

Date of Issue: 2005-09-20 Page: 1/78

TEST REPORT

Equipment Under Test : Mobile Phone

Model No. : KMP7N2D2

FCC ID : A98-KMP7N2D2

Applicant : NEC America Inc.

Address of Applicant : 6535 N State Hwy 161, IRVING, TX-75039, USA

Date of Receipt : 2005-06-15

Date of Test(s) : 2005-06-17 to 2005-06-23

Date of Issue : 2005-09-20

Standards:

FCC OET Bulletin 65 supplement C,

ANSI/IEEE C95.1, C95.3

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Testing Korea Co., Ltd. or testing done by SGS Testing Korea Co., Ltd. in connection with distribution or use of the product described in this report must be approved by SGS Testing Korea Co., Ltd. in writing.

Tested by : Leo Kim 2005-06-23

Approved by : Albert Lim 2005-09-20

Date of Issue: 2005-09-20 Page: 2/78

Contents

1. General Information

	1.1	Testing Laboratory	3
	1.2	Details of Applicant	3
	1.3	Version of Report.	3
	1.4	Description of EUT(s)	3
	1.5	Test Environment.	4
	1.6	Operation description.	4
	1.7	Evaluation procedures.	4
	1.8	The SAR Measurement System.	5
	1.9	System Components	7
	1.10	SAR System Verification.	8
	1.11	Tissue Simulant Fluid for the Frequency Band.	10
	1.12	Test Standards and Limits.	10
2. I	nstrun	nents List	12
3. S	Summa	ary of Results	13

APPENDIX

- 1. DASY4 SAR Report
- 2. Uncertainty Analysis
- 3. Photographs of EUT & EUT's Test Setup
- 4. Calibration certificate

Date of Issue: 2005-09-20 Page: 3/78

1. General Information

1.1 Testing Laboratory

SGS Testing Korea Co., Ltd.

Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-Si, Gyeonggi-do Korea 435-040

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371 Homepage : <u>www.sgstesting.co.kr</u>

1.2 Details of Applicant

Applicant

Name : NEC America Inc.

Address : 6535 N State Hwy 161, IRVING, TX-75039, USA

1.3 Version of Report

Version Number	Date
00	2005-06-30
01	2005-09-08
02	2005-09-20

1.4 Description of EUT(s)

EUT Type	Mobile Phone		
Model	KMP7	N2D2	
Hardware Version	EP-4		
Software Version	391		
Sample Number(IMEI)	004400014980377		
Mode of Operation	PCS1900 W-CDMA		
Maximum RF Conducted Power	29.95 dBm	22.98 dBm	
Tx Frequency Range	1850 ~ 1910 MHz	1920 ~ 1980 MHz	
Exposure Environment	Uncontrolle	d exposure	
Antenna Type	Integral		
Battery Type	3.7 VDC Lithium-Ion(720 mAh)		
Max. SAR Measured	0.706 mW/g	0.912 mW/g	

Date of Issue: 2005-09-20 Page: 4/78

1.5 Test Environment

Ambient temperature	: 22.3 ° C
Tissue Simulating Liquid	: 22.2 ° C
Relative Humidity	: 61 %

1.6 Operation Configuration

The device was controlled by using a Mobile Test Unit (E5515C). Communication between the device and the tester was established by air link. Measurements were performed on the lowest, middle and highest channels of the operating band. The phone was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

The DASY4 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement.

1.7 EVALUATION PROCEDURES

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR

Date of Issue: 2005-09-20 Page: 5 / 78

distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.8 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1782 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

Date of Issue: 2005-09-20 Page: 6 / 78

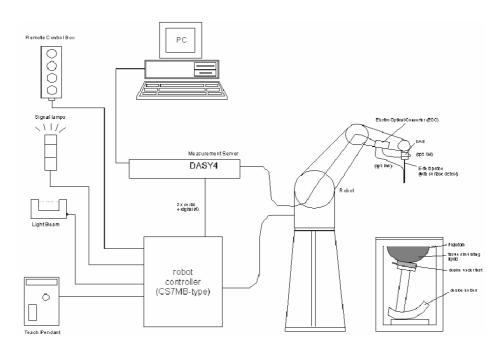


Fig a. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Date of Issue: 2005-09-20 Page: 7 / 78

1.9 System Components

ET3DV6 E-Field Probe

Construction : Symmetrical design with triangular core Built-in shielding

against static charges PEEK enclosure material (resistant to

organic solvents, e.g. glycol).

: In air from 10 MHz to 2.5 GHz In brain simulating tissue at Calibration

frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)

: 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 3 GHz) Frequency

Directivity ± 0.2 dB in brain tissue (rotation around probe axis)

± 0.4 dB in brain tissue (rotation normal to probe axis)

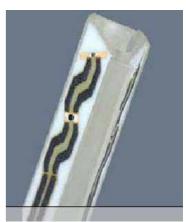
Dynamic

: $5 \mu W/g$ to >100 mW/g; Linearity: $\pm 0.2 dB$

Range

Srfce. Detect ±0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces


Dimensions Overall length: 330 mm

> Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

General dosimetry up to 3 GHz Compliance tests of mobile **Application**

phone

ET3DV6 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

Date of Issue: 2005-09-20 Page: 8 / 78

SAM Phantom

Construction: The SAM Phantom is constructed of a

fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot

SAM Phantom

Shell Thickness: 2.0 ± 0.1 mm Filling Volume: Approx. 25 liters

DEVICE HOLDER

Construction

In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.10 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 1900MHz. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was in the range 22.3 °C, the relative humidity was in the range 62% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Date of Issue: 2005-09-20 Page: 9/78

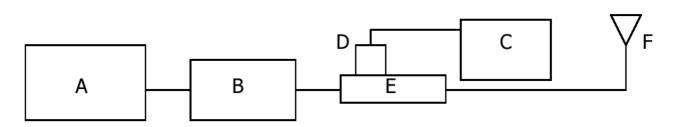


Fig b. The microwave circuit arrangement used for SAR system verification

- A. Agilent Model E4421B Signal Generator
- B. EMPOWER Model 2001-BBS3Q7ECK Amplifier
- C. Agilent Model E4419B Power Meter
- D. Agilent Model 9300H Power Sensor
- E. Agilent Model 778D Dual directional coupling
- F. Reference dipole Antenna

Photo of the dipole Antenna

Validation Kit	Frequency	Target SAR 1g (1 W)	Target SAR 10g (1 W)	Measured SAR 1g (1 W)	Measured SAR 10g (1 W)	Measured Date
DT3DV6 S/N:1782	1900 MHz	39.7 mW/g	20.5 mW/g	41.2 mW/g	20.08 mW/g	2005-6-20

Table 1. Results system validation

Date of Issue : 2005-09-20 Page : 10 / 78

1.11 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Agilent Model 85070D Dielectric Probe (rates frequence band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer(300 KHz-3000 MHz) by using a procedure detailed in Section V.

