21, 2021	Aug. 11, 2021~ Oct. 18, 2021	Jul. 20, 2022	Radiation (03CH02-CA)
Preamplifier	EMEC	EMC18G40G	60725	18GHz-40GHz	Jul. 21, 2021	Aug. 11, 2021~ Oct. 18, 2021	Jul. 20, 2022	Radiation (03CH02-CA)
Spectrum Analyzer	Keysight	N9010A	MY5420048 5	10Hz~44GHz	Mar. 05, 2021	Aug. 11, 2021~ Oct. 18, 2021	Mar. 04, 2022	Radiation (03CH02-CA)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN10	3G Highpass	Jul. 23, 2021	Aug. 11, 2021~ Oct. 18, 2021	Jul. 22, 2022	Radiation (03CH02-CA)
Filter	Wainwright	WLK12-1200-1 272-11000-40 SS	SN1	1.2G Low Pass	Jul. 23, 2021	Aug. 11, 2021~ Oct. 18, 2021	Jul. 22, 2022	Radiation (03CH02-CA)
Hygrometer	TESEO	608-H1	45142602	N/A	Aug. 04, 2021	Aug. 11, 2021~ Oct. 18, 2021	Aug. 03, 2022	Radiation (03CH02-CA)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Aug. 11, 2021~ Oct. 18, 2021	N/A	Radiation (03CH02-CA)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Aug. 11, 2021~ Oct. 18, 2021	N/A	Radiation (03CH02-CA)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Aug. 11, 2021~ Oct. 18, 2021	N/A	Radiation (03CH02-CA)
Software	Audix	E3	N/A	N/A	N/A	Aug. 11, 2021~ Oct. 18, 2021	N/A	Radiation (03CH02-CA)

: 35 of 37 Page Number Issued Date Report Version

: Dec. 16, 2021

: 02

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	45141354	N/A	Jul. 30. 2021	Aug. 18, 2021~ Oct. 04, 2021	Jul. 29, 2022	Conducted (TH01-CA)
Power Sensor	DARE!!	RPR3006W	RPR6W-190 1024	10MHz-6GHz	Jul. 13, 2021	Aug. 18, 2021~ Oct. 04, 2021	Jul. 12, 2022	Conducted (TH01-CA)
Switch	EM Electronics	EMSW18	SW1070902	N/A	Aug. 03, 2021	Aug. 18, 2021~ Oct. 04, 2021	Aug. 02, 2022	Conducted (TH01-CA)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101545	10Hz-40GHz	Jun. 01, 2021	Aug. 18, 2021~ Oct. 04, 2021	May 31, 2022	Conducted (TH01-CA)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.0 dB
of 95% (U = 2Uc(y))	2.0 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4 7 dD
of 95% (U = 2Uc(y))	4.7 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	6.2 dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	6.4 dB
--	--------

Report Number : FR210727001A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Steve Chen	Temperature:	20.3~24	°C
Test Date:	2021/8/18~2021/10/4	Relative Humidity:	34.1~45.6	%

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth									
N	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
I	BLE	1Mbps	1	0	2402	1.051	0.709	0.50	Pass	
I	BLE	1Mbps	1	19	2440	1.053	0.710	0.50	Pass	
I	BLE	1Mbps	1	39	2480	1.049	0.704	0.50	Pass	

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	18.70	30.00	3.24	21.94	36.00	Pass
BLE	1Mbps	1	19	2440	18.70	30.00	3.24	21.94	36.00	Pass
BLE	1Mbps	1	39	2480	18.40	30.00	3.24	21.64	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	18.68	7.12	3.24	8.00	Pass	
BLE	1Mbps	1	19	2440	18.72	7.44	3.24	8.00	Pass	
BLE	1Mbps	1	39	2480	18.40	7.24	3.24	8.00	Pass	

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

Report Number : FR210727001A

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
BLE	2Mbps	1	0	2402	2.090	1.356	0.50	Pass		
BLE	2Mbps	1	19	2440	2.098	1.384	0.50	Pass		
BLE	2Mbps	1	38	2478	2.090	1.396	0.50	Pass		
BLE	2Mbps	1	39	2480	2.090	1.344	0.50	Pass		

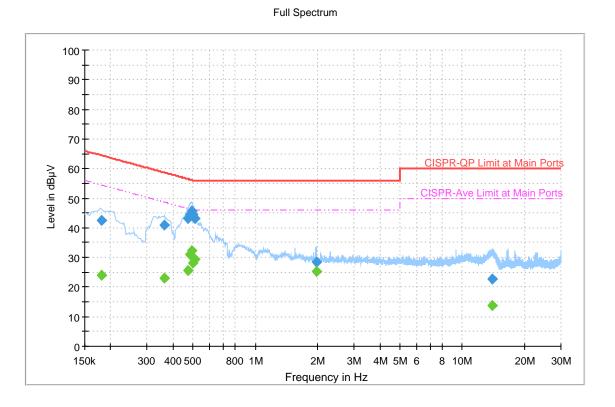
TEST RESULTS DATA Average Power Table

Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	17.20	30.00	3.24	20.44	36.00	Pass
BLE	2Mbps	1	19	2440	17.30	30.00	3.24	20.54	36.00	Pass
BLE	2Mbps	1	38	2478	17.90	30.00	3.24	21.14	36.00	Pass
BLE	2Mbps	1	39	2480	12.50	30.00	3.24	15.74	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	16.62	3.71	3.24	8.00	Pass
BLE	2Mbps	1	19	2440	16.85	3.39	3.24	8.00	Pass
BLE	2Mbps	1	38	2478	16.97	4.29	3.24	8.00	Pass
BLE	2Mbps	1	39	2480	11.57	-1.87	3.24	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

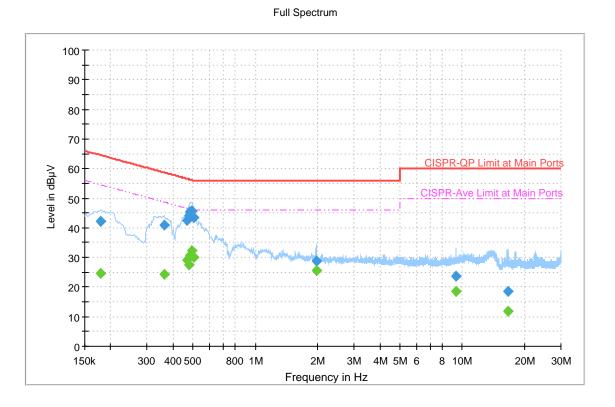


Appendix B. AC Conducted Emission Test Results

Test Engineer :	Jordon Huong	Temperature :	24~46 ℃
rest Engineer.	Jordan Huang	Relative Humidity :	43~47%

EUT Information Site: Power: Mode:

CO01-CA 120Vac/60Hz 1



Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.181500	(23.90	54.42	30.52	L1	OFF	20.3
0.181500	42.44		64.42	21.98	L1	OFF	20.3
0.363750		22.91	48.64	25.73	L1	OFF	20.3
0.363750	40.88		58.64	17.76	L1	OFF	20.3
0.474000		25.51	46.44	20.93	L1	OFF	20.3
0.474000	42.99		56.44	13.45	L1	OFF	20.3
0.480750		31.12	46.33	15.21	L1	OFF	20.3
0.480750	44.35		56.33	11.98	L1	OFF	20.3
0.492000		32.29	46.13	13.84	L1	OFF	20.3
0.492000	45.65		56.13	10.48	L1	OFF	20.3
0.501000		28.02	46.00	17.98	L1	OFF	20.3
0.501000	44.53		56.00	11.47	L1	OFF	20.3
0.507750		29.42	46.00	16.58	L1	OFF	20.3
0.507750	43.27		56.00	12.73	L1	OFF	20.3
1.965750		25.20	46.00	20.80	L1	OFF	20.3
1.965750	28.42		56.00	27.58	L1	OFF	20.3
13.933500		13.65	50.00	36.35	L1	OFF	20.5
13.933500	22.72		60.00	37.28	L1	OFF	20.5

EUT Information Site: Power: Mode:

CO01-CA 120Vac/60Hz 1

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.179250		24.53	54.52	29.99	Ν	OFF	20.2
0.179250	42.25		64.52	22.27	Ν	OFF	20.2
0.361500		24.29	48.69	24.40	Ν	OFF	20.3
0.361500	40.79		58.69	17.90	Ν	OFF	20.3
0.469500		29.05	46.52	17.47	Ν	OFF	20.3
0.469500	42.63		56.52	13.89	Ν	OFF	20.3
0.476250		27.58	46.40	18.82	Ν	OFF	20.3
0.476250	43.99		56.40	12.41	Ν	OFF	20.3
0.485250		30.64	46.25	15.61	Ν	OFF	20.3
0.485250	45.51		56.25	10.74	Ν	OFF	20.3
0.492000		32.38	46.13	13.75	Ν	OFF	20.3
0.492000	45.64		56.13	10.49	Ν	OFF	20.3
0.505500		30.04	46.00	15.96	Ν	OFF	20.3
0.505500	43.46		56.00	12.54	Ν	OFF	20.3
1.965750		25.40	46.00	20.60	Ν	OFF	20.3
1.965750	28.62		56.00	27.38	Ν	OFF	20.3
9.350250		18.54	50.00	31.46	Ν	OFF	20.4
9.350250	23.80		60.00	36.20	Ν	OFF	20.4
16.651500		11.90	50.00	38.10	Ν	OFF	20.5
16.651500	18.62		60.00	41.38	Ν	OFF	20.5

