

FCC Test Report

Report No.: AGC01110240444FR01

FCC ID	:	2AOKB-A3948RC
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Wireless Headphone
BRAND NAME	:	soundcore
MODEL NAME	:	A3948RC
APPLICANT	:	Anker Innovations Limited
DATE OF ISSUE	:	May 06, 2024
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	May 06, 2024	Valid	Initial Release

Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	6
2.2 Test Frequency List	
2.3 Related Submittal(S) / Grant (S)	7
2.4 Test Methodology	7
2.5 Special Accessories	7
2.6 Equipment Modifications	7
2.7 Antenna Requirement	7
3. Test Environment	
3.1 Address of the Test Laboratory	
3.2 Test Facility	
3.3 Environmental Conditions	9
3.4 Measurement Uncertainty	9
3.5 List of Equipment Use	
4.System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used In Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	14
6. Duty Cycle Measurement	15
7. RF Output Power Measurement	
7.1 Provisions Applicable	
7.2 Measurement Procedure	
7.3 Measurement Setup (Block Diagram of Configuration)	
7.4 Measurement Result	
8. 6dB Bandwidth Measurement	
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.3 Measurement Setup (Block Diagram of Configuration)	
8.4 Measurement Results	
9. Power Spectral Density Measurement	
9.1 Provisions Applicable	
9.2 Measurement Procedure	
9.3 Measurement Setup (Block Diagram of Configuration)	
9.4 Measurement Results	
10. Conducted Band Edge And Out-of-Band Emissions	

Report No.: AGC01110240444FR01 Page 4 of 68

10.1 Provisions Applicable	
10.2 Measurement Procedure	
10.3 Measurement Setup (Block Diagram of Configuration)	
10.4 Measurement Results	35
11. Radiated Spurious Emission	46
11.1 Measurement Limit	
11.2 Measurement Procedure	
11.3 Measurement Setup (Block Diagram of Configuration)	
11.4 Measurement Result	50
12. AC Power Line Conducted Emission Test	66
12.1 Measurement Limit	
12.2 Measurement Setup (Block Diagram of Configuration)	
12.3 Preliminary Procedure of Line Conducted Emission Test	67
12.4 Final Procedure of Line Conducted Emission Test	67
12.5 Measurement Results	67
Appendix I: Photographs of Test Setup	68
Appendix II: Photographs of Test EUT	68

1. General Information

Applicant	Anker Innovations Limited
Address	Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hongkong
Manufacturer	Anker Innovations Limited
Address	Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hongkong
Factory	N/A
Address	N/A
Product Designation	Wireless Headphone
Brand Name	soundcore
Test Model	A3948RC
Series Model(s)	N/A
Difference Description	N/A
Date of receipt of test item	Mar. 20, 2024
Date of Test	Mar. 20, 2024 –May 06, 2024
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-BLE-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By

Cool cheny

Cool Cheng (Project Engineer)

May 06, 2024

Reviewed By

Calvin Liu (Reviewer)

May 06, 2024

Approved By

than

Max Zhang Authorized Officer

May 06, 2024

2. Product Information

2.1 Product Technical Description

Frequency Band	2400MHz-2483.5MHz
Operation Frequency Range	2402MHz-2480MHz
Bluetooth Version	V5.3
Modulation Type	BLE GFSK 1Mbps GFSK 2Mbps
Number of channels	40
Carrier Frequency of Each Channel	40 Channels (37 Data channels + 3 advertising channels)
Channel Separation	2 MHz
Maximum Transmitter Power	Bluetooth LE (1Mbps): 2.355dBm Bluetooth LE (2Mbps): 2.466dBm
Hardware Version	V0.2
Software Version	V11.55
Antenna Designation	FPC Antenna
Antenna Gain	-4.07dBi
Power Supply	DC 3.7V by battery

2.2 Test Frequency List

Frequency Band	Channel Number	Frequency		
	0	2402 MHz		
	1	2404 MHz		
	:	:		
2400~2483.5MHz	19	2440MHz		
	:	:		
	38	2478 MHz		
	39	2480 MHz		
Note: $f = 2402 + 2*k$ MHz, $k = 0,, 39$ f is the operating frequency (MHz); k is the operating channel.				

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: 2AOKB-A3948RC, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title	
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations	
2	FCC 47 CFR Part 15	Radio Frequency Devices	
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices	
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules	

2.5 Special Accessories

Not available for this EUT intended for grant.

2.6 Equipment Modifications

Not available for this EUT intended for grant.

2.7 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is -4.07dBi.

3. Test Environment

3.1 Address of the Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	DC 3.7V by battery

3.4 Measurement Uncertainty

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	U _c = ±2 %
Uncertainty of Occupied Channel Bandwidth	U _c = ±2 %

3.5 List of Equipment Use

• R	RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\square	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023-06-01	2024-05-31	
\boxtimes	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2024-02-01	2025-01-31	
\boxtimes	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2024-02-01	2025-01-31	
\boxtimes	AGC-EM-A152	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08	
\boxtimes	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2023-06-01	2024-05-31	
\boxtimes	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A	
\boxtimes	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A	

• F	Radiated Spurious Emission							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31	
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2023-06-03	2024-06-02	
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2023-06-01	2024-05-31	
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04	
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10	
	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-03-31	2025-03-30	
\square	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23	
\square	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03	
\square	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2023-06-01	2024-05-31	
\square	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08	
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08	

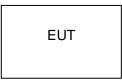
• A	AC Power Line Conducted Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023-06-03	2024-06-02		
	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2024-06-08		
	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2023-06-03	2024-06-02		

• Tes	Test Software								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information				
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71				
\boxtimes	AGC-EM-S003	RE Test System	FARA	EZ-EMC	VRA-03A				
\boxtimes	AGC-ER-S012	BT/WIFI Test System	Tonscend	JS1120-2	2.6				
\boxtimes	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0				

4.System Test Configuration

4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.


4.2 EUT Exercise

1

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

4.4 Equipment Used In Tested System

The following peripheral devices and interface cables were connected during the measurement:

☐ Test Accessories Come From The Laboratory

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1	Control Box	USB-TTL			
	Test Accessories	Come From The	Manufacturer		
No.	Equipment	quipment Model No. Manufacturer		Specification Information	Cable

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment	Pass
2	§15.247 (b)(3)	RF Output Power	Pass
3	§15.247 (a)(2)	6 dB Bandwidth	Pass
4	§15.247 (e)	Power Spectral Density	Pass
4	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
5	§15.209	Radiated Emission& Band Edge	Pass
6	§15.207	AC Power Line Conducted Emission	Not applicable

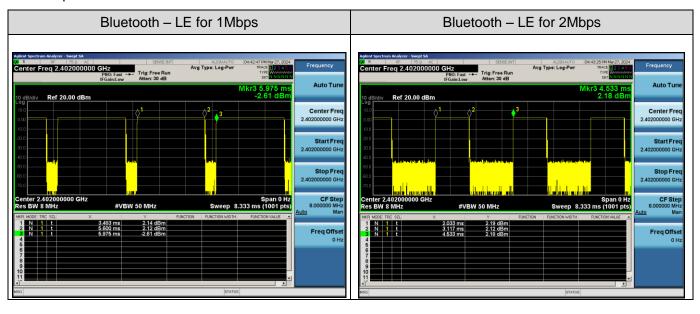
Note: The BT function cannot transmit when charging.

5. Description of Test Modes

-	Summary Table of Tost Cases					
	Summary Table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth – LE(1Mbps/2Mbps) / GFSK					
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps(Battery powered)					
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps(Battery powered)					
Radiated & Conducted	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps(Battery powered)					
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps(Battery powered)					
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps(Battery powered)					
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps(Battery powered)					
AC Conducted Emission	N/A					
Note:						
4. For Conducted Test n PCC A: 帮助() 串口设 単口设 単口设 常知() 校验位 停止位 流 控 BR/EDR Co len_of Packa	on, 3axis were chosen for testing for each applicable mode. method, a temporary antenna connector is provided by the manufacture. Software Setting Diagram ssist 1.0.2.2					

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

清除日志


6. Duty Cycle Measurement

The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Operating mode	T(µs)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
BLE_1Mbps	2117	84.95	0.71	0.47
BLE_2Mbps	1084	43.36	3.63	0.92

Remark:

2. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value

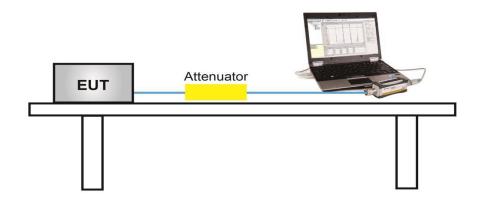
The test plots as follows:

^{1.} Duty Cycle factor = 10 * log (1/ Duty cycle)

7. RF Output Power Measurement

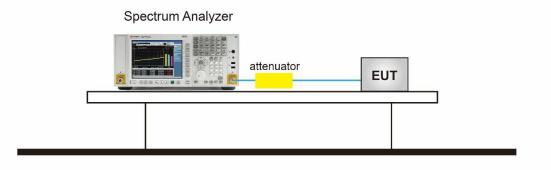
7.1 Provisions Applicable

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.