2.2.77	Tissue	Limits / Measured	Dielectric Parameters			
f (MHz)	type		Permittivity	Conductivity	Simulated Tissue Temp()	
1000	Head	Measured, 2005-06-20	39.1	1.44	22.2	
1900		Recommended Limits	40	1.40	22.0	

	Tissue		Dielectric Parameters			
f (MHz)	type	Limits / Measured	Permittivity	Conductivity	Simulated Tissue Temp()	
1900	Body	Measured, 2005-06-22	53.8	1.57	22.2	
		Recommended Limits	53.3	1.52	22.0	

The composition of the brain tissue simulating liquid

1900MHz(Head)	1900MHz(Body)
444.52 g	300.67 g
552.42 g	716.56 g
3.06 g	4.00 g
-	-
-	-
-	-
11	11
	1900MHz(Head) 444.52 g 552.42 g 3.06 g -

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1–1992, Copyright 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR

Date of Issue: 2005-09-20 Page: 11 / 78

evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section. (Table .4)

Human Exposure	Uncontrolled Environment General Populaion	Controlled Environment Occupational
Partial Peak SAR (Brain)	1.60 m W/g	8.00 m W/g
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table .4 RF exposure limits

Date of Issue: 2005-09-20 Page: 12 / 78

2. Instruments List

Maunfacturer	Device	Туре	Serial Number	Due date of Calibration
Schmid& Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1782	April 28, 2006
Schmid& Partner Engineering AG	1800 MHz System Validation Dipole	D1800V2	2d074	June 27, 2005
Schmid& Partner Engineering AG	1900 MHz System Validation Dipole	D1900V2	5d033	June 27, 2005
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE3	567	April 30, 2006
Schmid& Partner Engineering AG	Software	DASY 4 V4.5 Build 19		N/A
Schmid& Partner Engineering AG	Phantom	SAM Phantom		N/A
Agilent	Network Analyzer	E5070B	MY42100282	November 21, 2005
Agilent	Dielectric Probe Kit	85070D	2184	N/A

Date of Issue: 2005-09-20 Page: 13 / 78

3.Summary of Results

PCS1900(Head)

Right H	Right Head								
Channel	Frequency	Position	Conducted Output Power(dBm)	1 g SAR (W/kg)	10 g SAR (W/kg)	Amb. Temp. (° C)	Liquid Temp. (°C)		
661	1000	Contact	29.87	0.477	0.284	22.3	22.2		
661	1880	Tilt(15°)	29.87	0.147	0.090	22.3	22.2		

Left Head								
Channel	Frequency	Position	Conducted Output Power(dBm)	1 g SAR (W/kg)	10 g SAR (W/kg)	Amb. Temp. (° C)	Liquid Temp. (°C)	
661	1000	Contact	29.87	0.349	0.214	22.3	22.2	
661	1880	Tilt(15°)	29.87	0.171	0.102	22.3	22.2	

Right Head							
Channel	Frequency	Position	Conducted Output Power(dBm)	1 g SAR (W/kg)	10 g SAR (W/kg)	Amb. Temp. (° C)	Liquid Temp. (°C)
512	1850.2	Contoot	29.95	0.706	0.422	22.3	22.2
810	1909.8	Contact	29.79	0.444	0.251	22.3	22.2

Note: The maximum SAR was detected at Right Head Contact position of the middle channel. After finding the maximum SAR position, the SAR of Low and High channel was measured at the peak position of middle the channel.

Date of Issue: 2005-09-20 Page: 14 / 78

PCS1900 (Body)

Body (Body (EUT front)								
Channel	Frequency	Conducted Output Power(dBm)	1 g SAR (W/kg)	10 g SAR (W/kg)	Amb Temp.(° C)	Liquid Temp.(° C)			
512	1850.2	29.95	0.258	0.157	22.3	22.2			
661	1880	29.87	0.189	0.115	22.3	22.2			
810	1909.8	29.79	0.133	0.081	22.3	22.2			

Body (Body (EUT Rear)							
Channel	Frequency	Conducted Output Power(dBm)	1 g SAR (W/kg)	10 g SAR (W/kg)	Amb Temp.(° C)	Liquid Temp.(° C)		
512	1850.2	29.95	0.155	0.097	22.3	22.2		
661	1880	29.87	0.105	0.066	22.3	22.2		
810	1909.8	29.79	0.068	0.042	22.3	22.2		

Date of Issue: 2005-09-20 Page: 15 / 78

W-CDMA(Head)

Right Head								
Channel	Frequency	Position	Conducted Output Power(dBm)	1 g SAR (W/kg)	10 g SAR (W/kg)	Amb. Temp. (° C)	Liquid Temp. (°C)	
0750	1050	Contact	22.53	0.279	0.156	22.3	22.2	
9750	1950	Tilt(15°)	22.53	0.241	0.137	22.3	22.2	

Left Head								
Channel	Frequency	Position	Conducted Output Power(dBm)	1 g SAR (W/kg)	10 g SAR (W/kg)	Amb. Temp. (° C)	Liquid Temp. (°C)	
0750	1050	Contact	22.53	0.675	0.361	22.3	22.2	
9750 1950	1950	Tilt(15°)	22.53	0.370	0.215	22.3	22.2	

Left He	Left Head							
Channel	Frequency	Position	Conducted Output Power(dBm)	1 g SAR (W/kg)	10 g SAR (W/kg)	Amb. Temp. (° C)	Liquid Temp. (°C)	
9612	1922.4	Control	22.98	0.866	0.472	22.3	22.2	
9888	1977.6	Contact	22.41	0.498	0.271	22.3	22.2	

Note: The maximum SAR was detected at Left Head Contact position of the middle channel. After finding the maximum SAR position, the SAR of Low and High channel was measured at the peak position of the middle channel.

Date of Issue: 2005-09-20 Page: 16 / 78

W-CDMA(Body)

Body (Body (EUT front)							
Channel	Frequency	Conducted Output Power(dBm)	1 g SAR (W/kg)	10 g SAR (W/kg)	Amb Temp.(° C)	Liquid Temp.(° C)		
9612	1922.4	22.98	0.204	0.126	22.3	22.2		
9750	1950	22.53	0.152	0.094	22.3	22.2		
9888	1977.6	22.41	0.141	0.087	22.3	22.2		

Body (Body (EUT Rear)							
Channel	Frequency	Conducted Output Power(dBm)	1 g SAR (W/kg)	10 g SAR (W/kg)	Amb Temp.(° C)	Liquid Temp.(° C)		
9612	1922.4	22.98	0.912	0.592	22.3	22.2		
9750	1950	22.53	0.771	0.500	22.3	22.2		
9888	1977.6	22.41	0.833	0.528	22.3	22.2		

Date of Issue: 2005-09-20 Page: 17 / 78

Appendix

List

Appendix A	DASY4 Report (Measurement Plots)	
Appendix B	Uncertainty Analysis	
Appendix C	Photographs	-Validation Test- EUT- Test Setup
Appendix D	Calibration Certificate	- PROBE - DAE - DIPOLE

Date of Issue: 2005-09-20 Page: 18 / 78

Appendix A

DASY4 Report (Measurement Plots)

Date of Issue: 2005-09-20 Page: 19 / 78

Date/Time: 2005-06-20 10:14:55

Test Laboratory: SGS Testing Korea

Validation_Head_1900

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

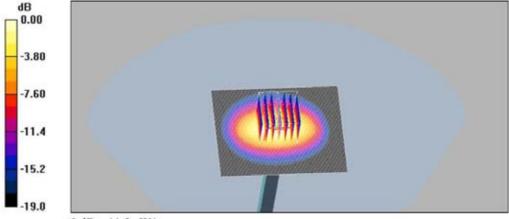
Medium: HSL 1800MHz Medium parameters used: f = 1900 MHz, $\sigma = 1.44$ mho/m; $\epsilon_r = 39.1$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(5.07, 5.07, 5.07); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146


Validation_PCS1900/Area Scan (81x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.2 mW/g

Validation_PCS1900/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.8 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 23.5 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.02 mW/gMaximum value of SAR (measured) = 11.5 mW/g

0 dB = 11.5 mW/g

Date of Issue: 2005-09-20 Page: 20 / 78

Date/Time: 2005-06-21 11:02:22

Test Laboratory: SGS Testing Korea

PCS1900_Head_Right

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL 1800MHz Medium parameters used: f = 1880 MHz, $\sigma = 1.43$ mho/m; $\epsilon_r = 39.3$; $\rho =$

