TEST REPORT

FCC/ISED BT Test for IL7SB Certification

APPLICANT LG Electronics Inc.

REPORT NO. HCT-RF-2307-FI003-R1

DATE OF ISSUE July 31, 2023

> **Tested by** Woong Jin Kim

ant -

Technical Manager Jong Seok Lee

HCT CO., LTD. Bongjai Huh BongJai Huh / CEO

HCT CO., LTD.74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si,
Gyeonggi-do, 17383 KOREA
Tel. +82 31 634 6300 Fax. +82 31 645 6401The report shall not be reproduced except in full(only partly) without approval of the laboratory.

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT FCC/ISED BT Test for IL7SB	REPORT NO. HCT-RF-2307-FI003-R1 DATE OF ISSUE July 31, 2023 Additional Model -
Applicant	LG Electronics Inc. 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do 17709, Republic of Korea
Eut Type Model Name	Silverbox RADIO ASM-RECEIVER IL7SB
FCC ID	BEJIL7SB3
IC	2703H-IL7SB3
Max. RF Output Power	3.061 dBm (2.02 mW)
Max. Radiated Output Power(EIRP)	7.01 dBm (5.02 mW)
Modulation type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)
FCC Classification	FCC Part 15 Spread Spectrum Transmitter
FCC Rule Part(s)	Part 15 subpart C 15.247
ISED Rule Part(s)	RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5_Amendment 2 (February 2021)
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the standard.

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	July 27, 2023	Initial Release
1	July 31, 2023	- Revised The typo (Page.31) - Added antenna gain Calculation. (Page.32)

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / ISED Rules under normal use and maintenance.

If this report is required to confirmation of authenticity, please contact to www.hct.co.kr

CONTENTS 1. EUT DESCRIPTION 5 6 2. Requirements for Bluetooth transmitter(15.247/RSS-247) **3. TEST METHODOLOGY** 7 EUT CONFIGURATION 7 EUT EXERCISE 7 **GENERAL TEST PROCEDURES** 7 8 DESCRIPTION OF TEST MODES 4. INSTRUMENT CALIBRATION 8 5. FACILITIES AND ACCREDITATIONS 8 FACILITIES 8 EQUIPMENT 8 9 6. ANTENNA REQUIREMENTS 7. MEASUREMENT UNCERTAINTY 10 8. DESCRIPTION OF TESTS 11 9. SUMMARY OF TEST RESULTS 35 10. TEST RESULT 36 **10.1 PEAK POWER** 36 10.2 BAND EDGES 42 10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99 % BW) 49 **10.4 NUMBER OF HOPPING FREQUENCY** 57 10.5 TIME OF OCCUPANCY (DWELL TIME) 61 **10.6 SPURIOUS EMISSIONS** 67 **10.6.1 CONDUCTED SPURIOUS EMISSIONS** 67 10.6.2 RADIATED SPURIOUS EMISSIONS 75 10.6.3 RADIATED RESTRICTED BAND EDGES 84 **10.7 RECEIVER SPURIOUS EMISSIONS** 87 10.8 RADIATED OUTPUT POWER (E.I.R.P) 88 **11. LIST OF TEST EQUIPMENT** 91 12. ANNEX A_ TEST SETUP PHOTO 93

1. EUT DESCRIPTION

Model	IL7SB
Additional Model	-
ЕИТ Туре	Silverbox RADIO ASM-RECEIVER
Power Supply	DC 12.0 V
Frequency Range	2402 MHz - 2480 MHz
Max. RF Output Power	3.061 dBm (2.02 mW)
BT Operating Mode	Normal, EDR, AFH
Modulation Type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)
Modulation Technique	FHSS
Number of Channels	79Channels, Minimum 20 Channels(AFH)
Max Antenna Gain	Internal Antenna - Max Gain : 4.19 dBi
Date(s) of Tests	June 9, 2023 ~ July 10, 2023
EUT serial numbers	Conduction : 210F58427 Radiation : 210F58430
PMN (Product Marketing Number)	Silverbox RADIO ASM-RECEIVER
HVIN (Hardware Version Identification Number)	IL7SB3
FVIN (Firmware Version Identification Number)	N/A
HMN (Host Marketing Name)	N/A

2. Requirements for Bluetooth transmitter(15.247/RSS-247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.
 - 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

• 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

• RSS-247 5.1 (a): The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 558074) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the RSS-GEN issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector and add the DCCF calculations.

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of § 15.203

According to RSS-GEN(Issue 5) Section 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

7. MEASUREMENT UNCERTAINTY

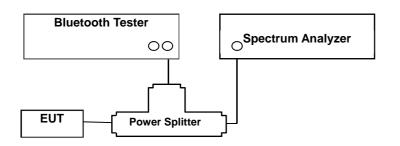
The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.90 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.14 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.82 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.74 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.76 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)

8. DESCRIPTION OF TESTS


8.1. Conducted Maximum Peak Output Power

Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

- For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

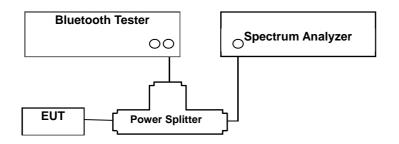
The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013 & Procedure 10(b)(6)(i) in KDB 558074 v05r02)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2) RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW \geq RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

Sample Calculation

Output Power = Spectrum Measured Power + Power Splitter loss + Cable loss(2 ea)

= 10 dBm + 6 dB + 1.5 dB = 17.5 dBm



8.2. Conducted Band Edge(Out of Band Emissions)

Limit

According to § 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

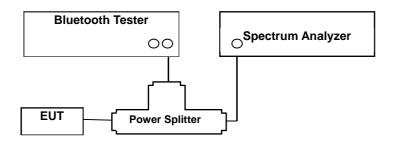
Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz
- 6) VBW: 300 kHz
- 7) Detector: Peak
- 8) Trace: Max hold



8.3. Frequency Separation & 20 dB Bandwidth

Limit

According to § 15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

Test Procedure(Frequency Separation)

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013 & Procedure 10(b)(6)(iii) in KDB 558074 v05r02)

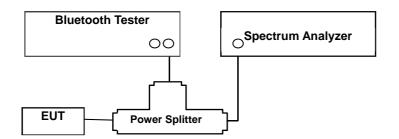
- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW \geq RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.
- 8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Test Procedure (20 dB Bandwidth)

And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (6.9.2 in ANSI 63.10-2013)

- 1) Span: Set between two times and five times the OBW
- 2) RBW: 1 % to 5 % of the OBW.
- 3) VBW \geq 3 x RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.



8.4. Number of Hopping Frequencies

Limit

According to § 15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

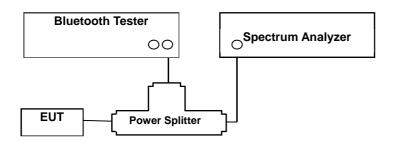
Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013 & Procedure 10(b)(4) in KDB 558074 v05r02)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30 % of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW \geq RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.



8.5. Time of Occupancy

Limit

According to § 15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013 & Procedure 10(b)(6)(iv) in KDB 558074 v05r02)

- 1) Span: Zero span, centered on a hopping channel
- 2) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Sample Calculation

The following calculation process is not relevant to our measurement results. It is just an example.

- (1) Non-AFH Mode
- DH 5 (GFSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 2-DH 5 (π /4DQPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)

(2) AFH Mode

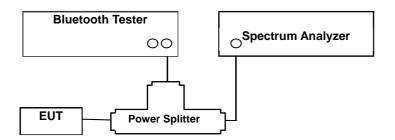
- DH 5 (GFSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)

Note :

DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.

Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance.

Each tx-time per appearance of DH5 is 2.890 ms.