Appendix C. Radiated Spurious Emission

Test Engineer :	Michael Bui and Daniel Lee	Temperature :	20~24°C
lest Engineer .		Relative Humidity :	42~48%

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2338.035	55.83	-18.17	74	41.68	28.01	17.45	31.31	400	58	Ρ	Н
		2369.955	45.55	-8.45	54	31.51	27.82	17.52	31.3	400	58	А	Н
	*	2402	112.63	-	-	98.71	27.62	17.57	31.27	400	58	Ρ	Н
	*	2402	112.35	-	-	98.43	27.62	17.57	31.27	400	58	А	Н
BLE													Н
CH 00													Н
2402MHz		2369.85	59.36	-14.64	74	45.1	28.04	17.52	31.3	205	19	Р	V
240211112		2369.955	52.65	-1.35	54	38.39	28.04	17.52	31.3	205	19	А	V
	*	2402	117.19	-	-	102.91	27.98	17.57	31.27	164	339	Ρ	V
	*	2402	116.91	-	-	102.63	27.98	17.57	31.27	164	339	А	V
													V
													V
		2384.4	55.78	-18.22	74	41.81	27.72	17.54	31.29	394	55	Р	Н
		2375.92	44.63	-9.37	54	30.61	27.78	17.53	31.29	394	55	А	Н
	*	2440	113.61	-	-	99.72	27.5	17.65	31.26	394	55	Ρ	Η
	*	2440	113.3	-	-	99.41	27.5	17.65	31.26	394	55	А	Н
		2485.52	55.82	-18.18	74	41.83	27.48	17.75	31.24	394	55	Р	Н
BLE		2497.44	44.36	-9.64	54	30.34	27.48	17.77	31.23	394	55	А	Н
CH 19 2440MHz		2376.24	56.89	-17.11	74	42.58	28.07	17.53	31.29	164	339	Р	V
2440101112		2376.08	49.07	-4.93	54	34.76	28.07	17.53	31.29	164	339	А	V
	*	2440	118.35	-	-	104.26	27.7	17.65	31.26	164	339	Р	V
	*	2440	118.07	-	-	103.98	27.7	17.65	31.26	164	339	А	V
		2497.36	56.16	-17.84	74	42.11	27.51	17.77	31.23	164	339	Р	V
		2488.16	45.18	-8.82	54	31.14	27.52	17.76	31.24	164	339	А	V

	*	2480	112.51	-	-	98.53	27.48	17.74	31.24	381	57	Р	Н
	*	2480	112.19	-	-	98.21	27.48	17.74	31.24	381	57	А	Н
		2483.6	58.79	-15.21	74	44.8	27.48	17.75	31.24	381	57	Р	Н
		2483.52	49.24	-4.76	54	35.25	27.48	17.75	31.24	381	57	А	н
													н
BLE													Н
CH 39 2480MHz	*	2480	117.94	-	-	103.91	27.53	17.74	31.24	271	330	Р	V
240010112	*	2480	117.67	-	-	103.64	27.53	17.74	31.24	271	330	А	V
		2483.56	63.43	-10.57	74	49.4	27.52	17.75	31.24	271	330	Р	V
		2483.5	53.86	-0.14	54	39.83	27.52	17.75	31.24	271	330	Р	V
													V
													V
Remark		o other spurious		Peak and	Average lir	nit line.							

_				B	BLE (Harm	onic @	3m)						_
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	нлл
		4804	53.6	-20.4	τα ο ματική γ 74	78.9	31.43	11.48	68.21	100	301	P	н Н
		4804	48.98	-5.02	54	74.28	31.43	11.48	68.21	100	301	A	Н
		11355	50.35	-23.65	74	60.79	39.94	17.33	67.71	-	-	Р	Н
		11355	38.45	-15.55	54	48.89	39.94	17.33	67.71	-	-	А	Н
		12010	53.74	-20.26	74	64.4	39.25	17.87	67.78	312	289	Р	Н
		12010	48.24	-5.76	54	58.9	39.25	17.87	67.78	312	289	Α	Н
		14490	50.79	-23.21	74	56.87	41.76	19.9	67.74	-	-	Р	н
		14490	41.45	-12.55	54	47.53	41.76	19.9	67.74	-	-	А	Н
		18000	60.58	-13.42	74	58.6	48.43	22.97	69.42	-	-	Р	Н
		18000	50.08	-3.92	54	48.1	48.43	22.97	69.42	-	-	А	Н
													Н
BLE													Н
CH 00		4804	52.18	-21.82	74	77.5	31.41	11.48	68.21	305	19	Р	V
2402MHz		4804	46.88	-7.12	54	72.2	31.41	11.48	68.21	305	19	А	V
		11355	50.07	-23.93	74	60.49	39.96	17.33	67.71	-	-	Р	V
		11355	38.79	-15.21	54	49.21	39.96	17.33	67.71	-	-	А	V
		12010	58.66	-15.34	74	69.21	39.36	17.87	67.78	100	24	Р	V
		12010	52.83	-1.17	54	63.38	39.36	17.87	67.78	100	24	А	V
		14490	50.87	-23.13	74	57.08	41.63	19.9	67.74	-	-	Р	V
		14490	41.62	-12.38	54	47.83	41.63	19.9	67.74	-	-	А	V
		17985	60	-14	74	58.81	47.66	22.95	69.42	-	-	Р	V
		17985	49.7	-4.3	54	48.51	47.66	22.95	69.42	-	-	А	V
													V
													V
													V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	47.83	-26.17	74	72.92	31.44	11.62	68.15	-	-	P	Н
		7320	47.96	-26.04	74	64.55	36.41	13.82	66.82	-	-	Р	Н
		11400	50.49	-23.51	74	60.71	40.1	17.36	67.68	-	-	Ρ	Н
		11400	39.34	-14.66	54	49.56	40.1	17.36	67.68	-	-	А	Н
		12200	53.47	-20.53	74	63.61	39.31	18.03	67.48	300	296	Ρ	н
		12200	47.67	-6.33	54	57.81	39.31	18.03	67.48	300	296	А	Н
		14490	51.45	-22.55	74	57.53	41.76	19.9	67.74	-	-	Ρ	Н
		14490	41.28	-12.72	54	47.36	41.76	19.9	67.74	-	-	А	Н
		17985	60.48	-13.52	74	58.9	48.05	22.95	69.42	-	-	Ρ	Н
		17985	50.18	-3.82	54	48.6	48.05	22.95	69.42	-	-	А	Н
51.5													Н
BLE													Н
CH 19 2440MHz		4880	46.16	-27.84	74	71.16	31.53	11.62	68.15	-	-	Ρ	V
2440101112		7320	47.65	-26.35	74	64.3	36.35	13.82	66.82	-	-	Ρ	V
		11025	49.65	-24.35	74	60.36	40.24	17.05	68	-	-	Ρ	V
		11025	38.4	-15.6	54	49.11	40.24	17.05	68	-	-	А	V
		12200	59.06	-14.94	74	69.08	39.43	18.03	67.48	100	24	Ρ	V
		12200	53.62	-0.38	54	63.64	39.43	18.03	67.48	100	24	А	V
		14490	51.72	-22.28	74	57.93	41.63	19.9	67.74	-	-	Ρ	V
		14490	41.62	-12.38	54	47.83	41.63	19.9	67.74	-	-	А	V
		17970	59.93	-14.07	74	59.09	47.32	22.94	69.42	-	-	Ρ	V
		17970	49.63	-4.37	54	48.79	47.32	22.94	69.42	-	-	А	V
													V
													V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		4960	46.74	-27.26	74	71.84	31.54	11.46	68.1	-	-	Р	Н
		7440	47.94	-26.06	74	64.29	36.59	13.9	66.84	-	-	Р	Н
		10965	50.34	-23.66	74	61.1	40.31	17	68.07	-	-	Р	Н
		10965	39.2	-14.8	54	49.96	40.31	17	68.07	-	-	А	Н
		12400	52.5	-21.5	74	62.7	38.75	18.22	67.17	274	288	Р	Н
		12400	46.1	-7.9	54	56.3	38.75	18.22	67.17	274	288	А	Н
		14490	51.22	-22.78	74	57.3	41.76	19.9	67.74	-	-	Р	Н
		14490	41.29	-12.71	54	47.37	41.76	19.9	67.74	-	-	А	Н
		17940	60.11	-13.89	74	59.71	46.92	22.9	69.42	-	-	Р	н
		17940	49.31	-4.69	54	48.91	46.92	22.9	69.42	-	-	А	Н
													Н
BLE													Н
CH 39		4960	44.05	-29.95	74	69.22	31.47	11.46	68.1	-	-	Р	V
2480MHz		7440	47.93	-26.07	74	64.45	36.42	13.9	66.84	-	-	Р	V
		11265	50.04	-23.96	74	60.69	39.89	17.25	67.79	-	-	Р	V
		11265	37.94	-16.06	54	48.59	39.89	17.25	67.79	-	-	А	V
		12400	57.5	-16.5	74	67.56	38.89	18.22	67.17	100	24	Р	V
		12400	51.91	-2.09	54	61.97	38.89	18.22	67.17	100	24	А	V
		14500	52.11	-21.89	74	58.27	41.66	19.91	67.73	-	-	Р	V
		14500	41.77	-12.23	54	47.93	41.66	19.91	67.73	-	-	А	V
		17955	59.77	-14.23	74	59.3	46.97	22.92	69.42	-	-	Р	V
		17955	49.67	-4.33	54	49.2	46.97	22.92	69.42	-	-	А	V
													V
													V
													V
	1. N	o other spuriou	s found.			•						·	
	2. Al	l results are PA	SS against F	Peak and	Average lim	it line.							
Remark	3. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin												
	against limit or noise floor only.												
	4. Tł	ne emission lev	el close to 18	BGHz is (checked that	the average	ge emissior	n level is i	noise floor	only.			