 1000 kg/m^3

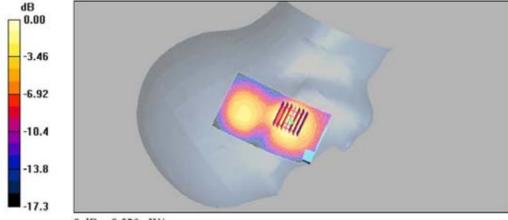
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(5.07, 5.07, 5.07); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head_Right_Mid_Contact/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.529 mW/g

Head_Right_Mid_Contact/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 0.678 W/kg

SAR(1 g) = 0.477 mW/g; SAR(10 g) = 0.284 mW/g

Maximum value of SAR (measured) = 0.529 mW/g

0 dB = 0.529 mW/g

Date of Issue: 2005-09-20 Page: 21 / 78

Date/Time: 2005-06-21 3:26:04

Test Laboratory: SGS Testing Korea

PCS1900_Head_Right

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1880 MHz, Duty Cycle: 1:8.3

Medium: HSL 1800MHz Medium parameters used: f = 1880 MHz, $\sigma = 1.43$ mho/m; $\epsilon_r = 39.3$; $\rho =$

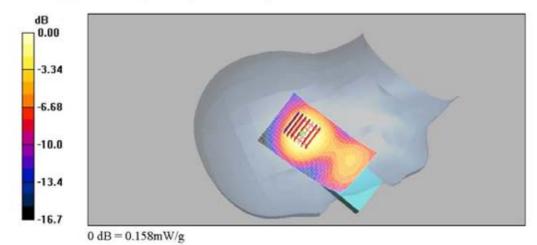
1000 kg/m3

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(5.07, 5.07, 5.07); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head_Right_Mid_Tilt/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.160 mW/g


Head_Right_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.053 dB

Peak SAR (extrapolated) = 0.213 W/kg

SAR(1 g) = 0.147 mW/g; SAR(10 g) = 0.090 mW/g

Maximum value of SAR (measured) = 0.158 mW/g

Date of Issue: 2005-09-20 Page: 22 / 78

Date/Time: 2005-06-21 3:59:38

Test Laboratory: SGS Testing Korea

PCS1900_Head_Left

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL 1800MHz Medium parameters used: f = 1880 MHz, $\sigma = 1.43$ mho/m; $\epsilon_r = 39.3$; $\rho =$

 1000 kg/m^3

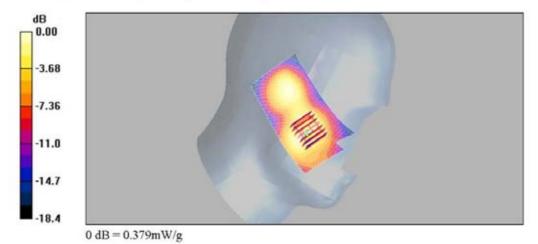
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(5.07, 5.07, 5.07); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head_Left_Mid_Contact/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.375 mW/g

Head_Left_Mid_Contact/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 9.07 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.490 W/kg

SAR(1 g) = 0.349 mW/g; SAR(10 g) = 0.214 mW/g

Maximum value of SAR (measured) = 0.379 mW/g

Date of Issue: 2005-09-20 Page: 23 / 78

Date/Time: 2005-06-21 4:27:57

Test Laboratory: SGS Testing Korea

PCS1900_Head_Left

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL 1800MHz Medium parameters used: f = 1880 MHz, $\sigma = 1.43$ mho/m; $\epsilon_r = 39.3$; $\rho =$

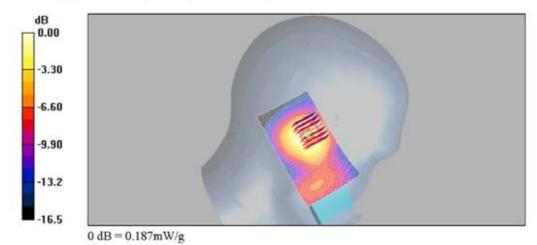
 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(5.07, 5.07, 5.07); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head_Left_Mid_Tilt/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.192 mW/g


Head_Left_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.94 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 0.257 W/kg

SAR(1 g) = 0.171 mW/g; SAR(10 g) = 0.102 mW/g

Maximum value of SAR (measured) = 0.187 mW/g

Date of Issue: 2005-09-20 Page: 24 / 78

Date/Time: 2005-06-21 5:08:22

Test Laboratory: SGS Testing Korea

PCS1900_Head_Right_Low_High

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1850.2 MHz, Duty Cycle: 1:8.3

Medium: HSL 1800MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.4$ mho/m; ε_r

= 39.2; p = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(5.07, 5.07, 5.07); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

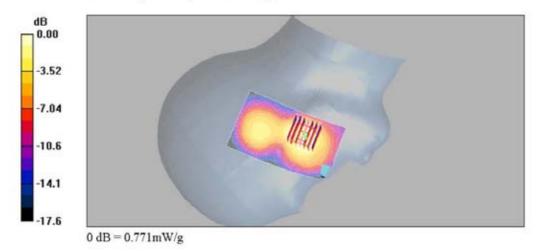
Head Right Low Contact/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.777 mW/g

Head Right Low Contact/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm


Reference Value = 12.7 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.706 mW/g; SAR(10 g) = 0.422 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.771 mW/g

Date of Issue: 2005-09-20 Page: 25 / 78

Date/Time: 2005-06-21 5:43:14

Test Laboratory: SGS Testing Korea

PCS1900_Head_Right_Low_High

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1909.8 MHz, Duty Cycle: 1:8.3

Medium: HSL 1800MHz Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.45$ mho/m; ϵ_r

= 38.9; p = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(5.07, 5.07, 5.07); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

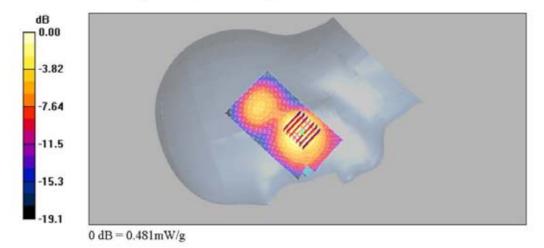
Head Right High Contact/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.481 mW/g

Head Right High Contact/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm


Reference Value = 8.50 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.781 W/kg

SAR(1 g) = 0.444 mW/g; SAR(10 g) = 0.251 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.481 mW/g

Date of Issue: 2005-09-20 Page: 26 / 78

Date/Time: 2005-06-23 8:11:50

Test Laboratory: SGS Testing Korea

PCS1900_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1850.2 MHz, Duty Cycle: 1:8.3

Medium: M1800MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.52$ mho/m; $\varepsilon_r =$

53.9; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.55, 4.55, 4.55); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

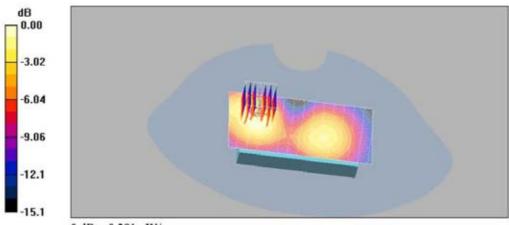
Body Front Low/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.285 mW/g

Body_Front_Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm


Reference Value = 7.76 V/m; Power Drift = -0.059 dB

Peak SAR (extrapolated) = 0.399 W/kg

SAR(1 g) = 0.258 mW/g; SAR(10 g) = 0.157 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.281 mW/g

0 dB = 0.281 mW/g

Date of Issue: 2005-09-20 Page: 27 / 78

Date/Time: 2005-06-23 8:46:01

Test Laboratory: SGS Testing Korea

PCS1900_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: M1800MHz Medium parameters used: f = 1880 MHz, $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 53.9$; $\rho = 1000 \text{ medium}$

