

FCC PART 15.225

TEST REPORT

For

Vanstone Electronic (Beijing) Co., Ltd.

3F No.2 Building, Aisino Corporation Park 18A, Xingshikou Road, Haidian District, Beijing, China 100195

FCC ID: OWLA80

Report Type: Product Type: Smart POS Terminal Original Report **Report Number:** SZXX1210513-17093E-RF-00F **Report Date:** 2021-09-09 Jimmy xiao Jimmy Xiao Reviewed By: RF Engineer Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 5F(B-West), 6F,7F,the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	5
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	6
TEST EQUIPMENT LIST	7
FCC§15.203 - ANTENNA REQUIREMENT	8
APPLICABLE STANDARD	
ANTENNA CONNECTED CONSTRUCTION	
FCC §15.207 – AC LINE CONDUCTED EMISSION	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
Test Data	10
FCC§15.225, §15.205 & §15.209 - RADIATED EMISSIONS TEST	13
APPLICABLE STANDARD	13
EUT Setup	13
EMI TEST RECEIVER SETUP	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC§15.225(E) - FREQUENCY STABILITY	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	18
FCC§15.215(C) - 20DB EMISSION BANDWIDTH	
REQUIREMENT	
Test Procedure	
Test Data	19

Product Description for Equipment under Test (EUT)

Product	Smart POS Terminal
Tested Model	A80
Frequency Range	13.56MHz
Maximum E-Field Strength	82.92dBuV/m@3m
Modulation Technique	ASK
Voltage Range	DC 3.85V from battery or DC 5.0V from adapter
Sample number	SZXX1210513-17093E-RF-S_511 (Assigned by BACL, Shenzhen)
Received date	2021-05-13
Sample/EUT Status	Good condition
Adapter information	Model: SW-0018C Input: AC 100-240V ~ 50/60Hz, 0.2A Output: DC 5.0V, 1.0A

Report No.: SZXX1210513-17093E-RF-00F

Objective

This Type approval report is in accordance with Part 2- Subpart J, and Part 15-Subparts A and C of the Federal Communication Commissions rules.

The objective is to determine the compliance of the EUT with FCC rules, section 15.203, 15.205, 15.207, 15.209 and 15.225.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters. Each test item follows test standards and with no deviation.

FCC Part 15.225 Page 3 of 20

Parameter		Uncertainty		
Occupied Channel Bandwidth		±5%		
AC Power Lines Conducted Emissions		±1.95dB		
Radiated	Below 1GHz	±4.75dB		
Emissions	Above 1GHz	±4.88dB		
Tempe	erature	±1℃		
Humidity		±6%		
Supply	voltages	±0.4%		

Report No.: SZXX1210513-17093E-RF-00F

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023.

SYSTEM TEST CONFIGURATION

Justification

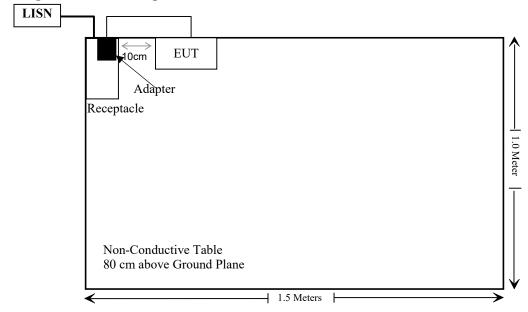
The system was configured for testing in a typical fashion (as normally used by a typical user).

EUT Exercise Software

"Performance Test" Software was used.

Equipment Modifications

No modification on the EUT.


Support Equipment List and Details

Manufacturer Description		Model	Serial Number	
/	/	/	/	

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable DC Cable	1.0	EUT	Adapter

Block Diagram of Test Setup

FCC Part 15.225 Page 5 of 20

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207	AC Line Conducted Emission	Compliant
\$15.225 \$15.209 \$15.205	Radiated Emission Test	Compliant
§15.225(e)	Frequency Stability	Compliant
§15.215(c)	20dB Emission Bandwidth	Compliant