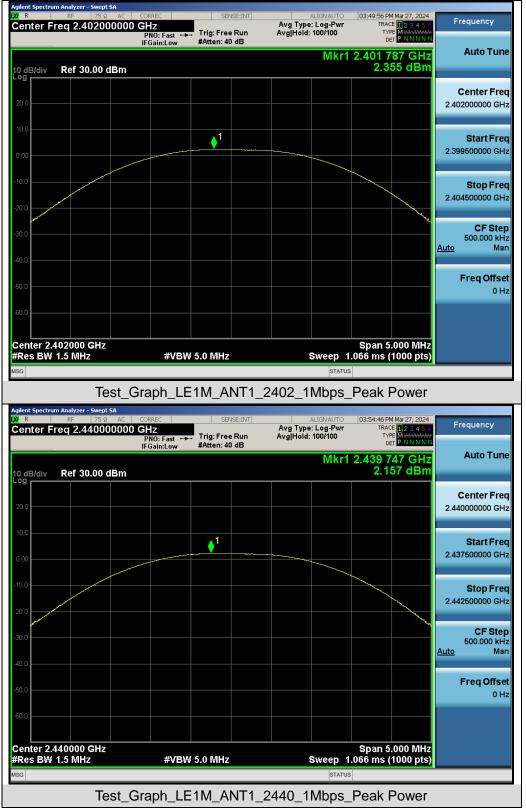

7.2 Measurement Procedure

For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.1 Method Max peak power:

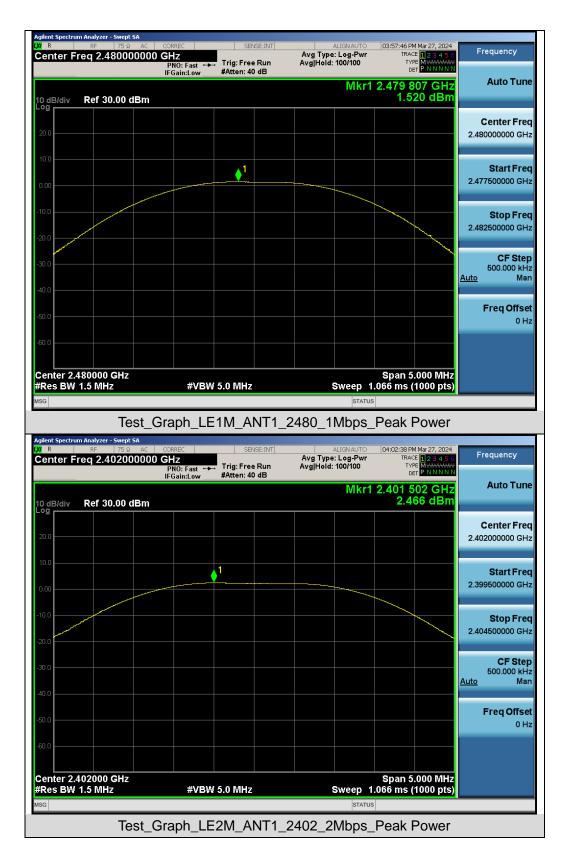
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the RBW > DTS bandwidth
- 3. Set the VBW \geq [3 x RBW].
- 4. Span≥[3 x RBW].
- 5. Sweep= auto couple.
- 6. Detector Function= Peak.
- 7. Trace mode= Max hold.
- 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.
- For Average power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G:
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 2. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.


7.3 Measurement Setup (Block Diagram of Configuration)

For Average power test setup


For peak power test setup

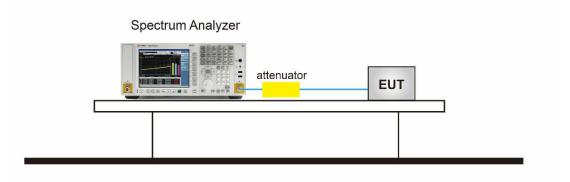
7.4 Measurement Result


Test Data of Conducted Output Power							
Test Mode	Test Frequency (MHz)	Peak Power (dBm)	Limits (dBm)	Pass or Fail			
	2402	2.355	≪30	Pass			
GFSK_1Mbps	2440	2.157	≪30	Pass			
	2480	1.520	≪30	Pass			
	2402	2.466	≪30	Pass			
GFSK_2Mbps	2440	2.342	≪30	Pass			
	2480	1.706	≤30	Pass			

Test Graphs of Conducted Output Power

8. 6dB Bandwidth Measurement

8.1 Provisions Applicable


The minimum 6 dB bandwidth shall be 500 kHz.

8.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).

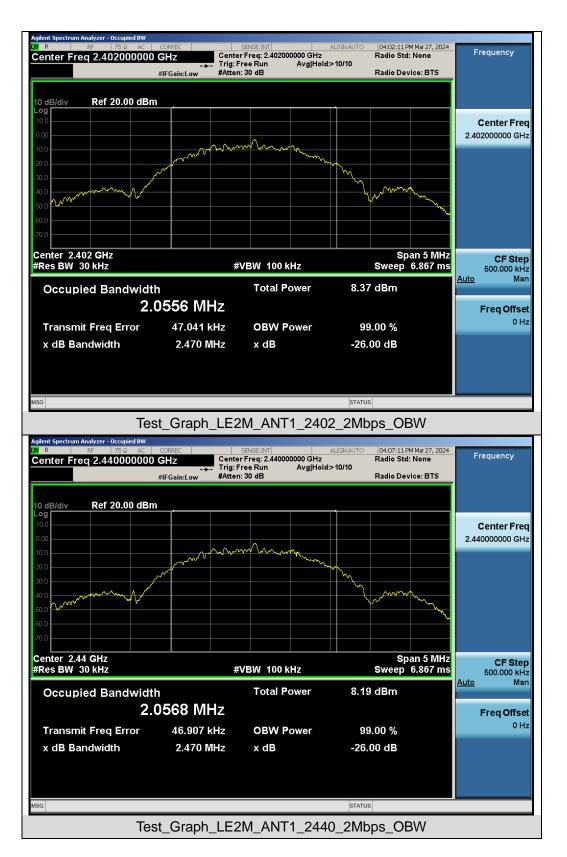
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Measure and record the results in the test report.

8.3 Measurement Setup (Block Diagram of Configuration)



8.4 Measurement Results

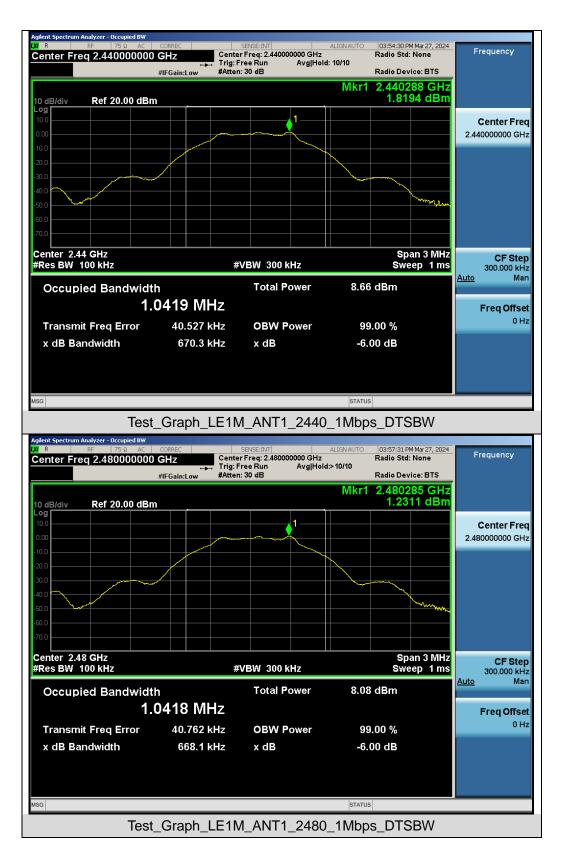
Test Data of Occupied Bandwidth and DTS Bandwidth							
Test Mode	Test Frequency (MHz)	Occupied Bandwidth (MHz)	DTS BW (MHz)	DTS BW Limits	Pass or Fail		
	2402	1.027	0.667	≥0.5	Pass		
GFSK_1Mbps	2440	1.028	0.670	≥0.5	Pass		
	2480	1.028	0.668	≥0.5	Pass		
	2402	2.056	1.160	≥0.5	Pass		
GFSK_2Mbps	2440	2.057	1.157	≥0.5	Pass		
	2480	2.055	1.168	≥0.5	Pass		