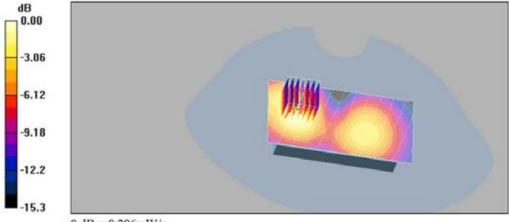
kg/m3

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.55, 4.55, 4.55); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body_Front_Mid/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.204 mW/g


Body_Front_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.96 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 0.297 W/kg

SAR(1 g) = 0.189 mW/g; SAR(10 g) = 0.115 mW/g

Maximum value of SAR (measured) = 0.206 mW/g

0 dB = 0.206 mW/g

Date of Issue: 2005-09-20 Page: 28 / 78

Date/Time: 2005-06-23 9:12:59

Test Laboratory: SGS Testing Korea

PCS1900_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1909.8 MHz, Duty Cycle: 1:8.3

Medium: M1800MHz Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r =$

53.8; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.4, 4.4, 4.4); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

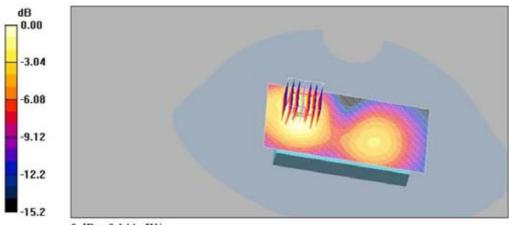
Body Front High/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.143 mW/g

Body_Front_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm


Reference Value = 4.54 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 0.206 W/kg

SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.081 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.144 mW/g

0 dB = 0.144 mW/g

Date of Issue: 2005-09-20 29 / 78 Page:

Date/Time: 2005-06-23 9:44:10

Test Laboratory: SGS Testing Korea

PCS1900_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1850.2 MHz, Duty Cycle: 1:8.3

Medium: M1800MHz Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.52 mho/m; ε_e =

53.9; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.55, 4.55, 4.55); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

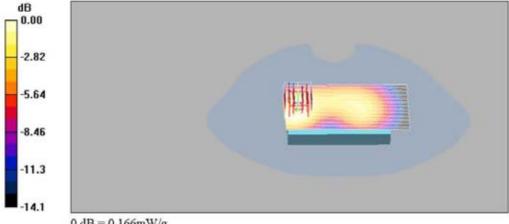
Body_Rear_Low/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.167 mW/g

Body Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm


Reference Value = 8.33 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.242 W/kg

SAR(1 g) = 0.155 mW/g; SAR(10 g) = 0.097 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.166 mW/g

0 dB = 0.166 mW/g

Date of Issue: 2005-09-20 Page: 30 / 78

Date/Time: 2005-06-23 10:10:23

Test Laboratory: SGS Testing Korea

PCS1900_Body

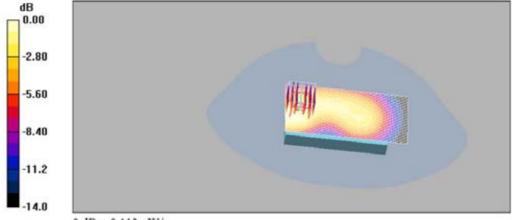
DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: M1800MHz Medium parameters used: f = 1880 MHz, $\sigma = 1.55 \text{ mho/m}$; $\epsilon_r = 53.9$; $\rho = 1000 \text{ medium}$

kg/m³

Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.55, 4.55, 4.55); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body_Rear_Mid/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.112 mW/g

Body_Rear_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.44 V/m; Power Drift = 0.021 dB Peak SAR (extrapolated) = 0.169 W/kg

SAR(1 g) = 0.105 mW/g; SAR(10 g) = 0.066 mW/gMaximum value of SAR (measured) = 0.113 mW/g

0 dB = 0.113 mW/g

Date of Issue: 2005-09-20 Page: 31/78

Date/Time: 2005-06-24 11:01:07

Test Laboratory: SGS Testing Korea

PCS1900_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: PCS 1900; Frequency: 1909.8 MHz, Duty Cycle: 1:8.3

Medium: M1800MHz Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.58$ mho/m; $\varepsilon_r =$

53.8; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

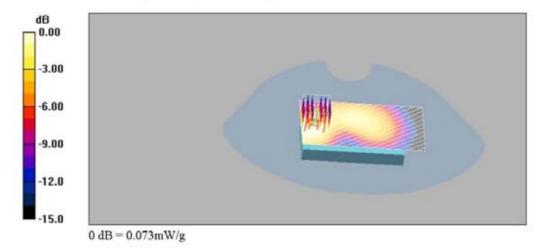
- Probe: ET3DV6 SN1782; ConvF(4.4, 4.4, 4.4); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body_Rear_High/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.071 mW/g

Body_Rear_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 5.80 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.112 W/kg

SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.042 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.073 mW/g

Date of Issue: 2005-09-20 Page: 32 / 78

Date/Time: 2005-06-22 1:50:33

Test Laboratory: SGS Testing Korea

W-CDMA_Head_Right

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1950 MHz; Duty Cycle: 1:1

Medium: HSL 1800MHz Medium parameters used: f = 1950 MHz, $\sigma = 1.5$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$

kg/m3

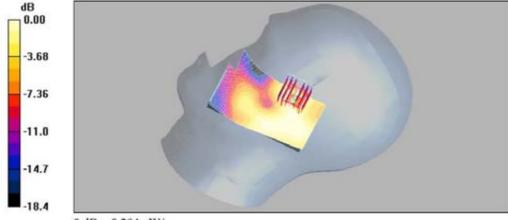
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.8, 4.8, 4.8); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head_Right_Mid_Contact/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.300 mW/g

Head_Right_Mid_Contact/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 0.577 W/kg

SAR(1 g) = 0.279 mW/g; SAR(10 g) = 0.156 mW/g

Maximum value of SAR (measured) = 0.294 mW/g

0 dB = 0.294 mW/g

Date of Issue: 2005-09-20 Page: 33 / 78

Date/Time: 2005-06-22 2:17:02

Test Laboratory: SGS Testing Korea

W-CDMA_Head_Right

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1950 MHz; Duty Cycle: 1:1

Medium: HSL 1800MHz Medium parameters used: f = 1950 MHz, $\sigma = 1.5$ mho/m; $\epsilon_{\rm s} = 38.7$; $\rho = 1000$

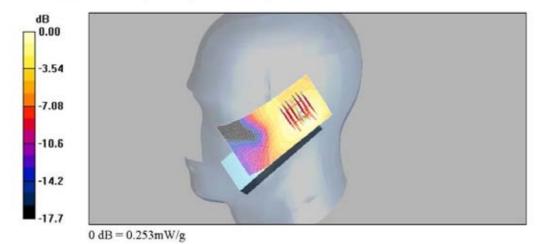
kg/m3

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.8, 4.8, 4.8); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head_Right_Mid_Tilt/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.253 mW/g


Head_Right_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = -0.086 dB

Peak SAR (extrapolated) = 0.509 W/kg

SAR(1 g) = 0.241 mW/g; SAR(10 g) = 0.137 mW/g

Maximum value of SAR (measured) = 0.253 mW/g

Date of Issue: 2005-09-20 Page: 34/78

Date/Time: 2005-06-22 2:56:37

Test Laboratory: SGS Testing Korea

W-CDMA_Head_Left

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1950 MHz; Duty Cycle: 1:1

Medium: HSL 1800MHz Medium parameters used: f = 1950 MHz, $\sigma = 1.5$ mho/m; $\epsilon_{\rm s} = 38.7$; $\rho = 1000$

kg/m3

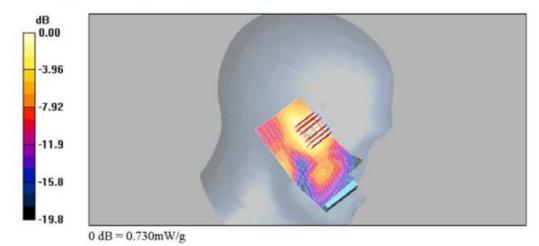
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.8, 4.8, 4.8); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head_Left_Mid_Contact/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.724 mW/g

