
TRAFFIC

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 18.8%

5.8.3. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

5.8.4. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE CAC CYCLE TIME

A sweep was started on the spectrum analyzer set to the DFS test channel when a software command was issued by the operator to the EUT to change to the DFS test channel. After the command to change channels was issued a CAC period commenced on the DFS test channel for at least 60 seconds. The time from the beginning of the sweep to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel. A radar signal was triggered on the DFS test channel within 0 to 6 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer.

A sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel. A radar signal was triggered on the DFS test channel within 54 to 60 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer.

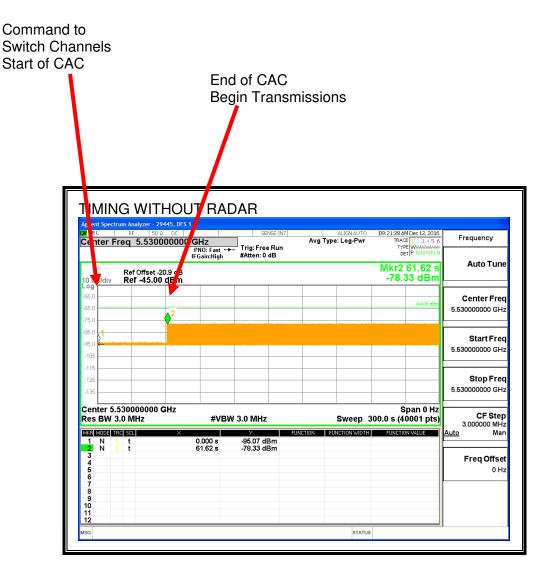
QUANTITATIVE RESULTS

No Radar Triggered

Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	61.6	61.62

Radar Near Beginning of CAC

Hadai Noai Bogiiiiiig of OAO		
Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	3.233	3.23

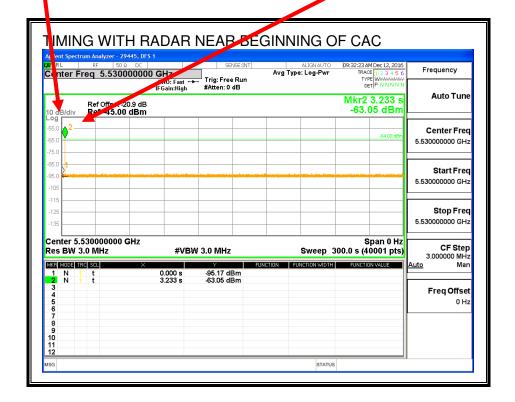

Radar Near End of CAC

Beginning of CAC	Timing of Radar Burst	Radar Relative to Start of CAC
(sec)	(sec)	(sec)
0	58.52	58.52

QUALITATIVE RESULTS

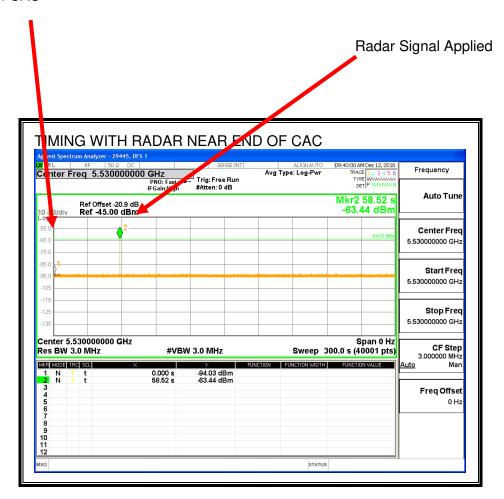
Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING WITHOUT RADAR DURING CAC



Transmissions begin on channel after completion of the CAC period.

TIMING WITH RADAR NEAR BEGINNING OF CAC


Command to Switch Channels Start of CAC

Radar Signal Applied

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

5.8.5. ZERO WAIT CHANNEL AVAILABILITY CHECK TIME (NON-DFS CHANNEL TO DFS CHANNEL)

PROCEDURE TO DETERMINE CAC CYCLE TIME

A link was established and traffic with a channel loading of less than 16% was started on a Non-DFS channel. When the traffic loading is greater than 16% the Zero-Wait CAC function will be abandoned per manufacturer design and declaration.

A sweep was started on the spectrum analyzer set to the DFS test channel when a software command was issued by the operator to the EUT to change from the Non-DFS channel to the DFS test channel. After the command to change channels was issued a CAC period commenced on the test channel for at least 60 seconds. The time from the beginning of the sweep to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel and commence a CAC period. A radar signal was triggered on the DFS test channel within 0 to 6 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file indicating that the radar was detected on the DFS test channel and that the DFS test channel was temporarily removed from service for a period of 31-minutes.

After the EUT was reset a sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel and commence a CAC period. A radar signal was triggered on the DFS test channel within 54 to 60 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file was created indicating that the radar was detected on the DFS test channel and that the DFS test channel was temporarily removed from service for a period of 31-minutes.

QUANTITATIVE RESULTS BASED UPON SPECTRUM ANALYZER PLOTS

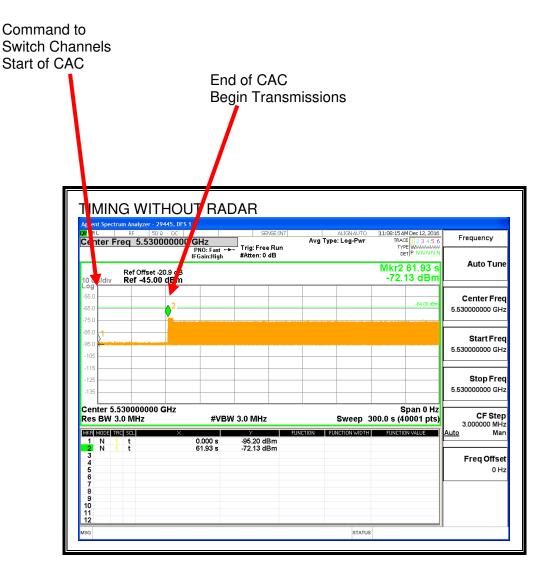
No Radar Triggered

Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	61.93	61.9

Radar Near Beginning of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	3.098	3.098

Radar Near End of CAC


Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	57.60	57.60

If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the CAC period.

Log File of CAC Timing Without Radar

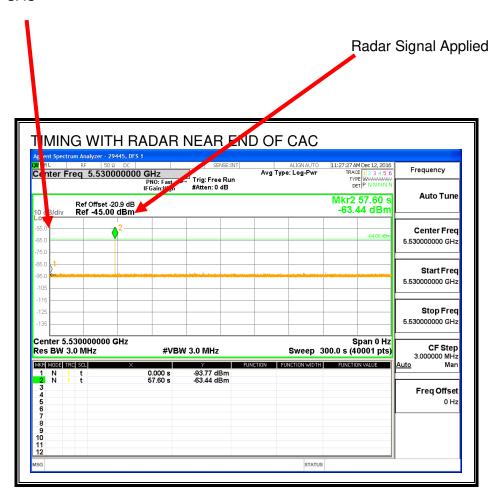
```
# wl chanspec
36/80 \quad (0xe02a)
\# wl dfs ap move 104/80
# CONSOLE: 035700.798 wlc dfs doiovar scan channel: e16a, current
channel e02a
CONSOLE: 035701.082 wlo: downgraded phy to 3+1
CONSOLE: 035701.082 wl0 wlc dfs handle modeswitch: downgrade completed
1390
CONSOLE: 035701.083 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 035701.083 wlo: chanspec e16a, 60 second CAC time
CONSOLE: 035701.083 DFS State In-Service Monitoring(ISM) -> PRE-ISM
Channel Availability Check
@0: state: IDLE, time elapsed: 48150ms, chanspec: 36/80 (0xE02A),
chanspec last cleared: 60/160 (0xEE32), sub type: 0x00
@1: state: PRE-ISM Channel Availability Check(CAC), time elapsed:
48150ms, chanspec: 104/80 (0xE16A), chanspec last cleared: none, sub
type: 0x01
# CONSOLE: 035749.316 wlc dfs get dfs status all: len=252,
all min sz=20, sub sz=16, max num sub=15
CONSOLE: 035749.316 dfs scan->status=2 move status=2
CONSOLE: 035761.233 wl0.. wlc dfs get chan separation ch0:0xe02a
freq0: 5210MHz ch1:0xe16a freq1: 5530MHz sep: 320MHz
CONSOLE: 035761.487 wlo: chanspec e16a, 60 second CAC time
CONSOLE: 035761.487 DFS State PRE-ISM Channel Availability Check ->
In-Service Monitoring(ISM)
CONSOLE: 035761.863 wl0: dfs : state to In-Service Monitoring(ISM)
chanspec 104/80 at 60300ms
CONSOLE: 035761.863 wl0: Skip CAC - channel 0xel6a is already
available. Zero duration.
CONSOLE: 035762.016 wl0: upgraded phy to 4x4
CONSOLE: 035762.016 wl0 wlc dfs handle modeswitch: upgrade completed
1402
# wl chanspec
```

104/80 (0xe16a)

```
# wl chan info
Channel 36 A Band, Passive
Channel 40 A Band, Passive
Channel 44 A Band, Passive
Channel 48 A Band, Passive
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100
              A Band, RADAR Sensitive
                A Band, RADAR Sensitive
Channel 104
                A Band, RADAR Sensitive
Channel 108
Channel 112
                A Band, RADAR Sensitive
                A Band, RADAR Sensitive, Passive
Channel 116
Channel 120
                A Band, RADAR Sensitive, Passive
Channel 124
                A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 128
Channel 132
                A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 136
Channel 140
                A Band, RADAR Sensitive, Passive
Channel 144
                A Band, RADAR Sensitive, Passive
Channel 149
                A Band
Channel 153
                A Band
Channel 157
                A Band
Channel 161
               A Band
Channel 165
                A Band
```

TIMING WITH RADAR NEAR BEGINNING OF CAC

Command to Switch Channels Start of CAC Radar Signal Applied IMING WITH RADAR NEAR BEGINNING OF CAC nter Freq 5.530000000 GHz Frequency Avg Type: Log-Pwr **Auto Tune** Mkr2 3.098 s -63.23 dBm Ref Offset 20.9 dB Ref .5.00 dBm Center Fred 5.530000000 GHz Start Fred 5.530000000 GH: Stop Fred 5.530000000 GHz Center 5.530000000 GHz Span 0 Hz CF Step 3.000000 MHz Res BW 3.0 MHz **#VBW 3.0 MHz** Sweep 300.0 s (40001 pts) Freq Offset


