ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT CERTIFICATION TO FCC PART 15 REQUIREMENTS

for

INTENTIONAL RADIATOR

302 MHz CAR ALARM TRANSMITTER

MODEL NAME: PRO-OE3B3

TRADE NAME: NUTEK

FCC ID NO: ELVAT1E

REPORT NO: 01T0977-1

ISSUE DATE: SEPTEMBER 28, 2001

Prepared for

NUTEK CORPORATION
5F, NO. 3, ALLEY 6, LANE 45
PAO-HSING ROAD, HSIN TIEN, TAIPEI
TAIWAN
R. O. C.

Prepared by

COMPLIANCE ENGINEERING SERVICES, INC. d.b.a.

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD MORGAN HILL, CA 95037, USA

> TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

DA	CT
PA	GĽ

1. VERIFICATION OF COMPLIANCE	3
2. Product Description	
3. Test Facility	4
4. Measurement Standards	4
5. Test Methodology	4
6. Measurement Equipment Used	4
7. POWERLINE RFI LIMIT	5
8. RADIATED EMISSION LIMITS	5
9. SYSTEM TEST CONFIGURATION	6
10. Test Procedure	7
11. Equipment Modifications	8
12. TEST RESULT	9
12.1 Maximum Modulation Percentage (M%)	9
12.2 The Emissions Bandwidth	9

TEST DATA

- Maximum Modulation Percentage Plot
- Emission Bandwidth Plot
- Radiated Emission Worksheet for Peak Measurement
- Radiated Emission Worksheet for Average Measurement

ATTACHMENT

- EUT Photographs
- Proposed FCC ID Label
- Schematics & Block Diagram
- User Manual

1. VERIFICATION OF COMPLIANCE

COMPANY NAME: NUTEK CORPORATION

5F, NO. 3, ALLEY 6, LANE 45, PAO-HSING ROAD

HSIN TIEN, TAIPEI, TAIWAN

R.O.C.

CONTACT PERSON: **RUBY HSIEH** TELEPHONE NO.: 02-2918-9478

302 MHz CAR ALARM TRANSMITTER **EUT DESCRIPTION:**

MODEL NAME/NUMBER: PRO-OE3B3 TRADE NAME: **NUTEK** FCC ID: **ELVAT1E**

DATE TESTED: **SEPTEMBER 24, 2001**

REPORT NUMBER: 01U0977-1

TYPE OF EQUIPMENT	SECURITY EQUIPMENT (INTENTIONAL RADIATOR)
EQUIPMENT TYPE	302 MHz CAR ALARM TRANSMITTER
MEASUREMENT PROCEDURE	ANSI C63.4 / 1992
LIMIT TYPE	CERTIFICATION
FCC RULE	CFR 47, PART 15

The above equipment was tested by Compliance Certification Services for compliance with the requirements set forth in the FCC CFR 47, PART 15. The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. Warning: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification will constitute fraud and shall nullify the document.

WEDWIN CODDUZ
KERWIN CORPUZ
ASSOCIATE EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

Tested By:

Approved & Released By:

section of the document.

THU CHAN SENIOR EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

Page 3 of 26

561F MONTEREY RD., MORGAN HILL, CA 95037, USA

2. PRODUCT DESCRIPTION

Fundamental Frequency	302 MHz
Power Source	12V Alkaline Battery Model 27A
Transmitting Time	Periodic ≤ 5 seconds
Associated Receiver	FCC ID: ELVAR5C

3. TEST FACILITY

The 3/10/30 meter open area test site and conducted measurement facility used to collect the radiated data is located at 561F Monterey Road, Morgan Hill, California, U.S.A. A detailed description of the test facility was submitted to the Commission on May 27,1994.

4. MEASUREMENT STANDARD

The site is constructed and calibrated in conformance with the requirements of ANSI C63.4/1992.