Test Graphs of Occupied Bandwidth

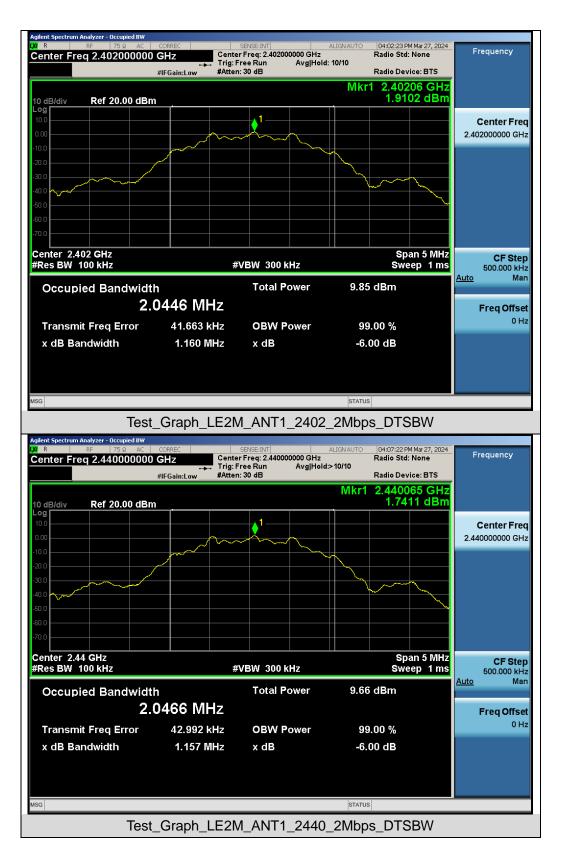


Test_Graph_LE1M_ANT1_2402_1Mbps_DTSBW

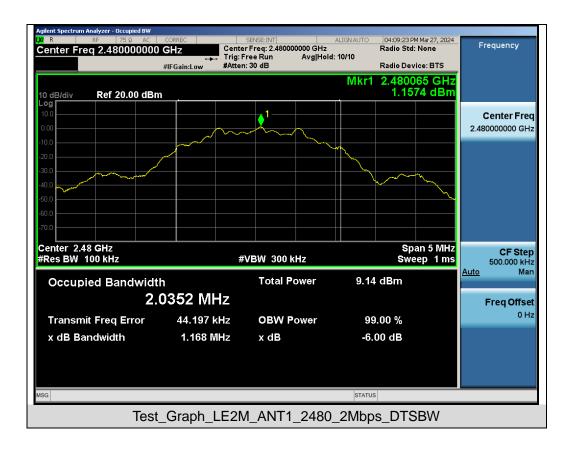
x dB


-6.00 dB

STATUS

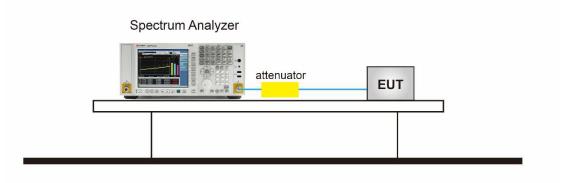

666.7 kHz

x dB Bandwidth



9. Power Spectral Density Measurement

9.1 Provisions Applicable


The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

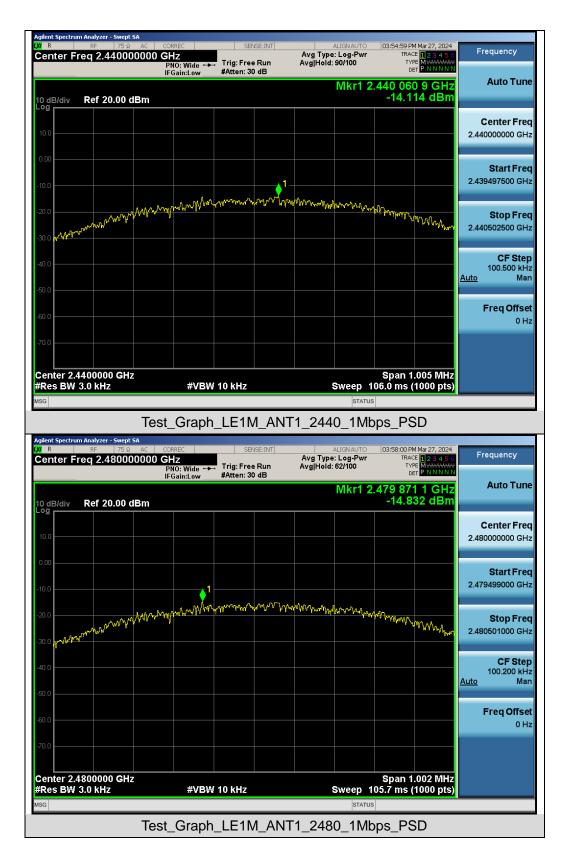
9.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.

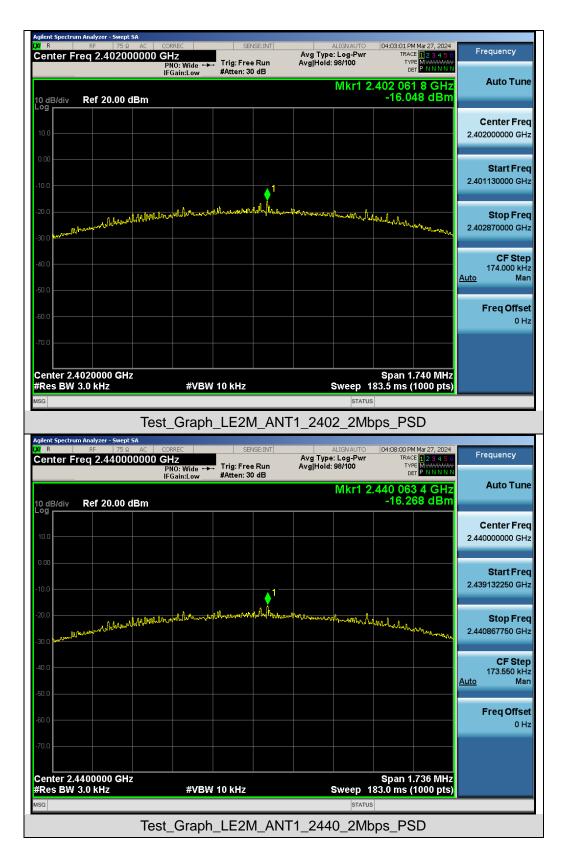
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz in order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 5. Measure and record the results in the test report.
- 6. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

9.3 Measurement Setup (Block Diagram of Configuration)




9.4 Measurement Results

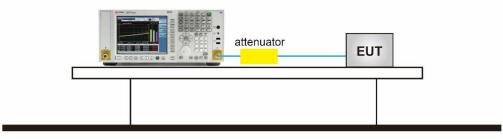
Test Data of Conducted Output Power Spectral Density							
Test Mode	Test Frequency (MHz)	Power density (dBm/3kHz)	Limit (dBm/3kHz)	Pass or Fail			
	2402	-13.919	≪8	Pass			
GFSK_1Mbps	2440	-14.114	≪8	Pass			
	2480	-14.832	≪8	Pass			
	2402	-16.048	≤8	Pass			
GFSK_2Mbps	2440	-16.268	≤8	Pass			
	2480	-16.788	≪8	Pass			


Test Graphs of Conducted Output Power Spectral Density

R Center F	RF 75 Ω AC req 2.480000000	CORREC CORREC CORREC OR CORREC OR DECORRE	.			ALIGN AUTO :: Log-Pwr 98/100	TRAC	M Mar 27, 2024 CE 123456 PE M WWWW ET <mark>P N N N N N</mark>	Frequency
0 dB/div	Ref 20.00 dBm					Mkr1 2		4 0 GHz 88 dBm	Auto Tur
10.0									Center Fre 2.480000000 GH
0.00				1					Start Fre 2.479124000 GH
0.0	mannallanallan	uh and white the second second	withwardstr	al hours	and the production of the prod	Prontation lad	nehalve	Marge-markery	Stop Fre 2.480876000 GF
0.0									CF Ste 175.200 kł <u>Auto</u> Ma
0.0									Freq Offs 0 H
	4800000 GHz							.752 MHz	
Res BW	3.0 kHz	#VB\	№ 10 kHz			Sweep 1		(1000 pts)	

10. Conducted Band Edge and Out-of-Band Emissions

10.1 Provisions Applicable

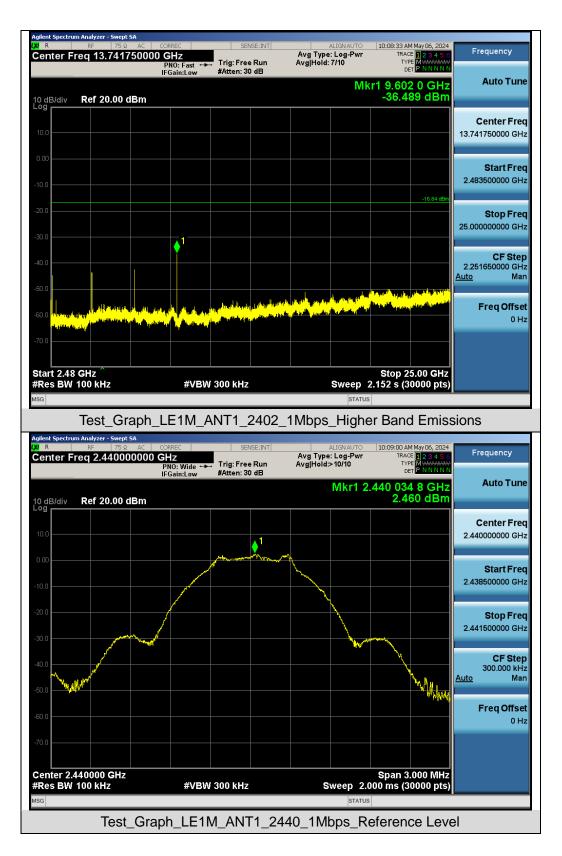

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure.

10.2 Measurement Procedure

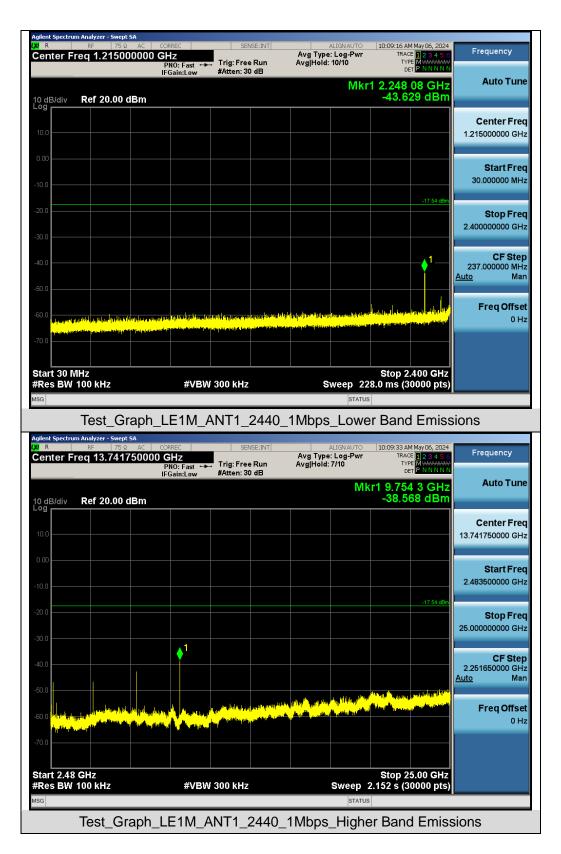
- Reference level measurement
- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW \geq 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize
- Emission level measurement
- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