Emission after 18GHz

2.4GHz BLE (SHF)
--------------	------

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		24664	44.45	-29.55	74	40.54	39.05	16.36	51.5	-	-	Р	Н
		26100.5	45.9	-28.1	74	40.83	39.28	17.54	51.75	-	-	Р	Н
													Н
													н
													Н
													н
													н
													н
													н
													н
													н
2.4GHz													н
BLE		24400.5	45.34	-28.66	74	41.73	39	16.04	51.43	_	_	Р	V
SHF		25446	46.39	-27.61	74	41.72	39.11	17.13	51.57	_	_	P	v
		20110	10.00	21.01			00.11		01.07			•	V
													v
													V
													V
													V
													V
													V
													V
													V
		<u> </u>											V
		o other spuriou		,									
Remark	 All results are PASS against limit line. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin 												
					ieans no sus	pected en	iission foun	a and em	iission leve	ei has ai	i least 60	ing mai	rgin
	a	gainst limit or no	Dise floor only	у.									

Emission below 1GHz

					2.4GHz)					1	
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table		
		(MHz)	(dBµV/m)	Limit (dB)	Line		Factor	Loss (dB)	Factor (dB)	Pos	Pos	Avg.	(H/V)
		70.74	25.36	-14.64	(dBμV/m) 40	(dBµV) 43.83	(dB/m) 12.47	<u>(uв)</u> 1.49	32.43	(cm)	(deg)	P	(п/v) Н
		125.06	30.91	-12.59	43.5	43.77	17.7	1.84	32.4	_	-	P	н
		139.61	29.72	-13.78	43.5	42.7	17.44	1.98	32.4	-	-	Р	Н
		752.65	37.58	-8.42	46	37.36	28	4.59	32.37	-	-	Р	н
		874.87	39.06	-6.94	46	36.71	29.1	5.03	31.78	-	-	Р	н
		957.32	34.92	-11.08	46	29.93	30.85	5.28	31.14	-	-	Р	н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE													Н
LF		51.34	33.03	-6.97	40	50.59	13.63	1.24	32.43	-	-	Р	V
		125.06	32.39	-11.11	43.5	45.25	17.7	1.84	32.4	-	-	Р	V
		207.51	23.6	-19.9	43.5	38.41	15.2	2.39	32.4	-	-	Р	V
		749.74	34.13	-11.87	46	33.94	27.99	4.58	32.38	-	-	Р	V
		874.87	36.42	-9.58	46	34.07	29.1	5.03	31.78	-	-	Р	V
		956.35	35.04	-10.96	46	30.07	30.83	5.28	31.14	-	-	Р	V
													V
													V
													V
													V
													V
													V
		o other spurious											
Remark		results are PA	-										
		e emission pos			eans no sus	pected em	ission foun	d and em	ission leve	el has at	t least 60	dB ma	rgin
	ag	ainst limit or no	bise floor only	/.									

2.4GHz BLE (LF)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2388.12	56.38	-17.62	74	42.41	27.7	17.55	31.28	400	58	Ρ	Н
		2369.535	45.18	-8.82	54	31.14	27.82	17.52	31.3	400	58	А	Н
	*	2402	112.77	-	-	98.85	27.62	17.57	31.27	400	58	Р	Н
	*	2402	111.56	-	-	97.64	27.62	17.57	31.27	400	58	А	Н
BLE													Н
CH 00													Н
2402MHz		2370.585	59	-15	74	44.73	28.04	17.52	31.29	199	19	Р	V
		2370.48	48.63	-5.37	54	34.36	28.04	17.52	31.29	199	19	А	V
	*	2402	117.43	-	-	103.15	27.98	17.57	31.27	199	19	Ρ	V
-	*	2402	116.2	-	-	101.92	27.98	17.57	31.27	199	19	А	V
													V
													V
		2341.36	55.17	-18.83	74	41.03	27.99	17.46	31.31	394	58	Р	н
		2376.08	44.55	-9.45	54	30.53	27.78	17.53	31.29	394	58	А	н
	*	2440	110.4	-	-	96.51	27.5	17.65	31.26	394	58	Ρ	Н
	*	2440	109.15	-	-	95.26	27.5	17.65	31.26	394	58	А	Н
		2486.8	55.66	-18.34	74	41.67	27.48	17.75	31.24	394	58	Р	Н
BLE CH 19		2500	44.36	-9.64	54	30.33	27.48	17.78	31.23	394	58	А	Н
2440MHz		2375.44	56.82	-17.18	74	42.51	28.07	17.53	31.29	113	341	Ρ	V
		2375.92	48.09	-5.91	54	33.78	28.07	17.53	31.29	113	341	А	V
	*	2440	117.92	-	-	103.83	27.7	17.65	31.26	113	341	Р	V
	*	2440	116.65	-	-	102.56	27.7	17.65	31.26	113	341	А	V
		2488.24	56	-18	74	41.96	27.52	17.76	31.24	113	341	Р	V
		2485.04	45.15	-8.85	54	31.12	27.52	17.75	31.24	113	341	А	V

