

FCC Test Report

Report No.: RWAY202300045C Shenzhen Youmi Intelligent Technology Co., Ltd. Applicant: 406-407 Jingi Zhigu Building, 4/F, 1 Tangling Road, Nanshan Address: District, Shenzhen City, China Product Name: Smart phone Product Model: PG2309GBA Multiple Models: N/A Trade Mark: UMIDIGI FCC ID: 2ATZ4-G65GA Standards: FCC CFR Title 47 Part 15C (§15.247) Test Date: 2023-11-16~2024-02-01 Test Result: Complied **Report Date: 2024-02-06**

Reviewed by:

Frank Tin

Approved by:

Jacob Gong

Frank Yin Project Engineer

Jacob Kong Manager

Prepared by:

World Alliance Testing and Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Report Template: TR-4-E-009/V1

Announcement

1. This test report shall not be reproduced in full or partial, without the written approval of World Alliance Testing and Certification (Shenzhen) Co., Ltd

2. The results in this report apply only to the sample tested.

3. This sample tested is in compliance with the limits of the above regulation.

4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No.	Issued Date	Description
00	2024-02-06	Original

Contents

1	Gene	eral Infor	mation	4
	1.1	Client	Information	4
	1.2	Produc	ct Description of EUT	4
	1.3	Antenr	na information	4
	1.4	Relate	d Submittal(s)/Grant(s)	5
	1.5	Measu	irement Uncertainty	5
	1.6	Labora	atory Location	5
	1.7	Test M	ethodology	6
2	Desc	ription o	of Measurement	7
	2.1	Test C	onfiguration	7
	2.2	Test A	uxiliary Equipment	8
	2.3	Test Se	etup	8
	2.4	Test P	rocedure	10
	2.5	Measu	rement Method	.11
	2.6	Measu	rement Equipment	12
3	Test	Results		13
	3.1	Test S	ummary	13
	3.2	Limit		14
	3.3	AC Lin	e Conducted Emissions Test Data	15
	3.4	Radiat	ed emission Test Data	17
	3.5	RF Co	nducted Test Data	25
		3.5.1	6 dB Emission Bandwidth and 99% Occupied Bandwidth	25
		3.5.2	Maximum Conducted Peak Output Power	25
		3.5.3	Maximum Conducted Average Output Power	26
		3.5.4	Power Spectral Density	26
		3.5.5	100 kHz Bandwidth of Frequency Band Edge	27
		3.5.6	Duty Cycle	27
4	Test	Setup P	hoto	37
5	E.U.1	۲ Photo .		38

1 General Information

1.1 Client Information

Applicant:	Shenzhen Youmi Intelligent Technology Co., Ltd.
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China
Manufacturer:	Shenzhen Youmi Intelligent Technology Co., Ltd.
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China

1.2 Product Description of EUT

The EUT is Smart phone that contains Classic Bluetooth(BDR/EDR), BLE, 2.4G/5G WLAN, NFC, GSM/GPRS/EGPRS/WCDMA/LTE and 5G NR radios, this report covers the full testing of the 2.4G WLAN radio.

Sample Serial Number	2W-1 for CE&RE test, 2W-2 for RF test conducted test
	(assigned by WATC)
Sample Received Date	2023-11-15
Sample Status	Good Condition
Frequency Range	2412MHz - 2462MHz(802.11b, g, n-HT20)
	2422MHz - 2452MHz(802.11n-HT40)
Maximum Conducted Peak Output Power	22.71dBm
Modulation Technology	DSSS, OFDM
Antenna Gain [#]	1.1dBi
Spatial Streams [#]	SISO (1TX, 1RX)
Power Supply	DC5V from adapter or DC3.87 V from battery
Adapter 1 Information	Model: HJ-0502000W2-US
	Input: AC 100-240V~50/60Hz, 0.3A
	Output: DC 5V, 2A
Adapter 2 Information	Model: HF-0502000U
	Input: AC 100-240V~50/60Hz, 0.3A
	Output: DC 5.0V, 2A
Modification	Sample No Modification by the test lab

1.3 Antenna information

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Device Antenna information:

The Wi-Fi antenna is an internal antenna which cannot replace by end-user. Please see product internal photos for details.

1.4 Related Submittal(s)/Grant(s)

FCC Part 15, Subpart C, Equipment Class: DSS, FCC ID: 2ATZ4-G65GA FCC Part 15, Subpart C, Equipment Class: DXX, FCC ID: 2ATZ4-G65GA FCC Part 15, Subpart E, Equipment Class: NII, FCC ID: 2ATZ4-G65GA FCC Part 22H/24E/27, Equipment Class: PCE, FCC ID: 2ATZ4-G65GA

1.5 Measurement Uncertainty

Parameter		Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
AC Power Lines Condu	cted Emissions	±3.14dB
	Below 30MHz	±2.78dB
Emissions, Radiated	Below 1GHz	±4.84dB
	Above 1GHz	±5.44dB
Emissions, Conducted		1.75dB
Conducted Power		0.74dB
Frequency Error		150Hz
Bandwidth		0.34%
Power Spectral Density		0.74dB

Note 1: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Note 2: The Decision Rule is based on simple acceptance with ISO Guide 98-4:2012 Clause 8.2 (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

1.6 Laboratory Location

World Alliance Testing and Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: <u>qa@watc.com.cn</u>

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.7 Test Methodology

FCC CFR 47 Part 2 FCC CFR 47 Part 15 KDB 558074 D01 DTS Meas Guidance v05r02 ANSI C63.10-2020

2 Description of Measurement

2.1 Test Configuration

Operating channels:					
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2412	6	2437	11	2462
2	2417	7	2442	1	1
3	2422	8	2447	1	/
4	2427	9	2452	/	/
5	2432	10	2457	/	/

According to ANSI C63.10-2020 chapter 5.6.1 Table 11 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

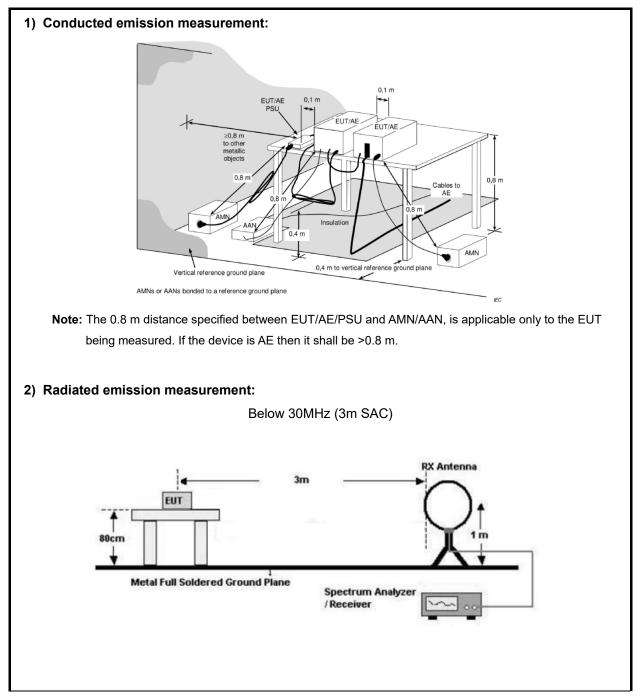
802.11b, 802.11g, 802.11n-HT20					
Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No. Frequency (MHz)		Channel No.	Frequency (MHz)
1	2412	6	2437	11	2462
		802.11n-	HT40		
Lowe	est channel	Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
3	2422	6	2437	9	2452