Dwell time = Tx-time x 106.667 = 308.27 (ms)

8.6. Conducted Spurious Emissions

Limit Conducted > 20 dBc

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: 30 MHz to 10 times the operating frequency in GHz.
- 2) RBW: 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep: Coupled
- 5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

Factors for frequency

Freq(MHz)	Factor(dB)
30	6.09
100	6.13
200	6.21
300	6.34
400	6.41
500	6.46
600	6.49
700	6.47
800	6.51
900	6.54
1000	6.59
2000	6.85
2400	6.96
2480	6.97
2500	7.00
3000	7.07
4000	7.26
5000	7.47
5150	7.51
5850	7.59
6000	7.59
7000	7.71
8000	7.87
9000	8.02
10000	8.08
11000	8.24
12000	8.42
13000	8.43
14000	8.52
15000	8.55
16000	8.62
17000	8.72
18000	8.94
19000	9.04
20000	8.96
21000	9.16
22000	9.19
23000	9.58
24000	9.37
25000	9.42
26000	9.46

Note :

1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Cable loss(2 EA) + Splitter loss(6 dB)

8.7. Radiated Test

Limit

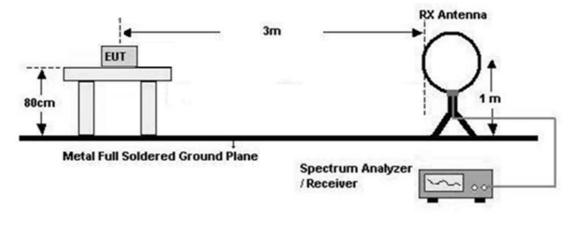
FCC

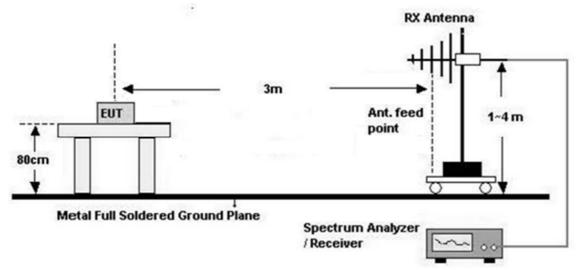
Frequency (MHz)	Field Strength (<u>V</u> /m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30	30	30

ISED

Frequency (MHz)	Field Strength (A/m)	Measurement Distance (m)
0.009 - 0.490	6.37/F(kHz)	300
0.490 – 1.705	63.7/F(kHz)	30
1.705 – 30	0.08	30

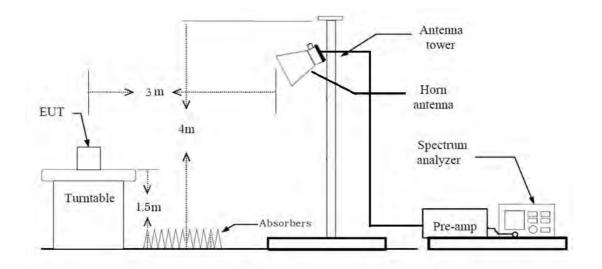
FCC&ISED


Frequency (MHz)	Field Strength (V/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Report No. HCT-RF-2307-FI003-R1

Test Configuration

Below 30 MHz


30 MHz - 1 GHz

Above 1 GHz

Test Procedure of Radiated spurious emissions (Below 30 MHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.

- 2. The loop antenna was placed at a location 3 m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB
 - Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = 40 dB

```
Measurement Distance : 3 m
```

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW

9. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific

emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions (Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - %In general, (1) is used mainly
- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.14
 - Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total
 - (1)Measurement(Peak)

Measured Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F) (2)Measurement(Avg)

Measured Value (Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance

Factor(D.F) + D.C.C.F(AFH)

- 12. Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' =1
 - c. Worst Case Dwell Time = τ [ms] x H ' = 2.9 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 13. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
- a. Time to cycle through all channels = Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
- b. 100 ms/ Δ t [ms] = H \rightarrow Round up to next highest integer, H ' = 2
- c. Worst Case Dwell Time = τ [ms] x H ' = 5.800 ms
- d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

Test Procedure of Radiated Restricted Band Edge

1. Radiated test is performed with hopping off.

- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions

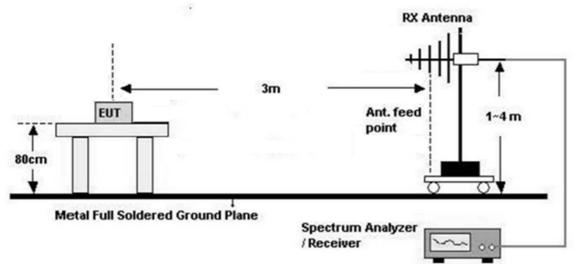
- Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.14

Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

- 8. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 9. Total
 - (1) Measurement(Peak)
 - = Measured Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Attenuator(ATT)
 - + Distance Factor(D.F)
 - (2) Measurement(Avg)
 - = Measured Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Attenuator(ATT) + Distance Factor(D.F) + D.C.C.F(AFH)
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

8.8. Receiver Spurious Emissions

Limit

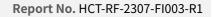

Frequency (MHz)	Field Strength (V/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note:

Measurements for compliance with the limits in table may be performed at distances other than 3 metres.

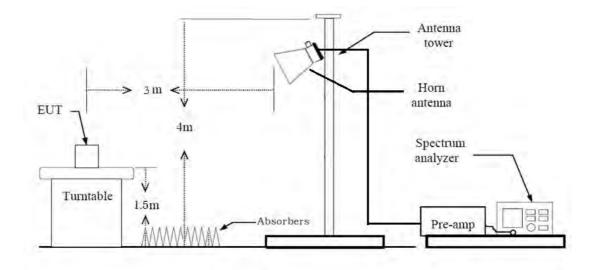
Test Configuration

30 MHz - 1 GHz



Test Procedure of Receiver Spurious Emissions (Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.


5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)

Above 1 GHz

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

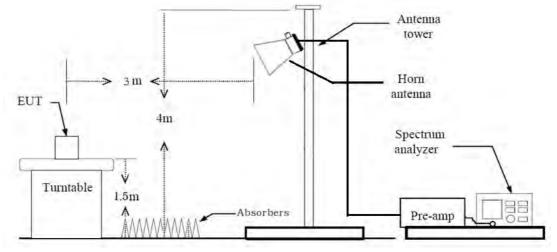
3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):

- We performed using a reduced video BW method was done with the analyzer in linear mode
- Measured Frequency Range : 1 GHz 25 GHz
- Detector = Peak
- Trace = Maxhold
- RBW = 1 MHz
- VBW $\geq 1/\tau$ Hz, where τ = pulse width in seconds
- The actual setting value of VBW = 1 kHz
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific

emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered

that's already beyond the background noise floor.


9. Total(Measurement Type : Peak)

= Peak Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) Total(Measurement Type : Average)

= Average Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

8.9. Radiated Output Power (E.I.R.P)

Test Procedure of Radiated Output Power (E.I.R.P)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Spectrum Setting
 - 1) Span: approximately more than 5 times the 20 dB bandwidth, centered on a hopping channel
 - 2) RBW > the 20 dB bandwidth of the emission being measured
 - 3) VBW \geq RBW
 - 4) Sweep = Auto
 - 5) Detector = Peak
 - 6) Trace = Max hold

Note:

Field strength (dB μ V/m) = Measured Value(dB μ V/m) + Antenna Factor(A.F) + Cable Loss(C.L) – Amp Gain(A.G)

EIRP (dBm) = Field strength (dB μ V/m) – 95.2

Max Antenna Gain = EIRP(dBm) - Conducted Output Power(dBm)

8.10. Antenna Gain calculations

Test Procedure of Antenna gain calculations

- 1. Measured Radiated Ouput Power(EIRP) according to Section 8.9
- 2. Measured Conducted Ouput Power according to Section 8.1
- 3. Calculatated Antenna gain according to below equation

[Antenna gain calculation]

Antenna Gain(dBi) = EIRP(dBm) – Conducted Output Power(dBm)

[Max Antenna Gain] BT internal Antenna

Frequency	Peak Gain[dBi]
2402	0.75
2441	2.35
2480	4.19

8.11. Worst case configuration and mode

Radiated test

- 1. All modes of operation were investigated and the worst case configuration results are reported. - Mode : Stand alone
 - Worstcase : Stand alone

2. EUT Axis

- Radiated Spurious Emissions : Z
- Radiated Restricted Band Edge : Y
- Radiated Output Power : Y

3. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.

- GFSK : DH5

 $-\pi/4DQPSK: 2-DH5$

- 8DPSK : 3-DH5

4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.

- Position : Horizontal, Vertical, Parallel to the ground plane

Radiated test(RSDB)

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone
 - Worstcase : Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions : Z
- 3. All of RSDB Scenario were investigated and the worst case configuration results are reported.