FCC Part 15.225 Page 6 of 20

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
	AC Line Conducted Emission Test							
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2020/08/04	2022/08/03			
Rohde & Schwarz	LISN	ENV216	101613	2020/08/04	2022/08/03			
Rohde & Schwarz	Transient Limitor	ESH3Z2	DE25985	2020/11/29	2021/11/28			
Unknown	CE Cable	CE Cable	UF A210B-1- 0720-504504	2020/11/29	2021/11/28			
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR			
	Ra	diated Emission Te	est					
R&S	EMI Test Receiver	ESR3	102455	2020/08/04	2022/08/03			
Sonoma instrument	Pre-amplifier	310 N	186238	2020/08/04	2022/08/03			
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2020/12/22	2023/12/21			
ETS	Passive Loop Antenna	6512	29604	2018/07/14	2021/07/13			
ETS	Passive Loop Antenna	6512	29604	2021/07/14	2024/07/13			
Unknown	Cable 2	RF Cable 2	F-03-EM197	2020/11/29	2021/11/28			
Unknown	Cable	Chamber Cable 1	F-03-EM236	2020/11/29	2021/11/28			
Rohde & Schwarz	Auto test software	EMC 32	V9.10.00	NCR	NCR			
CHIGO	Temperature & Humidity Meter	HTC-1S	T-03-EM451	2021/04/07	2022/04/06			

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.225 Page 7 of 20

FCC§15.203 - ANTENNA REQUIREMENT

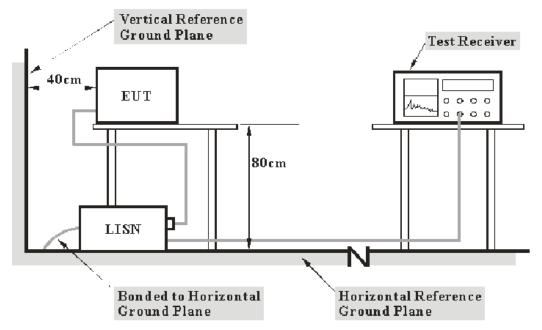
Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: SZXX1210513-17093E-RF-00F

Antenna Connected Construction

The EUT has one internal antenna arrangement for NFC which was permanently attached, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 – AC LINE CONDUCTED EMISSION

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

FCC Part 15.225 Page 9 of 20

Test Procedure

During the conducted emission test, the adapter of Host was connected to the outlet of the LISN.

Report No.: SZXX1210513-17093E-RF-00F

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

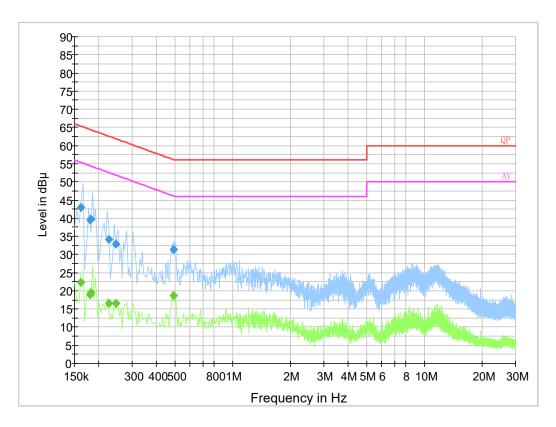
The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Data


Environmental Conditions

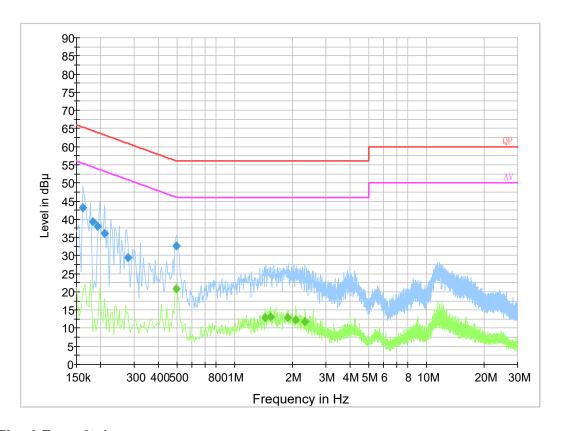
Temperature:	27 °C		
Relative Humidity:	71 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Haiguo Li on 2021-05-29.

EUT Operation Mode: Transmitting

AC 120 V/60 Hz, Line:

Final Result 1


Frequency (MHz)	QuasiPeak (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.161500	43.0	9.000	L1	19.9	22.4	65.4
0.181500	39.6	9.000	L1	19.9	24.8	64.4
0.182500	39.7	9.000	L1	19.8	24.7	64.4
0.225500	34.2	9.000	L1	19.8	28.4	62.6
0.246500	32.9	9.000	L1	19.8	29.0	61.9
0.490590	31.4	9.000	L1	19.8	24.8	56.2

Final Result 2

Frequency (MHz)	Average (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.161500	22.3	9.000	L1	19.9	33.1	55.4
0.181500	18.9	9.000	L1	19.9	35.5	54.4
0.182500	19.6	9.000	L1	19.8	34.8	54.4
0.225500	16.5	9.000	L1	19.8	36.1	52.6
0.246500	16.5	9.000	L1	19.8	35.4	51.9
0.490590	18.8	9.000	L1	19.8	27.4	46.2