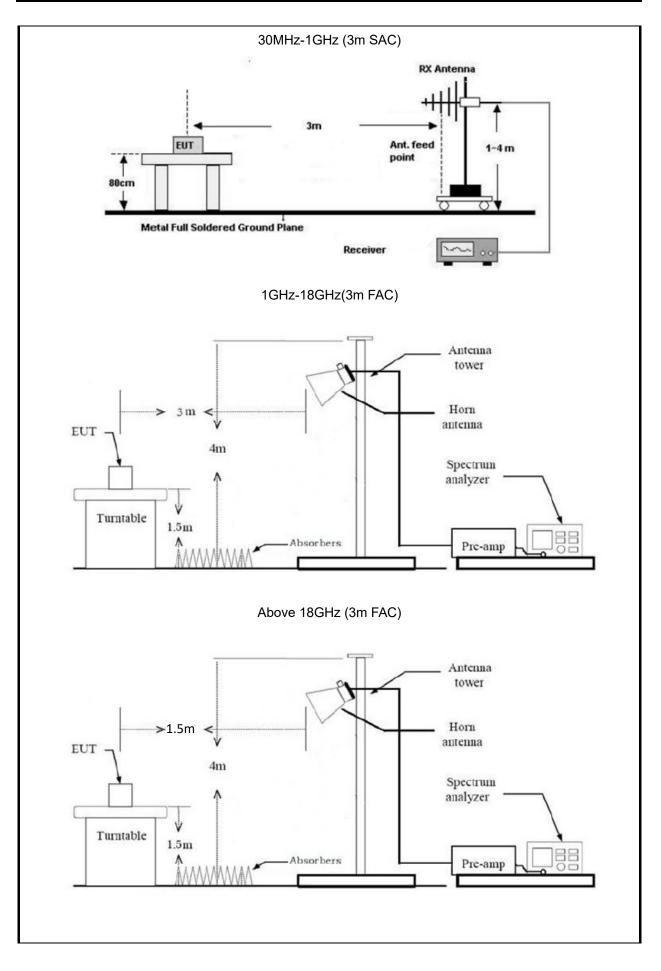
Test Mode:						
Transmitting mode:	Keep the EUT in	Keep the EUT in continuous transmitting with modulation				
Exercise software [#] :	Engineering mod	de				
Mada	Worst-case	Pe	Powel Level Setting [#]			
Mode	Data rate	Low Channel	Middle Channel	High Channel		
802.11b	1Mbps	19	19	19		
802.11g	6Mbps	18	18	18		
802.11n-HT20	6.5Mbps	17.5	17.5	17.5		
802.11n-HT40	0 13.5Mbps 15.5 15.5 15.5					
The exercise software	e and the maximum	power setting that pro	vided by manufacture	er.		

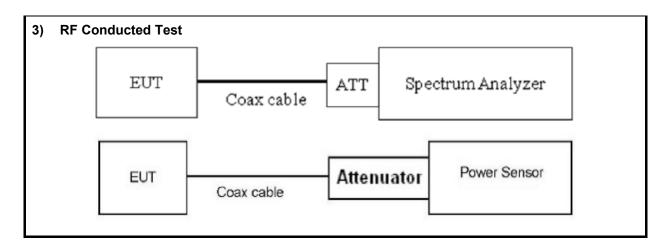
Worst-Case Configuration:

For radiated emissions, EUT was investigated in three orthogonal orientation, the worst-case orientation was recorded in report

For AC power line conducted emission and radiated emission 9kHz-1GHz and above 18GHz were performed with the EUT transmits at the channel with highest output power as worst-case scenario.


For AC power line conducted emission and radiated emission below 1GHz, according to the two adapter test result in BT report, the worst case adapter HJ-0502000W2-US was select to test.


2.2 Test Auxiliary Equipment


Manufacturer	Manufacturer Description Model		Serial Number
1	1	1	/

2.3 Test Setup

2.4 Test Procedure

Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- 2. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

a) For below 30MHz

- All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance).
- 2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)

b) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

c) For above 1GHz:

 The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5 m (above 18GHz).

- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
- 4. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

RF Conducted Test:

- 1. The antenna port of EUT was connected to the RF port of the test equipment (Power Meter or Spectrum analyzer) through Attenuator and RF cable.
- The cable assembly insertion loss of 10.5dB (including 10.0 dB Attenuator and 0.5dB cable) was entered as an offset in the power meter. Note: Actual cable loss was unavailable at the time of testing, therefore a loss of 0.5dB was assumed as worst case. This was later verified to be true by laboratory.
 (if the RF cable provided by client, the cable loss declared by client)
- 3. The EUT is keeping in continuous transmission mode and tested in all modulation modes.

Description of Test	Measurement Method	
AC Line Conducted Emissions	ANSI C63.10-2020 Section 6.2	
Maximum Conducted Output Power	ANSI C63.10-2020 Section 11.9.1.2 PKPM1 Peak power meter method or ANSI C63.10-2020 Section 11.9.2.3.2 Method AVGPM-G	
Power Spectral Density	ANSI C63.10-2020 Section 11.10.2 Method PKPSD (peak PSD)	
6 dB Emission Bandwidth	ANSI C63.10-2020 Section 11.8.1	
99% Occupied Bandwidth	ANSI C63.10-2020 Section 6.9.3	
100kHz Bandwidth of Frequency Band Edge	ANSI C63.10-2020 Section 6.10	
Radiated emission	ANSI C63.10-2020 Section 11.11&11.12	
Duty Cycle	ANSI C63.10-2020 Section 11.6	

2.5 Measurement Method

2.6 Measurement Equipment

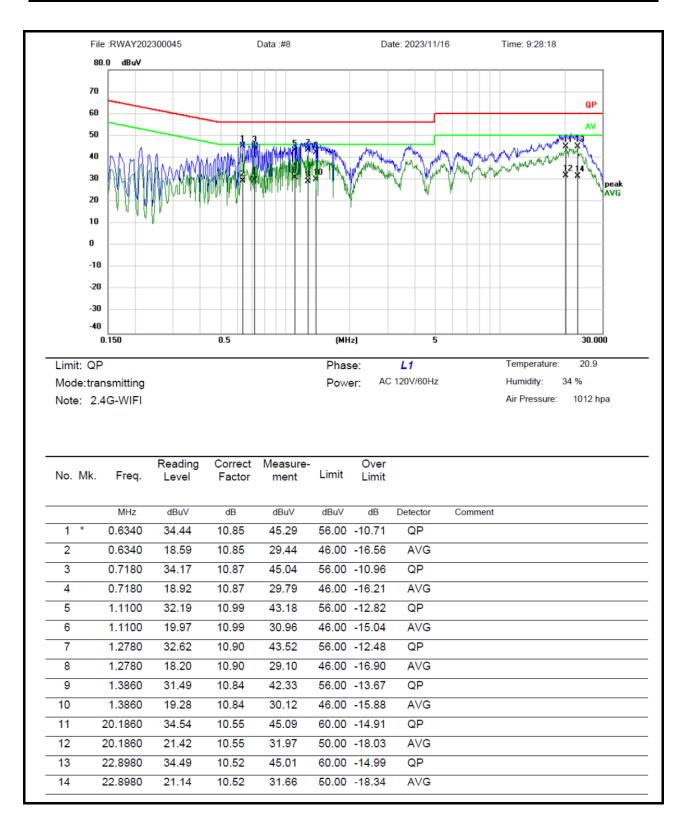
Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date	
	AC Line Conducted Emission Test					
ROHDE& SCHWARZ	EMI TEST RECEIVER	ESR	101817	2023/7/3	2024/7/2	
R&S	LISN	ENV216	101748	2023/8/1	2024/7/31	
N/A	Coaxial Cable	NO.12	N/A	2023/7/3	2024/7/2	
Farad	Test Software	EZ-EMC	Ver. EMEC-3A1	/	/	
		Radiated Emission	n Test			
R&S	EMI test receiver	ESR3	102758	2023/7/3	2024/7/2	
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2023/7/3	2024/7/2	
SONOMA INSTRUMENT	Low frequency amplifier	310	186014	2023/7/12	2024/7/11	
COM-POWER	preamplifier	PAM-118A	18040152	2023/8/21	2024/8/20	
COM-POWER	Amplifier	PAM-840A	461306	2023/8/8	2024/8/7	
ETS	Passive Loop Antenna	6512	29604	2023/7/7	2024/7/6	
SCHWARZBECK	Log - periodic wideband antenna	VULB 9163	9163-872	2023/7/7	2024/7/6	
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2024/7/5	
Ducommun technologies	Horn Antenna	ARH-4223-02	1007726-03	2023/7/10	2024/7/9	
Oulitong	Band Reject Filter	OBSF-2400-248 3.5-50N	OE02103119	2023/9/15	2024/9/14	
N/A	Coaxial Cable	N/A	NO.9	2023/8/8	2024/8/7	
N/A	Coaxial Cable	N/A	NO.10	2023/8/8	2024/8/7	
N/A	Coaxial Cable	N/A	NO.11	2023/8/8	2024/8/7	
Audix	Test Software	E3	191218 V9	/	/	
	RF Conducted Test					
R&S	Spectrum Analyzer	FSV40	101590	2023/11/16	2024/11/15	
MARCONI	10dB Attenuator	1692595	2942	2023/10/25	2024/10/24	
ANRITSU	USB Power Sensor	MA24418A	12620	2023/7/12	2024/7/11	