Head_Left_Mid_Contact/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = -0.088 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.675 mW/g; SAR(10 g) = 0.361 mW/g

Maximum value of SAR (measured) = 0.730 mW/g

Date of Issue: 2005-09-20 Page: 35 / 78

Date/Time: 2005-06-22 3:24:29

Test Laboratory: SGS Testing Korea

W-CDMA_Head_Left

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1950 MHz, Duty Cycle: 1:1

Medium: HSL 1800MHz Medium parameters used: f = 1950 MHz, $\sigma = 1.5$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$

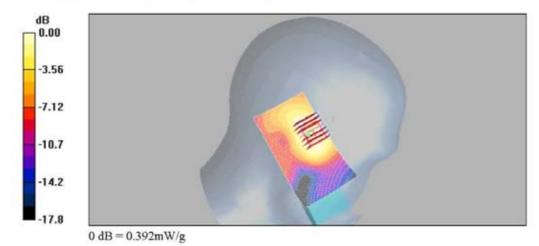
kg/m3

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.8, 4.8, 4.8); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head_Left_Mid_Tilt/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.395 mW/g


Head_Left_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.8 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 0.721 W/kg

SAR(1 g) = 0.370 mW/g; SAR(10 g) = 0.215 mW/g

Maximum value of SAR (measured) = 0.392 mW/g

Date of Issue: 2005-09-20 Page: 36 / 78

Date/Time: 2005-06-22 3:57:44

Test Laboratory: SGS Testing Korea

W-CDMA_Head_Left

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1922.4 MHz; Duty Cycle: 1:1

Medium: HSL 1800MHz Medium parameters used (interpolated): f = 1922.4 MHz; $\sigma = 1.46$ mho/m; ϵ_r

= 38.8; p = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.8, 4.8, 4.8); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

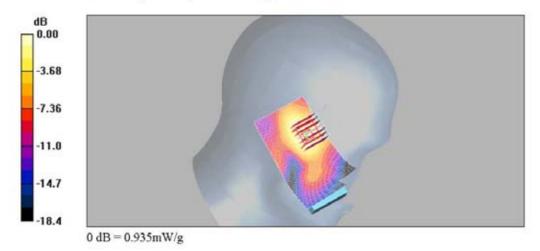
Head_Left_Low_Contact/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.907 mW/g

Head_Left_Low_Contact/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm


Reference Value = 13.3 V/m; Power Drift = 0.090 dB

Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 0.866 mW/g; SAR(10 g) = 0.472 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.935 mW/g

Date of Issue: 2005-09-20 Page: 37 / 78

Date/Time: 2005-06-22 4:24:41

Test Laboratory: SGS Testing Korea

W-CDMA_Head_Left

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1977.6 MHz, Duty Cycle: 1:1

Medium: HSL 1800MHz Medium parameters used (interpolated): f = 1977.6 MHz; σ = 1.53 mho/m; ε,

= 38.8; p = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.8, 4.8, 4.8); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

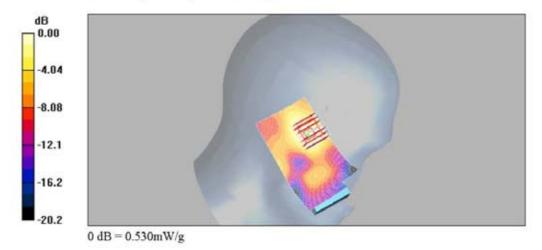
Head Left High Contact/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.539 mW/g

Head Left High Contact/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm


Reference Value = 10.1 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.498 mW/g; SAR(10 g) = 0.271 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.530 mW/g

Date of Issue: 2005-09-20 Page: 38 / 78

Date/Time: 2005-06-23 10:15:16

Test Laboratory: SGS Testing Korea

W-CDMA_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1922.4 MHz; Duty Cycle: 1:1

Medium: M1800MHz Medium parameters used (interpolated): f = 1922.4 MHz; $\sigma = 1.59$ mho/m; $\epsilon_r =$

53.7; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.4, 4.4, 4.4); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

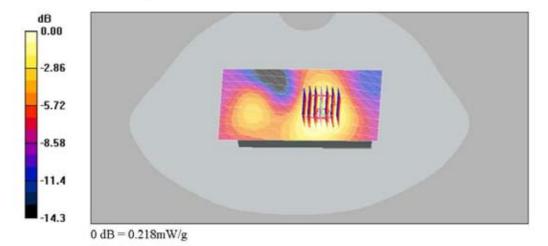
Body_Front_Low/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.218 mW/g

Body_Front_Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm


Reference Value = 7.99 V/m; Power Drift = 0.097 dB

Peak SAR (extrapolated) = 0.316 W/kg

SAR(1 g) = 0.204 mW/g; SAR(10 g) = 0.126 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.218 mW/g

Date of Issue: 2005-09-20 Page: 39 / 78

Date/Time: 2005-06-23 11:39:45

Test Laboratory: SGS Testing Korea

W-CDMA_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1950 MHz; Duty Cycle: 1:1

Medium: M1800MHz Medium parameters used: f = 1950 MHz, $\sigma = 1.62 \text{ mho/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ mHz}$

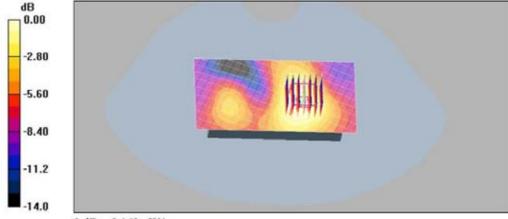
 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.4, 4.4, 4.4); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body_Front_Mid/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.170 mW/g


Body_Front_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.45 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 0.235 W/kg

SAR(1 g) = 0.152 mW/g; SAR(10 g) = 0.094 mW/g

Maximum value of SAR (measured) = 0.163 mW/g

0 dB = 0.163 mW/g

Date of Issue: 2005-09-20 Page: 40 / 78

Date/Time: 2005-06-23 12:06:06

Test Laboratory: SGS Testing Korea

W-CDMA_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1977.6 MHz; Duty Cycle: 1:1

Medium: M1800MHz Medium parameters used (interpolated): f = 1977.6 MHz; $\sigma = 1.65$ mho/m; $\epsilon_r =$

53.6; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.4, 4.4, 4.4); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

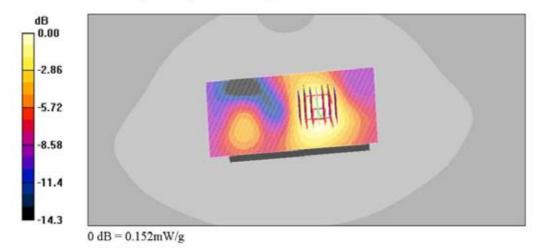
Body Front High/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.152 mW/g

Body_Front_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm


Reference Value = 5.86 V/m; Power Drift = 0.068 dB

Peak SAR (extrapolated) = 0.219 W/kg

SAR(1 g) = 0.141 mW/g; SAR(10 g) = 0.087 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.152 mW/g

Date of Issue: 2005-09-20 41 / 78 Page:

Date/Time: 2005-06-23 3:44:06

Test Laboratory: SGS Testing Korea

W-CDMA_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1922.4 MHz; Duty Cycle: 1:1

Medium: M1800MHz Medium parameters used (interpolated): f = 1922.4 MHz; σ = 1.59 mho/m; ε_e =

53.7; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.4, 4.4, 4.4); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