FCC Part 15.225 Page 11 of 20

AC 120V/60 Hz, Neutral:

Final Result 1

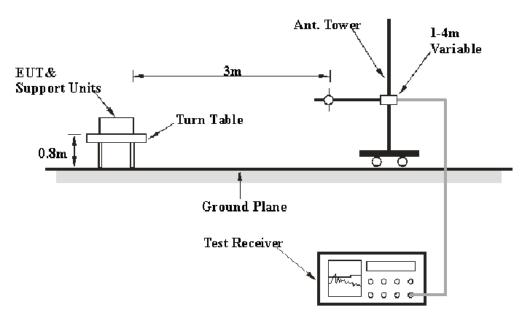
Frequency (MHz)	QuasiPeak (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.161500	43.1	9.000	N	19.8	22.3	65.4
0.182500	39.4	9.000	N	19.8	25.0	64.4
0.193500	38.1	9.000	N	19.8	25.8	63.9
0.209500	36.0	9.000	N	19.8	27.2	63.2
0.278501	29.4	9.000	N	19.7	31.5	60.9
0.498530	32.7	9.000	N	19.8	23.3	56.0

Final Result 2

i iiiai itot	, ait =					
Frequency (MHz)	Average (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.498000	20.7	9.000	N	19.8	25.3	46.0
1.442000	12.8	9.000	N	19.8	33.2	46.0
1.546000	13.1	9.000	N	19.8	32.9	46.0
1.902000	12.9	9.000	N	19.9	33.1	46.0
2.090000	12.3	9.000	N	19.9	33.7	46.0
2.338000	11.8	9.000	N	19.8	34.2	46.0

FCC Part 15.225 Page 12 of 20

Applicable Standard


As per FCC Part 15.225

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

Report No.: SZXX1210513-17093E-RF-00F

- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in $\S15.209$.

EUT Setup

Note: Antenna is set up at 1m during test for below 30MHz.

The radiated emission tests were performed in the 3-meter chamber a test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part Subpart C limits.

EMI Test Receiver Setup

According to FCC Rules, 47 CFR 15.33, the EUT emissions were investigated up to 1000 MHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

FCC Part 15.225 Page 13 of 20

Frequency Range	RBW	Video B/W	IF B/W	Detector
9 kHz – 150 kHz	300 Hz	1 kHz	/	QP
150 kHz –30 MHz	10 kHz	30 kHz	/	QP
30 MHz – 1000 MHz	100 kHz	300 kHz	/	QP

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Factor = Antenna Factor + Cable Loss- Amplifier Gain Corrected Amplitude = Meter Reading + Corrected Factor

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

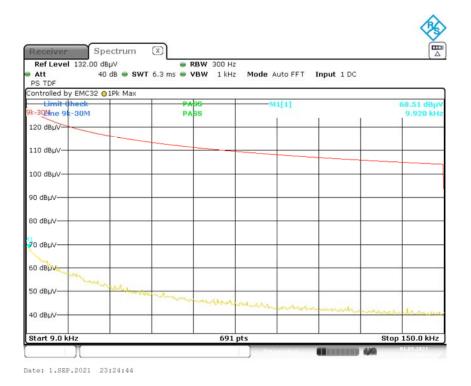
Test Data

Environmental Conditions

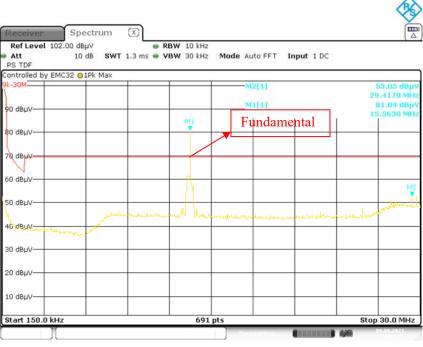
Temperature:	28 ℃
Relative Humidity:	57~60 %
ATM Pressure:	101.0 kPa

The testing was performed by Willia Wang and Cloud Yun from 2021-06-21 to 2021-09-09.