RSDB Scenario	2.4 GHz WiFi	5 GHz WiFi	Bluetooth
2.4 GHz WiFi + 5 GHz WiFi	on	on	
2.4 GHz WiFi + Bluetooth	on		on

4. The following tables show the worst case configurations determined during testing.

(Worst case: The lowest margin condition the channels and modes were selected for test.)

Description	Bluetooth Emission	2.4 GHz Emission
Antenna	WIFI/BT	WIFI
Channel	78	1
Data Rate	1 Mbps	1Mbps
Mode	π/4DQPSK: 2-DH5	802.11b

Note : WLAN 2.4 GHz RSDB Data refer to [DTS] Test Report.

AC Power line Conducted Emissions

1. We don't perform powerline conducted emission test. Because this EUT is used DC.

Conducted test

- 1. The EUT was configured with data rate of highest power.
 - GFSK : DH5
 - π/4DQPSK : 2-DH5
 - 8DPSK : 3-DH5
- 2. AFH & Non-AFH were tested and the worst case results are reported.

(Worst case : Non-AFH)

Test Description	FCC Part Section(s)	ISED Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§ 15.247(a)(1)	RSS-247, 5.1	N/A		PASS
Occupied Bandwidth	N/A	RSS-GEN, 6.7	N/A		N/A
Conducted Maximum Peak Output Power	§ 15.247(b)(1)	RSS-247, 5.1 b)	< 0.125 W		PASS
Carrier Frequency Separation	§ 15.247(a)(1)	RSS-247, 5.1 b)	> 25 kHz or >2/3 of the 20dB BW		PASS
Number of Hopping Frequencies	§ 15.247(a)(1)(iii)	RSS-247, 5.1 d)	≥ 15	Conducted	PASS
Time of Occupancy	§ 15.247(a)(1)(iii)	RSS-247, 5.1 d)	< 400 ms		PASS
Conducted Spurious Emissions	§ 15.247(d)	RSS-247, 5.5	> 20 dB for all out-of band emissions		PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	RSS-247, 5.5	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§ 15.207(a)	RSS-GEN, 8.8	cf. Section 8.8		N/A (#Note)
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	RSS-GEN, 8.9	cf. Section 8.7		PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	RSS-GEN, 8.9 RSS-GEN, 8.10	cf. Section 8.7	- Radiated -	PASS
Receiver Spurious Emissions	N/A	RSS-GEN, 7	cf. Section 8.9	Naulateu	PASS
Radiated Ouput Power (E.I.R.P)	-	-	-		-

9. SUMMARY OF TEST RESULTS

#Note: Not Tested.

10. TEST RESULT

10.1 PEAK POWER

Channel	Frequency (MHz)	Output Power (GFSK)		Limit	
		(dBm)	(mW)	— (mW)	
Low	2402	0.291	1.07	125	
Mid	2441	0.342	1.08		
High	2480	0.639	1.16		
Channel	Frequency (MHz)	Output Power (8DPSK)		Limit — (mW)	
		(dBm)	(mW)	(11100)	
Low	2402	2.663	1.85	125	
Mid	2441	2.756	1.89		
High	2480	3.061	2.02		
Channel	Frequency (MHz)	Output Power (π/4DQPSK)		Limit - (mW)	
		(dBm)	(mW)		
Low	2402	2.392	1.73	125	
Mid	2441	2.456	1.76		

Note:

High

1. The Peak Power measured results in plot is already including the actual values of loss for the attenuator and cable combination.

2.820

1.91

2480

Test Plots (GFSK) Peak Power (CH.0)

Test Plots (GFSK) Peak Power (CH.39)



Test Plots (GFSK) Peak Power (CH.78)

Test Plots (8DPSK)

Test Plots (8DPSK)

Test Plots (8DPSK) Peak Power (CH.78)

Test Plots (π/4DQPSK)

Test Plots (π/4DQPSK) Peak Power (CH.39)

Test Plots (π/4DQPSK)

Peak Power (CH.78)

10.2 BAND EDGES

Without hopping

Outcido Fraguency Pand	GFSK	8DPSK	π/4DQPSK	Limit	
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)	
Lower	56.097	48.851	50.079	20	
Upper	55.992	56.555	56.826	20	


With hopping

Outrido Fraguenov Pand	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	56.546	49.785	52.741	20
Upper	55.778	55.202	56.147	20

Test Plots without hopping (GFSK)

Band Edges (CH.0)

Test Plots without hopping (GFSK)

Test Plots without hopping (8DPSK)

Band Edges (CH.0)

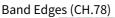
Test Plots without hopping (8DPSK)



Test Plots without hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots without hopping ($\pi/4DQPSK$)



Test Plots with hopping (GFSK)

Band Edges (CH.0)

Test Plots with hopping (GFSK)

Test Plots with hopping (8DPSK)

Band Edges (CH.0)

Test Plots with hopping (8DPSK)

Test Plots with hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots with hopping ($\pi/4DQPSK$)

Band Edges (CH.78)

10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99 % BW)

99 % BW (kHz)						
Channel	GFSK	8DPSK	π/4DQPSK			
CH.0	872.65	1183.1	1179.1			
CH.39	877.02	1184.1	1177.2			
CH.78	874.59	1184.7	1180.0			

20 dB BW (kHz)					
Channel	GFSK	8DPSK	π/4DQPSK		
CH.0	964.5	1310	1320		
CH.39	965.9	1307	1321		
CH.78	964.4	1308	1321		

	Limit		
GFSK	8DPSK	(kHz)	
			>25 kHz
1001	1008	994	or
			>2/3 of the 20 dB BW

Test Plots (GFSK)

Channel Separation

Test Plots (8DPSK) Channel Separation

Test Plots (π/4DQPSK)

Channel Separation

	SENSE INT	ALIGN AUTO		Frequency
	Trig: Free Run Atten: 28 dB	#Avg Type: RMS Avg[Hold: 1/1	TRACE 1 2 3 4 TVPE MINANAAAA DET P P P P P	
			ΔMkr3 994 kHz 0.102 dB	
	142		304	Center Freq 2.441000000 GHz
		minter .	a	Start Free 2.439500000 GH:
				Stop Free 2,442500000 GH
#VBW	100 kHz	Sweep	Span 3.000 MHz 3.176 ms (900 pts)	300.000 kH
1,145 MHz (Δ)	1,490 dB	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Mar
39 830 GHz 994 kHz (Δ) 10 975 GHz	-3.913 dBm 0.102 dB -2.424 dBm			Freq Offse 0 H
	#VBW 1.145 MHz (Δ) 994 kHz (Δ)	J GHz PRO: Wide Trig: Free Run Atten: 28 dB μGain:Low 1Δ2 μ 1Δ2	O GHz PHO: Wide → IFGain:Low Trig: Free Run Atten: 28 dB #Avg Type: RMS Avg Hold: 1/1 1Δ2 1Δ2 4 4 4 4 4 9 4 4 4 4 4 4 9 4	B GH z PHC: Wide IFGain:Low Trig: Free Run. Atten: 28 dB #Avg Type: RMS Avg]Hold: 1/1 Trice The description to the popping Avg]Hold: 1/1 AMKr3 994 kHz 0, 102 dB AMKr3 994 kHz 0, 102 dB Marce The description to the popping AMKr3 994 kHz 0, 102 dB Marce The description to the popping AMKr3 994 kHz 0, 102 dB Marce The description to the popping Span 3.000 MHz Sweep 3.176 ms (900 pts) Marce The description to the popping Span 3.000 MHz Sweep 3.176 ms (900 pts) Marce The description to the popping Marce The description to the popping Marce The description to the popping Span 3.000 MHz Sweep 3.176 ms (900 pts) Marce The description to the popping Marce The description to the popping Marce The description to the popping Span 3.000 MHz Sweep 3.176 ms (900 pts) Marce The description to the popping Marce The description to the popping Marce The description to the popping Marce The description to the popping Marce The description to the popping Marce The description to the popping Marce The description to the popping Marce The description to the popping Marce The description to the popping Marce The description to the popping Marce The description to the popping Marce T