Log File of Radar at the Beginning of CAC

```
# wl chanspec
36/80 \quad (0xe02a)
\# wl dfs ap move 104/80
# CONSOLE: 036372.651 wlc dfs doiovar scan channel: e16a, current
channel e02a
CONSOLE: 036372.651 wlo wlc dfs scan 1355 chspec=e16a
CONSOLE: 036372.651 wlo: mode switch down scheduled = 1 opmode: 0x22,
bw: 0x02
CONSOLE: 036372.784 wl0: downgraded phy to 3+1
CONSOLE: 036372.784 wl0 wlc dfs handle modeswitch: downgrade completed
1390
CONSOLE: 036372.785 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 036372.785 wl0: chanspec e16a, 60 second CAC time
CONSOLE: 036372.785 DFS State In-Service Monitoring(ISM) -> PRE-ISM
Channel Availability Check
CONSOLE: 036375.035 wl0: DFS: radar info=0x181f7, radar info 2=0x00000
CONSOLE: 036375.035 WLO: DFS: UNCLASSIFIED ######### RADAR SC
DETECTED ON CHANNEL 104/80 ######### min pw=31, subband result=6, AT
2100MS
CONSOLE: 036375.035 wl0: dfs : state to IDLE chanspec 36/80 at 2100ms
CONSOLE: 036375.035 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 036375.035 wlo: chanspec e16a, 60 second CAC time
CONSOLE: 036375.036 wl0: upgraded phy to 4x4
CONSOLE: 036375.036 wl0 wlc dfs handle modeswitch: upgrade completed
1402
CONSOLE: 036375.036 wl0: channel 104 put out of service chspecd068
CONSOLE: 036375.036 wl0: channel 108 put out of service chspecd06c
```

```
# wl chanspec
36/80 (0xe02a)
# wl chan info
Channel 36 A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100
              A Band, RADAR Sensitive, Passive
Channel 104
               A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 108
               A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 112
              A Band, RADAR Sensitive, Passive
Channel 116
               A Band, RADAR Sensitive, Passive
Channel 120
              A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive
Channel 124
Channel 128
               A Band, RADAR Sensitive, Passive
Channel 132
               A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive
Channel 136
Channel 140
               A Band, RADAR Sensitive, Passive
Channel 144
               A Band, RADAR Sensitive, Passive
Channel 149
               A Band
Channel 153
               A Band
Channel 157
               A Band
Channel 161
               A Band
Channel 165
              A Band
```

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

Log File of Radar at the End of CAC

```
# wl chanspec
36/80 \quad (0xe02a)
\# wl dfs ap move 104/80
# CONSOLE: 036756.081 wlc dfs doiovar scan channel: e16a, current
channel e02a
CONSOLE: 036756.082 wl0 wlc dfs scan 1355 chspec=e16a
CONSOLE: 036756.082 wl0: mode switch down scheduled = 1 opmode: 0x22,
bw: 0x02
CONSOLE: 036756.253 wl0: downgraded phy to 3+1
CONSOLE: 036756.253 wl0 wlc dfs handle modeswitch: downgrade completed
1390
CONSOLE: 036756.254 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 036756.254 wlo: chanspec e16a, 60 second CAC time
CONSOLE: 036756.254 DFS State IDLE -> PRE-ISM Channel Availability
Check
# CONSOLE: 036812.954 wl0: DFS: radar info=0x181e7,
radar info 2=0\times00000
CONSOLE: 036812.954 WLO: DFS: UNCLASSIFIED ######### RADAR SC
DETECTED ON CHANNEL 104/80 ######### min pw=30, subband result=6, AT
56550MS
CONSOLE: 036812.954 wl0: dfs : state to IDLE chanspec 36/80 at 56550ms
CONSOLE: 036812.954 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 036812.955 wlo: upgraded phy to 4x4
CONSOLE: 036812.955 wl0 wlc dfs handle modeswitch: upgrade completed
1402
CONSOLE: 036812.955 wl0: channel 104 put out of service chspecd068
CONSOLE: 036812.955 wl0: channel 108 put out of service chspecd06c
# wl chanspec
36/80 (0xe02a)
# wl chan info
```

```
Channel 36 A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100
              A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive, Temporarily Out of
Channel 104
Service for 31 minutes
Channel 108
           A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 112
               A Band, RADAR Sensitive, Passive
Channel 116
               A Band, RADAR Sensitive, Passive
              A Band, RADAR Sensitive, Passive
Channel 120
Channel 124
              A Band, RADAR Sensitive, Passive
Channel 128
               A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive
Channel 132
              A Band, RADAR Sensitive, Passive
Channel 136
               A Band, RADAR Sensitive, Passive
Channel 140
Channel 144
               A Band, RADAR Sensitive, Passive
Channel 149
              A Band
Channel 153
               A Band
Channel 157
              A Band
Channel 161
              A Band
Channel 165
             A Band
```

5.8.6. ZERO WAIT CHANNEL AVAILABILITY CHECK TIME (DFS CHANNEL TO DFS CHANNEL / RADAR APPLIED TO THE CHANNEL PERFORMING CAC)

PROCEDURE TO DETERMINE CAC CYCLE TIME

A link was established and traffic with a channel loading of less than 16% was started on an operating DFS channel. When the traffic loading is greater than 16% the Zero-Wait CAC function will be abandoned per manufacturer design and declaration.

A sweep was started on the spectrum analyzer set to the DFS test channel when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. After the command to change channels was issued a CAC period commenced on the DFS test channel for at least 60 seconds. The time from the beginning of the sweep to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer set to the DFS test channel and a CAC period was commenced when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. A radar signal was triggered on the DFS test channel within 0 to 6 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file was generated indicating that the radar was detected on the DFS test channel and that the DFS test channel was temporarily removed from service for a period of 31-minutes.

After the EUT was reset a sweep was started on the spectrum analyzer set to the DFS test channel and a CAC period was commenced when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. A radar signal was triggered on the DFS test channel within 54 to 60 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file was generated indicating that the radar was detected on the DFS test channel and that the DFS test channel was temporarily removed from service for a period of 31-minutes.

QUANTITATIVE RESULTS BASED UPON SPECTRUM ANALYZER PLOTS

No Radar Triggered

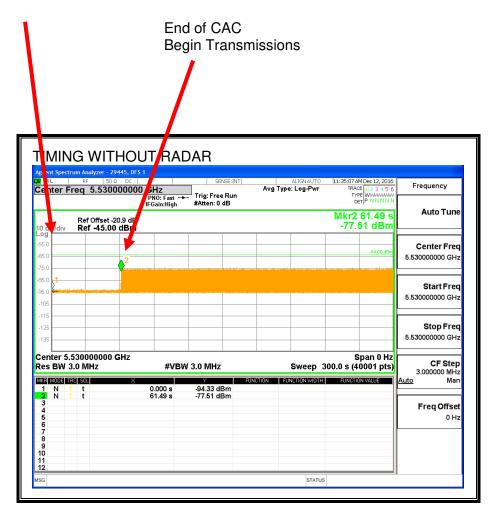
Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	61.49	61.5

Radar Near Beginning of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	3.053	3.053

Radar Near End of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	57.38	57.38


If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

TIMING WITHOUT RADAR DURING CAC

Command to Switch Channels Start of CAC

Transmissions begin on channel after completion of the CAC period.

Log File of CAC Timing Without Radar

wl chanspec $60/80 \quad (0xe23a)$ # wl dfs ap move 104/80 # CONSOLE: 037306.897 wlc dfs doiovar scan channel: e16a, current channel e23a CONSOLE: 037306.897 wl0 wlc dfs scan 1355 chspec=e16a CONSOLE: 037306.897 wlo: mode switch down scheduled = 1 opmode: 0x22, bw: 0x02 CONSOLE: 037307.029 wl0: downgraded phy to 3+1 CONSOLE: 037307.029 wl0 wlc dfs handle modeswitch: downgrade completed 1390 CONSOLE: 037307.030 wl0: since phymode is 3x1 using scan core with chanspec e16a CONSOLE: 037307.030 wl0: chanspec e16a, 60 second CAC time CONSOLE: 037307.030 DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check CONSOLE: 037367.061 wlo.. wlc dfs scan complete sc chan=e16a (106) reason 0 CONSOLE: 037367.061 DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM) CONSOLE: 037367.062 wl0: since phymode is 3x1 using scan core with chanspec e16a CONSOLE: 037367.062 wlo: chanspec e16a, 60 second CAC time CONSOLE: 037367.063 Started DFS CSA... CONSOLE: 037367.211 wlo: upgraded phy to 4x4 CONSOLE: 037367.211 wl0 wlc dfs handle modeswitch: upgrade completed CONSOLE: 037367.211 wl0 wlc dfs handle modeswitch: new state 4 in idle state CONSOLE: 037367.211 wlo: mode switch up scheduled = 1 opmode: 0x32,

bw: 0x02

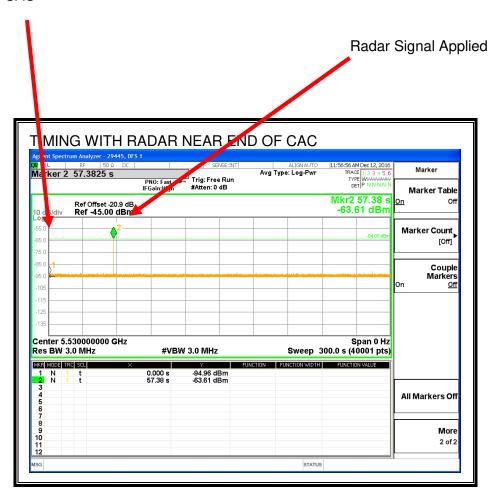
```
CONSOLE: 037367.702 wl0: dfs : state to In-Service Monitoring(ISM)
chanspec 104/80 at 300ms
CONSOLE: 037367.703 wl0: Skip CAC - channel 0xel6a is already
available. Zero duration.
# wl chan info
Channel 3\overline{6} A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100
               A Band, RADAR Sensitive
Channel 104
               A Band, RADAR Sensitive
Channel 108
                A Band, RADAR Sensitive
                A Band, RADAR Sensitive
Channel 112
Channel 116
               A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 120
Channel 124
                A Band, RADAR Sensitive, Passive
Channel 128
               A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 132
Channel 136
                A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 140
               A Band, RADAR Sensitive, Passive
Channel 144
Channel 149
               A Band
Channel 153
               A Band
Channel 157
                A Band
Channel 161
               A Band
Channel 165
             A Band
```

Radar Signal Applied

TIMING WITH RADAR NEAR BEGINNING OF CAC

Command to Switch Channels Start of CAC

> IMING WITH RADAR NEAR BEGINNING OF CAC ent Spectrum Analyzer - 29445, DFS 1 Frequency nter Freq 5.530000000 GHz **Auto Tune** Mkr2 3.053 s -63.26 dBm Ref Offset 20.9 dB Ref 3.00 dBm Center Freq 5.530000000 GHz Start Freq 5.530000000 GH: Stop Fred 5.530000000 GHz Center 5.530000000 GHz Res BW 3.0 MHz Span 0 Hz Sweep 300.0 s (40001 pts) CF Step 3.000000 MHz **#VBW 3.0 MHz** Mar 0.000 s 3.053 s N Freq Offset STATUS


Log File of Radar at the Beginning of CAC

```
# wl chanspec
60/80 \quad (0xe23a)
\# wl dfs ap move 104/80
# CONSOLE: 038152.248 wlc dfs doiovar scan channel: e16a, current
channel e23a
CONSOLE: 038152.249 wlo wlc dfs scan 1355 chspec=e16a
CONSOLE: 038152.249 wlo: mode switch down scheduled = 1 opmode: 0x22,
bw: 0x02
CONSOLE: 038152.600 wlo: downgraded phy to 3+1
CONSOLE: 038152.600 wlo wlc dfs handle modeswitch: downgrade completed
1390
CONSOLE: 038152.601 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 038152.601 wlo: chanspec e16a, 60 second CAC time
CONSOLE: 038152.601 DFS State In-Service Monitoring(ISM) -> PRE-ISM
Channel Availability Check
CONSOLE: 038154.805 wl0: DFS: radar info=0x181e7, radar info 2=0x00000
CONSOLE: 038154.805 WLO: DFS: UNCLASSIFIED ######### RADAR SC
DETECTED ON CHANNEL 104/80 ######### min pw=30, subband result=6, AT
2100MS
CONSOLE: 038154.806 wl0: dfs : state to In-Service Monitoring(ISM)
chanspec 60/80 at 2100ms
CONSOLE: 038154.806 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 038154.806 wlo: channel 104 put out of service chspecd068
CONSOLE: 038154.806 wl0: channel 108 put out of service chspecd06c
CONSOLE: 038154.956 wlo: upgraded phy to 4x4
CONSOLE: 038154.957 wl0 wlc dfs handle modeswitch: upgrade completed
1402
```

```
# wl chanspec
60/80 \quad (0xe23a)
# wl chan info
Channel 3\overline{6} A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive
Channel 56 A Band, RADAR Sensitive
Channel 60 A Band, RADAR Sensitive
Channel 64 A Band, RADAR Sensitive
Channel 100
              A Band, RADAR Sensitive, Passive
Channel 104
               A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 108
                A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 112
               A Band, RADAR Sensitive, Passive
Channel 116
                A Band, RADAR Sensitive, Passive
Channel 120
               A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 124
Channel 128
                A Band, RADAR Sensitive, Passive
Channel 132
               A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 136
Channel 140
                A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive
Channel 144
Channel 149
               A Band
Channel 153
               A Band
Channel 157
               A Band
Channel 161
               A Band
Channel 165
              A Band
```