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

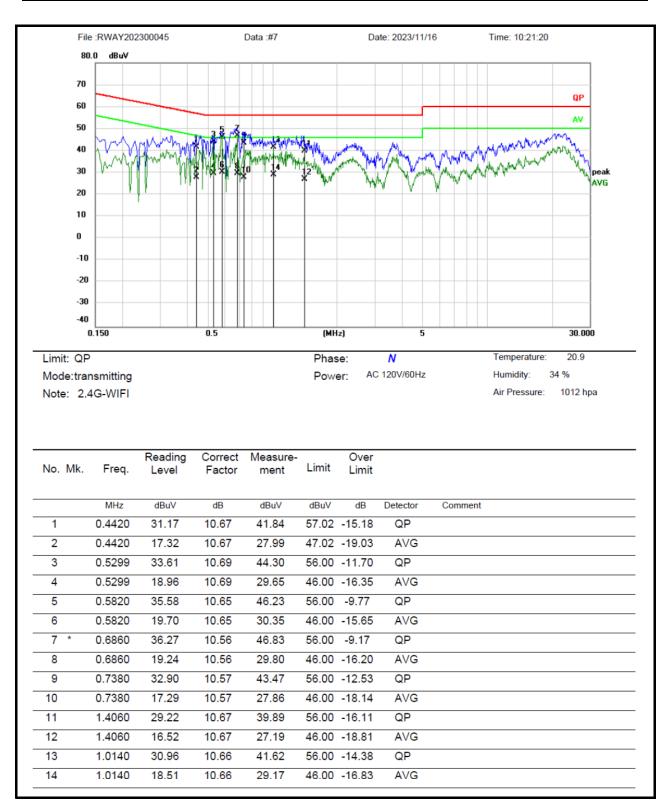
3 Test Results

3.1 Test Summary

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.247(b)(3)	Maximum Conducted Output Power	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
-	- 99% Occupied Bandwidth	
§15.247(d)	§15.247(d) 100kHz Bandwidth of Frequency Band Edge	
§15.205, §15.209, §15.247(d)	Radiated emission	Compliance
-	Duty Cycle	Report only


3.2 Limit

Test items	Limit
AC Line Conducted Emissions	See details §15.207 (a)
Conducted Output Power	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.
6dB Emission Bandwidth	The minimum 6 dB bandwidth shall be at least 500 kHz.
Power Spectral Density	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
Spurious Emissions, 100kHz Bandwidth of Frequency Band Edge	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).



3.3 AC Line Conducted Emissions Test Data

Test Date:	2023-11-16	Test By:	Lirou Li
Environment condition:	Temperature: 20.9°C; Relative Humidity: 34%; AT		ressure: 101.2kPa

Remark:

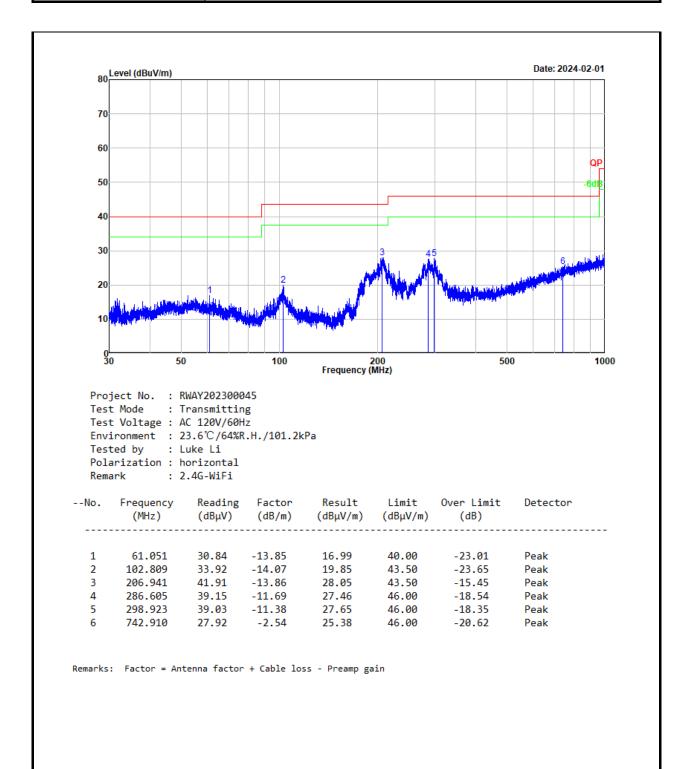
Measurement (dBuV)= Reading Level (dBuV) + Correct Factor(dB)

Correct Factor (dB)= LISN Voltage Division Factor (dB)+ Cable loss(dB)

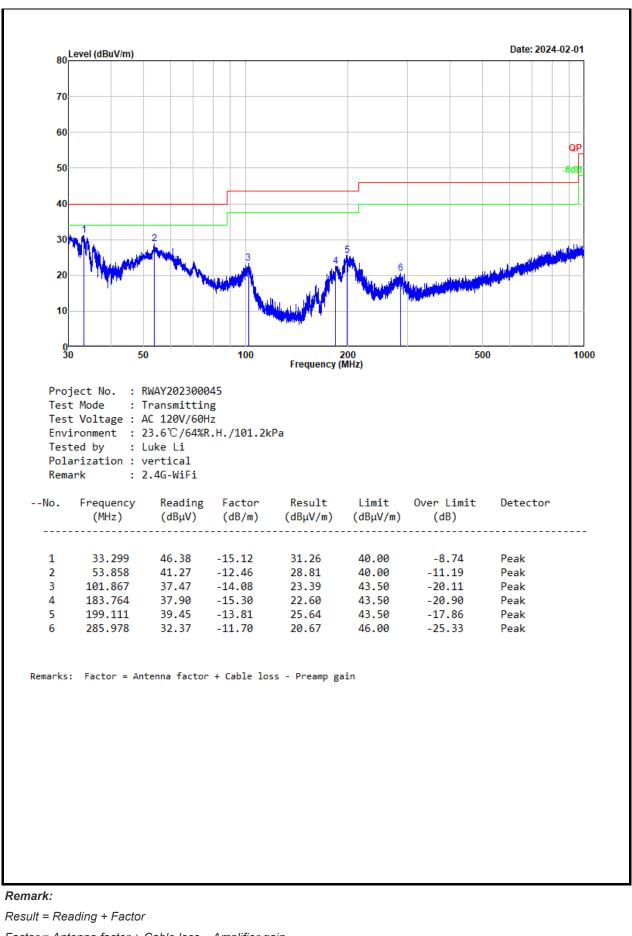
Over Limit = Measurement – Limit

3.4 Radiated emission Test Data

9 kHz-30MHz:


Test Date:	2024-02-01	Test By:	Luke Li
Environment condition:	Temperature: 23.6°C; Relative	Humidity:64%; ATM Pr	essure: 101.2kPa

For radiated emissions below 30MHz, there were no emissions found within 20dB of limit.