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

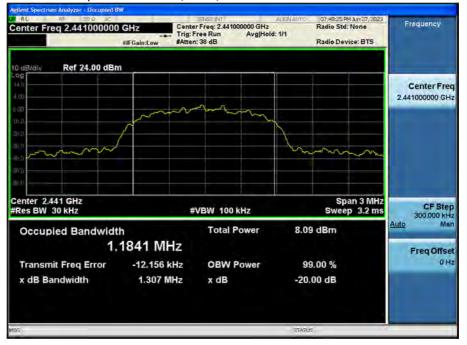
Test Plots (GFSK)

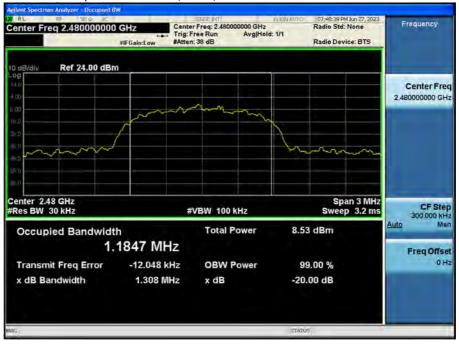
20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

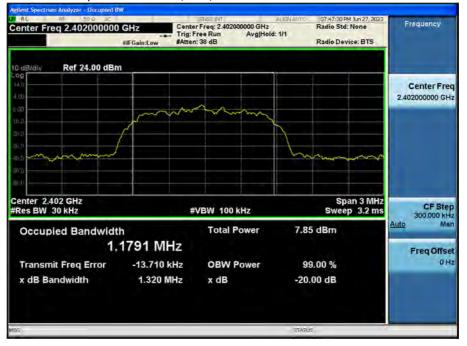
Test Plots (8DPSK)

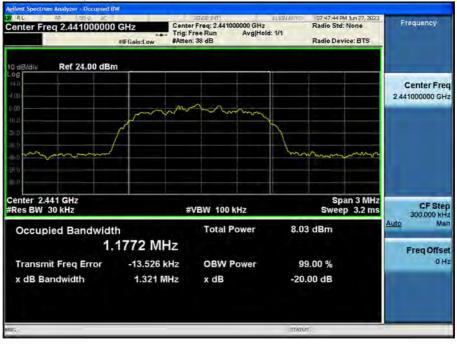

20 dB Bandwidth & Occupied Bandwidth (CH.0)


Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

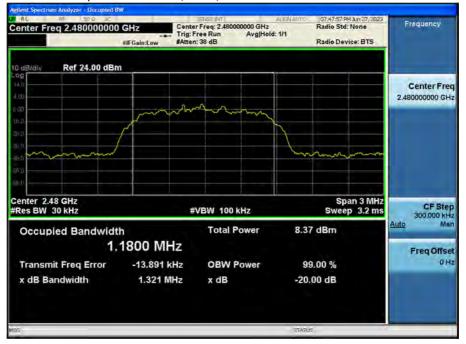
Test Plots (8DPSK)


20 dB Bandwidth & Occupied Bandwidth (CH.78)


Test Plots (π /4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

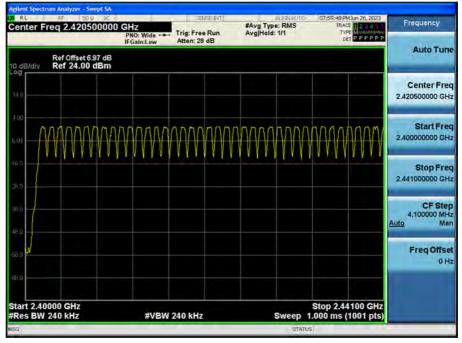
Test Plots (π /4DQPSK)


20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (π /4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

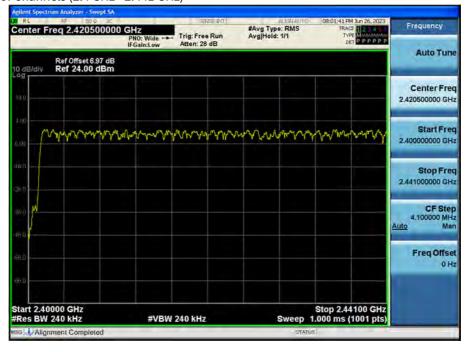
10.4 NUMBER OF HOPPING FREQUENCY


GFSK	GFSK 8DPSK		Limit
79	79	79	>15

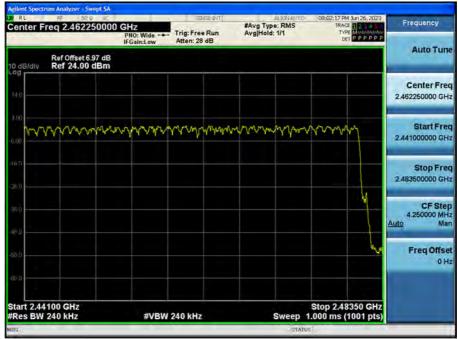
Note :

In case of AFH mode, minimum number of hopping channels is 20.

Test Plots (GFSK) Number of Channels (2.4 GHz - 2.441 GHz)


Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.4835 GHz)



Test Plots (8DPSK) Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

Test Plots (π/4DQPSK) Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (π/4DQPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

10.5 TIME OF OCCUPANCY (DWELL TIME)

	Channel	GFSK	8DPSK	π/4DQPSK
Pulse Time	Low	2.890	2.885	2.885
(ms)	Mid	2.890	2.885	2.885
	High	2.895	2.890	2.890

Non-AFH Mode

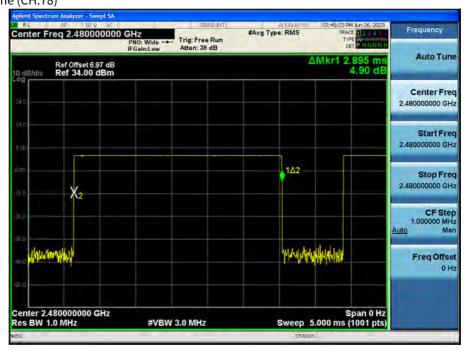
Total of	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Dwell	Low	308.27	307.73	307.73	31.60	
(ms)	Mid	308.27	307.73	307.73	31.60	400
	High	308.80	308.27	308.27	31.60	

AFH Mode

Total of	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Dwell	Low	154.13	153.87	153.87	8.0	
(ms)	Mid	154.13	153.87	153.87	8.0	400
	High	154.40	154.13	154.13	8.0	

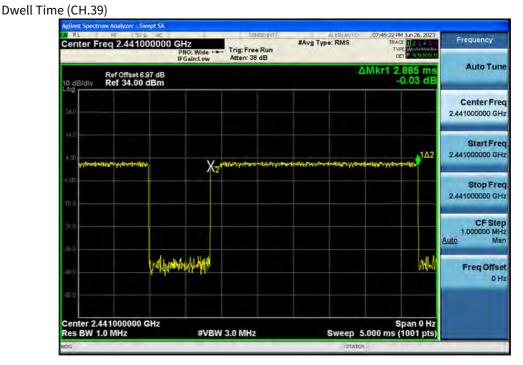
Test Plots (GFSK) Dwell Time (CH.0)

Test Plots (GFSK) Dwell Time (CH.39)


Agilent Spectrum Analyzer - Swept SA					
		ee Run 38 dB	#Avg Type: RMS	07:45:11 PM Jun 26, 2023 TRACE 2 2 4 5 TVPE WALLAND DET P N N N N N	Frequency
Ref Offset 6.97 dB	I Game ow			ΔMkr1 2.890 ms 3.84 dB	Auto Tune
34.0					Center Free 2.441000000 GH
4 Û			1Δ2		Start Free 2.441000000 GH
ici X2					Stop Fre 2.441000000 GH
(K))					CF Ste 1.000000 MH Auto Ma
why			Virtification		Freq Offse 0 H
200 Center 2.441000000 GHz tes BW 1.0 MHz	#VBW 3.0 MH	z	Sweep	Span 0 Hz 5.000 ms (1001 pts)	
0G -			-57A	TUS	