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

Log File of Radar at the End of CAC

```
# wl chanspec
60/80 \quad (0xe23a)
\# wl dfs ap move 104/80
# CONSOLE: 038610.967 wlc dfs doiovar scan channel: e16a, current
channel e23a
CONSOLE: 038610.967 wlo wlc dfs scan 1355 chspec=e16a
CONSOLE: 038610.967 wlo: mode switch down scheduled = 1 opmode: 0x22,
bw: 0x02
CONSOLE: 038611.302 wl0: downgraded phy to 3+1
CONSOLE: 038611.302 wl0 wlc dfs handle modeswitch: downgrade completed
1390
CONSOLE: 038611.303 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 038611.303 wlo: chanspec e16a, 60 second CAC time
CONSOLE: 038611.303 DFS State In-Service Monitoring(ISM) -> PRE-ISM
Channel Availability Check
CONSOLE: 038667.808 wl0: DFS: radar info=0x181e7, radar info 2=0x00000
CONSOLE: 038667.808 WLO: DFS: UNCLASSIFIED ######### RADAR SC
DETECTED ON CHANNEL 104/80 ######### min pw=30, subband result=6, AT
56400MS
CONSOLE: 038667.809 wl0: dfs : state to In-Service Monitoring(ISM)
chanspec 60/80 at 56400ms
CONSOLE: 038667.809 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 038667.809 wlo: channel 104 put out of service chspecd068
CONSOLE: 038667.809 wl0: channel 108 put out of service chspecd06c
CONSOLE: 038667.958 wlo: upgraded phy to 4x4
CONSOLE: 038667.958 wl0 wlc dfs handle modeswitch: upgrade completed
```

1402

```
# wl chan info
Channel 36 A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive
Channel 56 A Band, RADAR Sensitive
Channel 60 A Band, RADAR Sensitive
Channel 64 A Band, RADAR Sensitive
Channel 100
                A Band, RADAR Sensitive, Passive
Channel 104
                A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 108
                A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 112
                A Band, RADAR Sensitive, Passive
Channel 116
                A Band, RADAR Sensitive, Passive
Channel 120
               A Band, RADAR Sensitive, Passive
Channel 124
                A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 128
Channel 132
               A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 136
Channel 140
                A Band, RADAR Sensitive, Passive
Channel 144
               A Band, RADAR Sensitive, Passive
Channel 149
                A Band
Channel 153
                A Band
Channel 157
               A Band
Channel 161
               A Band
Channel 165
               A Band
```

5.8.7. ZERO WAIT CHANNEL AVAILABILITY CHECK TIME (DFS CHANNEL TO DFS CHANNEL / RADAR APPLIED TO THE OPERATING DFS CHANNEL)

PROCEDURE TO DETERMINE CAC CYCLE TIME

A link was established and traffic with a channel loading of less than 16% was started on an operating DFS channel. When the traffic loading is greater than 16% the Zero-Wait CAC function will be abandoned per manufacturer design and declaration.

A sweep was started on the spectrum analyzer set to the DFS test channel when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. After the command to change channels was issued a CAC period commenced on the DFS test channel for at least 60 seconds. The time from the beginning of the sweep to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer set to the DFS test channel and a CAC period was commenced when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. A radar signal was triggered on the operating DFS channel within 0 to 6 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file was generated indicating that the radar was detected on the operating DFS channel and that the operating DFS channel was temporarily removed from service for a period of 31-minutes. In addition the CAC being performed on the DFS test channel was abandoned and the EUT moved service to a Non-DFS channel.

After the EUT was reset a sweep was started on the spectrum analyzer set to the DFS test channel and a CAC period was commenced when a software command was issued by the operator to the EUT to change from the operating DFS channel to the DFS test channel. A radar signal was triggered on the operating DFS channel within 54 to 60 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer. A log file was generated indicating that the radar was detected on the operating DFS channel and that the operating DFS channel was temporarily removed from service for a period of 31-minutes. In addition the CAC being performed on the DFS test channel was abandoned and the EUT moved service to a Non-DFS channel.

QUANTITATIVE RESULTS BASED UPON SPECTRUM ANALYZER PLOTS

No Radar Triggered

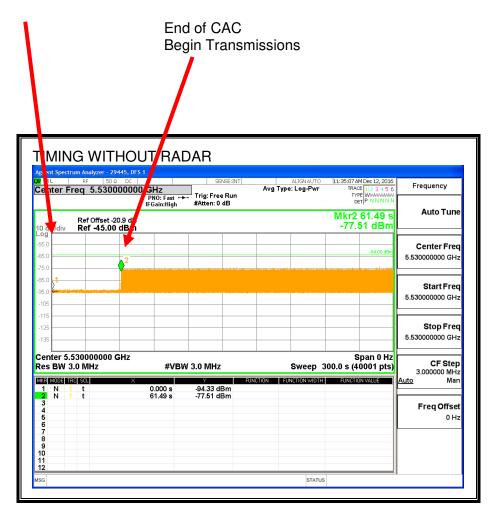
Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	61.5	61.5

Radar Near Beginning of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	3.000	3.000

Radar Near End of CAC

Beginning	Timing of	Radar Relative
of CAC	Radar Burst	to Start of CAC
(sec)	(sec)	(sec)
0	57.00	57.00


If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

QUALITATIVE RESULTS

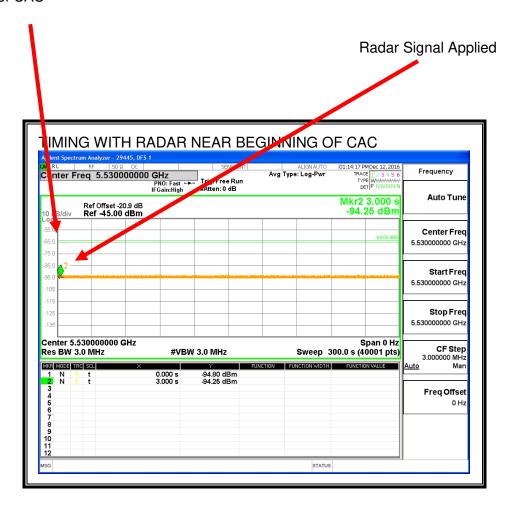
Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

TIMING WITHOUT RADAR DURING CAC

Command to Switch Channels Start of CAC

Transmissions begin on channel after completion of the CAC period.

Log File of CAC Timing Without Radar

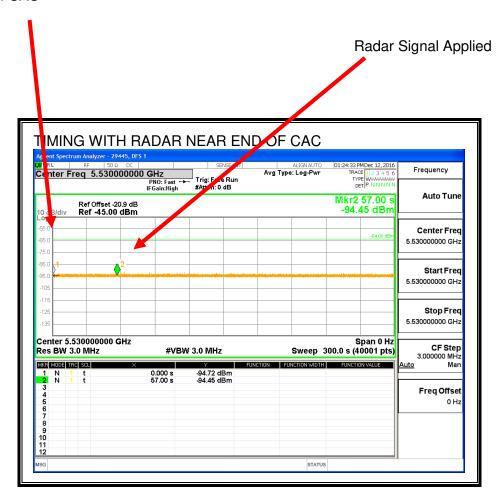

wl chanspec $60/80 \quad (0xe23a)$ # wl dfs ap move 104/80 # CONSOLE: 037306.897 wlc dfs doiovar scan channel: e16a, current channel e23a CONSOLE: 037306.897 wl0 wlc dfs scan 1355 chspec=e16a CONSOLE: 037306.897 wlo: mode switch down scheduled = 1 opmode: 0x22, bw: 0x02 CONSOLE: 037307.029 wl0: downgraded phy to 3+1 CONSOLE: 037307.029 wl0 wlc dfs handle modeswitch: downgrade completed 1390 CONSOLE: 037307.030 wl0: since phymode is 3x1 using scan core with chanspec e16a CONSOLE: 037307.030 wl0: chanspec e16a, 60 second CAC time CONSOLE: 037307.030 DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check CONSOLE: 037367.061 wlo.. wlc dfs scan complete sc chan=e16a (106) reason 0 CONSOLE: 037367.061 DFS State PRE-ISM Channel Availability Check -> In-Service Monitoring(ISM) CONSOLE: 037367.062 wl0: since phymode is 3x1 using scan core with chanspec e16a CONSOLE: 037367.062 wlo: chanspec e16a, 60 second CAC time CONSOLE: 037367.063 Started DFS CSA... CONSOLE: 037367.211 wlo: upgraded phy to 4x4 CONSOLE: 037367.211 wl0 wlc dfs handle modeswitch: upgrade completed CONSOLE: 037367.211 wl0 wlc dfs handle modeswitch: new state 4 in idle state CONSOLE: 037367.211 wlo: mode switch up scheduled = 1 opmode: 0x32,

bw: 0x02

```
CONSOLE: 037367.702 wl0: dfs : state to In-Service Monitoring(ISM)
chanspec 104/80 at 300ms
CONSOLE: 037367.703 wl0: Skip CAC - channel 0xel6a is already
available. Zero duration.
# wl chan info
Channel 3\overline{6} A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100
               A Band, RADAR Sensitive
Channel 104
               A Band, RADAR Sensitive
Channel 108
                A Band, RADAR Sensitive
                A Band, RADAR Sensitive
Channel 112
Channel 116
               A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 120
Channel 124
                A Band, RADAR Sensitive, Passive
Channel 128
               A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 132
Channel 136
                A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 140
               A Band, RADAR Sensitive, Passive
Channel 144
Channel 149
               A Band
Channel 153
               A Band
Channel 157
                A Band
Channel 161
               A Band
Channel 165
             A Band
```