	*	2478	117.08	-	-	103.1	27.48	17.74	31.24	351	186	Р	Н
	*	2478	115.84	-	-	101.86	27.48	17.74	31.24	351	186	А	Н
		2483.72	58.56	-15.44	74	44.57	27.48	17.75	31.24	351	186	Р	Н
		2483.52	48.65	-5.35	54	34.66	27.48	17.75	31.24	351	186	А	н
BLE													Н
CH 38													Н
2478MHz	*	2478	115.24	-	-	101.21	27.53	17.74	31.24	400	264	Р	V
	*	2478	113.94	-	-	99.91	27.53	17.74	31.24	400	264	А	V
		2484.44	57.6	-16.4	74	43.57	27.52	17.75	31.24	400	264	Р	V
		2483.52	47.71	-6.29	54	33.68	27.52	17.75	31.24	400	264	А	V
													V
													V
	*	2480	111.35	-	-	97.37	27.48	17.74	31.24	349	195	Р	Н
	*	2480	110.12	-	-	96.14	27.48	17.74	31.24	349	195	А	Н
		2483.56	61.2	-12.8	74	47.21	27.48	17.75	31.24	349	195	Ρ	Н
		2483.52	53.07	-0.93	54	39.08	27.48	17.75	31.24	349	195	А	Н
BLE													H
CH 39													Н
2480MHz	*	2480	111.17	-	-	97.14	27.53	17.74	31.24	400	264	Р	V
	*	2480	109.96	-	-	95.93	27.53	17.74	31.24	400	264	A	V
		2483.56	61.98	-12.02	74	47.95	27.52	17.75	31.24	400	264	Р	V
		2483.52	52.67	-1.33	54	38.64	27.52	17.75	31.24	400	264	A	V
													V
													V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Poak	Pol
DLL	NOLE	riequency	Levei	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	FOI.
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		4804	47.89	-26.11	74	73.19	31.43	11.48	68.21	-	-	Ρ	Н
		11025	50	-24	74	60.71	40.24	17.05	68	-	-	Ρ	Н
		11025	38.21	-15.79	54	48.92	40.24	17.05	68	-	-	А	Н
		12010	54.98	-19.02	74	65.64	39.25	17.87	67.78	291	305	Р	Н
		12010	47.26	-6.74	54	57.92	39.25	17.87	67.78	291	305	А	Н
		14490	50.98	-23.02	74	57.06	41.76	19.9	67.74	-	-	Ρ	Н
		14490	41.3	-12.7	54	47.38	41.76	19.9	67.74	-	-	А	Н
		17985	60.38	-13.62	74	58.8	48.05	22.95	69.42	-	-	Р	Н
		17985	60.38	-13.62	74	58.8	48.05	22.95	69.42	-	-	Р	Н
													Н
													Н
BLE													Н
CH 00 2402MHz		4804	47.81	-26.19	74	73.13	31.41	11.48	68.21	-	-	Ρ	V
240210172		10830	50.25	-23.75	74	61.48	40.11	16.9	68.24	-	-	Р	V
		10830	38.2	-15.8	54	49.43	40.11	16.9	68.24	-	-	А	V
		12010	58.15	-15.85	74	68.7	39.36	17.87	67.78	100	25	Ρ	V
		12010	51.85	-2.15	54	62.4	39.36	17.87	67.78	100	25	А	V
		14490	51.12	-22.88	74	57.33	41.63	19.9	67.74	-	-	Ρ	V
		14490	41.67	-12.33	54	47.88	41.63	19.9	67.74	-	-	А	V
		17970	60.03	-13.97	74	59.19	47.32	22.94	69.42	-	-	Р	V
		17970	50.03	-3.97	54	49.19	47.32	22.94	69.42	-	-	А	V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	47.76	-26.24	74	72.85	31.44	11.62	68.15	-	-	Р	н
		7320	47.96	-26.04	74	64.55	36.41	13.82	66.82	-	-	Р	Н
		11265	49.75	-24.25	74	60.47	39.82	17.25	67.79	-	-	Р	Н
		11265	39.08	-14.92	54	49.8	39.82	17.25	67.79	-	-	А	Н
		12200	55.28	-18.72	74	65.42	39.31	18.03	67.48	286	307	Ρ	Н
		12200	47.38	-6.62	54	57.52	39.31	18.03	67.48	286	307	А	Н
		14500	52.43	-21.57	74	58.46	41.79	19.91	67.73	-	-	Р	Н
		14500	41.41	-12.59	54	47.44	41.79	19.91	67.73	-	-	А	Н
		17955	60.38	-13.62	74	59.6	47.28	22.92	69.42	-	-	Р	Н
		17955	49.58	-4.42	54	48.8	47.28	22.92	69.42	-	-	А	Н
													Н
BLE													Н
CH 19 2440MHz		4880	46.11	-27.89	74	71.11	31.53	11.62	68.15	-	-	Р	V
244010182		7320	47.58	-26.42	74	64.23	36.35	13.82	66.82	-	-	Р	V
		11640	49.89	-24.11	74	60.14	39.84	17.56	67.65	-	-	Р	V
		11640	38.93	-15.07	54	49.18	39.84	17.56	67.65	-	-	А	V
		12200	58.99	-15.01	74	69.01	39.43	18.03	67.48	100	22	Р	V
		12200	52.44	-1.56	54	62.46	39.43	18.03	67.48	100	22	А	V
		14490	51.68	-22.32	74	57.89	41.63	19.9	67.74	-	-	Р	V
		14490	41.67	-12.33	54	47.88	41.63	19.9	67.74	-	-	А	V
		17985	60.4	-13.6	74	59.21	47.66	22.95	69.42	-	-	Р	V
		17985	50.3	-3.7	54	49.11	47.66	22.95	69.42	-	-	А	V
													V
													V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4956	42.75	-31.25	74	67.86	31.52	11.47	68.1	-	-	P	Н
		7434	44.35	-29.65	74	60.72	36.58	13.89	66.84	-	-	Р	Н
		10920	49.9	-24.1	74	60.71	40.34	16.97	68.12	-	-	Р	Н
		10920	38.8	-15.2	54	49.61	40.34	16.97	68.12	-	-	А	Н
		12390	53.5	-20.5	74	63.69	38.78	18.21	67.18	233	210	Р	Н
		12390	46.47	-7.53	54	56.66	38.78	18.21	67.18	233	210	А	Н
		14490	50.33	-23.67	74	56.41	41.76	19.9	67.74	-	-	Ρ	Н
		14490	41.28	-12.72	54	47.36	41.76	19.9	67.74	-	-	А	Н
		18000	60.18	-13.82	74	58.2	48.43	22.97	69.42	-	-	Р	Н
		18000	50.28	-3.72	54	48.3	48.43	22.97	69.42	-	-	А	Н
515													Н
BLE													н
CH 38 2478MHz		4956	45.5	-28.5	74	70.67	31.46	11.47	68.1	-	-	Р	V
24701112		7434	47.93	-26.07	74	64.47	36.41	13.89	66.84	-	-	Р	V
		10920	49.69	-24.31	74	60.53	40.31	16.97	68.12	-	-	Р	V
		10920	39.03	-14.97	54	49.87	40.31	16.97	68.12	-	-	А	V
		12390	57.49	-16.51	74	67.54	38.92	18.21	67.18	100	243	Ρ	V
		12390	51.16	-2.84	54	61.21	38.92	18.21	67.18	100	243	А	V
		14490	50.43	-23.57	74	56.64	41.63	19.9	67.74	-	-	Р	V
		14490	41.66	-12.34	54	47.87	41.63	19.9	67.74	-	-	А	V
		17955	58.87	-15.13	74	58.4	46.97	22.92	69.42	-	-	Р	V
		17955	49.27	-4.73	54	48.8	46.97	22.92	69.42	-	-	Α	V
													V
													V

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	. ,
		4960	41.9	-32.1	74	67	31.54	11.46	68.1	-	-	Р	Н
		7440	44.94	-29.06	74	61.29	36.59	13.9	66.84	-	-	Р	Н
		11370	50.17	-23.83	74	60.54	39.99	17.34	67.7	-	-	Р	Н
		11370	39.48	-14.52	54	49.85	39.99	17.34	67.7	-	-	Α	Н
		14490	50.95	-23.05	74	57.03	41.76	19.9	67.74	-	-	Р	Н
		14490	41.38	-12.62	54	47.46	41.76	19.9	67.74	-	-	А	Н
		17985	59.78	-14.22	74	58.2	48.05	22.95	69.42	-	-	Р	Н
		17985	49.98	-4.02	54	48.4	48.05	22.95	69.42	-	-	А	Н
													Н
													Н
													Н
BLE													н
CH 39 2480MHz		4960	44.2	-29.8	74	69.37	31.47	11.46	68.1	-	-	Р	V
240011112		7440	44.57	-29.43	74	61.09	36.42	13.9	66.84	-	-	Р	V
		11310	50.15	-23.85	74	60.69	39.92	17.29	67.75	-	-	Р	V
		11310	38.66	-15.34	54	49.2	39.92	17.29	67.75	-	-	А	V
		14490	50.23	-23.77	74	56.44	41.63	19.9	67.74	-	-	Р	V
		14490	41.62	-12.38	54	47.83	41.63	19.9	67.74	-	-	А	V
		17940	58.94	-15.06	74	58.81	46.65	22.9	69.42	-	-	Р	V
		17940	49.74	-4.26	54	49.61	46.65	22.9	69.42	-	-	А	V
													V
													V
													V
													V
	1. No	o other spurious	s found.								•	·	
	2. All	results are PA	SS against F	Peak and	Average lim	it line.							
Remark	3. Th	e emission pos	sition marked	l as "-" m	ieans no sus	pected em	ission foun	d and em	ission leve	el has at	least 60	lB mai	gin
	ag	ainst limit or no	oise floor only	у.									
	4. Th	e emission lev	el close to 18	BGHz is (checked that	the average	ge emissior	ı level is ı	noise floor	only.			

Emission after 18GHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		24443	44.44	-29.56	74	40.83	38.95	16.1	51.44	-	-	Р	Н
		25386.5	46.34	-27.66	74	41.71	39.09	17.08	51.54	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE		24757.5	44.83	-29.17	74	40.72	39.16	16.48	51.53	-	-	Р	V
SHF		26134.5	46.26	-27.74	74	41.07	39.41	17.53	51.75	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spurious	s found.	1	1		1		1	1	1		
Remark	2. AI	l results are PA	SS against li	imit line.									
Reinark	3. Tł	ne emission pos	sition marked	l as "-" m	ieans no sus	pected em	nission foun	d and em	ission leve	el has at	t least 60	B ma	rgin
	ag	gainst limit or no	bise floor only	y.									