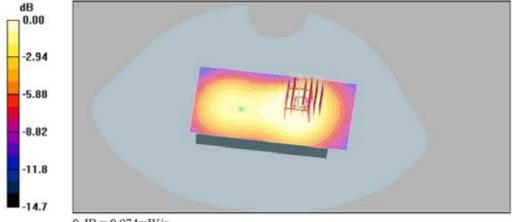
Body_Rear_Low/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.988 mW/g

Body Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm


Reference Value = 24.3 V/m; Power Drift = -0.132 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.912 mW/g; SAR(10 g) = 0.592 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.974 mW/g

0 dB = 0.974 mW/g

Date of Issue: 2005-09-20 Page: 42 / 78

Date/Time: 2005-06-23 4:38:23

Test Laboratory: SGS Testing Korea

W-CDMA_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

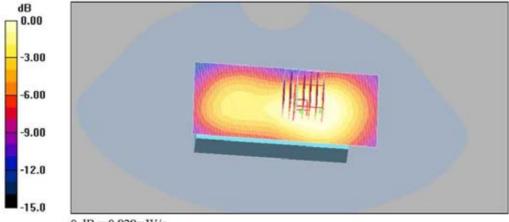
Communication System: W-CDMA; Frequency: 1950 MHz; Duty Cycle: 1:1

Medium: M1800MHz Medium parameters used: f = 1950 MHz, $\sigma = 1.62$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1782; ConvF(4.4, 4.4, 4.4); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body_Rear_Mid/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.863 mW/g

Body_Rear_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.0 V/m; Power Drift = -0.186 dB
Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.771 mW/g; SAR(10 g) = 0.500 mW/g

Maximum value of SAR (measured) = 0.828 mW/g

0 dB = 0.828 mW/g

Date of Issue: 2005-09-20 Page: 43 / 78

Date/Time: 2005-06-23 5:16:51

Test Laboratory: SGS Testing Korea

W-CDMA_Body

DUT: NEC; Type: BAR; Serial: 004400014980377

Communication System: W-CDMA; Frequency: 1977.6 MHz; Duty Cycle: 1:1

Medium: M1800MHz Medium parameters used (interpolated): f = 1977.6 MHz; $\sigma = 1.65$ mho/m; $\epsilon_r =$

53.6; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

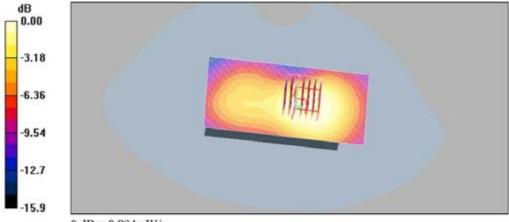
- Probe: ET3DV6 SN1782; ConvF(4.4, 4.4, 4.4); Calibrated: 2004-04-28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2004-04-30
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body_Rear_High/Area Scan (71x141x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (interpolated) = 0.917 mW/g

Body_Rear_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 18.8 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.833 mW/g; SAR(10 g) = 0.528 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.894 mW/g

0 dB = 0.894 mW/g

Date of Issue: 2005-09-20 Page: 44 / 78

Appendix B

Uncertainty Analysis

Date of Issue: 2005-09-20 Page: 45 / 78

Error Description	Uncertainty value ±%	Probability distribution	Divisor	C _i 1g	Standard unc. (1g)	V _i Or V _{eff}
Measurement System					1000	
Probe Calibration	± 4.8	normal	1	1	±4.8	*0
Axial Isotropy	± 4.7	rectangular	√3	(1-c _p) ^{1-q}	± 1.9	+0
Hemispherical Isotropy	± 9.6	rectangular	√3	(c _p) ¹¹³	± 3.9	90
Boundary effects	± 1.0	rectangular	√3	1	±0.6	40
Linearity	±4.7	rectangular	√3	1	±2.7	+0
System Detection limits	± 1.0	rectangular	√3	1	± 0.6	+0
Readout Electronics	± 1.0	normal	1	1	± 1.0	80
Response time	± 0.8	rectangular	V3	1	± 0.5	90
Integration time	± 2.6	rectangular	√3	1	± 1.5	*0
RF Ambient Conditions	±3.0	rectangular	√3	1	± 1.7	*0
Probe Positioner Mechanical Tolerance	± 0.4	rectangular	√3	1	± 0.2	**
Probe Positioning with respect to Phantom Shell	± 2.9	rectangular	√3	1	± 1.7	80
Extrapolation, Interpolation and Integration Algorithms for Max. SAR Evaluation	± 1.0	rectangular	√3	1	± 0.6	**
Test Sample Related						
Test Sample Positioning	± 2.9	normal	1	1	± 2.9	145
Device Holder Uncertainty	± 3.6	normal	1	1	± 3.6	5
Output Power Variation - SAR drift measurement	± 5.0	rectangular	√3	1	± 2.9	**
Phantom and Tissue Parameters						
Phantom Uncertainty (shape and thickness tolerances)	± 4.0	rectangular	√3	1	± 2.3	*
Liquid conductivity Target - tolerance	± 5.0	rectangular	√3	0.64	± 1.8	* 0
Liquid conductivity – measurement uncertainty	± 2.5	normal	1	0.64	± 1.6	*
Liquid permittivity Target - tolerance	± 5.0	rectangular	√3	0.6	± 1.7	40
Liquid permittivity – measurement uncertainty	± 2.5	normal	1	0.6	± 1.5	**
Combined Standard Uncertainty					± 10.3	330
Coverage Factor for 95%		k = 2				
Expanded Standard Uncertaint	У				± 20.6	1

Date of Issue: 2005-09-20 Page: 55 / 78

Appendix D

Calibration Certificate

- PROBE
- DAE
- DIPOLE

- PROBE

Report File No.: STROS-05-007

Date of Issue: 2005-09-20 Page: 56 / 78

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

SGS KES (Dymstec)

Object(s)	ET3DV6 - SN:	1782	
alibration procedure(s)	QA CAL-01.v2 Calibration pro	ocedure for dosimetric E-field prob	es
alibration date:	April 28, 2004		
ondition of the calibrated item	In Tolerance (a	according to the specific calibratio	n document)
alibration Equipment used (M&TE	critical for calibration)	facility: environment temperature 22 +/- 2 degrees C	
odel Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
ower meter EPM E442	GB37480704	6-Nov-03 (METAS, No. 252-0254)	Nov-04 Nov-04
wer sensor HP 8481A	US37292783 SN: 6295803	8-Nov-03 (METAS, No. 252-0254) 8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
uke Process Calibrator Type 702	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
		4-Aup-99 (SPEAG, in house check Aup-02)	In house check: Aug-05
F generator HP 8684C	US3642U01700 US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05
F generator HP 8684C		18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05
F generator HP 8684C letwork Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05
F generator HP 8684C letwork Analyzer HP 8753E salibrated by:	US37390585 Name	18-Oct-01 (SPEAG, in house check Oct-03) Function Technician	
Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E Calibrated by: Approved by:	US37390585 Name Nico Vetteri	18-Oct-01 (SPEAG, in house check Oct-03) Function Technician	In house check: Oct 05 Signature

Date of Issue: 2005-09-20 Page: 57 / 78

Probe ET3DV6

SN:1782

Manufactured:

April 15, 2003

Last calibrated:

July 28, 2003

Recalibrated:

April 28, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Date of Issue: 2005-09-20 Page: 58 / 78

ET3DV6 SN:1782

April 28, 2004

DASY - Parameters of Probe: ET3DV6 SN:1782

Sensitivity in Fre	e Space	Diode	Comp	oression ^A	
NormX	2.03 μV/(V/m) ²	DCP X	94	mV	
NormY	1.72 µV/(V/m) ²	DCP Y	94	mV	
NormZ	1.89 µV/(V/m) ²	DCP Z	94	mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.0	4.0