Report No. HCT-RF-2307-FI003-R1

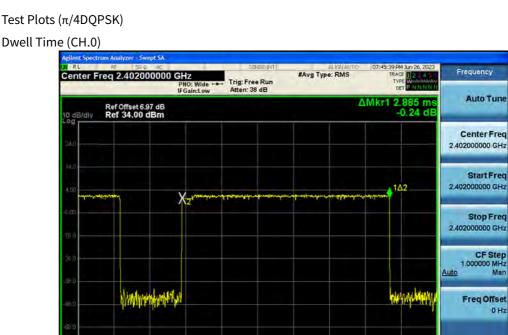
Test Plots (GFSK) Dwell Time (CH.78)



Test Plots (8DPSK) Dwell Time (CH.0)

Test Plots (8DPSK)

Test Plots (8DPSK) Dwell Time (CH.78)

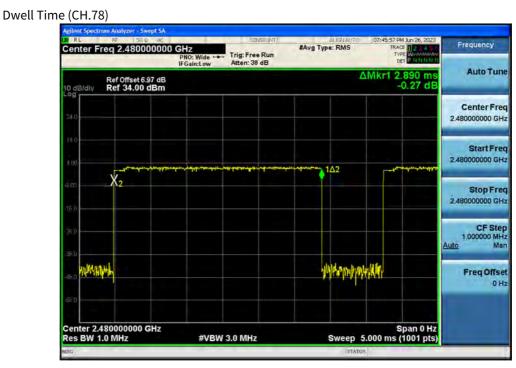


0 Hz

Span 0 Hz Sweep 5.000 ms (1001 pts)

Test Plots (π/4DQPSK)

#VBW 3.0 MHz


Test Plots (π/4DQPSK) Dwell Time (CH.39)

Center 2.402000000 GHz Res BW 1.0 MHz

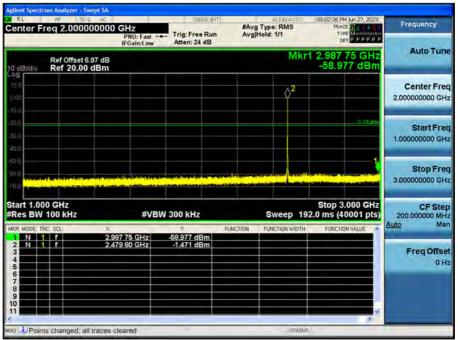
Test Plots (π/4DQPSK)

Report No. HCT-RF-2307-FI003-R1

10.6 SPURIOUS EMISSIONS

10.6.1 CONDUCTED SPURIOUS EMISSIONS

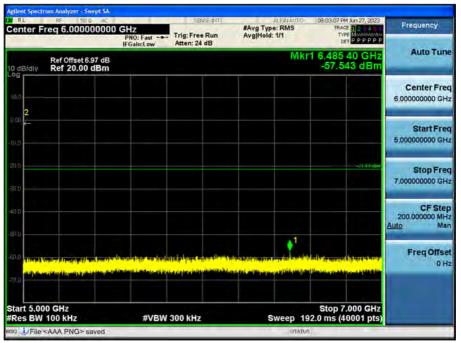
Test Result : please refer to the plot below. In order to simplify the report, attached plots were only the worst case channel and data rate.


Worst case Test Mode: 8DPSK (3-DH5)_79 Channel

RL AF 589 40 Center Freq 515.000000 M	Hz PNO: Fast	Trig: Free Run Atten: 24 dB	#Avg Type: RMS Avg Hold: 1/1	08:02:46 PM 3un 27, 2023 TRACE 2 2 4 TYPE MUMARANNY DET P P P P P P	Frequency
Ref Offset 6.97 dB			M	r1 30.63 MHz -60.959 dBm	Auto Tune
100				2	Center Fred 515.000000 MH
40.0.					Start Free 30.000000 MH
330				:) i7 @4	Stop Free 1.000000000 GH
40,0					CF Ster 97.000000 MH Auto Mar
			an a	pantinan telah fermanya Tanjara Panjara	Freq Offse 0 H
Start 30.0 MHz #Res BW 100 kHz	#VBW	300 kHz		Stop 1.0000 GHz 3 ms (20000 pts)	

30 MHz - 1 GHz

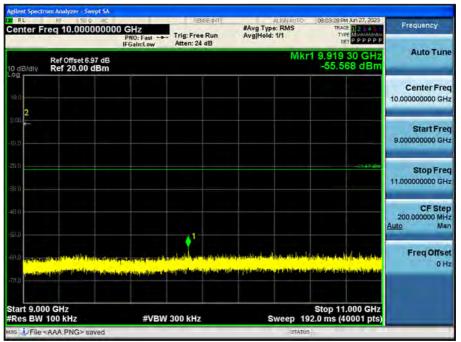
1 GHz – 3 GHz



RL AF 50.2 AC Center Freq 4.000000000	GHz PNO: Fast	Trig: Free Run Atten: 24 dB	#Avg Type: RMS Avg[Hold: 1/1	08:02:57 PM Jun 27, 2023 TRACE 2 2 3 4 1 0 TVPE MIMANIMUM DET P P P P P	Frequency
Ref Offset 6.97 dB			3.609 65 GHz -57.575 dBm	Auto Tune	
					Center Fred 4.000000000 GH:
0.00 2					Start Free 3.00000000 GH
10 D					Stop Free 5.000000000 GH
40.0					CF Ste 200.000000 MH Auto Ma
	Elfadent		an Alganese political as a service of the	and the second sec	Freq Offse 0 H
Start 3.000 GHz #Res BW 100 kHz		/ 300 kHz		Stop 5.000 GHz 2.0 ms (40001 pts)	

3 GHz - 5 GHz

5 GHz - 7 GHz



RL RF 58.0	CHZ PNO: Fast	SBASE INT Trig: Free Run Atten: 24 dB	#Avg Type: RMS Avg[Hold: 1/1	08:03:17 PM Jun 27, 2023 TRACE 23:44 0 TVPE MIMANIMUM DET P P P P P	Frequency	
Ref Offset 6.97 dB			Mkr	Mkr1 7.062 05 GHz -57.326 dBm		
18 U					Center Free 8,000000000 GH	
000 2					Start Fre 7.000000000 GH	
100				(i ti ti des	Stop Fre 9.000000000 GH	
800					CF Ste 200.000000 MH Auto Ma	
		nerikany (nyanatul) sana dia dapatula tana atatikana		an and a paper of the second secon	Freq Offse 0 H	
Start 7.000 GHz Res BW 100 kHz	#\/B\M	300 kHz	Sween 10	Stop 9.000 GHz 2.0 ms (40001 pts)		

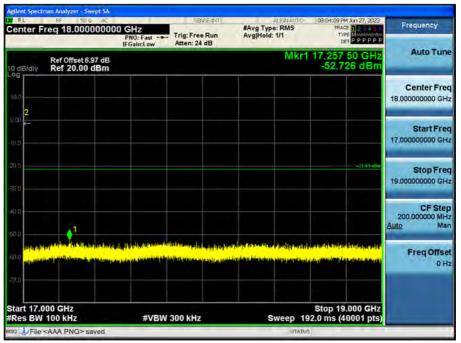
7 GHz - 9 GHz

9 GHz - 11 GHz

RL	8F.	50 g 4C		SENSE II		ALIGNAUTO	08:03:38 PM Jun 27, 2023	Para and an
ente	r Freq 12	.0000000	PNO: Fast	Trig: Free Run Atten: 24 dB		ype: RMS ld: 1/1	TRACE 1 2 3 4 5 TVPE MUMANANAN DET PPPPP	Frequency
Ref Offset 6.97 dB Mkr1 11.964 25 GHz 10 dB/dtv Ref 20.00 dBm -56.663 dBm -56.663 dBm								
UU								Center Free 12.000000000 GH
10.0								Start Free 11.000000000 GH
100							-31 iž es	Stop Fre 13.000000000 GH
0,0 0 0								CF Ste 200.000000 MH Auto Ma
0.0 <mark>1</mark> .0	D, station					al least sur		Freq Offse 0 F
tart 1	1.000 GH:						Stop 13.000 GHz	
	3W 100 kH		#VBW	300 kHz		Sweep 19	2.0 ms (40001 pts)	