5. TEST METHODOLOGY

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 KHz, up to at least the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. (CFR 47 Section 15.33)

6. MEASUREMENT EQUIPMENT USED

TEST EQUIPMENTS LIST								
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date				
Spectrum Analyzer	HP100Hz-1.5GHz	8568B	2732A03661	5/4/02				
Spectrum Display	HP	85662A	2816A16696	5/4/02				
Quasi-Peak Detector	HP9K - 1GHz	85650A	2811A01155	5/4/02				
Pre-Amplifier, 25 dB	HP 0.1 - 1300MHz	8447D (P5)	2944A096550	8/10/02				
Antenna, Bicon	Eaton 30-200MHz	94455-1	1214	8/2/02				
Antenna, LP	EMCO 200-200MHz	3146	9107-3163	8/2/02				
EMC Receiver, 9k-26.5GHz	HP	8593EM	3710A00205	6/20/02				
Horn Antenna(1 - 18GHz)	EMCO	3115	9001-3245	6/20/02				
Pre-Amplifier	MITEQ 1-26GHz	NSP2600-44	646456	4/12/02				

7. POWERLINE RFI LIMIT

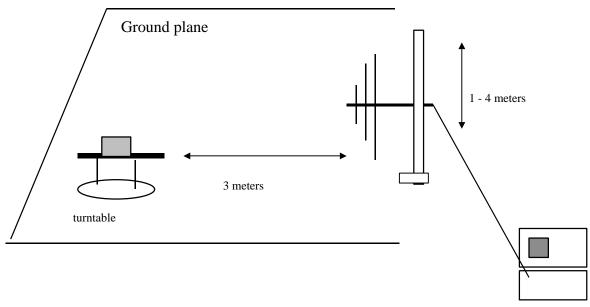
CONNECTED TO AC POWER LINE	SECTION 15.207
CARRIER CURRENT SYSTEM IN THE FREQUENCY RANGE OF 450 KHzTO 30 MHz	SECTION 15.205 AND SECTION 15.209, 15.221, 15.223, 15.225 OR 15.227, AS APPROPRIATE.
BATTERY POWER	NOT REQUIRED

8. RADIATED EMISSION LIMITS

GENERAL REQUIREMENTS	SECTION 15.209
RESTRICTED BANDS OF OPERATION	SECTION 15.205
PERIODIC OPERATION IN THE BAND 40.66 - 40.70 MHz AND ABOVE 70 MHz.	SECTION 15.231

9. SYSTEM TEST CONFIGURATION

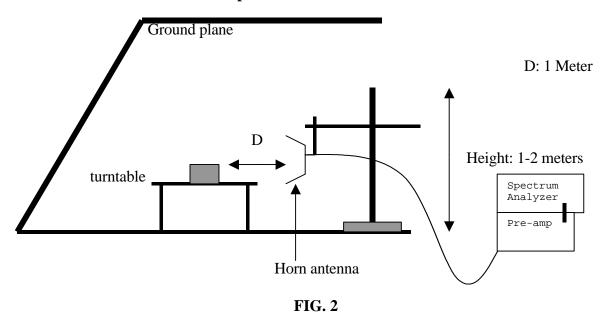
Use a block of foam and combined it with EUT wrapping rubber band around it. This way it can test X.Y, and Z axis. To activate continuous transmission, place a small plastic block between rubber band and EUT push button.



Radiated Open Site Test Set-up

10. TEST PROCEDURE

Radiated Emissions, 15.231(4)(b)



preamplifier/spectrum analyzer

Fig. 1

- 1. The EUT was placed on a wooden table on the outdoor ground plane. The search antenna was placed 3-meters from the EUT.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205. The EUT was moved throughout the XY, XZ, and YZ planes to maximize emissions received by the search antenna.
- 3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test set-up for measurements above 1GHz

- 1. The EUT was placed on a wooden table on the outdoor ground plane. The search antenna was placed 1-meters from the EUT. The EUT antenna was mounted vertically as per normal installation.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205. The EUT was moved throughout the XY, XZ, and YZ planes to maximize emissions received by the search antenna.
- 3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

11. EQUIPMENT MODIFICATIONS

To achieve compliance to FCC Section 15.231 technical limits, the following change(s) were made during compliance testing:

No changes were required in order to achieve compliance to Section 15.231 levels.