TIMING WITH RADAR NEAR BEGINNING OF CAC

Command to Switch Channels Start of CAC


Log File of Radar at the Beginning of CAC

```
# wl chanspec
60/80 \quad (0xe23a)
\# wl dfs ap move 104/80
# CONSOLE: 043257.336 wlc dfs doiovar scan channel: e16a, current
channel e23a
CONSOLE: 043257.336 wl0 wlc dfs scan 1355 chspec=e16a
CONSOLE: 043257.336 wlo: mode switch down scheduled = 1 opmode: 0x22,
bw: 0x02
CONSOLE: 043257.591 wl0: downgraded phy to 3+1
CONSOLE: 043257.591 wl0 wlc dfs handle modeswitch: downgrade completed
1390
CONSOLE: 043257.592 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 043257.592 wlo: chanspec e16a, 60 second CAC time
CONSOLE: 043257.592 DFS State In-Service Monitoring(ISM) -> PRE-ISM
Channel Availability Check
CONSOLE: 043257.592 wl0.. wlc dfs scan start txdur start 2244644us
CONSOLE: 043259.811 wl0: DFS: radar info=0x181d7, radar info 2=0x00000
CONSOLE: 043259.811 WLO: DFS: UNCLASSIFIED ######### RADAR DETECTED
ON CHANNEL 60/80 ######### min pw=29, subband result=6, AT 2100MS
CONSOLE: 043259.811 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 043259.811 wlo: chanspec e16a, 60 second CAC time
CONSOLE: 043259.812 wlo: upgraded phy to 4x4
CONSOLE: 043259.812 wl0 wlc dfs handle modeswitch: upgrade completed
1402
CONSOLE: 043259.812 wl0 wlc dfs handle modeswitch: new state 4 in idle
state
CONSOLE: 043259.812 wlo: channel 56 put out of service chspecd038
CONSOLE: 043259.812 wl0: channel 60 put out of service chspecd03c
```

```
CONSOLE: 043259.812 wlo: DFS WLC E RADAR DETECTED 181d7/0000 on ch
0xe23a going to ch 0xe29b
CONSOLE: 043259.818 wlo: dfs : state to IDLE chanspec 157/80 at 0ms
# wl chanspec
157/80 (0xe29b)
# wl chan info
Channel 36 A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 60 A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100 A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 104
Channel 108
               A Band, RADAR Sensitive, Passive
Channel 112
               A Band, RADAR Sensitive, Passive
Channel 116
                A Band, RADAR Sensitive, Passive
Channel 120
               A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive
Channel 124
              A Band, RADAR Sensitive, Passive
Channel 128
               A Band, RADAR Sensitive, Passive
Channel 132
Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive
Channel 144
               A Band, RADAR Sensitive, Passive
Channel 149
               A Band
Channel 153
               A Band
Channel 157
               A Band
Channel 161
               A Band
Channel 165
                A Band
```

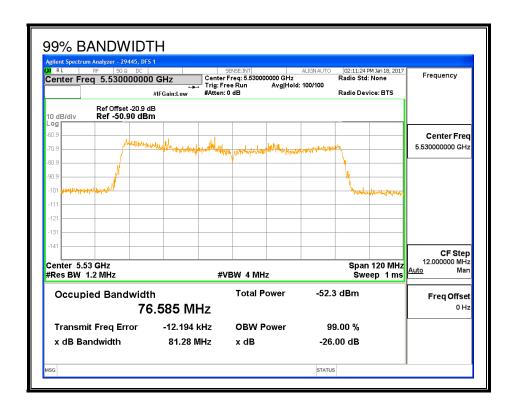
TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

No EUT transmissions were observed after the radar signal.

Log File of Radar at the End of CAC

```
# wl chanspec
60/80 (0xe23a)
\# wl dfs ap move 104/80
# CONSOLE: 043647.923 wlc dfs doiovar scan channel: e16a, current
channel e23a
CONSOLE: 043647.997 wlo: downgraded phy to 3+1
CONSOLE: 043647.997 wl0 wlc dfs handle modeswitch: downgrade completed
1390
CONSOLE: 043647.998 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 043647.998 wlo: chanspec e16a, 60 second CAC time
CONSOLE: 043647.998 DFS State In-Service Monitoring(ISM) -> PRE-ISM
Channel Availability Check
CONSOLE: 043704.696 wl0: DFS: radar info=0x181c7, radar info 2=0x00000
CONSOLE: 043704.696 WLO: DFS: UNCLASSIFIED ######### RADAR DETECTED
ON CHANNEL 60/80 ######### min pw=28, subband result=6, AT 56550MS
CONSOLE: 043704.696 DFS State PRE-ISM Channel Availability Check ->
TDLE
CONSOLE: 043704.696 wl0: dfs : state to IDLE chanspec 60/80 at 56550ms
CONSOLE: 043704.696 wl0: since phymode is 3x1 using scan core with
chanspec e16a
CONSOLE: 043704.696 wl0: chanspec e16a, 60 second CAC time
CONSOLE: 043704.697 wlo: upgraded phy to 4x4
CONSOLE: 043704.697 wl0 wlc dfs handle modeswitch: upgrade completed
1402
CONSOLE: 043704.697 wl0: channel 56 put out of service chspecd038
CONSOLE: 043704.697 wl0: channel 60 put out of service chspecd03c
CONSOLE: 043704.703 wl0: dfs : state to IDLE chanspec 44/80 at 0ms
# wl chanspec
44/80 (0xe22a)
# wl chan info
```


Channel 165

```
Channel 36 A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 60 A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 31 minutes
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100
                A Band, RADAR Sensitive, Passive
Channel 104
                A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 108
                A Band, RADAR Sensitive, Passive
Channel 112
Channel 116
                A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 120
Channel 124
                A Band, RADAR Sensitive, Passive
Channel 128
                A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 132
Channel 136
                A Band, RADAR Sensitive, Passive
                A Band, RADAR Sensitive, Passive
Channel 140
Channel 144
                A Band, RADAR Sensitive, Passive
Channel 149
               A Band
Channel 153
                A Band
                A Band
Channel 157
Channel 161
               A Band
```

A Band

5.8.8. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5490	5569	79	76.585	103.2	100

DETECTION BANDWIDTH PROBABILITY

DETECTION B	BANDWIDTH F	'ROBABILITY	RESULTS	
Detection Band	dwidth Test Res	sults	29445	DFS 1
FCC Type 0 Wa		ulse Width, 147	28 us PRI, 18 Pu	ulses per Burst
Frequency	Number	Number	Detection	Mark
(MHz)	of Trials	Detected	(%)	
5490	10	10	100	FL
5495	10	10	100	
5500	10	10	100	
5505	10	10	100	
5510	10	10	100	
5515	10	10	100	
5520	10	10	100	
5525	10	10	100	
5530	10	9	90	
5535	10	10	100	
5540	10	10	100	
5545	10	10	100	
5550	10	10	100	
5555	10	10	100	
5560	10	10	100	
5565	10	10	100	
5566	10	10	100	
5567	10	10	100	
5568	10	10	100	
5569	10	10	100	FH

5.8.9. IN-SERVICE MONITORING

RESULTS

Signal Type	Number	Detection	Limit	Pass/Fail	Dete					In-Service
, ,,		401.5	4015		Band			Test	Employee	Monitorin
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	96.67	60	Pass	5490	5569	76.58	DFS 1	29445	Version 3.
FCC Short Pulse Type 2	30	80.00	60	Pass	5490	5569	76.58	DFS 1	29445	Version 3.
FCC Short Pulse Type 3	30	73.33	60	Pass	5490	5569	76.58	DFS 1	29445	Version 3.
FCC Short Pulse Type 4	30	80.00	60	Pass	5490	5569	76.58	DFS 1	29445	Version 3.
Aggregate		82.50	80	Pass						
FCC Long Pulse Type 5	30	90.00	80	Pass	5490	5569	76.58	DFS 1	29445	Version 3.
FCC Hopping Type 6	80	97.50	70	Pass	5490	5569	76.58	DFS 1	29445	Version 3.

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5530	No
1002	1	578	92	Α	5530	Yes
1003	1	598	89	Α	5530	Yes
1004	1	718	74	Α	5530	Yes
1005	1	678	78	Α	5530	Yes
1006	1	818	65	A	5530	Yes
1007	1	778	68	А	5530	Yes
1008	1	838	63	A	5530	Yes
1009	1	698	76	А	5530	Yes
1010	1	518	102	A	5530	Yes
1011	1	658	81	A	5530	Yes
1012	1	798	67	A	5530	Yes
1013	1	898	59	А	5530	Yes
1014	1	618	86	А	5530	Yes
1015	1	738	72	А	5530	Yes
1016	1	1638	33	В	5530	Yes
1017	1	2465	22	В	5530	Yes
1018	1	1226	44	В	5530	Yes
1019	1	2182	25	В	5530	Yes
1020	1	1073	50	В	5530	Yes
1021	1	964	55	В	5530	Yes
1022	1	2532	21	В	5530	Yes
1023	1	2553	21	В	5530	Yes
1024	1	1703	31	В	5530	Yes
1025	1	1291	41	В	5530	Yes
1026	1	2924	19	В	5530	Yes
1027	1	1138	47	В	5530	Yes
1028	1	2900	19	В	5530	Yes
1029	1	2597	21	В	5530	Yes
1030	1	747	71	В	5530	Yes

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
2001	3.8	194	26	5530	Yes
2002	2.8	188	26	5530	Yes
2003	1.1	154	24	5530	Yes
2004	2.2	195	24	5530	Yes
2005	3	208	23	5530	Yes
2006	2.4	172	27	5530	Yes
2007	3.3	189	26	5530	Yes
2008	2.9	157	27	5530	Yes
2009	2.2	222	27	5530	Yes
2010	4.2	156	28	5530	No
2011	3.6	182	25	5530	Yes
2012	3.6	163	26	5530	No
2013	1.4	155	27	5530	No
2014	3.8	178	29	5530	Yes
2015	1.7	217	23	5530	Yes
2016	4.3	206	29	5530	No
2017	4.7	168	24	5530	Yes
2018	1.5	162	23	5530	Yes
2019	3.9	209	29	5530	Yes
2020	3.1	169	29	5530	Yes
2021	1.7	182	28	5530	No
2022	1.1	227	24	5530	Yes
2023	2	164	28	5530	Yes
2024	3.8	213	25	5530	Yes
2025	5	196	28	5530	No
2026	2.9	211	26	5530	Yes
2027	2.3	199	23	5530	Yes
2028	4.5	218	24	5530	Yes
2029	4.2	210	25	5530	Yes

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
3001	9.5	379	18	5530	Yes
3002	6.1	347	17	5530	No
3003	8.4	480	18	5530	Yes
3004	9.3	460	18	5530	Yes
3005	7.6	488	17	5530	No
3006	6.8	395	16	5530	Yes
3007	8.1	436	16	5530	No
3008	7.5	325	17	5530	Yes
3009	6.5	378	16	5530	No
3010	6.1	413	17	5530	Yes
3011	7.3	479	16	5530	Yes
3012	9.2	275	18	5530	Yes
3013	8.7	488	17	5530	Yes
3014	6.8	297	16	5530	No
3015	6.5	271	18	5530	Yes
3016	8.9	477	18	5530	Yes
3017	6.8	464	16	5530	No
3018	7.5	432	16	5530	Yes
3019	9.8	314	16	5530	Yes
3020	6.5	294	16	5530	Yes
3021	9	323	18	5530	Yes
3022	8.2	316	17	5530	Yes
3023	9	357	16	5530	No
3024	6.2	496	16	5530	Yes
3025	9.3	299	18	5530	No
3026	8.9	333	17	5530	Yes
3027	6	400	18	5530	Yes
3028	7.9	447	17	5530	Yes
3029	7.4	408	17	5530	Yes

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
4001	18.3	443	13	5530	Yes
4002	14.5	398	12	5530	Yes
4003	19.1	385	16	5530	Yes
4004	11.5	352	15	5530	No
4005	16.6	485	16	5530	Yes
4006	18.5	348	13	5530	Yes
4007	14.9	494	15	5530	Yes
4008	13.1	370	12	5530	Yes
4009	14.8	277	16	5530	Yes
4010	13.4	417	14	5530	No
4011	15.5	470	14	5530	Yes
4012	14.6	254	12	5530	Yes
4013	13	320	14	5530	No
4014	12.5	368	15	5530	Yes
4015	11.3	329	13	5530	Yes
4016	16.2	389	14	5530	No
4017	15.5	363	12	5530	Yes
4018	16.5	318	16	5530	No
4019	16.2	305	14	5530	Yes
4020	17.7	273	13	5530	Yes
4021	13.7	406	12	5530	Yes
4022	15.6	269	12	5530	Yes
4023	16.9	415	13	5530	No
4024	19.3	290	16	5530	Yes
4025	11.9	449	15	5530	Yes
4026	19.6	337	13	5530	Yes
4027	12.7	273	12	5530	Yes
4028	11.7	425	13	5530	Yes
4029	14.9	374	15	5530	Yes