10.3 Measurement Setup (Block Diagram of Configuration)

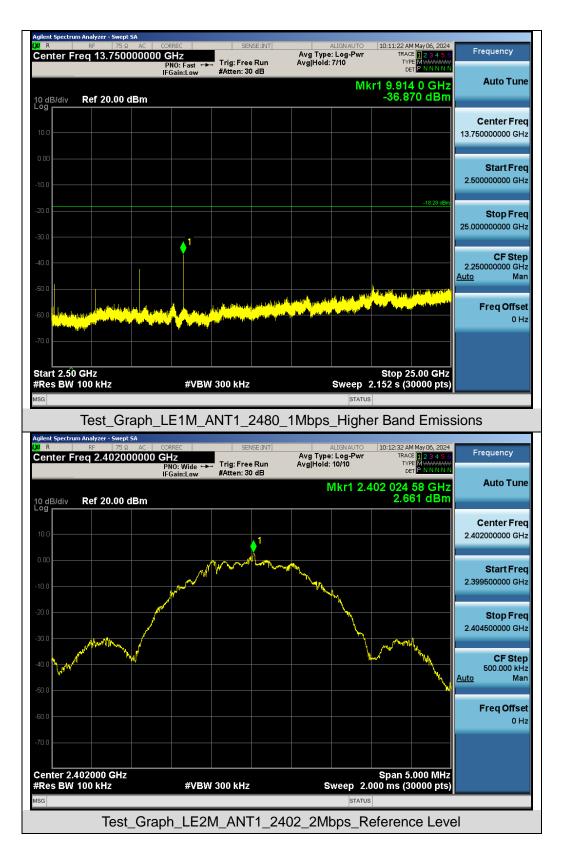
Spectrum Analyzer

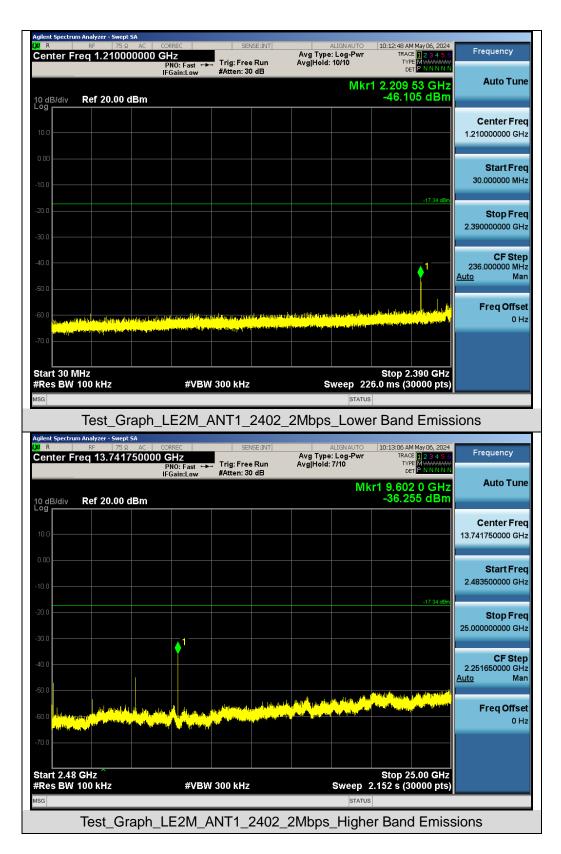


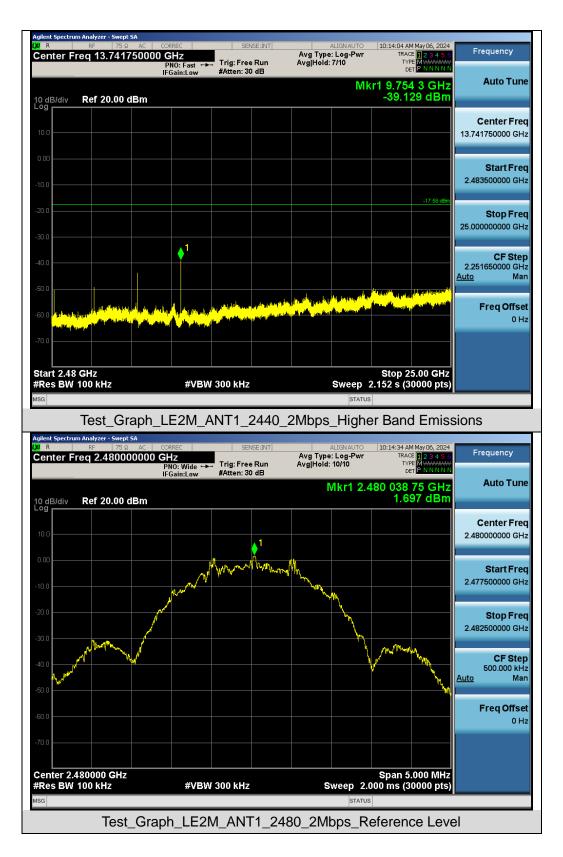
10.4 Measurement Results

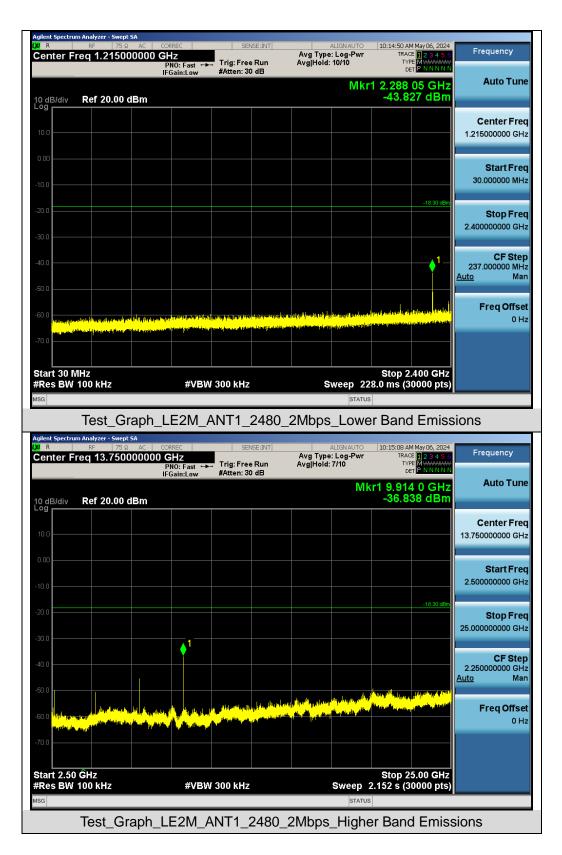


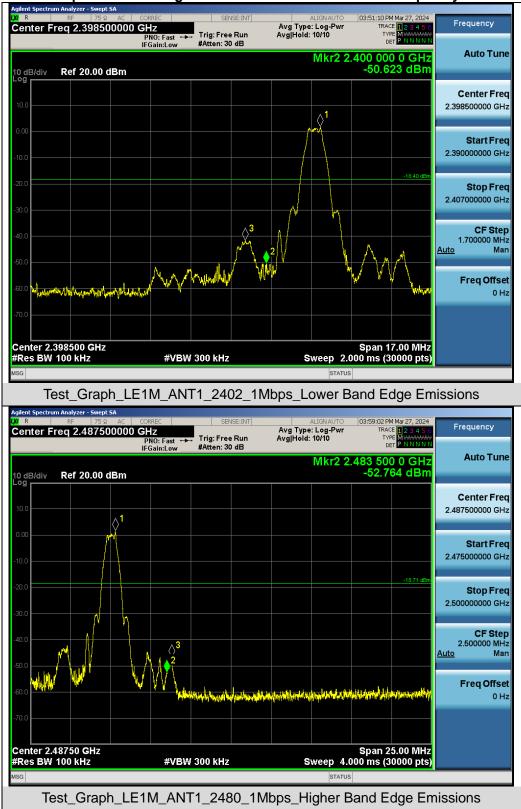
Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands











Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands

11. Radiated Spurious Emission

11.1 Measurement Limit

FCC Part 15.209 Limit in the below table to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum Parameter	Setting
Start ~Stop Frequency	9kHz~150kHz/RB 200Hz for QP
Start ~Stop Frequency	150kHz~30MHz/RB 9kHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120kHz for QP
Start ~Stop Frequency	1GHz~26.5GHz 1MHz/3MHz for Peak, 1MHz/3MHz for Average

The following table is the setting of spectrum analyzer and receiver.