30MHz-1GHz:

Test Date:	2024-02-01	Test By:	Luke Li
Environment condition:	Temperature: 23.6°C; Relative	Humidity:64%; ATM F	ressure: 101.2kPa

Factor = Antenna factor + Cable loss – Amplifier gain Over Limit = Result – Limit

Above 1GHz:

Test Date:	2024-01-20	Test By:	Bard Huang
Environment condition: Temperature: 25.4°C; Relative		Humidity:49.8%; ATM	Pressure: 101.9kPa

Frequency (MHz)	Reading level (dBµV)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
802.11b							
	Low Channel						
2390.000	52.90	horizontal	8.25	61.15	74.00	-12.85	Peak
2390.000	38.94	horizontal	8.25	47.19	54.00	-6.81	Average
2390.000	53.61	vertical	8.25	61.86	74.00	-12.14	Peak
2390.000	39.45	vertical	8.25	47.70	54.00	-6.30	Average
4824.000	52.71	horizontal	0.26	52.97	74.00	-21.03	Peak
4824.000	52.46	vertical	0.26	52.72	74.00	-21.28	Peak
			Middle C	hannel			
4874.000	54.90	horizontal	0.41	55.31	74.00	-18.69	Peak
4874.000	50.19	horizontal	0.41	50.60	54.00	-3.40	Average
4874.000	54.52	vertical	0.41	54.93	74.00	-19.07	Peak
4874.000	49.64	vertical	0.41	50.05	54.00	-3.95	Average
			High Ch	annel	· · · · · ·		
2483.500	52.80	horizontal	8.25	61.05	74.00	-12.95	Peak
2483.500	38.73	horizontal	8.25	46.98	54.00	-7.02	Average
2483.500	53.52	vertical	8.25	61.77	74.00	-12.23	Peak
2483.500	39.13	vertical	8.25	47.38	54.00	-6.62	Average
4924.000	54.81	horizontal	0.69	55.50	74.00	-18.50	Peak
4924.000	50.23	horizontal	0.69	50.92	54.00	-3.08	Average
4924.000	54.35	vertical	0.69	55.04	74.00	-18.96	Peak
4924.000	50.12	vertical	0.69	50.81	54.00	-3.19	Average
			802.1	1g			
			Low Ch	annel			
2390.000	59.65	horizontal	8.25	67.90	74.00	-6.10	Peak
2390.000	38.45	horizontal	8.25	46.70	54.00	-7.30	Average
2390.000	58.17	vertical	8.25	66.42	74.00	-7.58	Peak
2390.000	38.32	vertical	8.25	46.57	54.00	-7.43	Average
4824.000	47.60	horizontal	0.26	47.86	74.00	-26.14	Peak
4824.000	48.02	vertical	0.26	48.28	74.00	-25.72	Peak
			Middle C	hannel			

4874.000	49.20	horizontal	0.41	49.61	74.00	-24.39	Peak
4874.000	48.74	vertical	0.41	49.15	74.00	-24.85	Peak
			High Ch	annel			
2483.500	58.05	horizontal	8.25	66.30	74.00	-7.70	Peak
2483.500	38.73	horizontal	8.25	46.98	54.00	-7.02	Average
2483.500	59.07	vertical	8.25	67.32	74.00	-6.68	Peak
2483.500	40.26	vertical	8.25	48.51	54.00	-5.49	Average
4924.000	51.06	horizontal	0.69	51.75	74.00	-22.25	Peak
4924.000	50.45	vertical	0.69	51.14	74.00	-22.86	Peak
			802.11	n20			
			Low Ch	annel			
2390.000	61.34	horizontal	8.25	69.59	74.00	-4.41	Peak
2390.000	39.27	horizontal	8.25	47.52	54.00	-6.48	Average
2390.000	59.89	vertical	8.25	68.14	74.00	-5.86	Peak
2390.000	37.99	vertical	8.25	46.24	54.00	-7.76	Average
4824.000	47.60	horizontal	0.26	47.86	74.00	-26.14	Peak
4824.000	48.25	vertical	0.26	48.51	74.00	-25.49	Peak
			Middle C	hannel			
4874.000	49.17	horizontal	0.41	49.58	74.00	-24.42	Peak
4874.000	48.69	vertical	0.41	49.10	74.00	-24.90	Peak
			High Ch	annel			
2483.500	52.00	horizontal	8.25	60.25	74.00	-13.75	Peak
2483.500	38.95	horizontal	8.25	47.20	54.00	-6.80	Average
2483.500	53.12	vertical	8.25	61.37	74.00	-12.63	Peak
2483.500	39.39	vertical	8.25	47.64	54.00	-6.36	Average
4924.000	49.44	horizontal	0.69	50.13	74.00	-23.87	Peak
4924.000	49.25	vertical	0.69	49.94	74.00	-24.06	Peak
			802.11	n40			
			Low Ch	annel			
2390.000	59.50	horizontal	8.25	67.75	74.00	-6.25	Peak
2390.000	41.64	horizontal	8.25	49.89	54.00	-4.11	Average
2390.000	58.20	vertical	8.25	66.45	74.00	-7.55	Peak
2390.000	40.28	vertical	8.25	48.53	54.00	-5.47	Average
4844.000	47.55	horizontal	0.30	47.85	74.00	-26.15	Peak
4844.000	48.24	vertical	0.30	48.54	74.00	-25.46	Peak
			Middle C	hannel			
4874.000	47.65	horizontal	0.41	48.06	74.00	-25.94	Peak
4874.000	47.80	vertical	0.41	48.21	74.00	-25.79	Peak

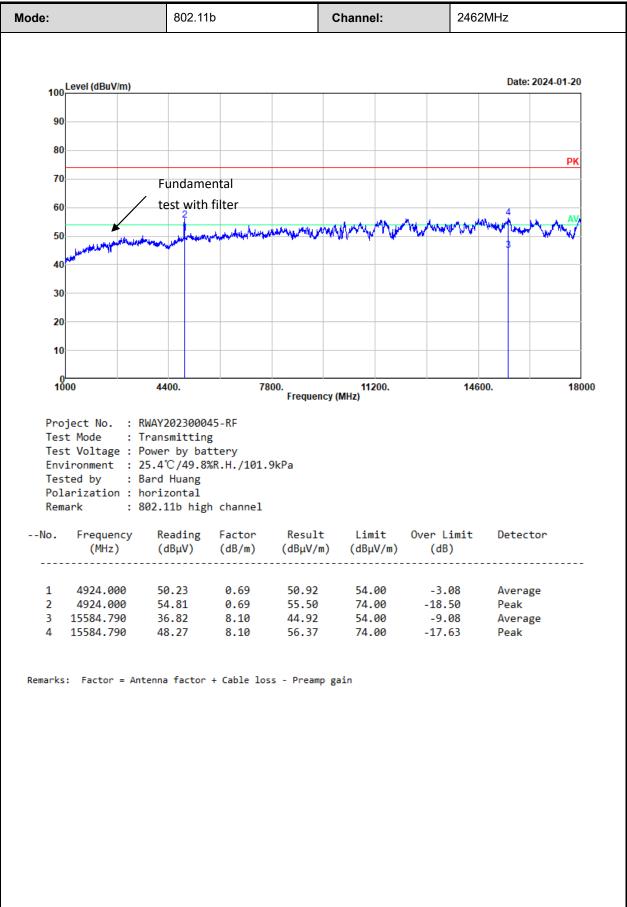
	High Channel						
2483.500	51.79	horizontal	8.25	60.04	74.00	-13.96	Peak
2483.500	42.82	horizontal	8.25	51.07	54.00	-2.93	Average
2483.500	53.06	vertical	8.25	61.31	74.00	-12.69	Peak
2483.500	43.20	vertical	8.25	51.45	54.00	-2.55	Average
4904.000	48.13	horizontal	0.55	48.68	74.00	-25.32	Peak
4904.000	47.49	vertical	0.55	48.04	74.00	-25.96	Peak