11 GHz - 13 GHz

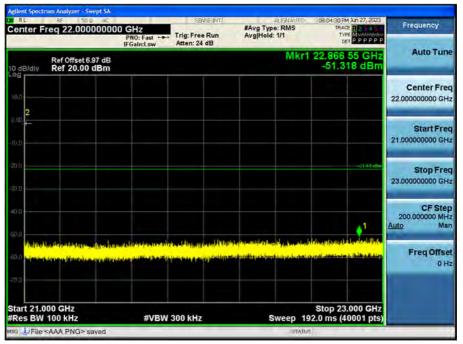
13 GHz - 15 GHz



Center Freq 16.000000000	PNO: Fast Tr	ig: Free Run	#Avg Type: RMS Avg[Hold: 1/1	08:03:59 PM 3 m 27, 2023 TRACE 2 3 4 9 0 TVPE M MANAAMA DET P P P P P P	Frequency	
Ref Offset 6.97 dB Mkr1 15.321 60 GHz 10 dB/div Ref 20.00 dBm -53.781 dBm						
.og					Center Free 16.000000000 GH:	
10.0					Start Free 15.000000000 GH	
30					Stop Fre 17.000000000 GH	
40.0					CF Ste 200.000000 MH Auto Ma	
an a <mark>antificial in an international and an anti-</mark>	nn fister nit sterninger Niterenser	distance (in a standard) Na Kalance a sana a sana a	da kuluu apada ilda waxwa fashi a ku	the state on a state of the state I see the state of th	Freq Offse 0 H	
100 Start 15.000 GHz Res BW 100 kHz	#VBW 30	0.141-		Stop 17.000 GHz 2.0 ms (40001 pts)		

15 GHz - 17 GHz

17 GHz - 19 GHz



PNO: Fast Trig:		#Avg Type: RMS Avg[Hold: 1/1	08:04:19 PM 3un 27, 2023 TRACE 1 2 3 4 4 0 TVPE M MANADAL DET P P P P P P	Frequency	
Ref Offset 6.97 dB Mkr1 20.805 75 GHz Ref 20.00 dBm -51.411 dBm					
				Center Free 20.000000000 GH:	
				Start Free 19.000000000 GH	
				Stop Free 21.000000000 GH	
			1	CF Ste 200.000000 MH Auto Ma	
a statung panantana dia man Rangan na manana na	nian dan din din din din Managementan din din din din din din din din din di	sablitezile attaleze estit). Agrical Datagon generation	a perseka katalan katalan katalan Manana katalan k	Freq Offse 0 H	
			Stop 21.000 GHz		
	IFGain:Low Atte	GHz PN0: Fast Trig: Free Run. Atten: 24 dB	GHz PN0: Fast Trig: Free Run Atten: 24 dB #Avg]Hold: 1/1 IFGain: Low Atten: 24 dB MKr1 Mkr1 Image: state sta	GHz PND: Fast	

19 GHz - 21 GHz

21 GHz - 23 GHz

RL RF 58 2 40 Center Freq 24.00000000	O GHZ	SENSE INT Free Run en: 24 dB	#Avg Type: RMS Avg[Hold: 1/1	08:04:40 PM Jun 27, 202 TRACE 1 2 4 TYPE M WWW DET P. P. P. P. P.	Frequency	
Ref Offset 6.97 dB						
100					Center Free 24.000000000 GH	
000 <mark>2</mark>					Start Fre 23.000000000 GH	
an				-;147 d	Stop Fre 25.000000000 GH	
20.0 50.0 Junia ok tratianstandon dekata.		forsel our residence datas	the constitution of a stational sector	1 1 and the second state	CF Ste 200.000000 MH Auto Ma	
COLO PROVINCIA DI COLORIZZA DI COLORIZIA DI COLORIZZI DI COLORIZIA DI		lander i Langar Ganton in	an para ing bina kata ana kata ang	para santaj al para bista	Freq Offse 0 H	
Start 23.000 GHz #Res BW 100 kHz	#VBW 300	kHz	Sweep 19	Stop 25.000 GH 2.0 ms (40001 pt		

23 GHz - 25 GHz

Limit : -21.47 dBm

10.6.2 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz - 30 MHz

Frequency	Measured Value	A.F+C.L+D.F	Ant. POL	Total	Limit	Margin				
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]				
	No Critical peaks found									

Note:

1. The Measured of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBµV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

Frequency	Measured Value	A.F+C.L	POL	Total	Limit	Margin				
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]				
	No Critical peaks found									

Frequency Range : Below 1 GHz

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

2. Radiated test is performed with hopping off.

Frequency Range : Above 1 GHz

Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4804	42.12	3.87	V	0.00	45.99	73.98	27.99	PK
4804	42.12	3.87	V	-24.73	21.26	53.98	32.72	AV
7206	39.32	11.52	V	0.00	50.84	73.98	23.14	PK
7206	39.32	11.52	V	-24.73	26.11	53.98	27.87	AV
4804	42.28	3.87	Н	0.00	46.15	73.98	27.83	PK
4804	42.28	3.87	Н	-24.73	21.42	53.98	32.56	AV
7206	39.99	11.52	Н	0.00	51.51	73.98	22.47	PK
7206	39.99	11.52	Н	-24.73	26.78	53.98	27.20	AV

Operation Mode: CH Low(GFSK)

Operation Mode: CH Mid(GFSK)

Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4882	41.08	4.26	V	0.00	45.34	73.98	28.64	PK
4882	41.08	4.26	V	-24.73	20.61	53.98	33.37	AV
7323	39.22	11.86	V	0.00	51.08	73.98	22.90	PK
7323	39.22	11.86	V	-24.73	26.35	53.98	27.63	AV
4882	41.18	4.26	Н	0.00	45.44	73.98	28.54	PK
4882	41.18	4.26	Н	-24.73	20.71	53.98	33.27	AV
7323	39.92	11.86	Н	0.00	51.78	73.98	22.20	PK
7323	39.92	11.86	Н	-24.73	27.05	53.98	26.93	AV

Opera	tion Mode: C	H High(GFSK)						
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	41.98	4.81	V	0.00	46.79	73.98	27.19	PK
4960	41.98	4.81	V	-24.73	22.06	53.98	31.92	AV
7440	40.28	11.99	V	0.00	52.27	73.98	21.71	PK
7440	40.28	11.99	V	-24.73	27.54	53.98	26.44	AV
4960	42.01	4.81	Н	0.00	46.82	73.98	27.16	PK
4960	42.01	4.81	Н	-24.73	22.09	53.98	31.89	AV
7440	40.78	11.99	Н	0.00	52.77	73.98	21.21	PK
7440	40.78	11.99	Н	-24.73	28.04	53.98	25.94	AV

Opera	tion Mode: C	H Low(π/4DQPSK)						
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4804	42.51	3.87	V	0.00	46.38	73.98	27.60	PK
4804	42.51	3.87	V	-24.73	21.65	53.98	32.33	AV
7206	40.01	11.52	V	0.00	51.53	73.98	22.45	PK
7206	40.01	11.52	V	-24.73	26.80	53.98	27.18	AV
4804	42.51	3.87	Н	0.00	46.38	73.98	27.60	PK
4804	42.51	3.87	Н	-24.73	21.65	53.98	32.33	AV
7206	40.25	11.52	Н	0.00	51.77	73.98	22.21	PK
7206	40.25	11.52	Н	-24.73	27.04	53.98	26.94	AV

Operation Mode: CH Mid(π /4DQPSK)

Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4882	41.22	4.26	V	0.00	45.48	73.98	28.50	PK
4882	41.22	4.26	V	-24.73	20.75	53.98	33.23	AV
7323	39.77	11.86	V	0.00	51.63	73.98	22.35	PK
7323	39.77	11.86	V	-24.73	26.90	53.98	27.08	AV
4882	41.37	4.26	Н	0.00	45.63	73.98	28.35	РК
4882	41.37	4.26	Н	-24.73	20.90	53.98	33.08	AV
7323	39.98	11.86	Н	0.00	51.84	73.98	22.14	PK
7323	39.98	11.86	Н	-24.73	27.11	53.98	26.87	AV

Opera	tion Mode: C	H High (π/4DQPSK)						
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	42.32	4.81	V	0.00	47.13	73.98	26.85	PK
4960	42.32	4.81	V	-24.73	22.40	53.98	31.58	AV
7440	40.98	11.99	V	0.00	52.97	73.98	21.01	PK
7440	40.98	11.99	V	-24.73	28.24	53.98	25.74	AV
4960	42.81	4.81	Н	0.00	47.62	73.98	26.36	PK
4960	42.81	4.81	Н	-24.73	22.89	53.98	31.09	AV
7440	41.41	11.99	Н	0.00	53.40	73.98	20.58	PK
7440	41.41	11.99	Н	-24.73	28.67	53.98	25.31	AV