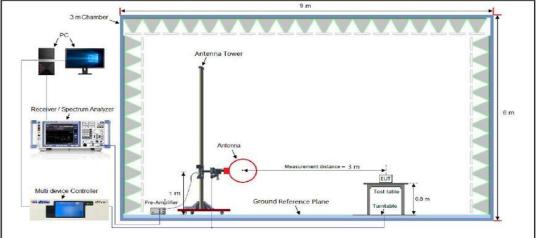
Receiver Parameter	Setting
Start ~Stop Frequency	9kHz~150kHz/RB 200Hz for QP
Start ~Stop Frequency	150kHz~30MHz/RB 9kHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120kHz for QP

• Quasi-Peak Measurements below 1GHz

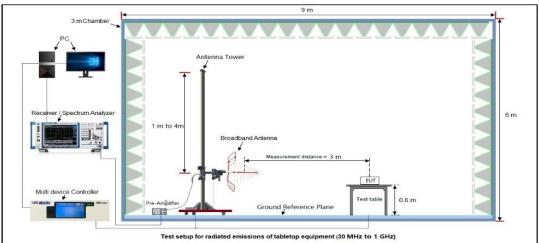
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz

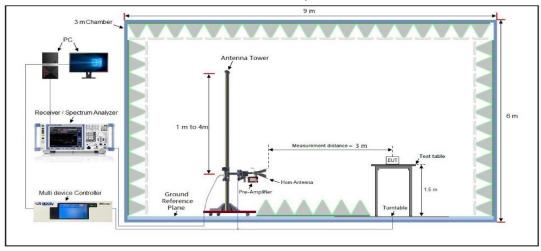
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize


<u>Average Measurements above 1GHz (Method VB)</u>

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW setting requirements are as follows:
- 4. If the EUT is configured to transmit with duty cycle \ge 98%, set VBW = 10 Hz.
- 5. If the EUT duty cycle is < 98%, set VBW \geq 1/T. T is the minimum transmission duration.
- 6. Detector = Peak
- 7. Sweep time = auto
- 8. Trace mode = max hold
- 8. Trace was allowed to stabilize



11.3 Measurement Setup (Block Diagram of Configuration)



Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

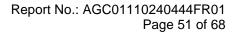
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/



11.4 Measurement Result

Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

										at 30								
EUT Name	١	Nirel	ess I	Head	ohor	ne				Mode	el Nam	ne		A	\394	18R	C	
Temperature	• 2	21.5℃							Relative Humidity 60.1			50.1 <u>9</u>	%					
Pressure	ę	960hPa Test Voltage DC 3.7V by						/ by	batter									
Test Mode	r	Mode 4 Antenna Polarity Horizontal																
72.0	dBuN	//m																
															mit	-		
_														ma	argin:	-		
-																		
									+					5		ليس	ma	
32												- 4		Ť.		N.	1	
												J ^m	my	WT 74-0	mym			
	dyn gran hen	1	mprand	heliosoph	Munch	antheodow	ulmit av	and the second of the second o	E Walter and	belongened	he she may	N. M. C. S.	W.	~~~\ha	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-8							s, normany A	2 marine the share of the	And the second s									10
-8	<i>цжали^{јен}</i> 000	40	50		70 8	0		(MHz)		31	00	400	500	600		1	000.00	00
-8 30.0		40	50		70 8		ing			30 sure-	00	400		600		11	000.00	00
-8 30.0	000	40	50	60	70 8	no Readi	ing	(MHz) Correct	Meas	зі sure- ent	00	400 nit	500	600 er	700	tecto		00
-8 30.0	000	40	50 F	60 Freq.	70 8	n Readi Leve	ing el	(MHz) Correct Factor	Meas	30 sure- ent //m	oo Lin	400 nit V/m	500	600 er	700 Det		or	00
-8 30.0	000 No.	40 Mk.	50 F 42.4	60 Freq. MHz	70 8	n Readi Leve dBu\	ing el V	(MHz) Correct Factor dB	Meas me dBu\	aure- ent //m 43	oo Lin dBu	400 nit V/m	500 Ove	600 er 3 57	700 Det	tect	or	00
-8 30.0	000 No.	40 Mk.	50 F 42.	⁶⁰ Freq. MHz 8998	70 8	Readi Leve dBu\ 6.7	ing el V 3	(MHz) Correct Factor dB 13.70	Meas me dBu\ 20.4	30 sure- ent //m 43 18	00 Lin dBu 40.0	400 nit V/m 00 50	500 Ove dE -19.	600 er 57 32	700 Det	tect eak	or k	10
-8 30.0	000 No. 1 2	40 Mk.	50 F 42. 121. 238.	⁶⁰ Freq. MHz 8998 5486	70 a	Readi Leve dBu 6.7 6.8	ing el 73 70	(MHz) Correct Factor dB 13.70 16.31	Meas me dBu 20.4 23.1	30 sure- ent //m 43 18 02	00 Lin dBu 40.0	400 nit V/m 50 50	500 Ove dE -19. -20.	600 er 57 32 98	700 Det	tecto eak eak	or k k	00
-8 30.0	000 No. 1 2 3	40 Mk.	50 F 42. 121. 238. 438.	50 Freq. MHz 8998 5486 3102	70 a	Readi Leve dBu\ 6.7 6.8 7.7	ing 21 7 7 7 7 7 7 7 7 7 7	(MHz) Correct Factor dB 13.70 16.31 15.32	Meas me dBu 20.4 23. 23.	30 sure- ent //m 43 18 02 18	00 Lin dBu 40.0 43.5 46.0	400 nit V/m 50 50 00	500 Ove -19. -20. -22.	600 er 57 32 98 82	700 Det P(P(tecti eak eak	or k k k	00

		Radiated Emission Test Results at 30MHz-1GHz								
EUT Name	Wirele	ess Headp	hone		Mode	el Name	/	A3948RC		
Temperature	21.5°C	C			Relat	ive Humic	dity (60.1%		
Pressure	960hPa Test Voltage							DC 3.7V by battery		
Test Mode	Mode 4 Antenna Polarity						ity \	Vertical		
72.0 d	iBuV/m	uV/m								
								imil: — largin: —		
-8 30.000			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(MHz)		Marken Marke Marken Marken	500 600		000	
		F	Reading	Correct	Measure-	Limit	Over			
	o. Mk.	Freq. MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector		
	1	32.9791	7.94	14.58	22.52	40.00	-17.48			
	2	69.8450	10.28	17.00	27.28	40.00	-12.72			
		135.9822	6.99	18.10	25.09	43.50	-18.41			
		447.9822	6.62	25.74	32.36	46.00	-13.64	-		
	5 7	719.1995	6.00	28.77	34.77	46.00	-11.23	· .		
(6 * 9	952.0937	6.57	30.52	37.09	46.00	-8.91	peak		

RESULT: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

UT Name	Wireless He	eadphone		Mode	l Name	A3948R	С
emperature	21.5 ℃			Relati	ive Humidity	60.1%	
ressure	960hPa	960hPa		Test Voltage		DC 3.7V	by battery
est Mode	Mode 1	Mode 1			na Polarity	Horizont	al
Frequency	Meter Reading	Factor	tor Emission		Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/ı	m)	(dBµV/m)	(dB)	value Type
4804.000	47.62	0.08	47.7		74	-26.3	peak
4804.000	38.41	0.08	38.49	9	54	-15.51	AVG
7206.000	42.15	2.21	44.36		74	-29.64	peak
7206.000	31.26	2.21	33.47	7	54	-20.53	AVG
Remark:							
Factor = Anter	Miroloss H			Modo	l Namo	A 20.49 P	<u> </u>
Factor = Anter	Wireless He				I Name	A3948R	C
Factor = Anter					I Name ive Humidity	A3948R 60.1%	C
Factor = Anter	Wireless He			Relati		60.1%	C by battery
Factor = Anter UT Name emperature	Wireless He			Relati Test V	ive Humidity	60.1%	-
Factor = Anter UT Name emperature ressure	Wireless He 21.5°C 960hPa			Relati Test V Anten	ive Humidity /oltage	60.1% DC 3.7V	by battery
Factor = Anter UT Name emperature ressure est Mode	Wireless He 21.5°C 960hPa Mode 1	eadphone		Relati Test \ Anten	ive Humidity /oltage nna Polarity	60.1% DC 3.7V Vertical	-
Factor = Anter UT Name emperature ressure est Mode	Wireless He 21.5℃ 960hPa Mode 1 Meter Reading	eadphone Factor	Emission	Relati Test V Anten	ive Humidity /oltage nna Polarity Limits	60.1% DC 3.7V Vertical	by battery
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz)	Wireless Ho 21.5℃ 960hPa Mode 1 Meter Reading (dBµV)	eadphone Factor (dB)	Emission (dBµV/r	Relati Test V Anten	ive Humidity /oltage ma Polarity Limits (dBµV/m)	60.1% DC 3.7V Vertical Margin (dB)	by battery Value Type
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4804.000	Wireless He 21.5℃ 960hPa Mode 1 Meter Reading (dBµV) 47.59	Eadphone Factor (dB) 0.08	Emission (dBµV/r 47.67	Relati Test V Anten Level m) 7 7	Limits (dBµV/m) 74	60.1% DC 3.7V Vertical Margin (dB) -26.33	by battery Value Type peak
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4804.000 4804.000	Wireless He 21.5 ℃ 960hPa Mode 1 Meter Reading (dBµV) 47.59 38.59	Factor (dB) 0.08 0.08	Emission (dBµV/r 47.67 38.67	Relati Test V Anten Level m) 7 7 2	ive Humidity /oltage ina Polarity Limits (dBµV/m) 74 54	60.1% DC 3.7V Vertical Margin (dB) -26.33 -15.33	Value Type peak AVG
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4804.000 7206.000 7206.000	Wireless He 21.5 °C 960hPa Mode 1 Meter Reading (dBµV) 47.59 38.59 42.51	Factor (dB) 0.08 0.08 2.21	Emission (dBµV/r 47.67 38.67 44.72	Relati Test V Anten Level m) 7 7 2	Limits (dBµV/m) 74 54 74	60.1% DC 3.7V Vertical Margin (dB) -26.33 -15.33 -29.28	Value Type Peak AVG peak
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4804.000 4804.000 7206.000 7206.000 Remark:	Wireless He 21.5 °C 960hPa Mode 1 Meter Reading (dBµV) 47.59 38.59 42.51	Eadphone Factor (dB) 0.08 0.08 2.21 2.21	Emission (dBµV/r 47.67 38.67 44.72 33.9	Relati Test V Anten Level m) 7 7 2	Limits (dBµV/m) 74 54 74	60.1% DC 3.7V Vertical Margin (dB) -26.33 -15.33 -29.28	Value Type Peak AVG peak