Remark:

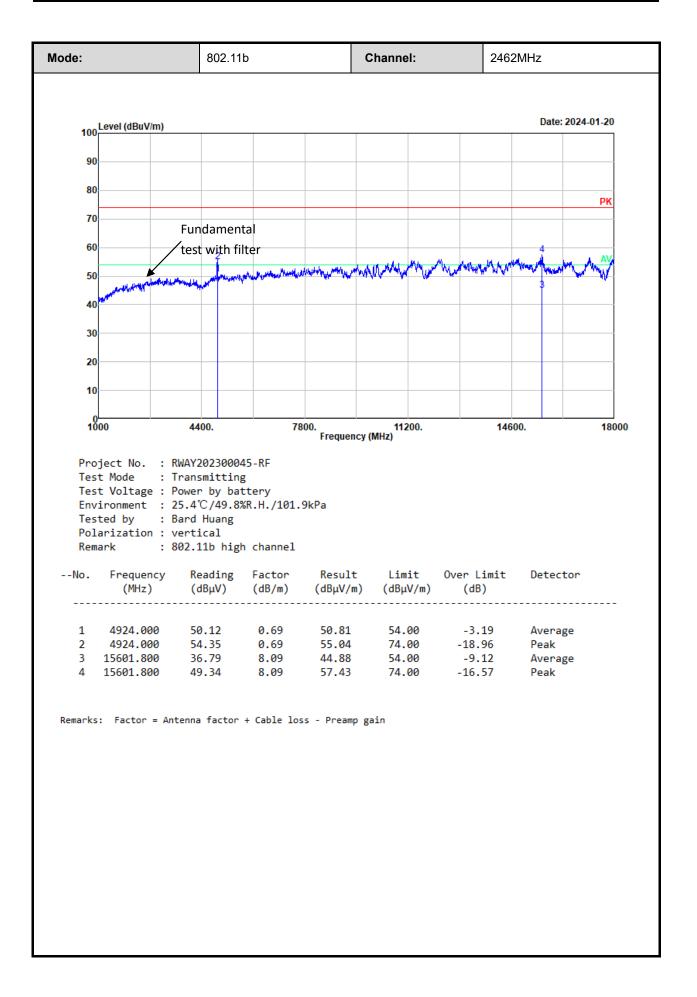
Corrected Amplitude= Reading level + corrected Factor

Corrected Factor = Antenna factor + Cable loss - Amplifier gain

Margin = Corrected Amplitude – Limit


For the test result of Peak below the Peak limit more than 20dB, which can compliance with the average limit, just the Peak level was recorded.

The emission levels of other frequencies that were lower than the limit 20dB not show in test report.


For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.

Test plot for example as below:

3.5 RF Conducted Test Data

Test Date:	2023-12-06~2023-12-21	Test By:	Ryan Zhang	
Environment condition:	Temperature: 24.9~25.6°C; Relative Humidity: 50~51%; ATM Pressure: 101kF			

3.5.1 6 dB Emission Bandwidth and 99% Occupied Bandwidth

Test Mode	Channel	6dB BW [MHz]	99% OBW[MHz]	6dB BW Limit[MHz]	Verdict
	2412	8.61	13.31	0.5	pass
802.11b	2437	8.58	13.19	0.5	pass
	2462	8.61	13.31	0.5	pass
	2412	16.2	17.14	0.5	pass
802.11g	2437	16.41	17.26	0.5	pass
	2462	16.41	17.5	0.5	pass
	2412	17.46	17.94	0.5	pass
802.11n ht20	2437	17.67	17.98	0.5	pass
	2462	17.64	18.1	0.5	pass
	2422	31.68	35.64	0.5	pass
802.11n ht40	2437	31.44	35.72	0.5	pass
	2452	36.72	37.24	0.5	pass

3.5.2 Maximum Conducted Peak Output Power

Test Mode	Channel[MHz]	Result [dBm]	Limit [dBm]	Verdict
	2412	17.32	30	pass
802.11b	2437	17.54	30	pass
	2462	17.71	30	pass
	2412	22.71	30	pass
802.11g	2437	21.17	30	pass
	2462	21.86	30	pass
	2412	20.76	30	pass
802.11n ht20	2437	20.71	30	pass
	2462	21.39	30	pass
	2422	19.38	30	pass
802.11n ht40	2437	19.55	30	pass
	2452	19.32	30	pass

Test Mode	Channel[MHz]	Result [dBm]	Limit [dBm]	Verdict
	2412	14.33	30	pass
802.11b	2437	14.49	30	pass
	2462	14.73	30	pass
	2412	14.21	30	pass
802.11g	2437	12.69	30	pass
	2462	13.39	30	pass
	2412	12.24	30	pass
802.11n ht20	2437	12.19	30	pass
	2462	12.88	30	pass
	2422	10.69	30	pass
802.11n ht40	2437	10.76	30	pass
	2452	10.65	30	pass

3.5.3 Maximum Conducted Average Output Power

Note: Report only

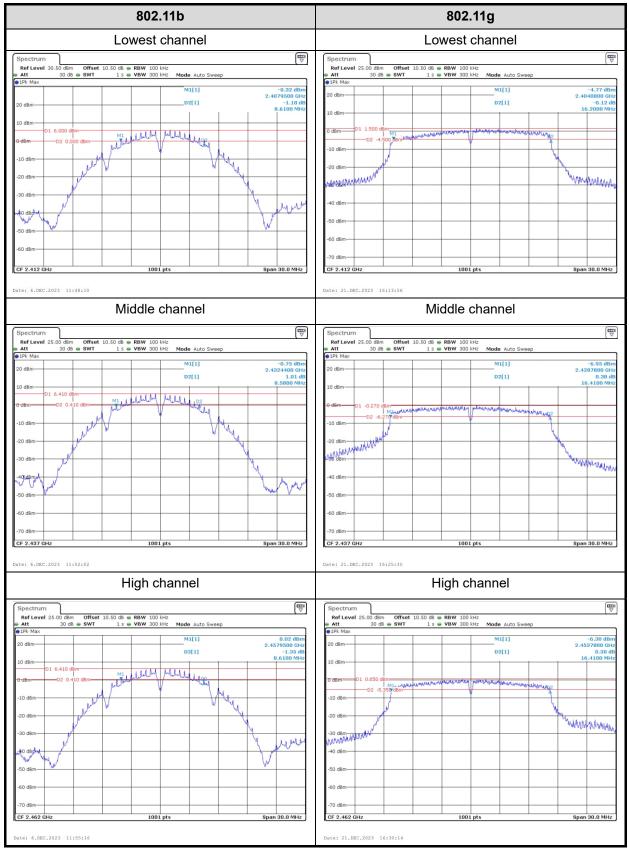
3.5.4 Power Spectral Density

Test Mode	Channel[MHz]	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
802.11b	2412	-7.29	8	pass
	2437	-6.87	8	pass
	2462	-6.83	8	pass
	2412	-9.56	8	pass
802.11g	2437	-11.32	8	pass
	2462	-10.52	8	pass
	2412	-11.64	8	pass
802.11n ht20	2437	-12.01	8	pass
	2462	-11.25	8	pass
	2422	-14.42	8	pass
802.11n ht40	2437	-15	8	pass
	2452	-16.75	8	pass