Emission below 1GHz

					2.4GHz)	_					
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table		
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		125.06	31.24	-12.26	43.5	44.1	17.7	1.84	32.4	-	- (ucg)	P	н
		140.58	28.15	-15.35	43.5	41.18	17.4	1.98	32.41	-	-	Р	н
		749.74	35.8	-10.2	46	35.61	27.99	4.58	32.38	-	-	Р	н
		874.87	39.34	-6.66	46	36.99	29.1	5.03	31.78	-	-	Р	н
		910.76	33.38	-12.62	46	30.37	29.42	5.11	31.52	-	-	Р	Н
		954.41	34.71	-11.29	46	29.82	30.79	5.27	31.17	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE													Н
LF		50.37	33.12	-6.88	40	50.22	14.11	1.23	32.44	-	-	Р	V
		125.06	32.99	-10.51	43.5	45.85	17.7	1.84	32.4	-	-	Р	V
		207.51	23.72	-19.78	43.5	38.53	15.2	2.39	32.4	-	-	Р	V
		754.59	35.73	-10.27	46	35.51	28	4.59	32.37	-	-	Р	V
		874.87	37.18	-8.82	46	34.83	29.1	5.03	31.78	-	-	Р	V
		952.47	34.85	-11.15	46	30.01	30.75	5.27	31.18	-	-	Р	V
													V
													V
													V
													V
													V
													V
		o other spurious											
Remark		results are PA	-			<i>.</i> .							
		e emission pos			eans no sus	pected err	nission foun	d and em	ission leve	el has at	ieast 60	iB ma	rgin
	ag	ainst limit or no	bise floor only	/.									

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

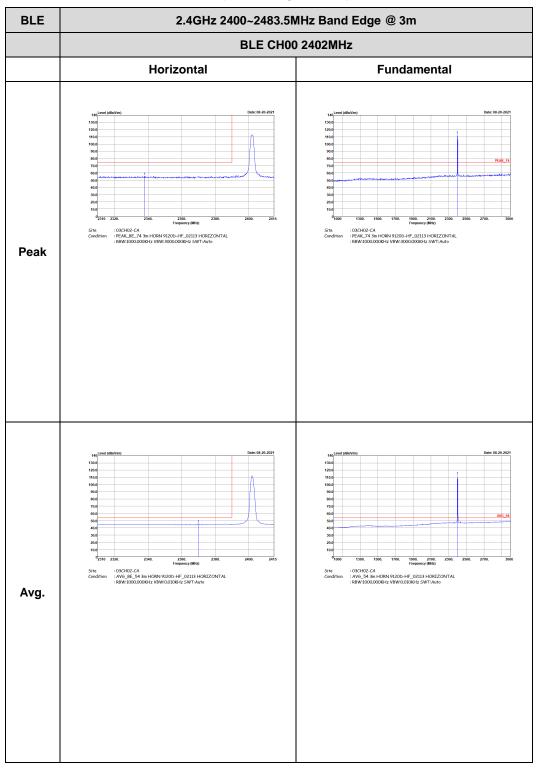
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

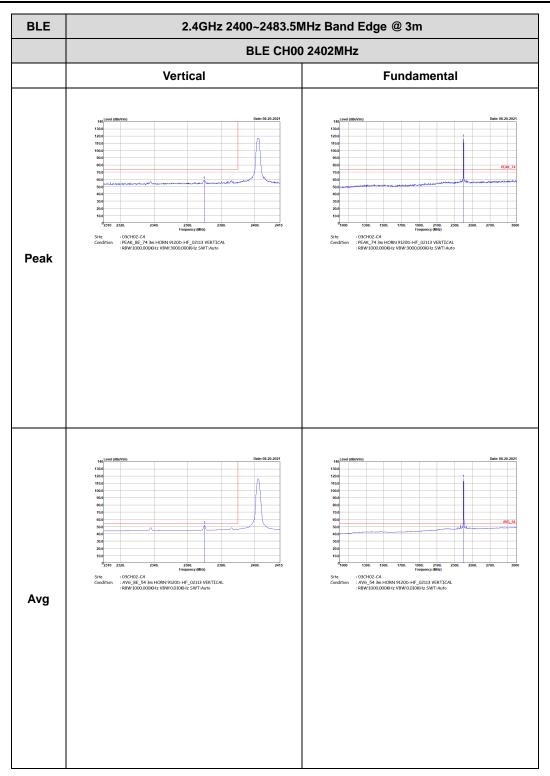
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

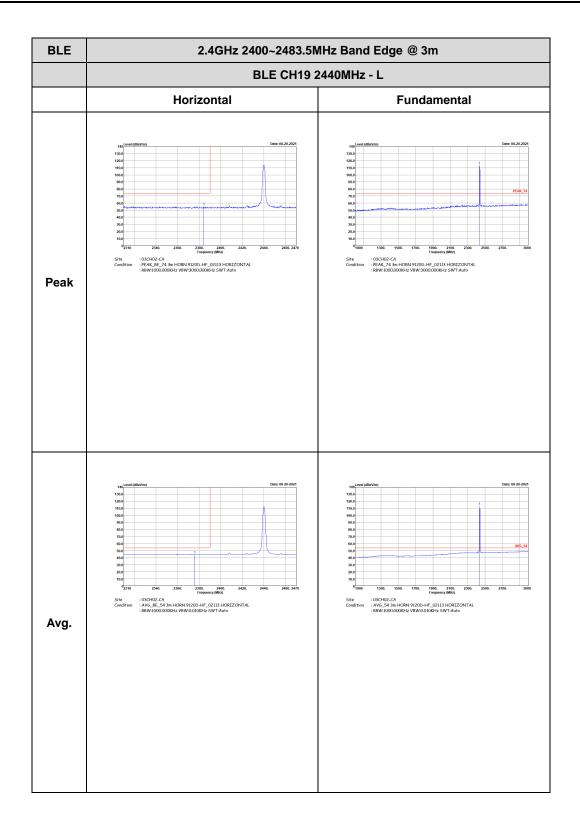
Relative Humidity : 42~48%	Toot Engineer	Michael Bui and Daniel Lee	Temperature :	20~24°C
	Test Engineer :		Relative Humidity :	42~48%