RESULT: Pass

UT Name	Wireless H	eadphone	Мос	lel Name	A3948R	C
emperature	21.5 ℃		Rela	tive Humidity	60.1%	
ressure	960hPa		Test	Voltage	DC 3.7\	/ by battery
est Mode	Mode 2	Mode 2 Ant			Horizon	tal
					·	
Frequency	Meter Reading	Neter Reading Factor Emission		Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.000	47.65	0.14	47.79	74	-26.21	peak
4880.000	38.42	0.14	38.56	54	-15.44	AVG
7320.000	42.36	2.36	44.72	74	-29.28	peak
7320.000	31.52	2.36	33.88	54	-20.12	AVG
Remark:			1	1 1		-
Remark.						
	nna Factor + Cab	e Loss – Pre-	amplifier.			
	nna Factor + Cab			lel Name	A3948R	°C
Factor = Anter			Мос	lel Name ntive Humidity	A3948R 60.1%	C
Factor = Anter	Wireless H		Moo Rela		60.1%	C / by battery
Factor = Anter UT Name emperature	Wireless H 21.5℃		Moc Rela Test	ative Humidity	60.1%	-
Factor = Anter UT Name emperature ressure est Mode	Wireless H 21.5℃ 960hPa Mode 2	eadphone	Moo Rela Test Ante	ative Humidity Voltage enna Polarity	60.1% DC 3.7 Vertical	-
Factor = Anter UT Name emperature ressure est Mode	Wireless H 21.5°C 960hPa Mode 2 Meter Reading	eadphone Factor	Moc Rela Test Anto Emission Level	Voltage enna Polarity	60.1% DC 3.7 Vertical Margin	-
Factor = Anter	Wireless H 21.5℃ 960hPa Mode 2 Meter Reading (dBµV)	eadphone Factor (dB)	Moc Rela Test Anto Emission Level (dBµV/m)	Ative Humidity Voltage enna Polarity Limits (dBµV/m)	60.1% DC 3.7 Vertical Margin (dB)	/ by battery Value Type
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4880.000	Wireless H 21.5℃ 960hPa Mode 2 Meter Reading (dBµV) 47.55	eadphone Factor (dB) 0.14	Moc Rela Test Ante Emission Level (dBµV/m) 47.69	Ative Humidity Voltage enna Polarity Limits (dBµV/m) 74	60.1% DC 3.7 Vertical Margin (dB) -26.31	/ by battery Value Type peak
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4880.000	Wireless H 21.5 °C 960hPa Mode 2 Meter Reading (dBµV) 47.55 38.94	eadphone Factor (dB) 0.14 0.14	Moc Rela Test Anto Emission Level (dBµV/m) 47.69 39.08	Limits (dBµV/m) 74 54	60.1% DC 3.7 Vertical Margin (dB) -26.31 -14.92	/ by battery Value Type peak AVG
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4880.000 7320.000	Wireless H 21.5 °C 960hPa Mode 2 Meter Reading (dBµV) 47.55 38.94 42.47	eadphone Factor (dB) 0.14 0.14 2.36	Мос Rela Test Anto Emission Level (dBµV/m) 47.69 39.08 44.83	Limits (dBµV/m) 74 54 74	60.1% DC 3.7 Vertical Margin (dB) -26.31 -14.92 -29.17	/ by battery Value Type peak AVG peak
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4880.000 4880.000	Wireless H 21.5 °C 960hPa Mode 2 Meter Reading (dBµV) 47.55 38.94	eadphone Factor (dB) 0.14 0.14	Moc Rela Test Anto Emission Level (dBµV/m) 47.69 39.08	Limits (dBµV/m) 74 54	60.1% DC 3.7 Vertical Margin (dB) -26.31 -14.92	/ by battery Value Type peak AVG
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4880.000 7320.000	Wireless H 21.5 °C 960hPa Mode 2 Meter Reading (dBµV) 47.55 38.94 42.47	eadphone Factor (dB) 0.14 0.14 2.36	Мос Rela Test Anto Emission Level (dBµV/m) 47.69 39.08 44.83	Limits (dBµV/m) 74 54 74	60.1% DC 3.7 Vertical Margin (dB) -26.31 -14.92 -29.17	/ by battery Value Type peak AVG peak

RESULT: Pass

EUT Name	Wireless He	eadphone	Мо	del Name	A3948R0	2	
Temperature	21.5℃		Re	lative Humidity	ive Humidity 60.1%		
Pressure	960hPa		Tes	st Voltage	DC 3.7V	DC 3.7V by battery	
Fest Mode	Mode 3		An	tenna Polarity	Horizonta	Horizontal	
Frequency	Meter Reading	Reading Factor Emiss		vel Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4960.000	47.64	0.22	47.86	74	-26.14	peak	
4960.000	37.42	0.22	37.64	54	-16.36	AVG	
7440.000	42.79	2.64	45.43	74	-28.57	peak	
7440.000	31.22	2.64	33.86	54	-20.14	AVG	
Romark.							
Remark: Factor = Anter	na Factor + Cab	le l oss - Pre-	amplifier				
	nna Factor + Cab	e Loss – Pre-	amplifier.				
	nna Factor + Cab			del Name	A3948R0	2	
Factor = Anter			Мо	del Name lative Humidity	A3948R0	2	
Factor = Anter	Wireless He		Mo Re		60.1%	C by battery	
Factor = Anter EUT Name Femperature	Wireless He		Mo Re Tes	lative Humidity	60.1%		
Factor = Anter	Wireless He 21.5℃ 960hPa Mode 3	eadphone	Mo Re Tes An	lative Humidity st Voltage tenna Polarity	60.1% DC 3.7V Vertical		
Factor = Anter	Wireless He 21.5℃ 960hPa Mode 3 Meter Reading	eadphone	Mo Re Tes An Emission Le	lative Humidity st Voltage tenna Polarity vel Limits	60.1% DC 3.7V Vertical		
Factor = Anter	Wireless He 21.5℃ 960hPa Mode 3 Meter Reading (dBµV)	eadphone Factor (dB)	Mo Re Tes An Emission Le (dBµV/m)	lative Humidity st Voltage tenna Polarity vel Limits (dBµV/m)	60.1% DC 3.7V Vertical Margin (dB)	by battery Value Type	
Factor = Anter EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000	Wireless He 21.5℃ 960hPa Mode 3 Meter Reading (dBµV) 47.31	Factor (dB) 0.22	Mo Re Tes An Emission Le (dBµV/m) 47.53	lative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74	60.1% DC 3.7V Vertical Margin (dB) -26.47	by battery Value Type peak	
Factor = Anter EUT Name Femperature Pressure Fest Mode Frequency (MHz) 4960.000 4960.000	Wireless He 21.5℃ 960hPa Mode 3 Meter Reading (dBµV) 47.31 38.81	Factor (dB) 0.22 0.22	Мо Re Тез Ап Еmission Le (dBµV/m) 47.53 39.03	lative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74 54	60.1% DC 3.7V Vertical Margin (dB) -26.47 -14.97	by battery Value Type peak AVG	
Factor = Anter EUT Name Femperature Pressure Fest Mode Frequency (MHz) 4960.000 7440.000	Wireless He 21.5 °C 960hPa Mode 3 Meter Reading (dBµV) 47.31 38.81 41.98	Factor (dB) 0.22 0.22 2.64	Мо Re Tes An Emission Le (dBµV/m) 47.53 39.03 44.62	Iative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74 54 74	60.1% DC 3.7V Vertical Margin (dB) -26.47 -14.97 -29.38	by battery Value Type peak AVG peak	
Factor = Anter EUT Name Femperature Pressure Fest Mode Frequency (MHz) 4960.000 4960.000	Wireless He 21.5℃ 960hPa Mode 3 Meter Reading (dBµV) 47.31 38.81	Factor (dB) 0.22 0.22	Мо Re Тез Ап Еmission Le (dBµV/m) 47.53 39.03	lative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74 54	60.1% DC 3.7V Vertical Margin (dB) -26.47 -14.97	by battery Value Type peak AVG	
Factor = Anter EUT Name Femperature Pressure Fest Mode Frequency (MHz) 4960.000 7440.000	Wireless He 21.5 °C 960hPa Mode 3 Meter Reading (dBµV) 47.31 38.81 41.98	Factor (dB) 0.22 0.22 2.64	Мо Re Tes An Emission Le (dBµV/m) 47.53 39.03 44.62	Iative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74 54 74	60.1% DC 3.7V Vertical Margin (dB) -26.47 -14.97 -29.38	by battery Value Type peak AVG peak	
Factor = Anter EUT Name Femperature Pressure Fest Mode Frequency (MHz) 4960.000 7440.000	Wireless He 21.5 °C 960hPa Mode 3 Meter Reading (dBµV) 47.31 38.81 41.98	Factor (dB) 0.22 0.22 2.64	Мо Re Tes An Emission Le (dBµV/m) 47.53 39.03 44.62	Iative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74 54 74	60.1% DC 3.7V Vertical Margin (dB) -26.47 -14.97 -29.38	by battery Value Type peak AVG peak	