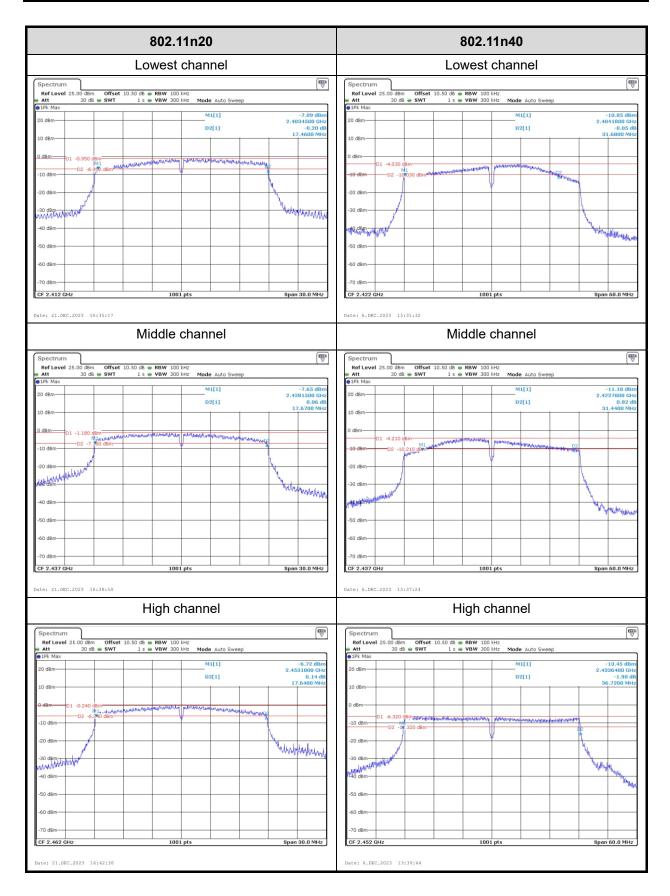
3.5.5 100 kHz Bandwidth of Frequency Band Edge

Test Mode	Channel[MHz]	Result	Limit	Verdict
802.11b	2412	Refer test plot	Refer test plot	Pass
602.11D	2462	Refer test plot	Refer test plot	Pass
902 11 a	2412	Refer test plot	Refer test plot	Pass
802.11g	2462	Refer test plot	Refer test plot	Pass
902 11=20	2412	Refer test plot	Refer test plot	Pass
802.11n20	2462	Refer test plot	Refer test plot	Pass
902 11p 10	2422	Refer test plot	Refer test plot	Pass
802.11n40	2452	Refer test plot	Refer test plot	Pass

3.5.6 Duty Cycle

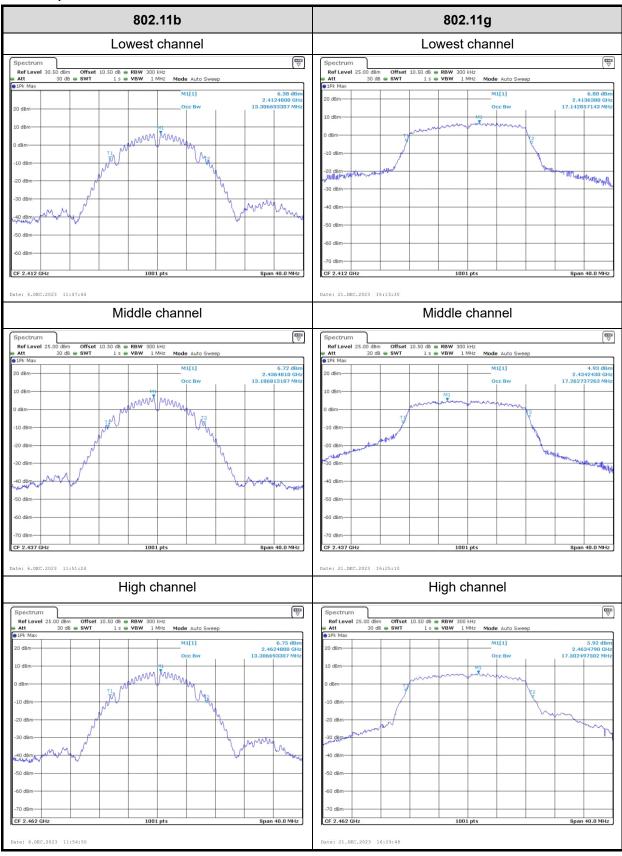

Test Mode	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T (Hz)	VBW Setting* [Hz]
802.11b	100	100	100.00	/	10
802.11g	100	100	100.00	/	10
802.11n20	100	100	100.00	/	10
802.11n40	100	100	100.00	/	10

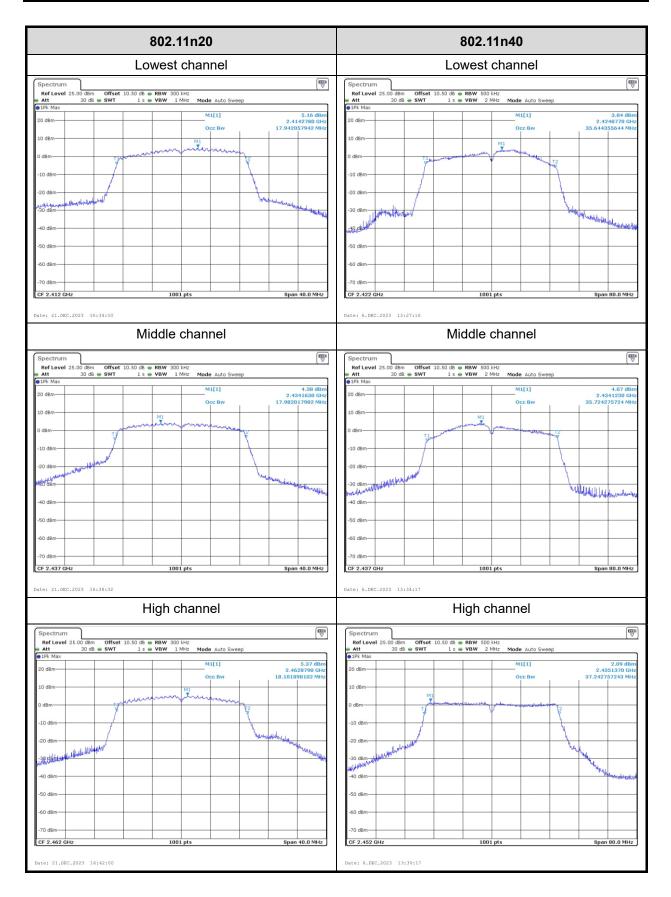
Note*: Radiated emission test with average value, the Spectrum analyzer VBW setting information.