12. TEST RESULT

Powerline RFI Class B	Eut	Radiated Emission Limits	Eut
SECTION 15.207		SECTION 15.209	X
SECTION 15.205, 15.209, 15.221, 15.223, x 15.225 OR 15.227		SECTION 15.205	X
BATTERY POWER	X	SECTION 15.231 (b)	X
		SECTION 15.231 (e)	

12.1 MAXIMUM MODULATION PERCENTAGE (M%)

CALCULATION:

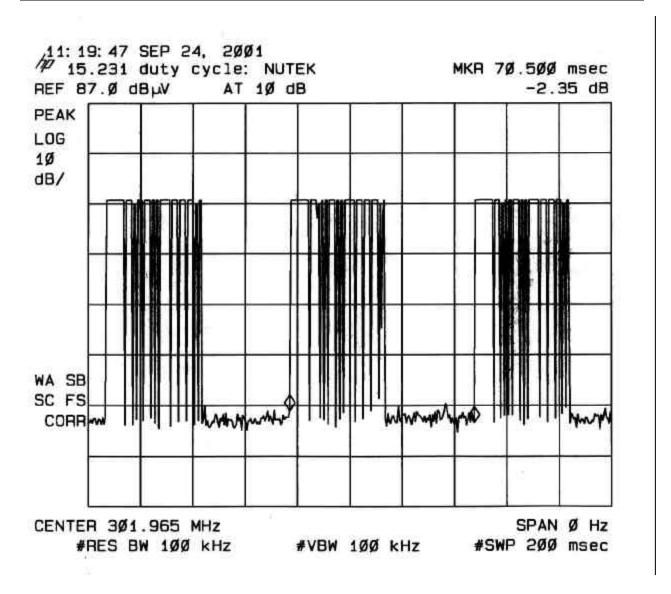
Average Reading = Peak Reading (dBuV/m)+ 20log (Duty Cycle)

In order to determine possible Maximum Modulation percentage, alternations are made to the EUT. We measured:

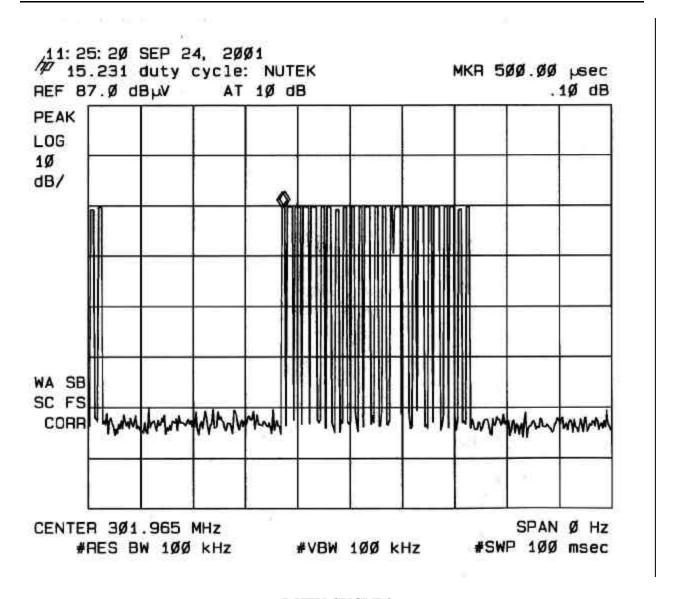
WHERE 1 Period = 70.5 mS

Long pulse= 1 mSShort pulse= 0.5 mSNo of Long pulse= 11No of Short pulse= 14

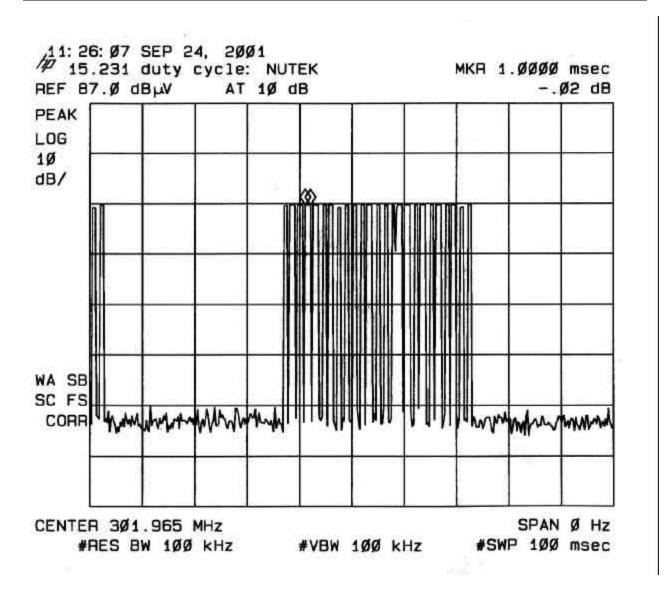
Duty Cycle = (N1L1+N2L2+...+Nn-1Ln-1+NnLn)/70.5 or T