Opera	tion Mode: C	H Low(8DPSK)						
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4804	42.33	3.87	V	0.00	46.20	73.98	27.78	PK
4804	42.33	3.87	V	-24.73	21.47	53.98	32.51	AV
7206	40.05	11.52	V	0.00	51.57	73.98	22.41	PK
7206	40.05	11.52	V	-24.73	26.84	53.98	27.14	AV
4804	42.47	3.87	Н	0.00	46.34	73.98	27.64	PK
4804	42.47	3.87	Н	-24.73	21.61	53.98	32.37	AV
7206	40.29	11.52	Н	0.00	51.81	73.98	22.17	PK
7206	40.29	11.52	Н	-24.73	27.08	53.98	26.90	AV

Operation Mode: CH Mid(8DPSK)

Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4882	41.48	4.26	V	0.00	45.74	73.98	28.24	PK
4882	41.48	4.26	V	-24.73	21.01	53.98	32.97	AV
7323	39.71	11.86	V	0.00	51.57	73.98	22.41	РК
7323	39.71	11.86	V	-24.73	26.84	53.98	27.14	AV
4882	41.51	4.26	Н	0.00	45.77	73.98	28.21	РК
4882	41.51	4.26	Н	-24.73	21.04	53.98	32.94	AV
7323	39.87	11.86	Н	0.00	51.73	73.98	22.25	РК
7323	39.87	11.86	Н	-24.73	27.00	53.98	26.98	AV

Opera	tion Mode: C	H High(8DPSK)						
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	42.31	4.81	V	0.00	47.12	73.98	26.86	PK
4960	42.31	4.81	V	-24.73	22.39	53.98	31.59	AV
7440	40.98	11.99	V	0.00	52.97	73.98	21.01	PK
7440	40.98	11.99	V	-24.73	28.24	53.98	25.74	AV
4960	42.55	4.81	Н	0.00	47.36	73.98	26.62	PK
4960	42.55	4.81	Н	-24.73	22.63	53.98	31.35	AV
7440	41.28	11.99	Н	0.00	53.27	73.98	20.71	PK
7440	41.28	11.99	Н	-24.73	28.54	53.98	25.44	AV

[RSDB]

Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	42.05	4.81	V	0.00	46.86	73.98	27.12	PK
4960	42.05	4.81	V	-24.73	22.13	53.98	31.85	AV
7440	39.55	11.99	V	0.00	51.54	73.98	22.44	PK
7440	39.55	11.99	V	-24.73	26.81	53.98	27.17	AV
4960	41.89	4.81	Н	0.00	46.70	73.98	27.28	PK
4960	41.89	4.81	Н	-24.73	21.97	53.98	32.01	AV
7440	39.61	11.99	Н	0.00	51.60	73.98	22.38	PK
7440	39.61	11.99	Н	-24.73	26.87	53.98	27.11	AV

DTS 802.11b 1 Mbps Ch.1 + BT 2-DH5 Ch.78

Note : WLAN 2.4 GHz RSDB Data refer to [DTS] Test Report.

RESULT PLOTS

Radiated Spurious Emissions plot – Average & Peak Result (π /4DQPSK, Ch78 3rd Harmonic, Z-H)

Spectrum	Spectrum 2							
Ref Level 97,00 Att Count 100/100	dBµV 0 dB SWT 4	ms WBW		lode Sweep	2			
1Pk Maxe2Pk Cin	N			-				
	1			M	1[1]			11.41 dBpV 93490 GHz
90 dBuV-						1	1	Survu uriz
80 dBµV								
70 d8µV	-		_					
60 dBµV	-		_					
50 dBµV			_					
40 dBuy	toutour	marve	M3	annan	Andline	hundership	Manhaman	Labiluter
stipportiquerumbi	defundary	whitehand	withthe	uper by t	Manufall	hitemanna	mallight	her Alder Alle
20 dBµV	-						1.0	
10 dBµV	_							
0 d8µV	_			-	_			
CF 7.44 GHz			691	pts			Span	25.0 MHz

[RSDB] (Worst case : Z-H)

DTS 802.11b 1 Mbps Ch.1 + BT 2-DH5 Ch.78

Radiated Spurious Emissions plot – Average & Peak Result

	w	1	1	M	1(1)			19:61 dBp/
90 dBµV	-	-	-	-		1	2.44	98990 CH
80 dBµV	-		-					
70 dBµV	-		-				_	
0 dBuV	-	-						
60 dBµV	-		-	-	-		_	
O dBuV	milerestration	manne	and the shadown and	- and when the	antraharrow	Methodalow	مردسية وست المد	المتحصيصة
A REPORTED AND AND AND AND AND AND AND AND AND AN	here will have	Hannidalay	aspendius.	all pin the	they provide the	And Hay Alley A	hwyllowin,	www.white
0 dBµV					19.00		_	
0 dBµV	_	_		_			_	
deuv-	_			_				
CF 7.44 GHz			691	pts			Span	20.0 MHz

Note:

Plots of worst case were only reported.

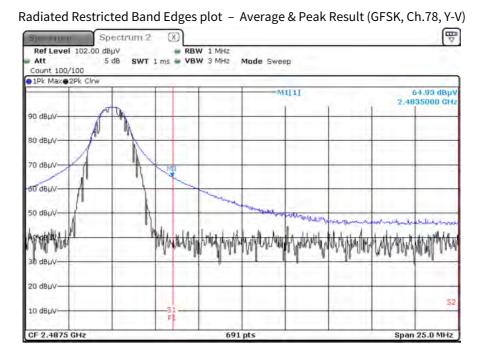
10.6.3 RADIATED RESTRICTED BAND EDGES

Operation Mode	Normal(GFSK)
Operating Frequency	2402 MHz, 2480 MHz
Channel No	CH 0, CH 78

Frequency	Measured Value	A.F+C.L-A.G+ ATT+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	туре
2390.0	47.89	2.45	Н	0	50.34	73.98	23.64	PK
2390.0	47.89	2.45	Н	-24.73	25.61	53.98	28.37	AV
2390.0	48.05	2.45	V	0	50.50	73.98	23.48	PK
2390.0	48.05	2.45	V	-24.73	25.77	53.98	28.21	AV
2483.5	54.35	2.65	Н	0	57.00	73.98	16.98	PK
2483.5	54.35	2.65	Н	-24.73	32.27	53.98	21.71	AV
2483.5	64.93	2.65	V	0	67.58	73.98	6.40	PK
2483.5	64.93	2.65	V	-24.73	42.85	53.98	11.13	AV

Operation Mode Operating Frequency Channel No EDR(π/4DQPSK) 2402 MHz, 2480 MHz CH 0, CH 78

Frequency	Measured Value	A.F+C.L-A.G+ ATT+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2390.0	47.85	2.45	Н	0	50.30	73.98	23.68	PK
2390.0	47.85	2.45	Н	-24.73	25.57	53.98	28.41	AV
2390.0	48.11	2.45	V	0	50.56	73.98	23.42	PK
2390.0	48.11	2.45	V	-24.73	25.83	53.98	28.15	AV
2483.5	62.26	2.65	Н	0	64.91	73.98	9.07	PK
2483.5	62.26	2.65	Н	-24.73	40.18	53.98	13.80	AV
2483.5	64.71	2.65	V	0	67.36	73.98	6.62	PK
2483.5	64.71	2.65	V	-24.73	42.63	53.98	11.35	AV



Operation Mode	EDR(8DPSK)
Operating Frequency	2402 MHz, 2480 MHz
Channel No	CH 0, CH 78

Frequency	Measured Value	A.F+C.L-A.G+ ATT+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	туре
2390.0	47.77	2.45	Н	0	50.22	73.98	23.76	PK
2390.0	47.77	2.45	Н	-24.73	25.49	53.98	28.49	AV
2390.0	47.98	2.45	V	0	50.43	73.98	23.55	РК
2390.0	47.98	2.45	V	-24.73	25.70	53.98	28.28	AV
2483.5	61.95	2.65	Н	0	64.60	73.98	9.38	PK
2483.5	61.95	2.65	Н	-24.73	39.87	53.98	14.11	AV
2483.5	64.88	2.65	V	0	67.53	73.98	6.45	PK
2483.5	64.88	2.65	V	-24.73	42.80	53.98	11.18	AV

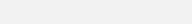
RESULT PLOTS

Note:

Plot of worst case are only reported.