Test mode: Transmitting

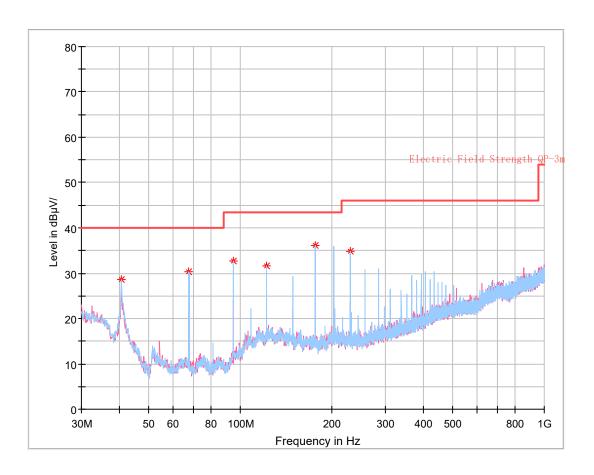

1) Spurious Emissions (9 kHz~30 MHz):

	Corrected				Corre	ction F	actor	FCC part	15.225
Freq.	Amplitude		Antenna	Datasta	Ant.	Cable	Pre-	Limit	
(MHz)	(dBµV/m) @3m	Angle Degree	Height Detector	Factor (dB)	Loss	Amp. Gain (dB)	(dBµV/m) @3m	Result	
0.00992	68.51	0	1	PK	88.6	0.2	30.2	127.67	Pass
27.127	56.42	0	1	PK	62.3	0.3	31.0	69.54	Pass


Note: The Peak value can meet the QP limit.

FCC Part 15.225 Page 14 of 20

9 kHz~150 kHz


150 kHz~30 MHz

Date: 9.SEP.2021 18:31:41

FCC Part 15.225 Page 15 of 20

2) Spurious Emissions (30 MHz~1GHz):

Critical Fregs

Official_i	1043						
Frequency (MHz)	MaxPeak (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.670000	28.56	40.00	11.44	100.0	Н	10.0	-10.9
67.708750	30.26	40.00	9.74	300.0	Н	92.0	-16.3
94.868750	32.63	43.50	10.87	200.0	Н	285.0	-15.1
122.028750	31.55	43.50	11.95	300.0	Н	105.0	-10.3
176.227500	36.20	43.50	7.30	200.0	Н	80.0	-12.2
230.547500	34.79	46.00	11.21	100.0	Н	98.0	-11.6

FCC Part 15.225 Page 16 of 20

3) Emission Mask & Fundamental:

	Corrected				Corre	ection F	actor	FCC Part	15.225
Frequency	Amplitude	Table Angle Degree	Antenna Height (m)	Detector	Ant. Factor (dB)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Limit (dBµV/m) @3m	Result
13.56	82.92	0	1	PK	32.3	0.2	30.2	124	Pass

Note: The Peak value can meet the QP limit.

Emission Mask

FCC Part 15.225 Page 17 of 20

Applicable Standard

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Report No.: SZXX1210513-17093E-RF-00F

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and inductive antenna was connected to a Spectrum Analyzer. The EUT was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external DC power supply Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Test Data

Environmental Conditions

Temperature:	28 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Cloud Qiu on 2021-09-01.

Test Mode: Transmitting

Test Result: Pass

Voltage Supply (V _{DC})	Temperature (°C)	Measured Frequency (MHz)	Frequency Error (%)	Limit (%)
	-20	13.561098	0.00810	±0.01
	-10	13.561167	0.00861	±0.01
	0	13.561206	0.00889	±0.01
3.85	10	13.561331	0.00982	±0.01
3.63	20	13.561318	0.00972	±0.01
	30	13.561305	0.00962	±0.01
	40	13.561295	0.00955	±0.01
	50	13.561268	0.00935	±0.01
3.3	20	13.561252	0.00923	±0.01
4.4	20	13.561298	0.00957	±0.01

FCC Part 15.225 Page 18 of 20

Requirement

Per 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Report No.: SZXX1210513-17093E-RF-00F

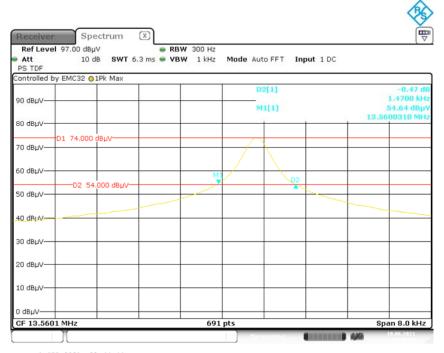
Test Procedure

Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

Test Data

Environmental Conditions

Temperature:	28 °C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa


The testing was performed by Cloud Qiu on 2021-09-01.

Test Mode: Transmitting

Test Result: Pass

Test Frequency	20dB Bandwidth
(MHz)	(kHz)
13.56	1.47

20 dB Emission Bandwidth

Date: 1.SEP.2021 23:30:09

***** END OF REPORT *****

FCC Part 15.225 Page 20 of 20