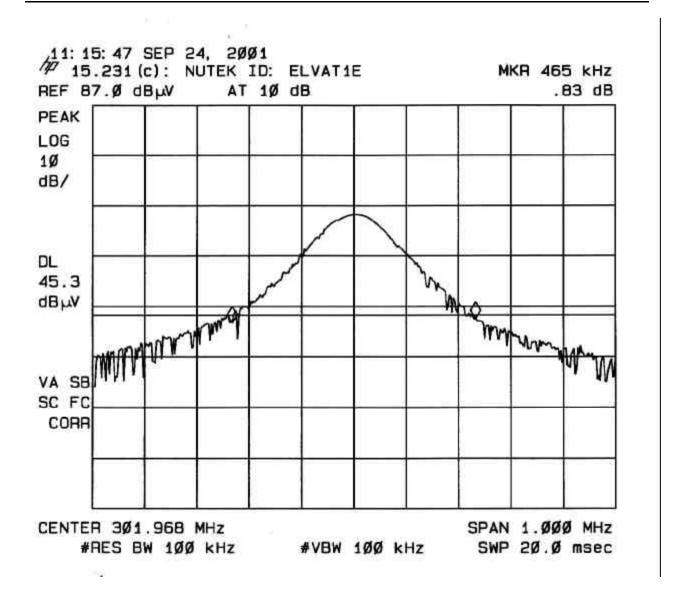

Duty Cycle = ((11x1)+(14x0.50))/70.5=0.255=25.5%

For duty cycle refer to plot #1, 2, 3.


12.2 EMISSION BANDWIDTH

The bandwidth of the emissions were investigated per 15.231(c)


Center Frequency	Measured	Limits
302 MHz	465 KHz	302 x 0.25%=755 KHz
	(refer to plot)	


DUTY CYCLE 1

DUTY CYCLE 2

DUTY CYCLE 3

EMISSION BANDWIDTH

FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP **Project #:** 01T0977-1 **Report #:** 010924C1

Date Time: 09/24/01 4:45 PM
Test Engr: KERWIN CORPUZ

561F MONTEREY ROAD, SAN JOSE, CA 95037-9001 PHONE: (408) 463-0885 FAX: (408) 463-0888

Company: JTEK CORPORATION

EUT Description: 2MHz CAR ALARM TX (M/N: PRO-OE3B3)

Test Configuration: JT ONLY

Type of Test: C PART 15.231(b)

Mode of Operation:

A-Site

B-Site

C-Site

F-Site

6 Worst Data

Descending

Freq.	Reading	AF		Pre-amp		Limit	Margin	Pol	Az	Height	Mark
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	FCC_B	(dB)	(H/V)	(Deg)	(Meter)	(P/Q/A)
X AXIS:											
OPTION	button:										
302.01	59.21	15.09	2.59	26.65	50.23	74.80	-24.57	3mV	135.00	1.30	Α
302.01	75.02	14.85	2.59	26.65	65.80	74.80	-9.00	3mH	135.00	1.00	Α
LOCK b	utton										
302.01	71.61	14.85	2.59	26.65	62.39	74.80	-12.41	3mH	270.00	1.00	Α
302.01	55.91	15.09	2.59	26.65	46.93	74.80	-27.87	3mV	180.00	1.30	Α
UNLOC	K button										
302.01	55.41	15.09	2.59	26.65	46.43	74.80	-28.37	3mV	180.00	1.30	Α
302.01	72.01	14.85	2.59	26.65	62.79	74.80	-12.01	3mH	0.00	1.00	Α
Y AXIS:											
	K button										
302.01	63.21	14.85	2.59	26.65	53.99	74.80	-20.81	3mH	180.00	1.70	Α
302.01	68.31	15.09	2.59	26.65	59.33	74.80	-15.47	3mV	270.00	1.60	Α
LOCK b	utton										
302.01	68.31	15.09	2.59	26.65	59.33	74.80	-15.47	3mV	270.00	1.60	Α
302.01	62.61	14.85	2.59	26.65	53.39	74.80	-21.41	3mH	0.00	1.70	Α
OPTION	1										
302.01	63.31	14.85	2.59	26.65	54.09	74.80	-20.71	3mH	180.00	1.70	Α
302.01	67.81	15.09	2.59	26.65	58.83	74.80	-15.97	3mV	315.00	1.60	Α
Z AXIS:											
OPTION	1										
302.01	67.91	15.09	2.59	26.65	58.93	74.80	-15.87	3mV	270.00	1.70	Α
302.01	62.71	14.85	2.59	26.65	53.49	74.80	-21.31	3mH	0.00	1.70	Α
LOCK b											
302.01	62.71	14.85	2.59	26.65	53.49	74.80	-21.31	3mH	180.00	1.70	Α
302.01	68.01	15.09	2.59	26.65	59.03	74.80	-15.77	3mV	0.00	1.70	Α
	K button										
302.01	67.31	15.09	2.59	26.65	58.33	74.80	-16.47	3mV	90.00	1.70	Α
302.01	62.91	14.85	2.59	26.65	53.69	74.80	-21.11	3mH	0.00	1.70	Α