TYPE 5 DETECTION PROBABILITY

Trial	Frequency	Successful Detection	
	(MHz)	(Yes/No)	
1	5530	Yes	
2	5530	Yes	
3	5530	Yes	
4	5530	Yes	
5	5530	Yes	
6	5530	Yes	
7	5530	Yes	
8	5530	Yes	
9	5530	Yes	
10	5530	Yes	
11	5498	Yes	
12	5498	Yes	
13	5500	Yes	
14	5498	No	
15	5496	Yes	
16	5498	Yes	
17	5500	Yes	
18	5499	Yes	
19	5498	Yes	
20	5500	Yes	
21	5563	Yes	
22	5562	Yes	
23	5562	Yes	
24	5560	Yes	
25	5562	Yes	
26	5562	Yes	
27	5564	No	
28	5561	No	
29	5564	Yes	
30	5563	Yes	

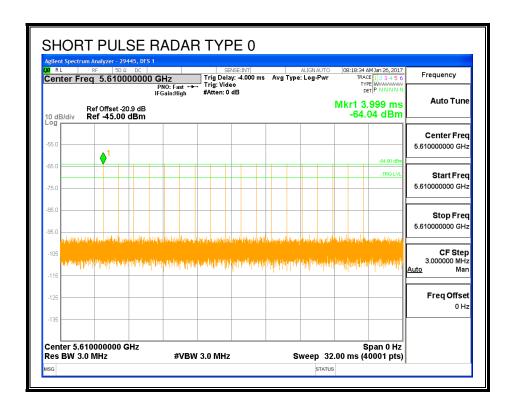
Note: The Type 5 randomized parameters tested are shown in a separate document.

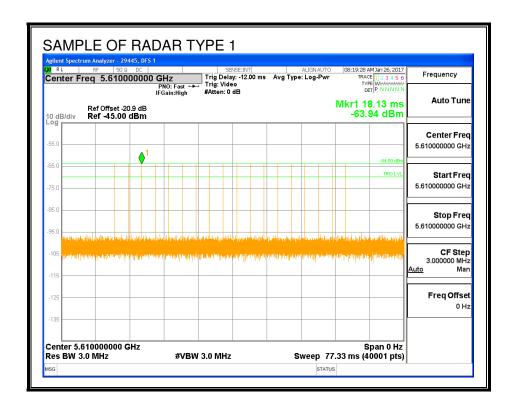
TYPE 6 DETECTION PROBABILITY

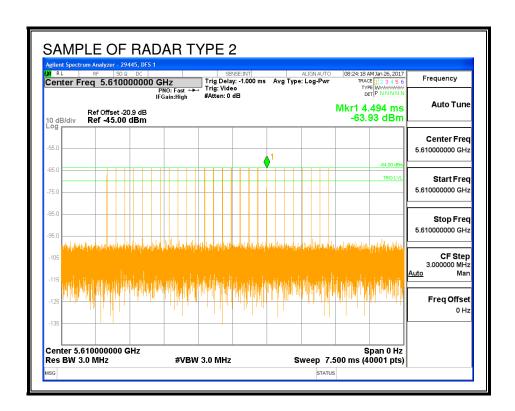
	for FCC Hopping Rada		1 Puret was Use	
	e Width, 333 us PRI, ! ust 2005 Hopping Se		i buist per nop	
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	126	5490	16	No
2	601	5491	21	Yes
3	1076	5492	11	Yes
4	1551	5493	18	Yes
5	2026	5494	10	Yes
6	2501	5495	18	Yes
7	2976	5496	17	Yes
8	3451	5497	19	Yes
10	3926 4401	5498 5499	8 18	Yes Yes
11	4876	5499 5500	17	Yes
12	5351	5501	16	Yes
13	5826	5502	15	Yes
14	6301	5503	16	Yes
15	6776	5504	16	Yes
16	7251	5505	15	Yes
17	7726	5506	13	Yes
18	8201	5507	19	Yes
19	8676	5508	18	Yes
20	9151	5509	24	Yes
21	9626	5510	15	Yes
22	10101	5511	9	Yes
23	10576	5512	17	Yes
24	11051	5513	14	Yes
25 26	11526 12001	5514 5515	15 16	Yes Yes
27	12476	5516	17	Yes
28	12951	5517	28	Yes
29	13426	5518	17	Yes
30	13901	5519	12	Yes
31	14376	5520	17	Yes
32	14851	5521	19	Yes
33	15326	5522	18	Yes
34	15801	5523	15	Yes
35	16276	5524	12	Yes
36	16751	5525	19	Yes
37	17226	5526	14	Yes
38	17701	5527	17	Yes
39	18176	5528	22	Yes

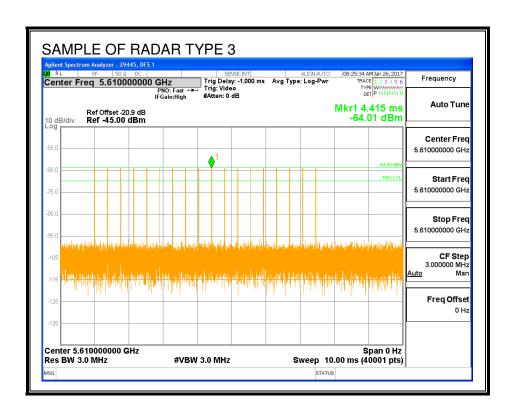
TYPE 6 DETECTION PROBABILITY (CONTINUED)

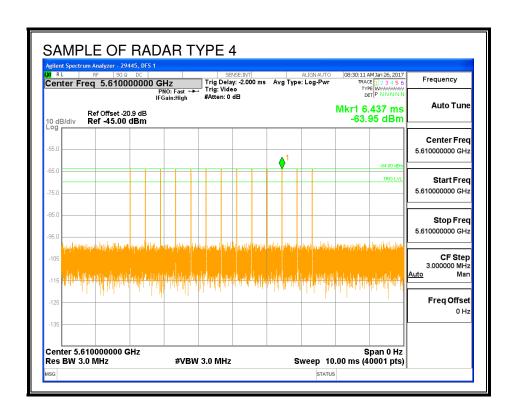
40	18651	5529	16	Voc
41		5530	16 20	Yes
	19126		13	Yes
42	19601	5531		Yes
43	20076	5532	23	Yes
44	20551	5533	16	Yes
45	21026	5534	15	Yes
46	21501	5535	17	Yes
47	21976	5536	17	Yes
48	22451	5537	20	Yes
49	22926	5538	15	Yes
50	23401	5539	11	Yes
51	23876	5540	14	Yes
52	24351	5541	22	Yes
53	24826	5542	16	Yes
54	25301	5543	15	Yes
55	25776	5544	23	Yes
56	26251	5545	15	Yes
57	26726	5546	17	Yes
58	27201	5547	13	Yes
59	27676	5548	14	Yes
60	28151	5549	16	Yes
61	28626	5550	20	Yes
62	29101	5551	10	Yes
63	29576	5552	14	Yes
64	30051	5553	17	Yes
65	30526	5554	15	Yes
66	31001	5555	16	Yes
67	31476	5556	22	Yes
68	31951	5557	12	Yes
69	32426	5558	17	Yes
70	32901	5559	14	Yes
71	33376	5560	9	Yes
72	33851	5561	13	Yes
73	34326	5562	15	Yes
74	34801	5563	16	Yes
75	35276	5564	16	Yes
76	35751	5565	11	Yes
77	36226	5566	22	Yes
78	36701	5567	22	Yes
79	37176	5568	18	Yes
80	37651	5569	14	No

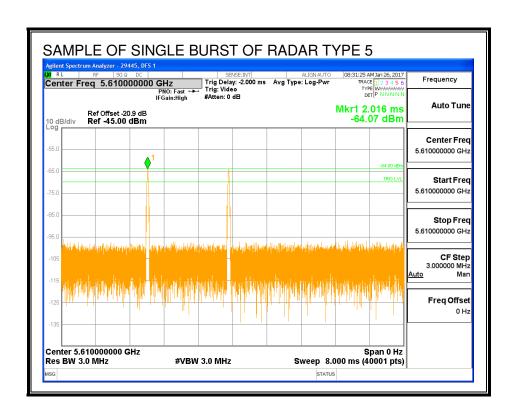

5.9. HIGH BAND RESULTS FOR 160 MHz BANDWIDTH (80 MHz HIGH COMPONENT)

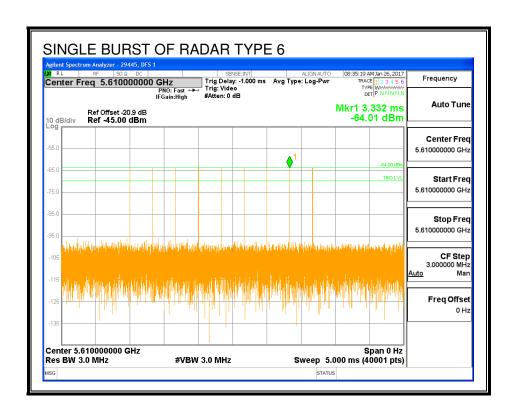

5.9.1. TEST CHANNEL

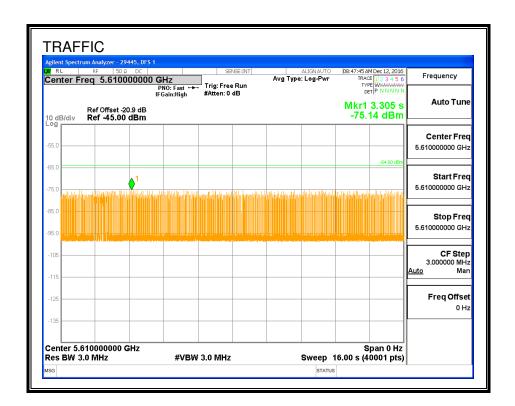

All tests were performed at a channel center frequency of 5610 MHz.

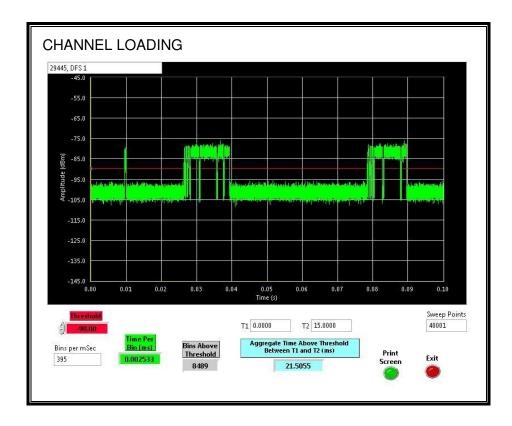

5.9.2. RADAR WAVEFORMS AND TRAFFIC


RADAR WAVEFORMS









TRAFFIC

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 21.5%

5.9.3. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

5.9.1. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE CAC CYCLE TIME

A sweep was started on the spectrum analyzer set to the DFS test channel when a software command was issued by the operator to the EUT to change to the DFS test channel. After the command to change channels was issued a CAC period commenced on the DFS test channel for at least 60 seconds. The time from the beginning of the sweep to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel. A radar signal was triggered on the DFS test channel within 0 to 6 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer.

A sweep was started on the spectrum analyzer when a software command was issued by the operator to the EUT to change to the DFS test channel. A radar signal was triggered on the DFS test channel within 54 to 60 seconds after the beginning of the CAC period and transmissions on the DFS test channel were monitored on the spectrum analyzer.