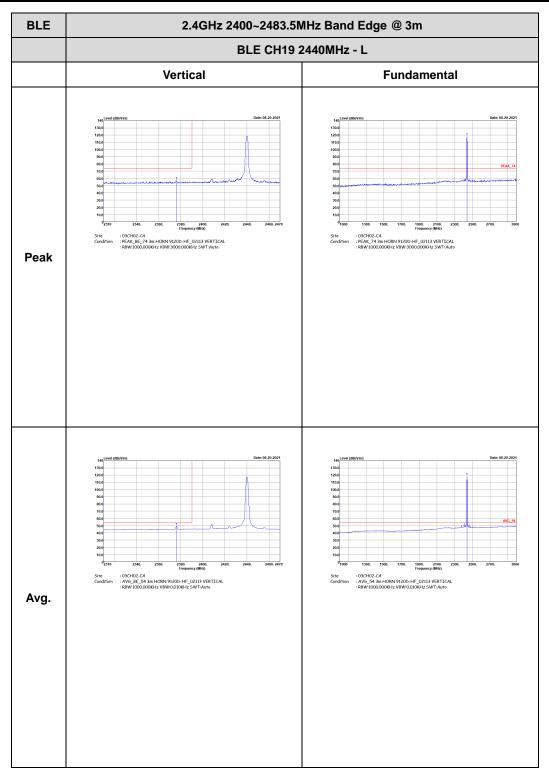
Note symbol


-L	Low channel location
-R	High channel location

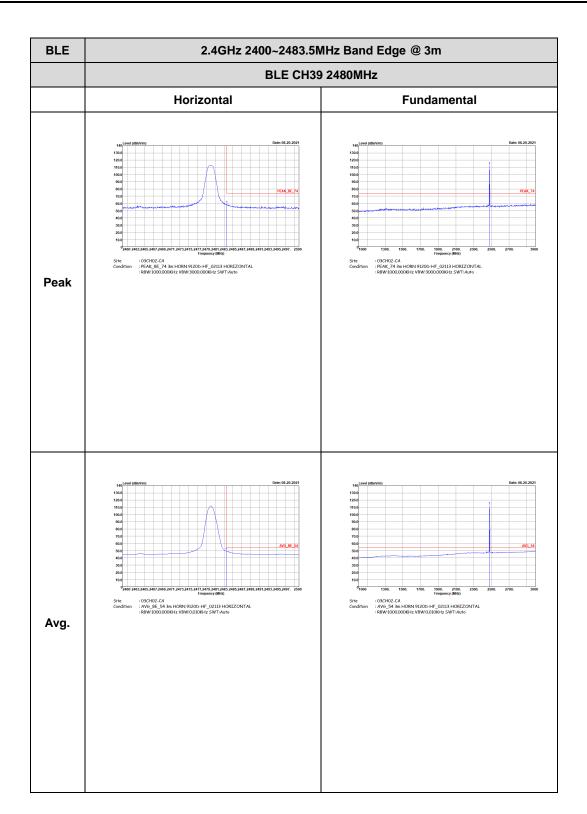

<1Mbps>

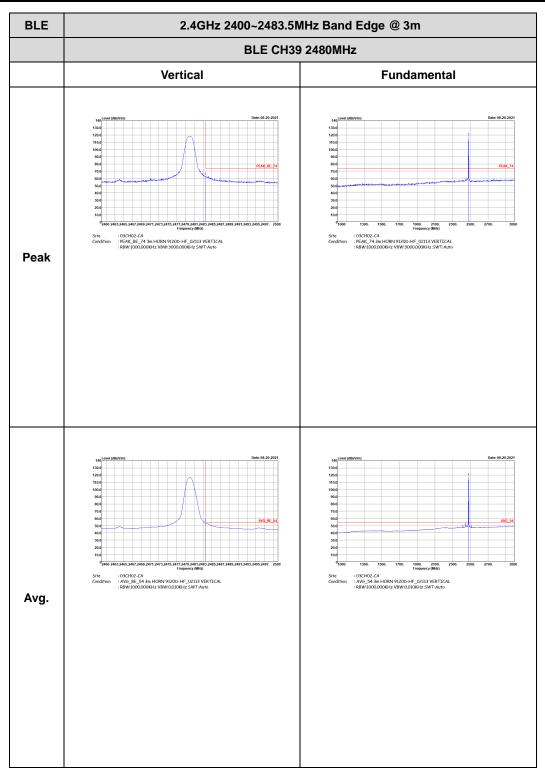
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

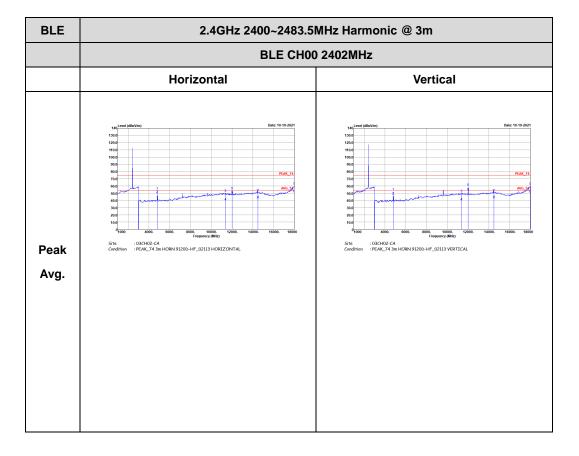


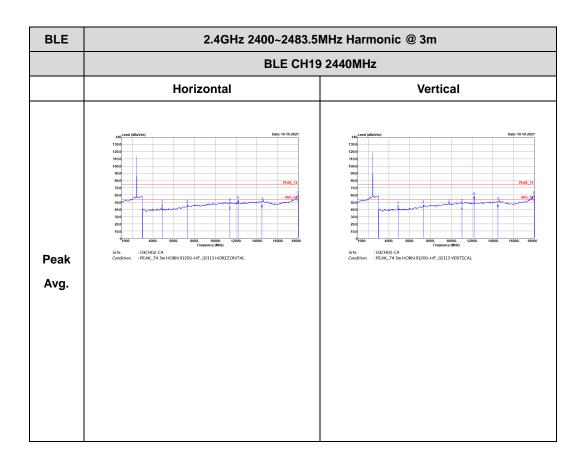
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m			
	BLE CH19 2440MHz - R			
	Horizontal	Fundamental		
Peak	Image: constraint of the systemImage: constraint of	Left blank		
Avg.	Market differ/Weig Date: 68-28-28241 138 Date: 68-28-28241 139 Date: 68-28-28241 <t< th=""><th colspan="2">Left blank</th></t<>	Left blank		



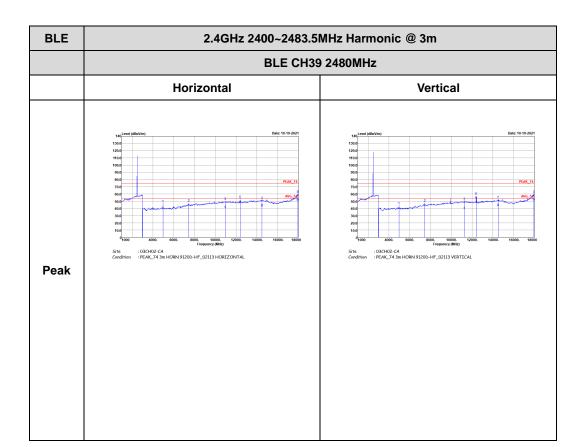


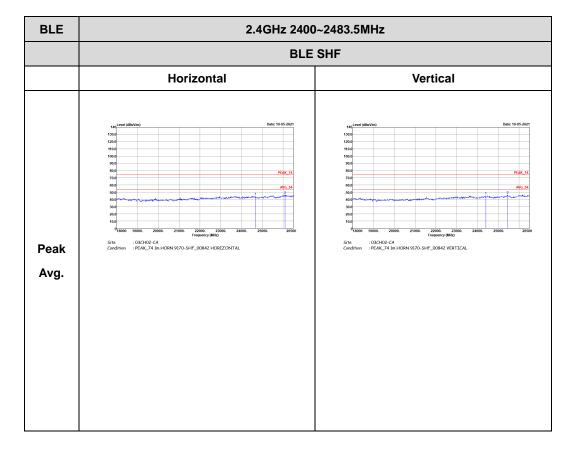
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m			
	BLE CH19 2440MHz - R			
	Vertical	Fundamental		
Peak	Image: service servic	Left blank		
Avg.	<pre>important important i</pre>	Left blank		

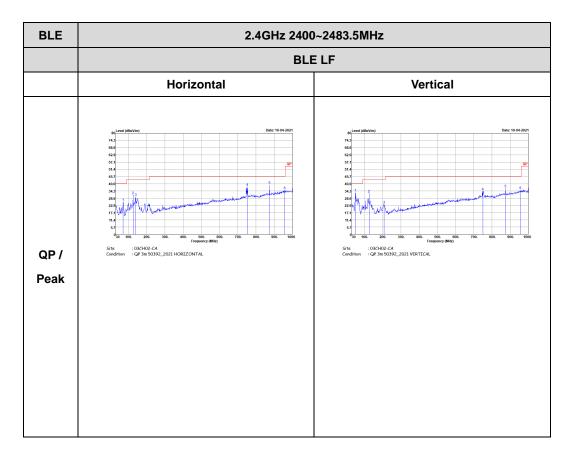




2.4GHz 2400~2483.5MHz


BLE (Harmonic @ 3m)

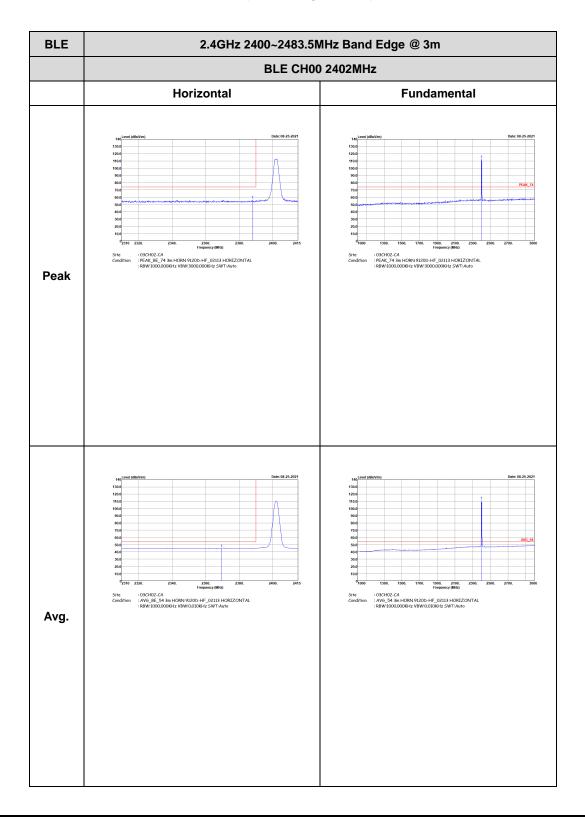


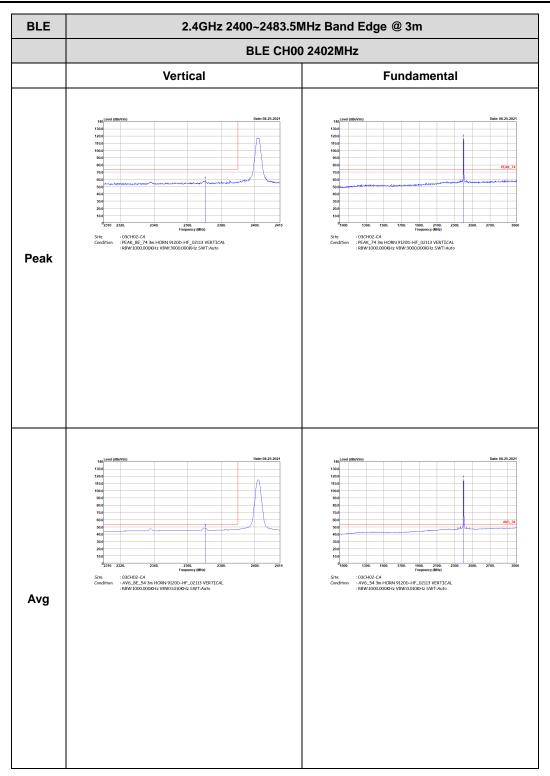

Emission after 18GHz

2.4GHz BLE (SHF @ 1m)