SAR_{be} [%] With Correction Algorithm 0.0 0.1

Typical SAR gradient: 5 % per mm

Head 1800 MHz Typical SAR gradient: 10 % per mm

900 MHz

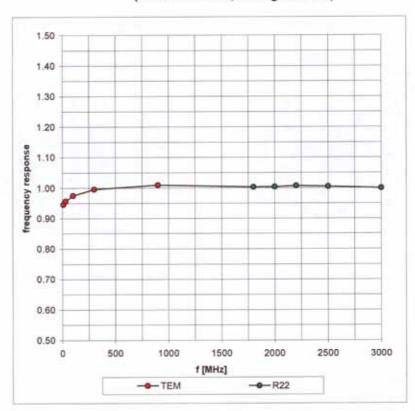
Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.7	8.5
SAR _{be} [%]	With Correction Algorithm	0.2	0.1

Sensor Offset

Probe Tip to Sensor Center	2.7 mm
Optical Surface Detection	in tolerance

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A numerical linearization parameter, uncertainty not required

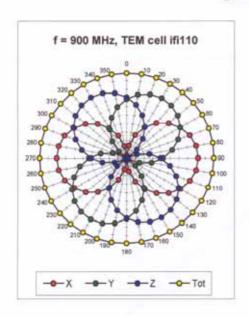

Date of Issue: 2005-09-20 Page: 59 / 78

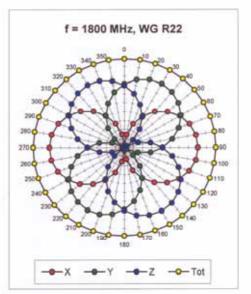
ET3DV6 SN:1782

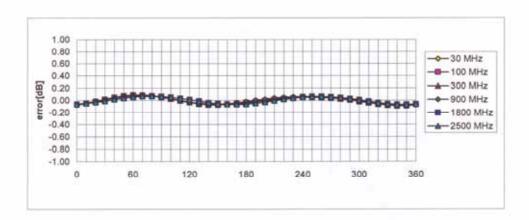
April 28, 2004

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)




Date of Issue: 2005-09-20 Page: 60 / 78

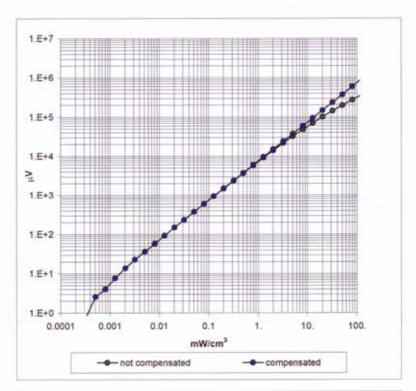

ET3DV6 SN:1782

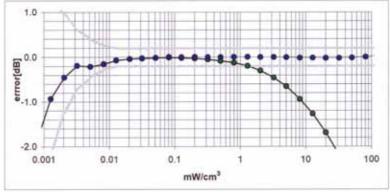
April 28, 2004

Receiving Pattern (ϕ), θ = 0°

Axial Isotropy Error < ± 0.2 dB

Page 5 of 8


Date of Issue: 2005-09-20 Page: 61 / 78

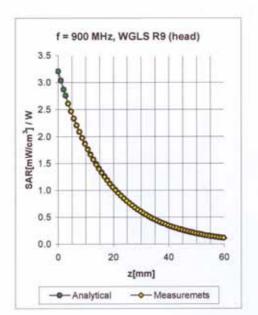

ET3DV6 SN:1782

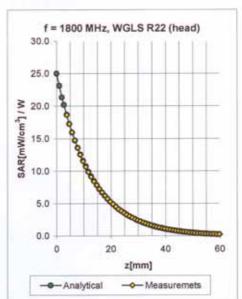
April 28, 2004

Dynamic Range f(SAR_{head})

(Waveguide R22)

Probe Linearity < ± 0.2 dB


Page 6 of 8



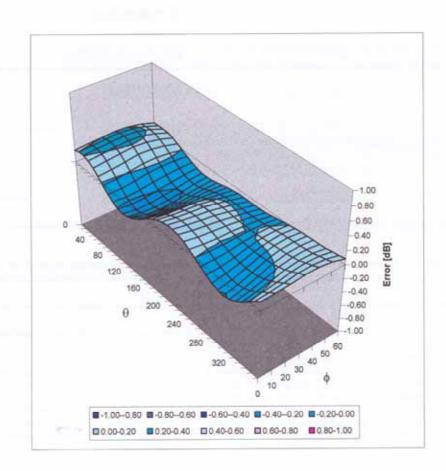
Date of Issue: 2005-09-20 Page: 62 / 78

ET3DV6 SN:1782 April 28, 2004

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	800-1000	Head	41.5 ± 5%	0.97 ± 5%	0.76	1.59	6.45	± 11.3% (k=2)
1800	1710-1910	Head	40.0 ± 5%	1.40 ± 5%	0.47	2.62	5.07	± 11.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.89	1.98	4.36	± 9.7% (k=2)
835	785-885	Body	55.2 ± 5%	0.97 ± 5%	0.46	2.19	6.14	± 9.7% (k=2)
900	850-950	Body	55.0 ± 5%	1.05 ± 5%	0.44	2.31	5.93	± 9.7% (k=2)
1800	1710-1890	Body	53.3 ± 5%	1.52 ± 5%	0.52	2.80	4.55	± 10.9% (k=2)
1900	1805-1995	Body	53.3 ± 5%	$1.52 \pm 5\%$	0.56	2.86	4.40	± 11.1% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.01	1.71	4.22	± 9.7% (k=2)

⁸ The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.


Date of Issue: 2005-09-20 Page: 63 / 78

ET3DV6 SN:1782

April 28, 2004

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Date of Issue: 2005-09-20 Page: 64 / 78

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1782
Place of Assessment:	Zurich
Date of Assessment:	May 1, 2004
Probe Calibration Date:	April 28, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Much of

Date of Issue: 2005-09-20 Page: 65 / 78

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1782

Conversion factor (± standard deviation)

450 MHz

ConvF

 $7.6 \pm 8\%$

 $\varepsilon_r = 43.5 \pm 5\%$

 $\sigma = 0.87 \pm 5\% \text{ mho/m}$

(head tissue)

450 MHz

ConvF

 $7.4 \pm 8\%$

 $\epsilon_r = 56.7 \pm 5\%$

 $\sigma = 0.94 \pm 5\% \text{ mho/m}$

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Report File No.:

STROS-05-007

Page:

Date of Issue: 2005-09-20 66 / 78

Schmid & Partner Engineering AG

a е

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1782
Place of Assessment:	Zurich
Date of Assessment:	May 21, 2004
Probe Calibration Date:	April 28, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Mic Kag-Assessed by:

Report File No.:

STROS-05-007 Date of Issue: 2005-09-20

Page:

67 / 78

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1782

Conversion factor (± standard deviation)

75 MHz (65-85 MHz)	ConvF	$8.6 \pm 8\%$	$\epsilon_r = 70.0 \pm 5\%$ $\sigma = 0.70 \pm 5\% \text{ mho/m}$ (body tissue)
150 MHz (100-200 MHz)	ConvF	$8.9 \pm 8\%$	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\%$ mho/m (head tissue)
150 MHz (100-200 MHz)	ConvF	8.5 ± 8%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\%$ mho/m (body tissue)
1950 MHz (1900-2000 MHz)	ConvF	4.8 ± 8%	$\epsilon_r = 40.0 \pm 5\%$ $\sigma = 1.40 \pm 5\%$ mho/m (head tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Date of Issue: 2005-09-20 Page: 68 / 78

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1782
Place of Assessment:	Zurich
Date of Assessment:	June 14, 2004
Probe Calibration Date:	April 28, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Date of Issue: 2005-09-20 Page: 69 / 78

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1782

Conversion factor (± standard deviation)