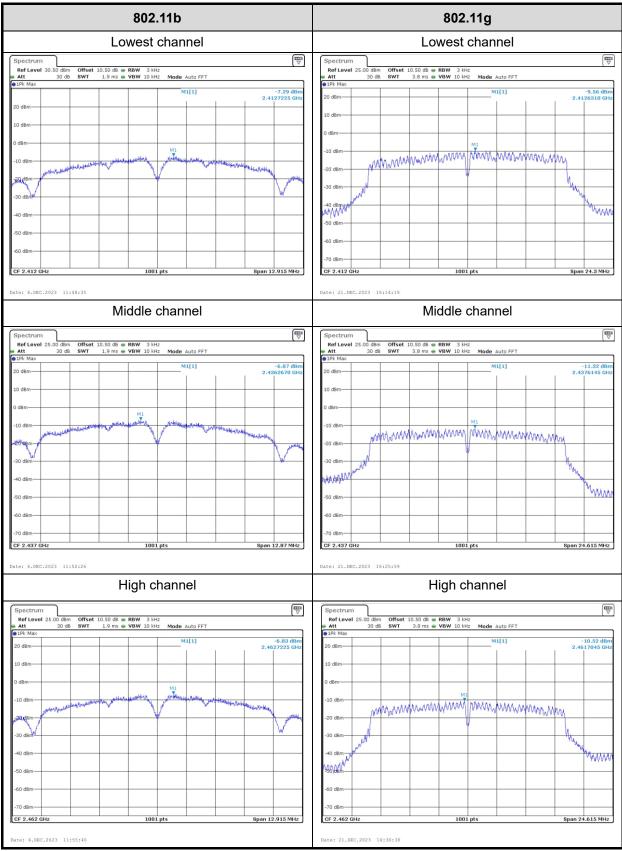
Test Plots:

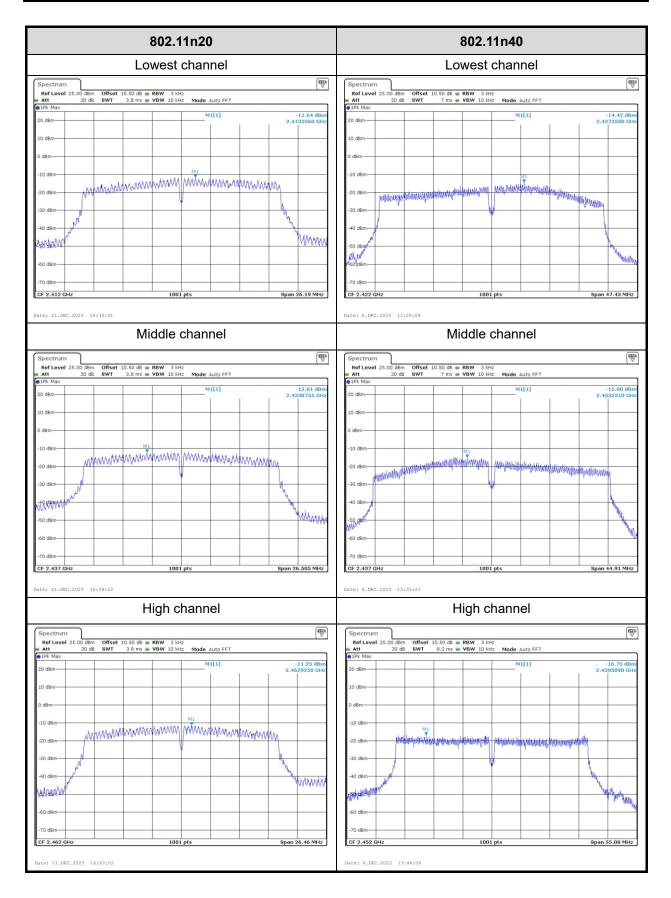
6 dB Emission Bandwidth:



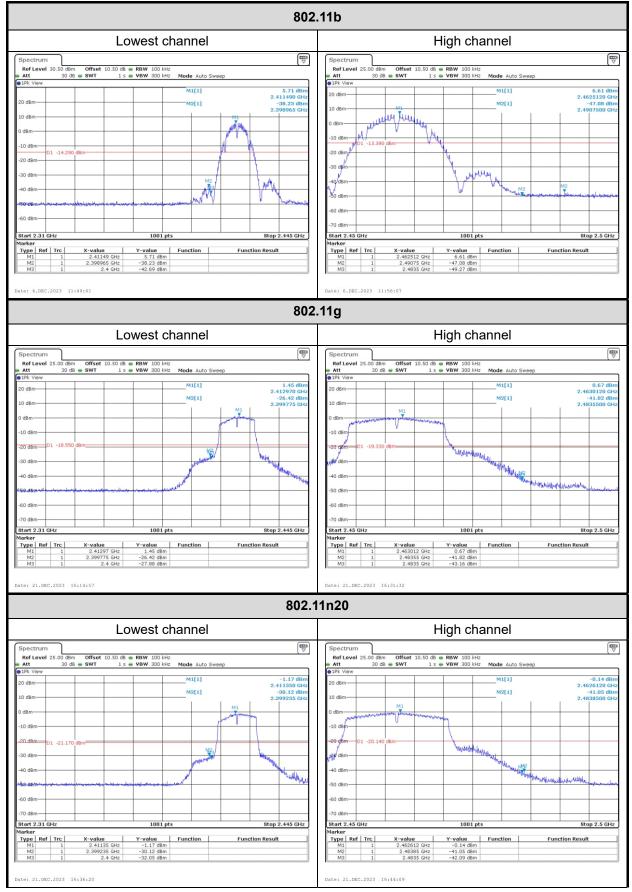


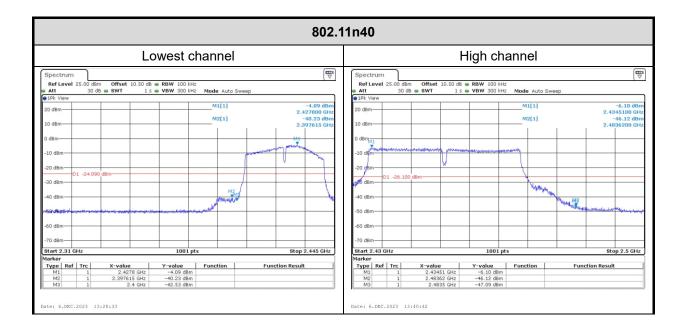
99% Occupied Bandwidth:





Power Spectral Density:





100kHz Bandwidth of Frequency Band Edge:

Duty Cycle:

	802.11b			802.11g	
Att 30 dB SWT 1 SGL TRG: VID	50 dB ● RBW 10 MHz 00 ms ● VBW 10 MHz		Att 30 dB SWT SGL TRG: VID	10.50 dB 🖷 RBW 10 MHz 100 ms 🖷 VBW 10 MHz	(The second seco
IRm Clrw	D3[1]	8b 00.0 s 0000000 s	IRm Clrw	D3[1]	0.00 de 0.0000000
20 dBm	M1 [1]	13.63 dBm 52.0250.ms	20 dBm	M1[1]	12.82 dBn 5.7125 m
10 dBm			10 dBm		
-10 dBm			-10 dBm		
-20 dBm			-20 dBm		
30 dBm			-30 dBm		
40 dBm			-40 dBm		
50 dBm			-50 dBm		
-60 dBm			-60 dBm		
CF 2.412 GHz Narker	8001 pts	10.0 ms/	CF 2.412 GHz Marker	8001 pts	10.0 ms,
Type Ref Trc X-value M1 1 52.025 D2 M1 1 0. D3 M1 1 0.	Y-value Function ms 13.63 dBm 0 0 s 0.00 dB 0 0 s 0.00 dB 0	Function Result	D2 M1 1	Y-value Function 25 ms 12.82 dBm 0.0 s 0.00 dB 0.0 s 0.00 dB	Function Result
ite: 21.DEC.2023 16:46:24			Date: 21.DEC.2023 16:11:32		
	802.11n20			802.11n40	
		(m)	Spectrum		(q
RefLevel 25.00 dBm Offset 10. Att 30 dB SWT 10			RefLevel 25.00 dBm Offset 1 Att 30 dB SWT	802.11n40	[¤
Ref Level 25.00 dBm Offset 10. Att 30 dB SWT 11 SGL TRG: VID 11 11 PIRM Clrw 10 11 11	50 dB • RBW 10 MHz 00 ms • VBW 10 MHz		Ref Level 25.00 dBm Offset 1 Att 30 dB SWT SGL TRG:VID 1Rm Clrw	10.50 dB ⊕ RBW 10 MHz 100 ms ⊕ VBW 10 MHz	,
Ref Level 25.00 dBm Offset 10. Att 30 dB SWT 10 SGL TRG: VID 10 10 10 JRm Cirw 20 dBm 10 10	50 dB • RBW 10 MHz	0.00 dB 0.000000 s 10.68 dBm	Ref Level 25.00 dBm Offset 1 ➡ Att 30 dB ⊕ SWT SGL_TRG:VID ■ Rm CIrw 20 dBm ■	10.50 dB 🖝 RBW 10 MHz	0.00 0.000000 7.01 dB
Ref Level 25.00 dBm Offset 10. Att 30 dB ● SWT 10 SGL TRG: VID 910m CIrw 10 910m CIrw 10 10 10 dBm TRG 10.000 dBm	50 dB • RBW 10 MHz 00 ms • VBW 10 MHz D3[1]	0.00 dB 0.000000 s	Ref Level 25:00 dBm Offset 1 Att 30 db @ SWT SGL TRG:VID 9 IRm Chw 20 dBm 10 dBm 10 dBm TRG 7.000 dBm	10.50 dB ⊕ RBW 10 MHz 100 ms ⊕ VBW 10 MHz 03[1]	0.00 (q 0.000000 7.01 db 41.7750 n
RefLevel 25.00 dBm Offset 10. Att 30 dB = SWT 10 Sol LRG: VID 10 10 IPm Cirw 20 dBm 10 Sol DB TRG 10.000 dBm 0 dBm 0 dBm 10	50 dB • RBW 10 MHz 00 ms • VBW 10 MHz D3[1]	0.00 dB 0.000000 s 10.68 dBm	Ref Level 25.00 dBm Offset 1 Att 30 dB SWT SGL TRG: VID SIGL TRG: VID IPm IPm IPm IPm 20 dBm IPm IPm IPm IPm	10.50 dB ⊕ RBW 10 MHz 100 ms ⊕ VBW 10 MHz 03[1]	0.00 0.000000 7.01 dB
Ref Level 25.00 dBm Offset 10. Att 30 dB @ SWT 11 30 dB @ SWT 11 11 10 dBm	50 dB • RBW 10 MHz 00 ms • VBW 10 MHz D3[1]	0.00 dB 0.000000 s 10.68 dBm	Ref Level 25.00 dBm Offset 1 Att 30 db @ SWT SGL TRG:VID 9 IBm CIW 20 dBm 10 dBm 10 dBm TRG 7.000 dBm 0 dBm 10 dBm	10.50 dB ⊕ RBW 10 MHz 100 ms ⊕ VBW 10 MHz 03[1]	0.00 0.000000 7.01 dB
Ref Loval 25.00 dBm Offset 10. Att 30 dB @ SWY 11 SGL TRG/VID 12m Chw 12m Chw 20 dBm 12m Chw 12m Chw 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 20 dBm	50 dB • RBW 10 MHz 00 ms • VBW 10 MHz D3[1]	0.00 dB 0.000000 s 10.68 dBm	Ref Level 25.00 dBm Offset 1 Att 30 db @ SWT SGL TRG:VID 9 IRm CIW 20 dBm 10 dBm 10 dBm 7RG 7.000 dBm -10 dBm 10 dBm	10.50 dB ⊕ RBW 10 MHz 100 ms ⊕ VBW 10 MHz 03[1]	0.00 0.000000 7.01 dB
Ref Loval 25.00 dBm Offset 10. Att 30 dB @ SWY 11 SGL TRG:VID 12m Chw 12m Chw 20 dBm 12m Chw 12m Chw 30 dB @ SWY 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 30 dBm 10 dBm 10 dBm	50 dB • RBW 10 MHz 00 ms • VBW 10 MHz D3[1]	0.00 dB 0.000000 s 10.68 dBm	Ref Level 25.00 dBm Offset 1 Att 30 dB @ SWT SGL TRG:VID 9 18m CIW 20 dBm 10 dBm 10 dBm 7RG 7.000 dBm -10 dBm -	10.50 dB ⊕ RBW 10 MHz 100 ms ⊕ VBW 10 MHz 03[1]	0.00 0.000000 7.01 dB
Ref Level 25.00 dBm Offset 10. Att 30 dB @ SWT 11 SGL TRG:VID 100 dBm 10 100 dBm 10 10 0 dBm 10 10 10 dBm 10 10 30 dBm 10 10 50 dBm 10 10 50 dBm 10 50	50 dB • RBW 10 MHz 00 ms • VBW 10 MHz D3[1]	0.00 dB 0.000000 s 10.68 dBm	Ref Level 25.00 dBm Offset 1 SGL TRG:VID 9 SWT SGL TRG:VID 9 IRm CIW 20 dBm 10 dBm 10 dBm 7RG 7.000 dBm -10 dBm	10.50 dB ⊕ RBW 10 MHz 100 ms ⊕ VBW 10 MHz 03[1]	0.00 0.000000 7.01 dB
Ref Level 25.00 dBm Offset 10. Att 30 dB @ SWT 11 SGL TRG VID 10 dBm 12 10 dBm 10 dBm 10 0 dBm 10 dBm 10 10 dBm 10 dBm 10 30 dBm 10 dBm 10 50 dBm 10 50 00 dBm 10 10 10 dBm 10 10 10 dBm 10 10	50 dB • RBW 10 MHz 00 ms • VBW 10 MHz D3[1]	0.00 dB 0.000000 s 10.68 dBm	Bef Level 25.00 dBm Offset 1 Att 30 dB @ SWT SGL TRG:VID 9 18m CHW 20 dBm 10 dBm 10 dBm 756 7.000 dBm -10 dBm	10.50 dB ⊕ RBW 10 MHz 100 ms ⊕ VBW 10 MHz 03[1]	0.00 0.000000 7.01 dB
Ref Level 25.00 dBm Offset 10. Att 30 dB @ SWY 11 30 dB @ SWY 11 11 1Pm Clrw 10 10 10 dBm 1 10 10 dBm 10 10 30 dB @ SWY 11 11 10 dBm 10 10 30 dBm 10 10 50 dBm 10 10 70 dBm 10 10	50 dB • RBW 10 MHz 00 ms • VBW 10 MHz D3[1]	0.00 dB 0.000000 s 10.68 dBm	Ref Level 25.00 dBm Offset 1 SGL TRG:VID 9 SWT SGL TRG:VID 9 IRm CIW 20 dBm 10 dBm 10 dBm 7RG 7.000 dBm -10 dBm	10.50 dB ⊕ RBW 10 MHz 100 ms ⊕ VBW 10 MHz 03[1]	0.00 0.000000 7.01 de 41.7750 r
Att 30 dB ● SWT 11 \$00 dBm 0 0 0 \$100 dBm 0 0 0 0 \$100 dBm 0 0 0 0 0 \$100 dBm 0	50 dB @ RBW 10 MH2 00 ms @ VBW 10 MH2 DS[1] MI[1] MI[1] 00 ms = 0 m	0.00 dB 0.000000 s 10.68 dBm 46.4750 ms	Bef Lavel 25.00 dbm Offset 1 Att 30 dB 9 SWT SGL TRG.VID 9 TRm Crw 20 dbm 20 dbm 10 dbm 10 dbm 10 dbm 7RG 7.000 dbm - -20 dbm - - -30 dbm - - -40 dbm - - -50 dbm - - -60 dbm - - -70 dbm	10.50 dB @ RBW 10 MH2 100 ms @ VBW 10 MH2 DB(1) DB(1) M1(1)	0.00 0.000000 7.01 dB

4 Test Setup Photo

Please refer to the attachment RWAY202300045 Test Setup photo.

5 E.U.T Photo

Please refer to the attachment RWAY202300045 External photo and RWAY202300045 Internal photo.

---End of Report---