RESULT: Pass

UT Name	Wire	Wireless Headphone				I Name	A3948R	С
emperature	21.5	5 °C			Relat	ive Humidity	60.1%	
ressure	960	60hPa			Test Voltage		DC 3.7V	by battery
est Mode	Мос	Mode 4			Anter	nna Polarity	Horizont	al
Frequency	Meter Re	eading	Factor	Emissio	n Level	Limits	Margin	Value Type
(MHz)	(dBµ	JV)	(dB)	(dBµ∖	//m)	(dBµV/m)	(dB)	Talde Type
4804.000	48.6	64	0.08	48.7	72	74	-25.28	peak
4804.000	39.2	11	0.08	39.1	19	54	-14.81	AVG
7206.000	42.3	35	2.21	44.5	56	74	-29.44	peak
7206.000	30.9	99	2.21	33.	2	54	-20.8	AVG
Remark: Factor = Anten	ina Factor	r + Cab	le Loss – Pre-	amplifier.		II		
UT Name	Wire		eadphone		Mode	I Name	A3948R	C
UT Name emperature	Wire 21.5	eless H				I Name	A3948R	С
	21.5	eless H			Relat		60.1%	C / by battery
emperature	21.5	eless H 5℃ hPa			Relat	ive Humidity	60.1%	
emperature ressure est Mode	21.5 960 Mod	eless H 5℃ hPa de 4	eadphone		Relat Test V Anter	ive Humidity Voltage nna Polarity	60.1% DC 3.7V Vertical	
emperature ressure est Mode Frequency	21.5 960 Mod	eless H 5°C hPa de 4	eadphone	Emissio	Relat	ive Humidity Voltage nna Polarity	60.1% DC 3.7V Vertical	
emperature ressure est Mode Frequency (MHz)	21.5 960 Mod Meter Re (dB _µ	eless H 5°C hPa de 4 eading	eadphone Factor (dB)	Emissio (dBµ\	Relat Test V Anter n Level //m)	ive Humidity Voltage nna Polarity Limits (dBµV/m)	60.1% DC 3.7V Vertical Margin (dB)	' by battery - Value Type
emperature ressure est Mode Frequency	21.5 960 Mod Meter Re (dB) 47.6	eless H 5°C hPa de 4 eading uV) 58	eadphone	Emission (dBµ\ 47.7	Relat Test Anter n Level //m) 76	ive Humidity Voltage nna Polarity	60.1% DC 3.7V Vertical Margin (dB) -26.24	' by battery - Value Type peak
emperature ressure est Mode Frequency (MHz)	21.5 960 Mod Meter Re (dB _µ	eless H 5°C hPa de 4 eading uV) 58	eadphone Factor (dB)	Emission (dBµ\ 47.7 38.4	Relat Test Anter n Level //m) 76	ive Humidity Voltage nna Polarity Limits (dBµV/m)	60.1% DC 3.7V Vertical Margin (dB) -26.24 -15.51	Value Type peak AVG
emperature ressure est Mode Frequency (MHz) 4804.000	21.5 960 Mod Meter Re (dB) 47.6	eless H 5°C hPa de 4 eading uV) 58 41	eadphone Factor (dB) 0.08	Emission (dBµ\ 47.7	Relat Test Anter n Level //m) 76	ive Humidity Voltage nna Polarity Limits (dBµV/m) 74	60.1% DC 3.7V Vertical Margin (dB) -26.24	' by battery - Value Type peak
emperature ressure est Mode Frequency (MHz) 4804.000 4804.000	21.5 960 Mod Meter Re (dB ₁ 47.6 38.4	eless H 5°C hPa de 4 eading IV) 58 41	eadphone Factor (dB) 0.08 0.08	Emission (dBµ\ 47.7 38.4	Relat Test V Anter n Level //m) 76 49 37	ive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54	60.1% DC 3.7V Vertical Margin (dB) -26.24 -15.51	Value Type peak AVG
emperature ressure est Mode Frequency (MHz) 4804.000 4804.000 7206.000	21.5 960 Mod Meter Re (dBµ 47.6 38.4 42.1	eless H 5°C hPa de 4 eading IV) 58 41	eadphone Factor (dB) 0.08 0.08 2.21	Emission (dBµ\ 47.7 38.4 44.3	Relat Test V Anter n Level //m) 76 49 37	ive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54 74	60.1% DC 3.7V Vertical Margin (dB) -26.24 -15.51 -29.63	Value Type Peak AVG peak
emperature ressure est Mode Frequency (MHz) 4804.000 4804.000 7206.000	21.5 960 Mod Meter Re (dBµ 47.6 38.4 42.1	eless H 5°C hPa de 4 eading IV) 58 41	eadphone Factor (dB) 0.08 0.08 2.21	Emission (dBµ\ 47.7 38.4 44.3	Relat Test V Anter n Level //m) 76 49 37	ive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54 74	60.1% DC 3.7V Vertical Margin (dB) -26.24 -15.51 -29.63	Value Type Peak AVG peak

RESULT: Pass

UT Name	Wireless H	eadphone	Mod	el Name	A3948R	C	
emperature	21.5 ℃		Rela	tive Humidity	60.1%		
ressure	960hPa	60hPa		Voltage	DC 3.7\	/ by battery	
est Mode	Mode 5		Ante	enna Polarity	Horizon	lorizontal	
Frequency	Meter Reading	eading Factor Emission		Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4880.000	47.64	0.14	47.78	74	-26.22	peak	
4880.000	37.58	0.14	37.72	54	-16.28	AVG	
7320.000	32.48	2.36	34.84	74	-39.16	peak	
7320.000	31.69	2.36	34.05	54	-19.95	AVG	
Remark:							
	na Factor + Cab	le Loss – Pre-	amplifier.				
	nna Factor + Cab	le Loss – Pre-	amplifier.				
	nna Factor + Cab			el Name	A3948R	C	
Factor = Anter			Mod	el Name tive Humidity	A3948R 60.1%	C	
Factor = Anter	Wireless H		Mod Rela		60.1%	C / by battery	
Factor = Anter UT Name emperature	Wireless H 21.5℃		Mod Rela Test	tive Humidity	60.1%		
Factor = Anter UT Name emperature ressure est Mode	Wireless H 21.5℃ 960hPa Mode 5	eadphone	Mod Rela Test Ante	tive Humidity Voltage enna Polarity	60.1% DC 3.7V Vertical		
Factor = Anter UT Name emperature ressure est Mode	Wireless H 21.5℃ 960hPa Mode 5 Meter Reading	eadphone	Mod Rela Test Ante Emission Level	tive Humidity Voltage enna Polarity Limits	60.1% DC 3.7 Vertical Margin		
Factor = Anter	Wireless H 21.5℃ 960hPa Mode 5 Meter Reading (dBµV)	eadphone Factor (dB)	Mod Rela Test Ante Emission Level (dBµV/m)	tive Humidity Voltage enna Polarity Limits (dBµV/m)	60.1% DC 3.7 Vertical Margin (dB)	/ by battery Value Type	
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4882.000	Wireless H 21.5℃ 960hPa Mode 5 Meter Reading (dBµV) 46.87	eadphone Factor (dB) 0.14	Mod Rela Test Ante Emission Level (dBµV/m) 47.01	tive Humidity Voltage enna Polarity Limits (dBµV/m) 74	60.1% DC 3.7 Vertical Margin (dB) -26.99	/ by battery Value Type peak	
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4882.000	Wireless H 21.5°C 960hPa Mode 5 Meter Reading (dBµV) 46.87 37.54	eadphone Factor (dB) 0.14 0.14	Mod Rela Test Ante Emission Level (dBµV/m) 47.01 37.68	tive Humidity Voltage enna Polarity Limits (dBµV/m) 74 54	60.1% DC 3.7 Vertical Margin (dB) -26.99 -16.32	/ by battery Value Type peak AVG	
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4882.000 4882.000 7323.000	Wireless H 21.5 °C 960hPa Mode 5 Meter Reading (dBµV) 46.87 37.54 41.26	eadphone Factor (dB) 0.14 0.14 2.36	Моd Rela Теst Ante Emission Level (dBµV/m) 47.01 37.68 43.62	tive Humidity Voltage enna Polarity Limits (dBµV/m) 74 54 74	60.1% DC 3.7\ Vertical Margin (dB) -26.99 -16.32 -30.38	/ by battery Value Type peak AVG peak	
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4882.000	Wireless H 21.5°C 960hPa Mode 5 Meter Reading (dBµV) 46.87 37.54	eadphone Factor (dB) 0.14 0.14	Mod Rela Test Ante Emission Level (dBµV/m) 47.01 37.68	tive Humidity Voltage enna Polarity Limits (dBµV/m) 74 54	60.1% DC 3.7 Vertical Margin (dB) -26.99 -16.32	/ by battery Value Type peak AVG	
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4882.000 4882.000 7323.000	Wireless H 21.5 °C 960hPa Mode 5 Meter Reading (dBµV) 46.87 37.54 41.26	eadphone Factor (dB) 0.14 0.14 2.36	Моd Rela Test Ante Emission Level (dBµV/m) 47.01 37.68 43.62	tive Humidity Voltage enna Polarity Limits (dBµV/m) 74 54 74	60.1% DC 3.7\ Vertical Margin (dB) -26.99 -16.32 -30.38	/ by battery Value Type peak AVG peak	
Factor = Anter UT Name emperature ressure est Mode Frequency (MHz) 4882.000 4882.000 7323.000	Wireless H 21.5 °C 960hPa Mode 5 Meter Reading (dBµV) 46.87 37.54 41.26	eadphone Factor (dB) 0.14 0.14 2.36	Моd Rela Test Ante Emission Level (dBµV/m) 47.01 37.68 43.62	tive Humidity Voltage enna Polarity Limits (dBµV/m) 74 54 74	60.1% DC 3.7\ Vertical Margin (dB) -26.99 -16.32 -30.38	/ by battery Value Type peak AVG peak	