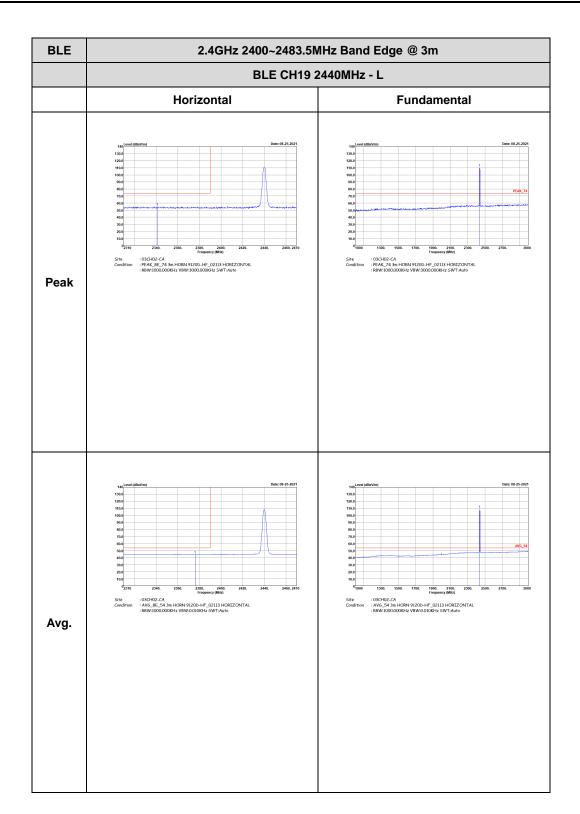
Emission below 1GHz

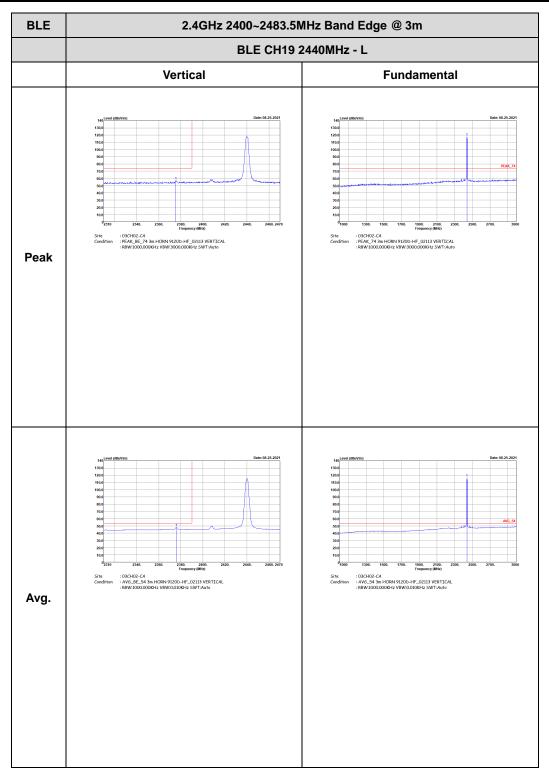
2.4GHz BLE (LF)



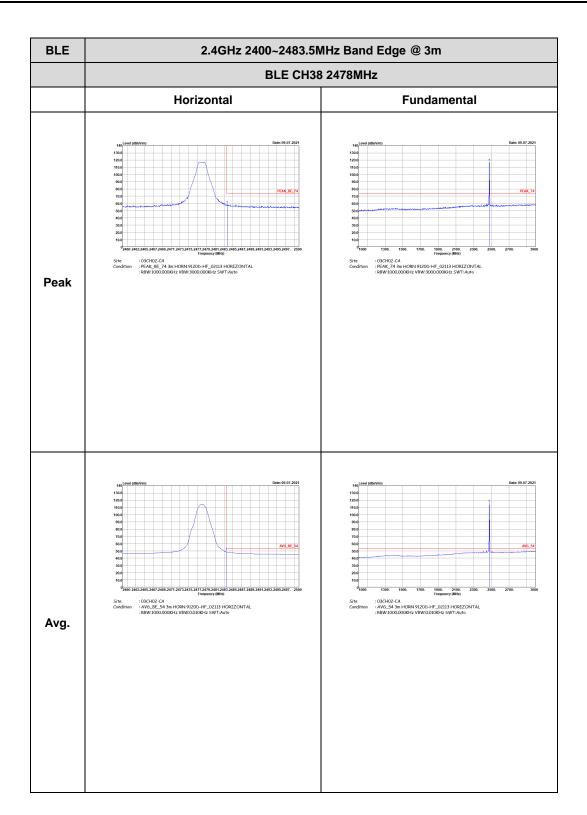

<2Mbps>

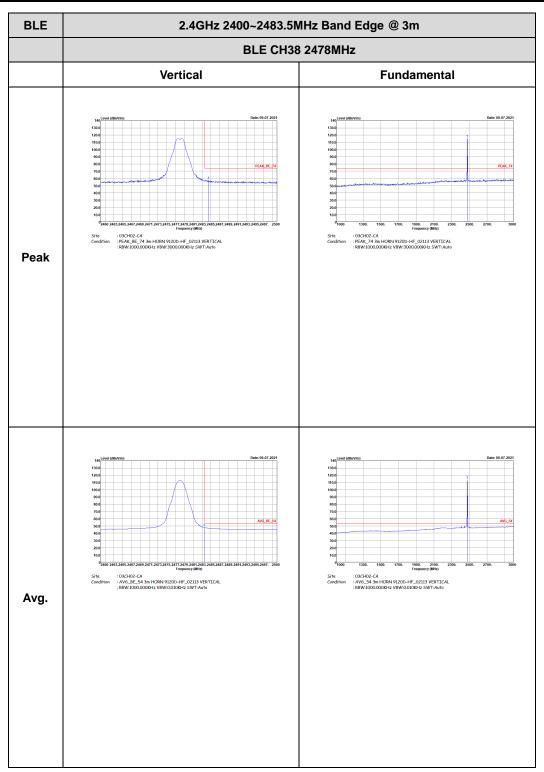
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

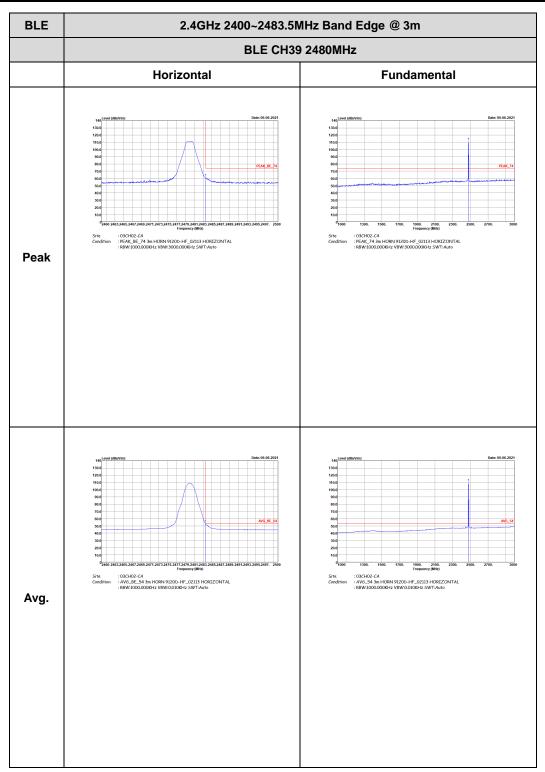


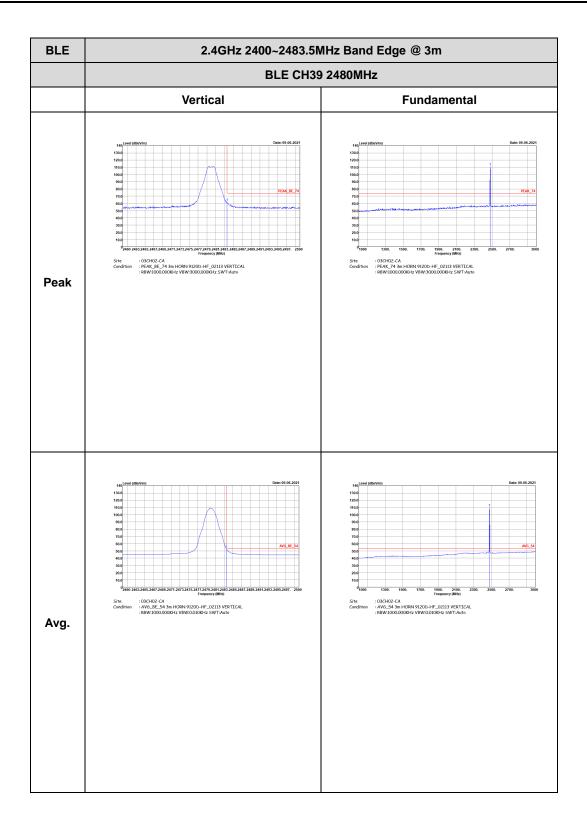
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Horizontal	Fundamental				
Peak	Image: constraint of the second sec	Left blank				
Avg.	menterina a constraint a constr	Left blank				