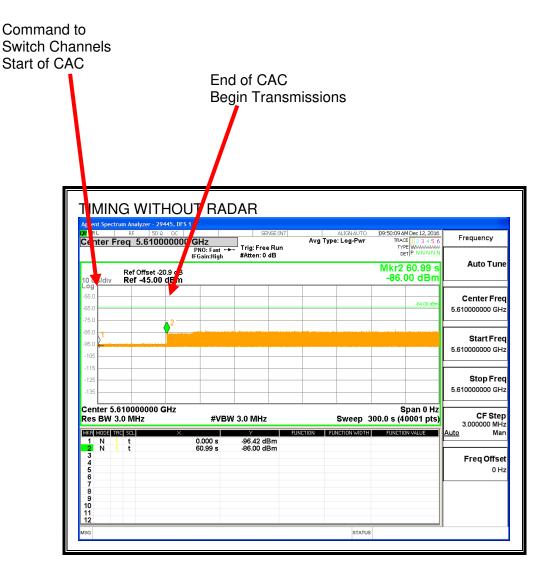
QUANTITATIVE RESULTS

No Radar Triggered

Beginning	Timing of	CAC Period
of CAC	Start of Traffic	Time
(sec)	(sec)	(sec)
0	61.0	60.99

Radar Near Beginning of CAC

Hadai Hoai Bogiiiiiiig of Orio							
Beginning	Timing of	Radar Relative					
of CAC	Radar Burst	to Start of CAC					
(sec)	(sec)	(sec)					
0	3.218	3.218					


Radar Near End of CAC

Beginning of CAC	Timing of Radar Burst	Radar Relative to Start of CAC
(sec)	(sec)	(sec)
0	58.19	58.19

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the CAC period.

Log File of CAC Timing Without Radar

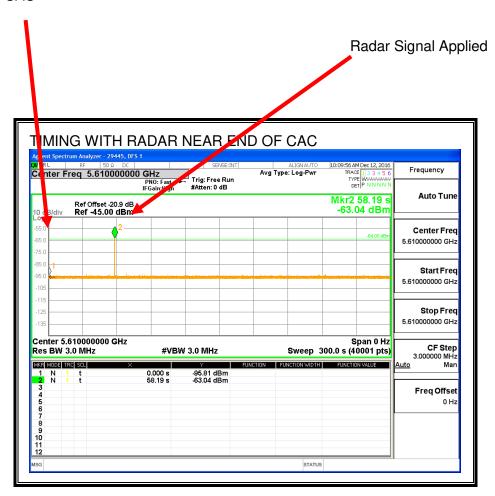
```
# wl chanspec
120/160 (0xed72)
# wl up
# CONSOLE: 035097.913 wl0: wl open
CONSOLE: 035097.944 wlo: chanspec ed72, 60 second CAC time
CONSOLE: 035097.944 DFS State IDLE -> PRE-ISM Channel
Availability Check
CONSOLE: 035097.944 wlo: link up (wlo)
CONSOLE: 035158.094 wl0: dfs : state to In-Service Monitoring(ISM)
chanspec 120/160 at 60000ms
CONSOLE: 035158.094 wlo: Skip CAC - channel 0xed72 is already
available. Zero duration.
# wl chan info
Channel 36 A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100
              A Band, RADAR Sensitive
                A Band, RADAR Sensitive
Channel 104
              A Band, RADAR Sensitive
Channel 108
Channel 112
               A Band, RADAR Sensitive
              A Band, RADAR Sensitive
A Band, RADAR Sensitive
Channel 116
Channel 120
               A Band, RADAR Sensitive
Channel 124
             A Band, RADAR Sensitive
A Band, RADAR Sensitive, Passive
Channel 128
Channel 132
              A Band, RADAR Sensitive, Passive
A Band, RADAR Sensitive, Passive
Channel 136
Channel 140
               A Band, RADAR Sensitive, Passive
Channel 144
Channel 149
               A Band
Channel 153
               A Band
Channel 157
               A Band
Channel 161
               A Band
                A Band
Channel 165
```

TIMING WITH RADAR NEAR BEGINNING OF CAC

Command to Switch Channels Start of CAC Radar Signal Applied IMING WITH RADAR NEAD SEGINNING OF CAC nter Freq 5.610000000 GHz Frequency Avg Type: Log-Pwi **Auto Tune** Mkr2 3.218 s -62.87 dBm Ref Offs . -20.9 dB Center Fred 5.610000000 GHz Start Fred 5.610000000 GH Stop Fred 5.610000000 GHz Center 5.610000000 GHz Span 0 Hz CF Step 3.000000 MHz Res BW 3.0 MHz **#VBW 3.0 MHz** Sweep 300.0 s (40001 pts) Freq Offset 0 Hz

No EUT transmissions were observed after the radar signal.

TIMING WITH RADAR NEAR BEGINNING OF CAC


wl chanspec 120/160 (0xed72) # wl up CONSOLE: 031424.593 wlo: chanspec ed72, 60 second CAC time CONSOLE: 031424.593 DFS State In-Service Monitoring(ISM) -> PRE-ISM Channel Availability Check CONSOLE: 031460.839 wlo: chanspec ed72, 60 second CAC time CONSOLE: 031460.839 DFS State PRE-ISM Channel Availability Check -> PRE-ISM Channel Availability Check CONSOLE: 031463.389 wl0: DFS: radar info=0x00000, radar info 2=0x181c7 CONSOLE: 031463.389 WLO: DFS: UNCLASSIFIED ######### RADAR DETECTED ON U80 CHANNEL 120/160 ######### min pw=28, subband result=6, AT 2400MS CONSOLE: 031463.389 wl0: channel 120 put out of service chspecd078 CONSOLE: 031463.389 wl0: channel 124 put out of service chspecd07c CONSOLE: 031463.389 wlo: DFS WLC E RADAR DETECTED 0000/181c7 on ch 0xed72 going to ch 0xe02a

CONSOLE: 031463.395 wl0: dfs : state to IDLE chanspec 36/80 at 2400ms

```
# wl chan info
Channel 36 A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100
              A Band, RADAR Sensitive, Passive
Channel 104
              A Band, RADAR Sensitive, Passive
Channel 108
              A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive
Channel 112
Channel 116 A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 26 minutes
Channel 120
               A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 26 minutes
Channel 124
              A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 26 minutes
               A Band, RADAR Sensitive, Passive, Temporarily Out of
Channel 128
Service for 26 minutes
Channel 132
            A Band, RADAR Sensitive, Passive
Channel 136
               A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive
Channel 140
              A Band, RADAR Sensitive, Passive
Channel 144
Channel 149
               A Band
Channel 153
               A Band
Channel 157
              A Band
Channel 161
              A Band
Channel 165
              A Band
```

TIMING WITH RADAR NEAR END OF CAC

Command to Switch Channels Start of CAC

No EUT transmissions were observed after the radar signal.

TIMING WITH RADAR NEAR END OF CAC

wl chanspec
120/160 (0xed72)

wl up

CONSOLE: 031893.885 wl0: chanspec ed72, 60 second CAC time

CONSOLE: 031893.885 DFS State IDLE -> PRE-ISM Channel Availability

Check

CONSOLE: 031893.885 enable 1: q0 frmcnt 0, wrdcnt 0, q1 frmcnt 0,

wrdcnt 0

CONSOLE: 031893.885 wl0: link up (wl0)

CONSOLE: 031894.885 pciedev_send_ltr:Giving up:0x302

wl dfs_status

CONSOLE: state PRE-ISM Channel Availability Check(CAC) time elapsed 4650ms radar channel cleared by dfs none

CONSOLE: 031951.184 WLO: DFS: UNCLASSIFIED ######### RADAR DETECTED ON U80 CHANNEL 120/160 ######### min_pw=28, subband_result=6, AT 57150MS

CONSOLE: 031951.184 wl0: channel 120 put out of service chspecd078

CONSOLE: 031951.184 wl0: channel 124 put out of service chspecd07c

CONSOLE: 031951.184 no usable channels found in dfs_channel_forced list; going random now

CONSOLE: 031951.184 wlo: DFS WLC_E_RADAR_DETECTED 0000/181c7 on ch 0xed72 going to ch 0xe02a

CONSOLE: 031951.190 DFS State PRE-ISM Channel Availability Check \rightarrow

IDLE

CONSOLE: 031951.190 wl0: dfs : state to IDLE chanspec 36/80 at 57150ms

CONSOLE: 031951.190 wlo: dfs : state to IDLE chanspec 36/80 at 0ms

CONSOLE: 031951.190 wlo: Skip CAC - channel 0xe02a is already available. Zero duration.

```
# wl chan info
Channel 36 A Band
Channel 40 A Band
Channel 44 A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100
              A Band, RADAR Sensitive, Passive
Channel 104
              A Band, RADAR Sensitive, Passive
Channel 108
              A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive
Channel 112
Channel 116 A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 23 minutes
Channel 120
               A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 23 minutes
Channel 124
              A Band, RADAR Sensitive, Passive, Temporarily Out of
Service for 23 minutes
               A Band, RADAR Sensitive, Passive, Temporarily Out of
Channel 128
Service for 23 minutes
Channel 132
             A Band, RADAR Sensitive, Passive
Channel 136
               A Band, RADAR Sensitive, Passive
               A Band, RADAR Sensitive, Passive
Channel 140
              A Band, RADAR Sensitive, Passive
Channel 144
Channel 149
               A Band
Channel 153
               A Band
Channel 157
              A Band
Channel 161
              A Band
Channel 165
              A Band
```

5.9.2. MOVE AND CLOSING TIME

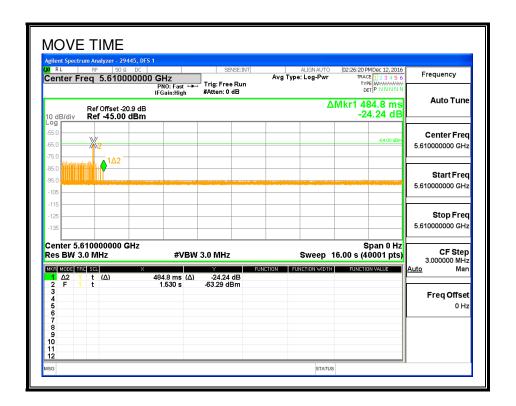
REPORTING NOTES

The reference marker is set at the end of last radar pulse.

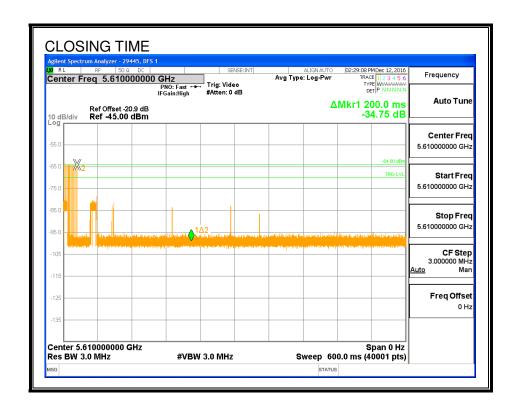
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)


The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

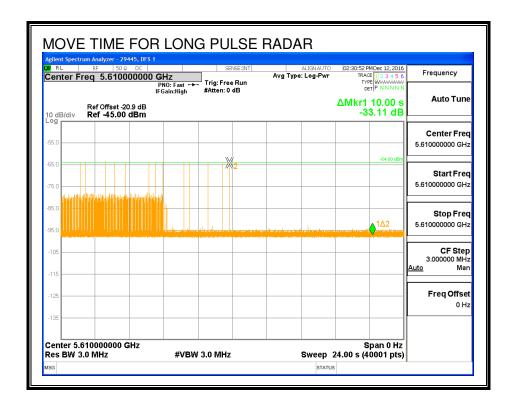

Channel Move Time	Limit
(sec)	(sec)
0.4848	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
3.2	60

MOVE TIME

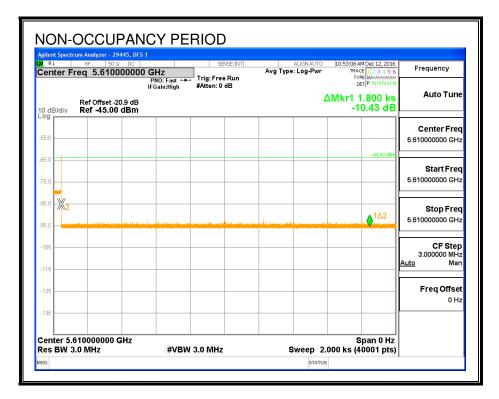


CHANNEL CLOSING TIME


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME


The traffic ceases prior to 10 seconds after the end of the radar waveform.