300 MHz (250-350 MHz) ConvF

 $7.4 \pm 8\%$

 $\varepsilon_r = 58.2 \pm 5\%$

 $\sigma = 0.92 \pm 5\% \text{ mho/m}$

(body tissue)

300 MHz

(250-350 MHz)

ConvF

 $7.6 \pm 8\%$

 $\varepsilon_r = 45.3 \pm 5\%$

 $\sigma = 0.87 \pm 5\% \text{ mho/m}$

(head tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Date of Issue: 2005-09-20 Page: 70 / 78

-DAE Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

SGS KES (Dymstec)

Object(s)	DAE3 - SD 000 D	03 AA - SN: 567	
Calibration procedure(s)	QA CAL-06.v7 Calibration proceed	dure for the data acquisi	tion unit (DAE)
Calibration date:	30.04.2004		
Condition of the calibrated item	In Tolerance (acc	ording to the specific ca	libration document)
17025 international standard.	and in the closed laboratory fa	scility: environment temperature 22	+/- 2 degrees Celsius and humidity < 75%
All calibrations have been conducte		cility: environment temperature 22	+/- 2 degrees Celsius and humidity < 75%.
	E critical for calibration)	Cal Date 8-Sep-03	+/- 2 degrees Celsius and humidity < 75%. Scheduled Calibration Sep-04
all calibrations have been conducte Calibration Equipment used (M&TE	E critical for calibration)	Cal Date	Scheduled Calibration
all calibrations have been conducte Calibration Equipment used (M&TE	ID # SN: 6295803	Cal Date 8-Sep-03	Scheduled Calibration Sep-04 Signature
all calibrations have been conducted calibration Equipment used (M&TE) and the following state of the calibration Type (Tuke Process Calibrator Type 702)	E critical for calibration) ID # SN: 6295803	Cal Date 8-Sep-03 Function	Scheduled Calibration Sep-04 Signature

Certificate No.: 680-SD000D03AA-567-040430 Page 1 of 3

Date of Issue: 2005-09-20

Page:

71 / 78

1. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	404.815	404.585	404.666
Low Range	3.95105	3.95178	3.94236
Connector Angle to be used	in DASY System	83 °	

High Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Inp	ut 200000	200000	0.00
Channel X + Inp	ut 20000	19998.36	-0.01
Channel X - Inp	ut 20000	-19996.24	-0.02
Channel Y + Inp	ut 200000	200000.1	0.00
Channel Y + Inp	out 20000	19997.34	-0.01
Channel Y - Inp	ut 20000	-19994.76	-0.03
Channel Z + Inp	out 200000	199999.7	0.00
Channel Z + Inp	out 20000	19995.08	-0.02
Channel Z - Inp	ut 20000	-19995.66	-0.02

Low Range		Input (μV)	Reading (μV)	Error (%)
Channel X + Ir	put	2000	2000	0.00
Channel X + Ir	put	200	199.41	-0.30
Channel X - In	put	200	-200.38	0.19
Channel Y + Ir	put	2000	2000.1	0.00
Channel Y + Ir	nput	200	198.84	-0.58
Channel Y - In	put	200	-201.23	0.61
Channel Z + Ir	put	2000	2000	0.00
Channel Z + Ir	put	200	199.06	-0.47
Channel Z - In	put	200	-201.56	0.78

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Reading (μV)	Low Range Reading (μV)
Channel X	200	2.82	2.30
	- 200	-0.12	-0.99
Channel Y	200	0.18	-0.05
	- 200	-1.64	-1.75
Channel Z	200	3.51	4.59
	- 200	-6.09	-6.64

Certificate No.: 680-SD000D03AA-567-040430

Date of Issue: 2005-09-20

Page:

72 / 78

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	121	3.51	0.44
Channel Y	200	2.07	-	4.53
Channel Z	200	-0.98	1.54	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16381	16315
Channel Y	16208	16160
Channel Z	15912	15782

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MO

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.36	-0.68	1.66	0.50
Channel Y	-1.49	-2.46	-0.11	0.38
Channel Z	-0.47	-1.74	0.63	0.42

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2001	201.9
Channel Y	0.2001	201.6
Channel Z	0.2000	200.0

8. Low Battery Alarm Voltage

typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption

out of contouring trees.			
typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Date of Issue: 2005-09-20 Page: 73 / 78

- DIPOLE Antenna(1900 MHz)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SGS (Dymstec)

Client

CALIBRATION CERTIFICATE D1900V2 - SN:5d033 Object(s) QA CAL-05.v2 Calibration procedure(s) Calibration procedure for dipole validation kits June 27, 2003 Calibration date: In Tolerance (according to the specific calibration document) Condition of the calibrated item This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard. All calibrations have been conducted in the closed laboratory facility; environment temperature 22 +/- 2 degrees Celsius and humidity < 75%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Calibrated by, Certificate No.) Model Type ID# Scheduled Calibration RF generator R&S SML-03 100698 27-Mar-2002 (R&S, No. 20-92389) In house check: Mar-05 18-Oct-02 (Agilent, No. 20021018) Power sensor HP 8481A MY41092317 04-04 30-Oct-02 (METAS, No. 252-0236) Power sensor HP 8481A US37292783 Oct-03 Power meter EPM E442 GB37480704 30-Oct-02 (METAS, No. 252-0236) Oct-03 Network Analyzer HP 8753E US37390585 18-Oct-01 (Agilent, No. 24BR1033101) In house check: Oct 03 Technician Calibrated by: Approved by: Laboratory Director Date issued: July 7, 2003 This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

880-KP0301061-A Page 1 (1)

Date of Issue: 2005-09-20 Page: 74 / 78

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D1900V2

Serial: 5d033

Manufactured: March 17, 2003 Calibrated: June 27, 2003

Date of Issue: 2005-09-20 Page: 75 / 78

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 1900 MHz:

Relative Dielectricity 40.2 $\pm 5\%$ Conductivity 1.46 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.2 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250 mW \pm 3 %. The results are normalized to 1W input power.

SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm³ (1 g) of tissue: 41.2 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: 21.4 mW/g \pm 16.2 % (k=2)¹

,

¹ validation uncertainty

Date of Issue: 2005-09-20 Page: 76 / 78

Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.204 ns (one direction)

Transmission factor: 0.984 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz: $Re\{Z\} = 50.3 \Omega$

Im $\{Z\} = 3.1 \Omega$

Return Loss at 1900 MHz -30.0 dB

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

6. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date of Issue: 2005-09-20 Page: 77 / 78

Page 1 of 1

Date/Time: 06/27/03 13:51:12

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN5d033 SN1507 HSL1900 270603.da4

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d033 Program: Dipole Calibration

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz ($\sigma = 1.46 \text{ mho/m}$, $\epsilon_r = 40.17$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(5.2, 5.2, 5.2); Calibrated: 1/18/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 93.8 V/m

Power Drift = 0.04 dB

Maximum value of SAR = 11.4 mW/g

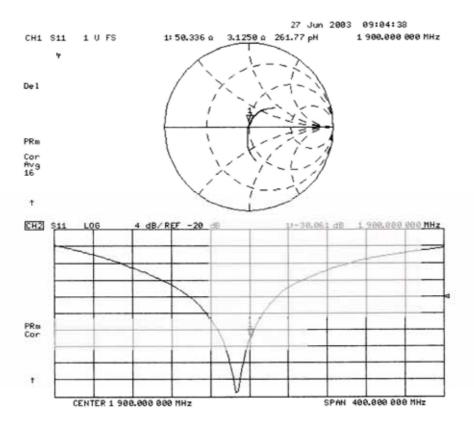
Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.35 mW/g

Reference Value = 93.8 V/m

Power Drift = 0.04 dB


Maximum value of SAR = 11.5 mW/g

Date of Issue: 2005-09-20 Page: 78 / 78

501033