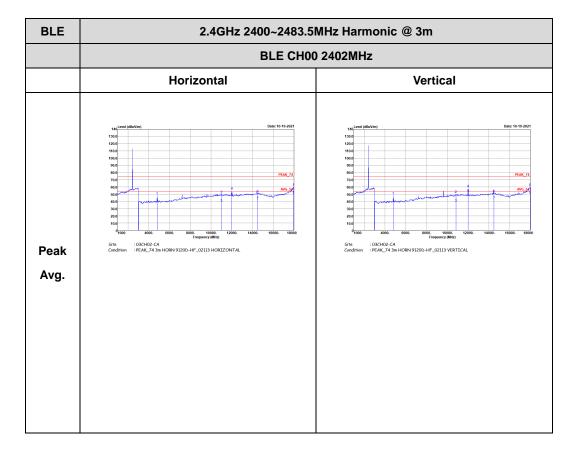


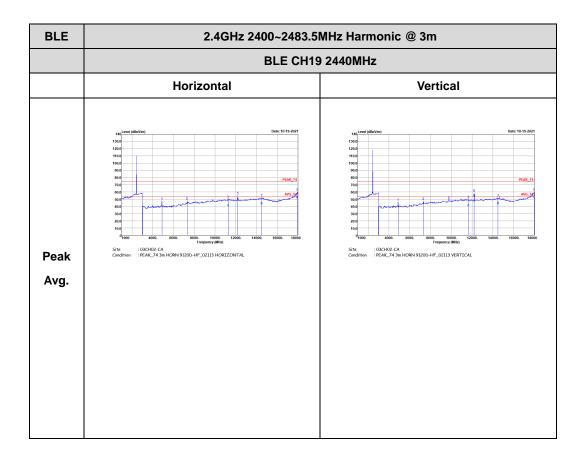


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m				
	BLE CH19 2440MHz - R				
	Vertical	Fundamental			
Peak	Image: service dilation Dec 19 25 267 Image: service dilation Dec 19 26 267 Image: service dilation Dec 19 26 267 Image: service dilation Dec 19 267 Image: service dilation	Left blank			
Avg.	<pre>interfactor interfactor i</pre>	Left blank			

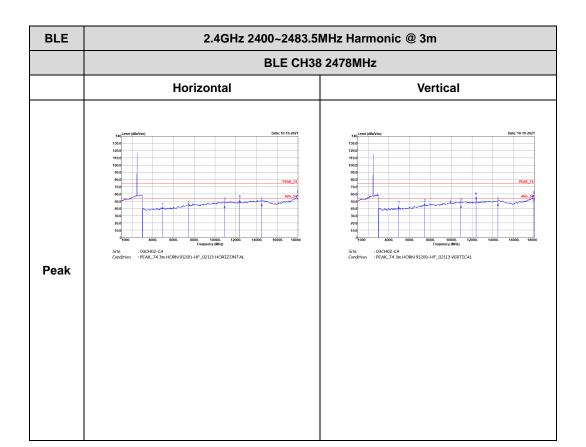


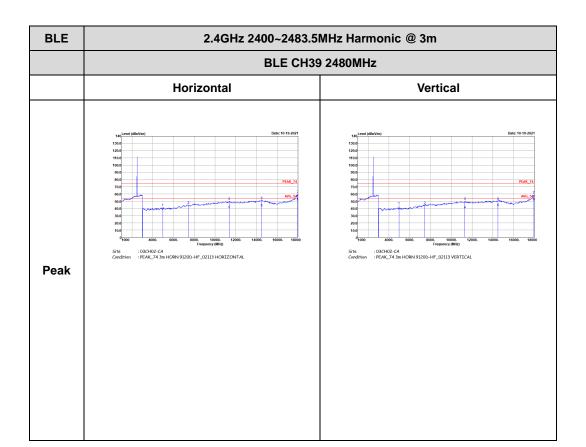


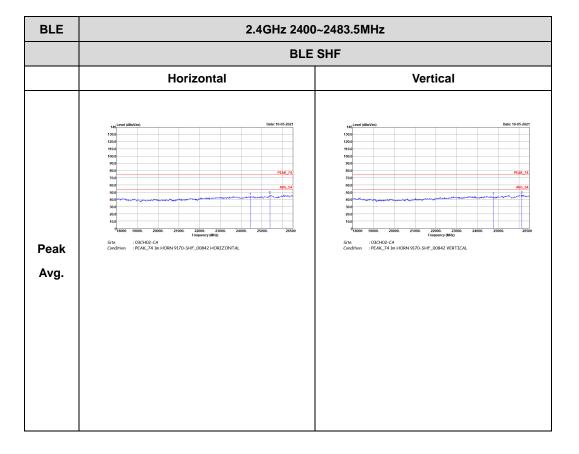


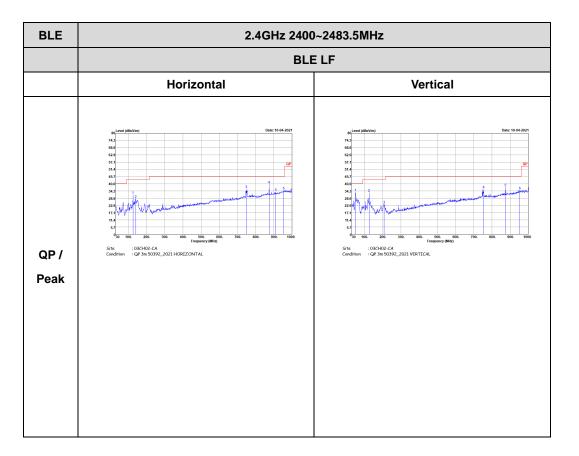


2.4GHz 2400~2483.5MHz


BLE (Harmonic @ 3m)






Emission after 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz

2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	100	-	-	10Hz
Bluetooth - LE for 2Mbps	100	-	-	10Hz

Bluetooth - LE	E for 1Mbps				Bluetooth - LE for 2Mbps	
Keysight Spectrum Analyzer - Swept SA				6	🔄 🔤 Keysight Spectrum Analyzer - Swept SA 👘	6
RL RF 50 Ω DC	SENSE:INT	#Avg Type: RMS	05:28:11 PM Aug 20, 2021 TRACE 1 2 3 4 5 6	Frequency	U RL RF 50 Ω DC SENSE:INT 06:31:51 PM Aug 20,2021 Center Freq 2 480000000 GHz #Avg Type: RMS TRACE 1 2.3 4.5 6	uency
	PNO: Fast Trig: Free Run FGain:Low Atten: 20 dB		DET P P P P P		PNO: Fast Trig: Free Run TYPE WWWWWW IFGsin:Low Atten: 20 dB DET P P P P P	
10 dB/div Ref 116.99 dBµV	a annean		Mkr1 170.0 μs 102.95 dBμV	Auto Tune	e Mkr1 9.510 ms Au 10 dB/div Ref 116.99 dBμV 105.51 dBμV	uto Tune
				Center Freq		nter Freq
97.0				2.402000000 GHz	iz 97.0 2.48000	00000 GHz
77.0				Start Freq		tart Freq
67.0 57.0				2.402000000 GHz	12 2.46000	00000 GHz
47.0				Stop Freq	37.0	top Freq
27.0				2.402000000 GHz		00000 GHz
Center 2.402000000 GHz Res BW 8 MHz	#VBW 8.0 MHz	Sweep 10	Span 0 Hz 0.00 ms (1001 pts)	CF Step 8.000000 MHz	Iz Res BW 8 MHz #VBW 8.0 MHz Sweep 10.00 ms (1001 pts) 8.00	CF Step
MKR MODE TRC SCL X		CTION FUNCTION WDTH	FUNCTION VALUE	<u>Auto</u> Man	MRP MODE TRC SCL X Y FUNCTION WIDTH FUNCTION VALUE A	Man
1 N 1 t 1 2 3 4 5	170.0 µs 102.95 dBµV			Freq Offset 0 Hz		eq Offset 0 Hz
6 7 8			_	Scale Type		ale Type
9 10 11			~	<u>Log</u> Lin	in 10 11	Lin
) <			>			