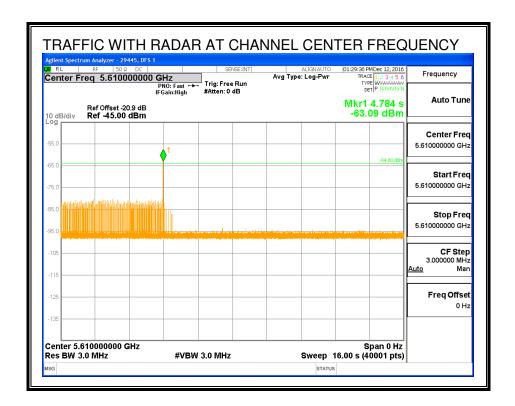
5.9.3. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

5.9.4. 20 MHZ SUB-BAND CHANNEL RADAR DETECTION

THEORY OF OPERATION


The EUT radio is capable of distinguishing radar within any 20 MHz sub-band of a channel. When radar is detected at least one 20 MHz channel is removed from service. The quantity of 20 MHz channels removed from service is determined by the radar frequency within the DFS test channel.

TEST PROCEDURE

A link was established on the DFS test channel then traffic was initiated. Radar was then triggered on the center frequency of the DFS test channel, a sample plot was captured and a log file was generated. Subsequent trials were conducted and radar was triggered upon various center frequencies within the DFS test channel.

a software reboot command was issued to the EUT. A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

SAMPLE PLOT WITH RADAR BURST ON THE DFS TEST CHANNEL CENTER FREQUENCY

Log File of Channel Status After Radar Burst Triggered at 5610 MHz

wl chanspec 120/160 (0xed72) # CONSOLE: 044469.688 wl0: DFS: radar info=0x00000, radar info 2=0x181c7 CONSOLE: 044469.688 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON U80 CHANNEL 120/160 ######## min pw=28, subband result=6, AT 121200MS CONSOLE: 044469.688 wlo: channel 120 put out of service chspecd078 CONSOLE: 044469.688 wlo: channel 124 put out of service chspecd07c # wl chanspec 36/80 (0xe02a) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive Channel 108 A Band, RADAR Sensitive, Passive Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 120 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 124 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 128 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band

Channel 165 A Band

Log File of Channel Status After Radar Burst Triggered at 5530 MHz

wl chanspec 120/160 (0xed72)

CONSOLE: 044704.001 wl0: DFS: radar_info=0x18187, radar_info_2=0x00000

CONSOLE: 044704.001 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON CHANNEL 120/160 ######## min pw=24, subband result=6, AT 101250MS

CONSOLE: 044704.001 wlo: channel 104 put out of service chspecd068

CONSOLE: 044704.001 wlo: channel 108 put out of service chspecd06c

wl chanspec 36/80 (0xe02a)

```
# wl chan info
Channel 36
           A Band
Channel 40
           A Band
Channel 44
           A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100 A Band, RADAR Sensitive, Passive
Channel 104 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes
Channel 108 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes
Channel 112 A Band, RADAR Sensitive, Passive
Channel 116 A Band, RADAR Sensitive, Passive
Channel 120 A Band, RADAR Sensitive, Passive
Channel 124 A Band, RADAR Sensitive, Passive
Channel 128 A Band, RADAR Sensitive, Passive
Channel 132 A Band, RADAR Sensitive, Passive
Channel 136 A Band, RADAR Sensitive, Passive
Channel 140 A Band, RADAR Sensitive, Passive
Channel 144 A Band, RADAR Sensitive, Passive
Channel 149 A Band
Channel 153 A Band
```

Channel 157 A Band Channel 161 A Band Channel 165 A Band

Log File of Channel Status After Radar Burst Triggered at 5510 MHz

wl chanspec 120/160 (0xed72) CONSOLE: 044746.467 wl0: DFS: radar info=0x30177, radar info 2=0x00000 CONSOLE: 044746.467 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON CHANNEL 120/160 ######## min pw=23, subband result=12, AT 18450MS CONSOLE: 044746.467 wlo: channel 100 put out of service chspecd064 CONSOLE: 044746.467 wlo: channel 104 put out of service chspecd068 # wl chanspec 36/80 (0xe02a) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 30 minutes Channel 104 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 30 minutes Channel 108 A Band, RADAR Sensitive, Passive Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive Channel 120 A Band, RADAR Sensitive, Passive Channel 124 A Band, RADAR Sensitive, Passive Channel 128 A Band, RADAR Sensitive, Passive Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band

Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

#

Log File of Channel Status After Radar Burst Triggered at 5500 MHz

```
# wl chanspec
120/160 (0xed72)
# CONSOLE: 044893.519 wl0: DFS: radar info=0x200e7, radar info 2=0x00000
CONSOLE: 044893.519 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON
CHANNEL 120/160 ######## min pw=14, subband result=8, AT 17550MS
CONSOLE: 044893.519 wlo: channel 100 put out of service chspecd064
# wl chanspec
149/80 (0xe09b)
# wl chan info
Channel 36
            A Band
           A Band
Channel 40
Channel 44
           A Band
Channel 48
           A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes
Channel 104 A Band, RADAR Sensitive, Passive
Channel 108 A Band, RADAR Sensitive, Passive
Channel 112 A Band, RADAR Sensitive, Passive
Channel 116 A Band, RADAR Sensitive, Passive
Channel 120 A Band, RADAR Sensitive, Passive
Channel 124 A Band, RADAR Sensitive, Passive
Channel 128 A Band, RADAR Sensitive, Passive
Channel 132 A Band, RADAR Sensitive, Passive
Channel 136 A Band, RADAR Sensitive, Passive
Channel 140 A Band, RADAR Sensitive, Passive
Channel 144 A Band, RADAR Sensitive, Passive
Channel 149 A Band
Channel 153 A Band
Channel 157 A Band
Channel 161 A Band
Channel 165 A Band
#
```

Log File of Channel Status After Radar Burst Triggered at 5520 MHz

wl chanspec 120/160 (0xed72)

CONSOLE: 044989.902 wl0: DFS: radar info=0x10177, radar info 2=0x00000

CONSOLE: 044989.902 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON CHANNEL 120/160 ######## min_pw=23, subband_result=4, AT 18450MS

CONSOLE: 044989.902 wlo: channel 104 put out of service chspecd068

```
wl chan info
Channel 36
           A Band
Channel 40
           A Band
Channel 44
           A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100 A Band, RADAR Sensitive, Passive
Channel 104 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes
Channel 108 A Band, RADAR Sensitive, Passive
Channel 112 A Band, RADAR Sensitive, Passive
Channel 116 A Band, RADAR Sensitive, Passive
Channel 120 A Band, RADAR Sensitive, Passive
Channel 124 A Band, RADAR Sensitive, Passive
Channel 128 A Band, RADAR Sensitive, Passive
Channel 132 A Band, RADAR Sensitive, Passive
Channel 136 A Band, RADAR Sensitive, Passive
Channel 140 A Band, RADAR Sensitive, Passive
Channel 144 A Band, RADAR Sensitive, Passive
Channel 149 A Band
Channel 153 A Band
Channel 157 A Band
Channel 161 A Band
Channel 165 A Band
```

Log File of Channel Status After Radar Burst Triggered at 5540 MHz

wl chanspec 120/160 (0xed72)

CONSOLE: 045067.585 wlo: DFS: radar_info=0x08187, radar_info_2=0x00000

CONSOLE: 045067.585 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON CHANNEL 120/160 ######## min_pw=24, subband_result=2, AT 13950MS

CONSOLE: 045067.585 wlo: channel 108 put out of service chspecd06c

```
# wl chan info
Channel 36
           A Band
Channel 40
           A Band
Channel 44
           A Band
Channel 48 A Band
Channel 52 A Band, RADAR Sensitive, Passive
Channel 56 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100 A Band, RADAR Sensitive, Passive
Channel 104 A Band, RADAR Sensitive, Passive
Channel 108 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes
Channel 112 A Band, RADAR Sensitive, Passive
Channel 116 A Band, RADAR Sensitive, Passive
Channel 120 A Band, RADAR Sensitive, Passive
Channel 124 A Band, RADAR Sensitive, Passive
Channel 128 A Band, RADAR Sensitive, Passive
Channel 132 A Band, RADAR Sensitive, Passive
Channel 136 A Band, RADAR Sensitive, Passive
Channel 140 A Band, RADAR Sensitive, Passive
Channel 144 A Band, RADAR Sensitive, Passive
Channel 149 A Band
Channel 153 A Band
Channel 157 A Band
Channel 161 A Band
Channel 165 A Band
```

Log File of Channel Status After Radar Burst Triggered at 5560 MHz

wl chanspec 120/160 Chanspec set to 0xed72

CONSOLE: 045125.038 wl0: DFS: radar_info=0x04177, radar_info_2=0x00000

CONSOLE: 045125.038 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON CHANNEL 120/160 ######## min pw=23, subband result=1, AT 10800MS

CONSOLE: 045125.038 wlo: channel 112 put out of service chspecd070

wl chanspec 149/80 (0xe09b)

```
# wl chan info
```

Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band

Channel 52 A Band, RADAR Sensitive, Passive
Channel 60 A Band, RADAR Sensitive, Passive
Channel 64 A Band, RADAR Sensitive, Passive
Channel 100 A Band, RADAR Sensitive, Passive
Channel 104 A Band, RADAR Sensitive, Passive
Channel 108 A Band, RADAR Sensitive, Passive
Channel 108 A Band, RADAR Sensitive, Passive

Channel 112 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes

Channel 116 A Band, RADAR Sensitive, Passive Channel 120 A Band, RADAR Sensitive, Passive Channel 124 A Band, RADAR Sensitive, Passive Channel 128 A Band, RADAR Sensitive, Passive Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive

Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band

Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band Channel 165 A Band

Log File of Channel Status After Radar Burst Triggered at 5580 MHz

wl chanspec 120/160 Chanspec set to 0xed72

CONSOLE: 045180.083 wl0: DFS: radar_info=0x00000, radar_info_2=0x20157

CONSOLE: 045180.083 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON U80 CHANNEL 120/160 ######### min pw=21, subband result=8, AT 9750MS

CONSOLE: 045180.083 wlo: channel 116 put out of service chspecd074

wl chanspec 149/80 (0xe09b)

```
# wl chan_info
Channel 36 A Band
Channel 40 A Band
```

Channel 44 A Band Channel 48 A Band

Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive Channel 108 A Band, RADAR Sensitive, Passive A Band, RADAR Sensitive, Passive

Channel 52 A Band, RADAR Sensitive, Passive

Channel 112 A Band, RADAR Sensitive, Passive

Channel 116 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes

Channel 120 A Band, RADAR Sensitive, Passive Channel 124 A Band, RADAR Sensitive, Passive