10.7 RECEIVER SPURIOUS EMISSIONS

Frequency Range : Below 1 GHz


Frequency	Measured Value	A.F+C.L	Ant. POL	Total	Limit	Margin				
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]				
	No Critical peaks found									

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

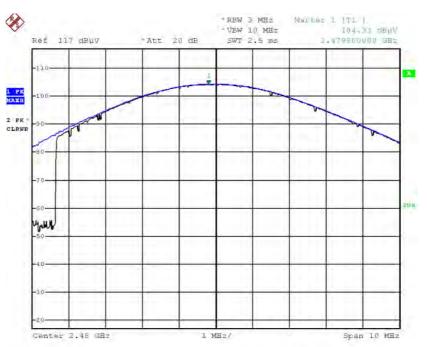
Frequency	Measured Value	A.F+C.L-A.G+D.F	Ant. POL	Total	Limit	Margin			
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]			
	No Critical peaks found								

10.8 RADIATED OUTPUT POWER (E.I.R.P)

Frequency	Measured Value	A.F+C.L-A.G	Pol.	Field strength	EIRP
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBm]
2402	101.65	-5.41	V	96.24	1.04
2441	102.72	-4.97	V	97.75	2.55
2480	104.33	-4.44	V	99.89	4.69

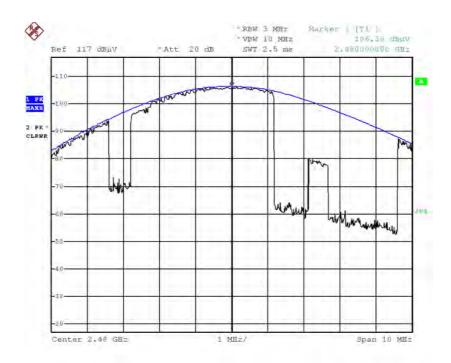
Operation Mode: CH Low, Mid, High (GFSK)

Operation Mode: CH Low, Mid, High (π /4DQPSK)

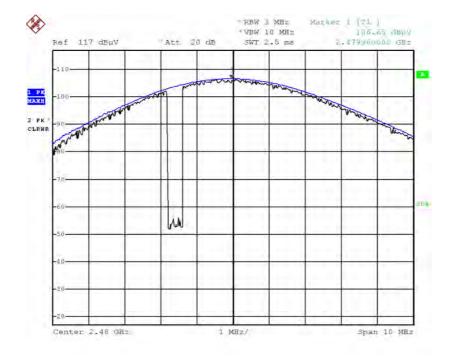

Frequency	Measured Value	A.F+C.L-A.G	Pol.	Field strength	EIRP
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBm]
2402	103.66	-5.41	V	98.25	3.05
2441	104.77	-4.97	V	99.80	4.60
2480	106.38	-4.44	V	101.94	6.74

Operation Mode: CH Low, Mid, High (8DPSK,)

Frequency	Measured Value	A.F+C.L-A.G	Pol.	Field strength	EIRP
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBm]
2402	103.66	-5.41	V	98.25	3.05
2441	104.98	-4.97	V	100.01	4.81
2480	106.65	-4.44	V	102.21	7.01



RESULT PLOTS



Radiated Power plot (GFSK, Ch78)

Radiated Power plot (π /4DQPSK, Ch78)

Radiated Power plot (8DPSK, Ch78)

11. LIST OF TEST EQUIPMENT

Conducted Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
LISN	ENV216	Rohde & Schwarz	102245	08/22/2023	Annual
EMI Test Receiver	ESR	Rohde & Schwarz	101910	05/26/2024	Annual
Temperature Chamber	SU-642	ESPEC	0093008124	02/22/2024	Annual
Signal Analyzer	N9030A	Agilent	MY49432108	03/02/2024	Annual
Power Measurement Set	OSP 120	Rohde & Schwarz	101231	06/09/2024	Annual
Power Meter	N1911A	Agilent	MY45100523	03/06/2024	Annual
Power Sensor	N1921A	Agilent	MY57820067	03/06/2024	Annual
Directional Coupler	87300B	Agilent	3116A03621	11/02/2023	Annual
Power Splitter	11667B	Hewlett Packard	10545	02/06/2024	Annual
DC Power Supply	E3632A	Agilent	KR75303243	04/24/2024	Annual
Attenuator(10 dB)(DC-26.5 GHz)	8493C	HP	07560	06/12/2024	Annual
Attenuator(10 dB)(DC-26.5 GHz)	8493C	HP	08285	06/02/2024	Annual
Attenuator(20 dB)	18N-20dB	Rohde & Schwarz	8	03/08/2024	Annual
Software	EMC32	Rohde & Schwarz	N/A	N/A	N/A
FCC WLAN&BT&BLE					
Conducted Test Software	N/A	HCT CO., LTD.	N/A	N/A	N/A
v3.0					
Bluetooth Tester	CBT	Rohde & Schwarz	100808	02/16/2024	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the

calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
Controller(Antenna mast)	CO3000	Innco system	CO3000-4p	N/A	N/A
Antenna Position Tower	MA4640/800-XP-EP	Innco system	N/A	N/A	N/A
EM1000 / Controller	EM1000	Audix	060520	N/A	N/A
Turn Table	N/A	Audix	N/A	N/A	N/A
Amp & Filter Bank Switch Controller	FBSM-01B	T&M system	TM19050002	N/A	N/A
Loop Antenna	1513	Schwarzbeck	1513-333	03/17/2024	Biennial
Hybrid Antenna	VULB 9168	Schwarzbeck	9168-0895	08/16/2024	Biennial
Horn Antenna	BBHA 9120D	Schwarzbeck	9120D-1300	01/18/2024	Biennial
Horn Antenna	BBHA 9120D	Schwarzbeck	9120D-2296	05/18/2024	Biennial
Horn Antenna(15 GHz ~ 40 GHz)	BBHA9170	Schwarzbeck	BBHA9170342	09/29/2024	Biennial
Spectrum Analyzer	FSV(10 Hz ~ 40 GHz)	Rohde & Schwarz	101055	05/12/2024	Annual
Band Reject Filter	WRCJV2400/2483.5- 2370/2520-60/12SS	Wainwright Instruments	2	01/05/2024	Annual
Band Reject Filter	WRCJV12-4900-5100- 5900-6100-50SS	Wainwright Instruments	5	06/12/2024	Annual
Band Reject Filter	WRCJV12-4900-5100- 5900-6100-50SS	Wainwright Instruments	6	06/12/2024	Annual
High Pass Filter(7 GHz ~ 18 GHz)	WHKX10-7150-8000- 18000-50SS	Wainwright Instruments	1	03/02/2024	Annual
Power Amplifier	CBL18265035	CERNEX	22966	12/01/2023	Annual
Power Amplifier	CBL26405040	CERNEX	25956	03/02/2024	Annual
Bluetooth Tester	TC-3000C	TESCOM	3000C000175	03/28/2024	Annual
RF Switching System	FMSR-05B (HPF(3~18GHz) + LNA1(1~18GHz))	T&M system	S1L1	01/17/2024	Annual
RF Switching System	FMSR -05B (ATT(10dB) + LNA1(1~18GHz))	T&M system	S1L2	01/17/2024	Annual
RF Switching System	FMSR -05B (ATT(3dB) + LNA1(1~18GHz))	T&M system	S1L3	01/17/2024	Annual
RF Switching System	FMSR -05B (LNA1(1~18GHz))	T&M system	S1L4	01/17/2024	Annual
RF Switching System	FMSR -05B (HPF(7~18GHz) + LNA2(6~18GHz))	T&M system	S1L5	01/17/2024	Annual
RF Switching System	FMSR -05B (Thru(30MHz ~ 18GHz))	T&M system	S1L6	01/17/2024	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

12. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description	
1	HCT-RF-2307-FI003-P	