RESULT: Pass

UT Name	Wireless He	adphone	Mod	el Name	A3948R0	C	
emperature	21.5 ℃		Rela	tive Humidity	60.1%		
Pressure	960hPa		Test	Voltage	DC 3.7V	DC 3.7V by battery	
est Mode	Mode 6	Mode 6		nna Polarity	Horizontal		
Frequency	Meter Reading	Factor	Emission Leve	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4960.000	47.68	0.22	47.9	74	-26.1	peak	
4960.000	38.41	0.22	38.63	54	-15.37	AVG	
7440.000	42.16	2.64	44.8	74	-29.2	peak	
7440.000	31.28	2.64	33.92	54	-20.08	AVG	
Remark:			•	·			
Remark: Factor = Anter	nna Factor + Cable	e Loss – Pre-	amplifier				
	nna Factor + Cabl	e Loss – Pre-	amplifier.				
	nna Factor + Cable Wireless He			el Name	A3948R0	 C	
Factor = Anter			Mod	el Name tive Humidity	A3948R0	2	
Factor = Anter	Wireless He		Mod Rela		60.1%	C by battery	
Factor = Anter	Wireless He 21.5℃		Mod Rela Test	tive Humidity	60.1%		
Factor = Anter	Wireless He 21.5℃ 960hPa Mode 6	adphone	Mod Rela Test Ante	tive Humidity Voltage nna Polarity	60.1% DC 3.7V Vertical		
Factor = Anter	Wireless He 21.5℃ 960hPa Mode 6 Meter Reading	adphone	Mod Rela Test Ante Emission Leve	tive Humidity Voltage nna Polarity Limits	60.1% DC 3.7V Vertical Margin		
Factor = Anter	Wireless He 21.5℃ 960hPa Mode 6 Meter Reading (dBµV)	Factor (dB)	Mod Rela Test Ante Emission Leve (dBµV/m)	tive Humidity Voltage nna Polarity Limits (dBµV/m)	60.1% DC 3.7V Vertical Margin (dB)	by battery Value Type	
Factor = Anter	Wireless He 21.5℃ 960hPa Mode 6 Meter Reading (dBµV) 47.64	Factor (dB) 0.22	Mod Rela Test Ante Emission Leve (dBµV/m) 47.86	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74	60.1% DC 3.7V Vertical Margin (dB) -26.14	by battery Value Type peak	
Factor = Anter	Wireless He 21.5 °C 960hPa Mode 6 Meter Reading (dBµV) 47.64 38.51	Factor (dB) 0.22 0.22	Mod Rela Test Ante Emission Leve (dBµV/m) 47.86 38.73	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54	60.1% DC 3.7V Vertical Margin (dB) -26.14 -15.27	by battery Value Type peak AVG	
Factor = Anter EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000 7440.000	Wireless He 21.5 ℃ 960hPa Mode 6 Meter Reading (dBµV) 47.64 38.51 41.61	Factor (dB) 0.22 0.22 2.64	Моd Rela Test Ante Emission Leve (dBµV/m) 47.86 38.73 44.25	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54 74	60.1% DC 3.7V Vertical Margin (dB) -26.14 -15.27 -29.75	by battery Value Type peak AVG peak	
Factor = Anter	Wireless He 21.5 °C 960hPa Mode 6 Meter Reading (dBµV) 47.64 38.51	Factor (dB) 0.22 0.22	Mod Rela Test Ante Emission Leve (dBµV/m) 47.86 38.73	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54	60.1% DC 3.7V Vertical Margin (dB) -26.14 -15.27	by battery Value Type peak AVG	
Factor = Anter EUT Name emperature ressure rest Mode Frequency (MHz) 4960.000 7440.000	Wireless He 21.5 ℃ 960hPa Mode 6 Meter Reading (dBµV) 47.64 38.51 41.61	Factor (dB) 0.22 0.22 2.64	Моd Rela Test Ante Emission Leve (dBµV/m) 47.86 38.73 44.25	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54 74	60.1% DC 3.7V Vertical Margin (dB) -26.14 -15.27 -29.75	by battery Value Type peak AVG peak	

RESULT: Pass

Note:

- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.

EUT Name	Wireless Headphone	Model Name	A3948RC
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 1	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

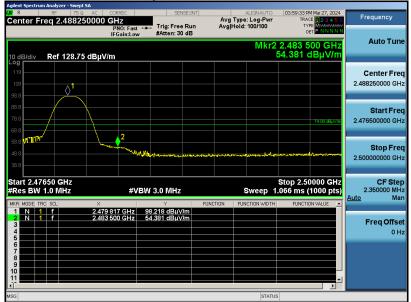
Test Graph for Average Measurement

RESULT: Pass

EUT Name	Wireless Headphone	Model Name	A3948RC
Temperature	25℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 1	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement



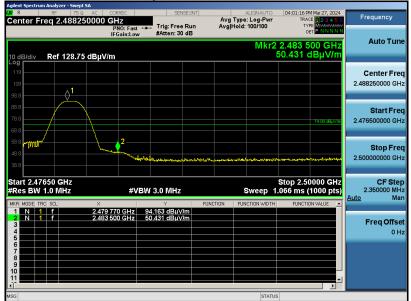
RESULT: Pass



EUT Name	Wireless Headphone	Model Name	A3948RC
Temperature	25℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 3	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

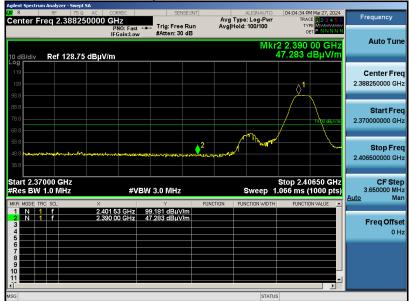


RESULT: Pass

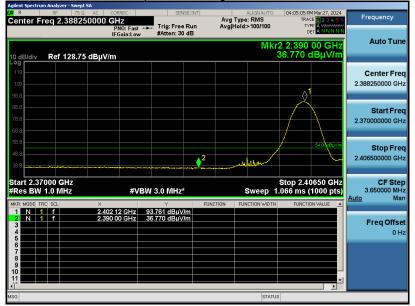
EUT Name	Wireless Headphone	Model Name	A3948RC
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 3	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement



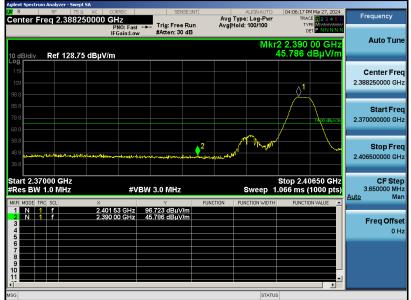
RESULT: Pass



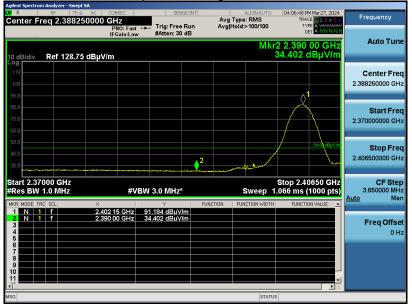
EUT Name	Wireless Headphone	Model Name	A3948RC
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 4	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement



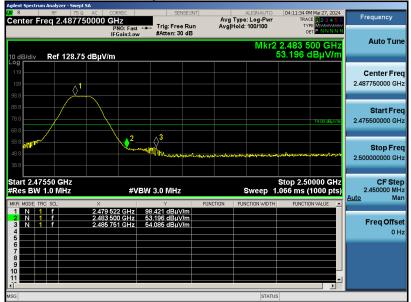
RESULT: Pass



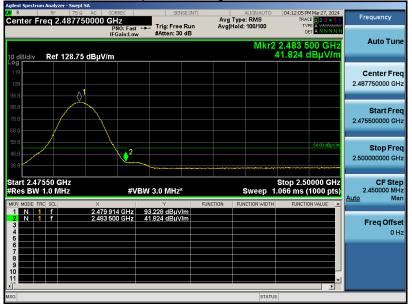
EUT Name	Wireless Headphone	Model Name	A3948RC
Temperature	25℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 4	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement



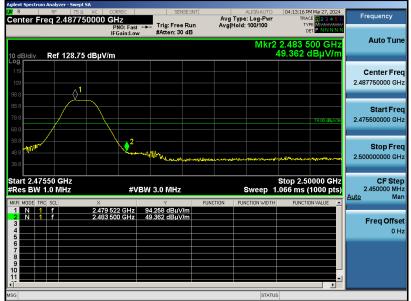
RESULT: Pass



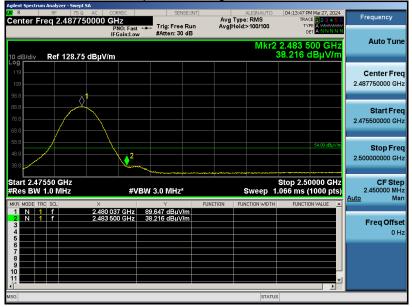
EUT Name	Wireless Headphone	Model Name	A3948RC
Temperature	25℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 6	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement



RESULT: Pass



EUT Name	Wireless Headphone	Model Name	A3948RC
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 6	Antenna Polarity	Vertical

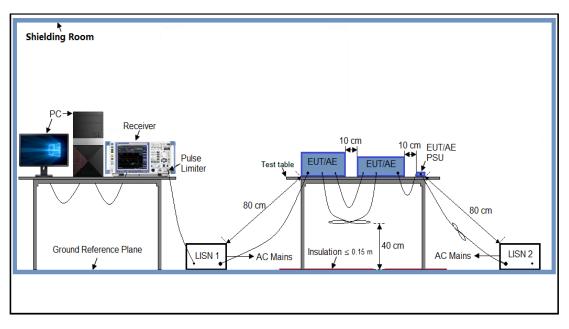
Test Graph for Peak Measurement

Test Graph for Average Measurement

<u>**RESULT: Pass</u>** Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer.</u>

12. AC Power Line Conducted Emission Test

12.1 Measurement Limit


Framman	Maximum RF Line Voltage		
Frequency	Q.P. (dBµV)	Average (dBµV)	
150kHz~500kHz	66-56	56-46	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

12.2 Measurement Setup (Block Diagram of Configuration)

12.3 Preliminary Procedure of Line Conducted Emission Test

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4 Final Procedure of Line Conducted Emission Test

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less – 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

12.5 Measurement Results

N/A

Note: The BT function cannot transmit when charging

Report No.: AGC01110240444FR01 Page 68 of 68

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC01110240444AP01

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC01110240444AP02

-----End of Report-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.