for Harm	nonic: X a	xis, OP7	TION but	ton with I	RX antenr	na at horiz					
Y axis, U	JNLOCK	button w	ith RX a	intenna a	t vertical p	oolarizatio					
604.05	37.21	18.51	3.87	28.12	31.47	54.80	-23.33	3mV	0.00	1.00	Α
906.07	24.71	21.79	4.97	27.51	23.96	54.80	-30.84	3mV	90.00	1.00	Α
604.05	38.61	19.21	3.87	28.12	33.57	54.80	-21.23	3mH	0.00	1.00	Α
906.07	23.01	22.54	4.97	27.51	23.02	54.80	-31.78	3mH	0.00	1.00	Α
NOTE: duty cycle (-11.88dB) was subtracted from SA reading.											
TO COMPLETE RADIATED EMISSION, NEED TO SCAN ABOVE 1 GHz UP TO 10th HARMONIC											
Total dat	ta #: 22										

V.2c

COMPLIANCE CERTIFICATION SERVICES, INC.

Radiated Emissions 15.231(b) 09/27/01 Kerwin Corpuz C-Site @ 1 meter

NUTEK CORPORATION 302 MHz CAR ALARM TRANSMITTER (M/N: PRO-0E3B3)

fo= 302.01 MHz

Worse case: X axis, OPTION button with RX antenna at Horizontal polarization and Y axis, UNLOCK button with RX antenna at Vertical polarization.

F(MHz)	READING (dBuV)		DC (dB)	AF (dB)	CL (dB)	AMP (dB)	DIST (dB)	HPF (dB)	TOTAL (dBuV/m)		LIMIT (dBuV/m)		MARGIN (dB)	
	Pk	Avg			24 24.5	25 100			Pk	Avg	Pk	Avg	Pk	Avg
1208*	41.2	26.31	14.89	23.8	0.3	42.7	9.5	. 0	13.1	-1.79	74	54	-60.9	-55.79
1510*	42.4	27.51	14.89	25.9	0.34	42.5	9.5	0	16.64	1.75	74	54	-57_4	-52.25
1812*	43.1	28.21	14.89	27.3	0.4	42.4	9.5	1	19.9	5.01	74	54	-54.1	-48.99
2114*	43.1	28.21	14.89	28.3	0.42	42.3	9.5	. 1	21.02	6.13	74	54	-53	-47.87
2416*	43.2	28.31	14.89	30.1	0.44	42.1	9.5	1	23.14	8.25	74	54	-50.9	-45.75
2718*	43.4	28.51	14.89	31.6	0.48	41.9	9.5	1	25.08	10.19	74	54	-48.9	-43.81
3020*	43.1	28.21	14.89	32.4	0.56	41.8	9.5	- 1	25.76	10.87	74	54	-48.2	-43.13

* Measured noise floor (worse case vertical)

NOTE: MEASURED HORIZONTAL (H) AND VERTICAL (V)

DC: duty cycle

DIST: Extrapolate reading from 3meter to 1 meter distance: 9.5dB

SPECTRUM ANALYZER: HP 8593EM AF: EMCO 3115, S/N: 9001-3245 AMP: MITEQ NSP2600-44 CL: FLEXCO SMA cable loss (2ft)

HPF: High pass filter insertion loss (FYS 1.8GHz, S/N: 577)

RADIATED EMISSION (HARMONIC)