Channel 128 A Band, RADAR Sensitive, Passive

Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive

Channel 140 A Band, RADAR Sensitive, Passive

Channel 144 A Band, RADAR Sensitive, Passive

Channel 149 A Band

Channel 153 A Band

Channel 157 A Band

Channel 161 A Band

Channel 165 A Band

#

Log File of Channel Status After Radar Burst Triggered at 5600 MHz

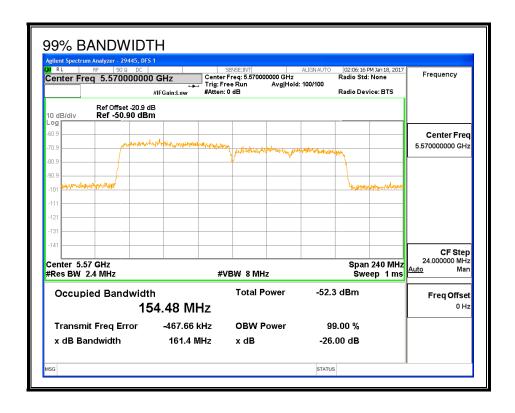
wl chanspec 120/160 (0xed72) # CONSOLE: 045218.812 wl0: DFS: radar info=0x00000, radar info 2=0x10187 CONSOLE: 045218.812 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON U80 CHANNEL 120/160 ######## min pw=24, subband result=4, AT 20100MS CONSOLE: 045218.812 wlo: channel 120 put out of service chspecd078 # wl chanspec 149/80 (0xe09b) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive Channel 108 A Band, RADAR Sensitive, Passive Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 120 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 124 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 128 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band

Channel 165 A Band

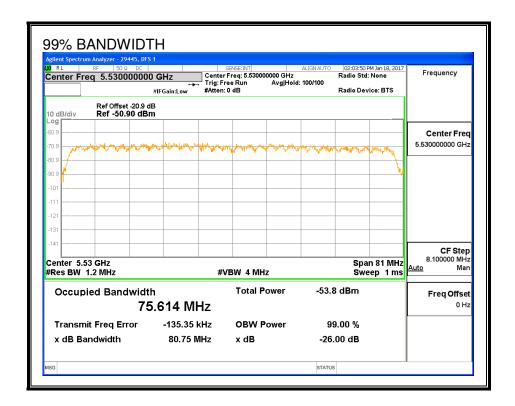
Log File of Channel Status After Radar Burst Triggered at 5620 MHz

wl chanspec 120/160 (0xed72) # CONSOLE: 045260.955 wl0: DFS: radar info=0x00000, radar info 2=0x08187 CONSOLE: 045260.955 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON U80 CHANNEL 120/160 ######## min pw=24, subband result=2, AT 11400MS CONSOLE: 045260.955 wlo: channel 124 put out of service chspecd07c # wl chanspec 149/80 (0xe09b) # wl chsn info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive Channel 108 A Band, RADAR Sensitive, Passive Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive Channel 120 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 124 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 128 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 132 A Band, RADAR Sensitive, Passive Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band

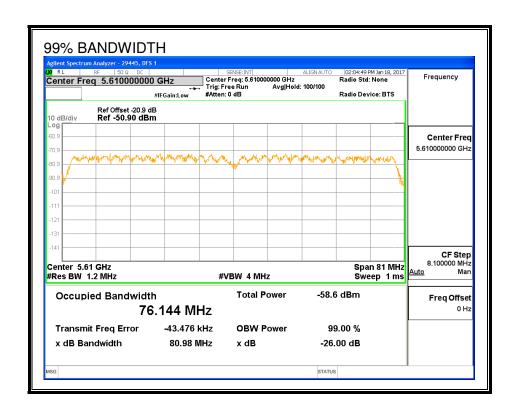
Channel 161 A Band Channel 165 A Band


Log File of Channel Status After Radar Burst Triggered at 5640 MHz

wl chanspec 120/160 (0xed72) # CONSOLE: 045310.672 wl0: DFS: radar info=0x00000, radar info 2=0x04187 CONSOLE: 045310.672 WL0: DFS: UNCLASSIFIED ######## RADAR DETECTED ON U80 CHANNEL 120/160 ######## min pw=24, subband result=1, AT 19200MS CONSOLE: 045310.672 wlo: channel 128 put out of service chspecd080 # wl chanspec 36/80 (0xe02a) # wl chan info Channel 36 A Band Channel 40 A Band Channel 44 A Band Channel 48 A Band Channel 52 A Band, RADAR Sensitive, Passive Channel 56 A Band, RADAR Sensitive, Passive Channel 60 A Band, RADAR Sensitive, Passive Channel 64 A Band, RADAR Sensitive, Passive Channel 100 A Band, RADAR Sensitive, Passive Channel 104 A Band, RADAR Sensitive, Passive Channel 108 A Band, RADAR Sensitive, Passive Channel 112 A Band, RADAR Sensitive, Passive Channel 116 A Band, RADAR Sensitive, Passive Channel 120 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 124 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 128 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 132 A Band, RADAR Sensitive, Passive, Temporarily Out of Service for 31 minutes Channel 136 A Band, RADAR Sensitive, Passive Channel 140 A Band, RADAR Sensitive, Passive Channel 144 A Band, RADAR Sensitive, Passive Channel 149 A Band Channel 153 A Band Channel 157 A Band Channel 161 A Band


Channel 165 A Band

5.9.5. DETECTION BANDWIDTH


REFERENCE PLOT OF 99% POWER BANDWIDTH (80 PLUS 80 MODE)

REFERENCE PLOT OF 99% POWER BANDWIDTH (80 MHz LOW COMPONENT)

REFERENCE PLOT OF 99% POWER BANDWIDTH (80 MHz HIGH COMPONENT)

RESULTS (80 MHz HIGH COMPONENT)

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5572	5649	77	76.144	101.1	100

DETECTION BANDWIDTH PROBABILITY

DETECTION E	BANDWIDTH P	PROBABILITY	RESULTS						
	Detection Bandwidth Test Results 29445 DFS 1 FCC Type 0 Waveform: 1 us Pulse Width, 1428 us PRI, 18 Pulses per Bur								
Frequency	Number	Number	Detection	Mark					
(MHz)	of Trials	Detected	(%)						
5572	10	10	100	FL					
5573	10	10	100						
5574	10	10	100						
5575	10	10	100						
5580	10	10	100						
5585	10	10	100						
5590	10	10	100						
5595	10	10	100						
5600	10	10	100						
5605	10	10	100						
5610	10	9	90						
5615	10	10	100						
5620	10	10	100						
5625	10	10	100						
5630	10	10	100						
5635	10	10	100						
5640	10	10	100						
5645	10	10	100						
5646	10	10	100						
5647	10	10	100						
5648	10	10	100						
5649	10	10	100	FH					

5.9.6. IN-SERVICE MONITORING

FCC Radar Test Sumn	nary									
Cinnal Time	Manushan	Detection	1 : :4	Dans/Fail	Dete	ction				In-Service
Signal Type	Number	Detection	Limit	Pass/Faii	Bandwidth			Test	Test Employee	
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	100.00	60	Pass	5572	5649	76.14	DFS 1	29445	Version 3.0
FCC Short Pulse Type 2	30	86.67	60	Pass	5572	5649	76.14	DFS 1	29445	Version 3.0
FCC Short Pulse Type 3	30	76.67	60	Pass	5572	5649	76.14	DFS 1	29445	Version 3.0
FCC Short Pulse Type 4	30	80.00	60	Pass	5572	5649	76.14	DFS 1	29445	Version 3.0
Aggregate		85.83	80	Pass						
FCC Long Pulse Type 5	30	90.00	80	Pass	5572	5649	76.14	DFS 1	29445	Version 3.0
FCC Hopping Type 6	78	100.00	70	Pass	5572	5649	76.14	DFS 1	29445	Version 3.0

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5610	Yes
1002	1	578	92	Α	5610	Yes
1003	1	598	89	Α	5610	Yes
1004	1	718	74	Α	5610	Yes
1005	1	678	78	Α	5610	Yes
1006	1	818	65	Α	5610	Yes
1007	1	778	68	Α	5610	Yes
1008	1	838	63	A	5610	Yes
1009	1	698	76	A	5610	Yes
1010	1	518	102	Α	5610	Yes
1011	1	658	81	Α	5610	Yes
1012	1	798	67	Α	5610	Yes
1013	1	898	59	Α	5610	Yes
1014	1	618	86	Α	5610	Yes
1015	1	738	72	Α	5610	Yes
1016	1	1638	33	В	5610	Yes
1017	1	2465	22	В	5610	Yes
1018	1	1226	44	В	5610	Yes
1019	1	2182	25	В	5610	Yes
1020	1	1073	50	В	5610	Yes
1021	1	964	55	В	5610	Yes
1022	1	2532	21	В	5610	Yes
1023	1	2553	21	В	5610	Yes
1024	1	1703	31	В	5610	Yes
1025	1	1291	41	В	5610	Yes
1026	1	2924	19	В	5610	Yes
1027	1	1138	47	В	5610	Yes
1028	1	2900	19	В	5610	Yes
1029	1	2597	21	В	5610	Yes

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
2001	3.8	194	26	5610	No
2002	2.8	188	26	5610	Yes
2003	1.1	154	24	5610	Yes
2004	2.2	195	24	5610	Yes
2005	3	208	23	5610	Yes
2006	2.4	172	27	5610	Yes
2007	3.3	189	26	5610	No
2008	2.9	157	27	5610	Yes
2009	2.2	222	27	5610	Yes
2010	4.2	156	28	5610	Yes
2011	3.6	182	25	5610	Yes
2012	3.6	163	26	5610	Yes
2013	1.4	155	27	5610	Yes
2014	3.8	178	29	5610	No
2015	1.7	217	23	5610	Yes
2016	4.3	206	29	5610	Yes
2017	4.7	168	24	5610	Yes
2018	1.5	162	23	5610	Yes
2019	3.9	209	29	5610	Yes
2020	3.1	169	29	5610	Yes
2021	1.7	182	28	5610	Yes
2022	1.1	227	24	5610	Yes
2023	2	164	28	5610	Yes
2024	3.8	213	25	5610	Yes
2025	5	196	28	5610	Yes
2026	2.9	211	26	5610	Yes
2027	2.3	199	23	5610	Yes
2028	4.5	218	24	5610	No
2029	4.2	210	25	5610	Yes

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
3001	9.5	379	18	5610	Yes
3002	6.1	347	17	5610	Yes
3003	8.4	480	18	5610	No
3004	9.3	460	18	5610	Yes
3005	7.6	488	17	5610	Yes
3006	6.8	395	16	5610	Yes
3007	8.1	436	16	5610	Yes
3008	7.5	325	17	5610	Yes
3009	6.5	378	16	5610	No
3010	6.1	413	17	5610	No
3011	7.3	479	16	5610	Yes
3012	9.2	275	18	5610	Yes
3013	8.7	488	17	5610	Yes
3014	6.8	297	16	5610	Yes
3015	6.5	271	18	5610	Yes
3016	8.9	477	18	5610	No
3017	6.8	464	16	5610	Yes
3018	7.5	432	16	5610	Yes
3019	9.8	314	16	5610	Yes
3020	6.5	294	16	5610	No
3021	9	323	18	5610	Yes
3022	8.2	316	17	5610	Yes
3023	9	357	16	5610	Yes
3024	6.2	496	16	5610	No
3025	9.3	299	18	5610	Yes
3026	8.9	333	17	5610	Yes
3027	6	400	18	5610	Yes
3028	7.9	447	17	5610	No
3029	7.4	408	17	5610	Yes
3030	9.6	468	18	5610	Yes

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
4001	18.3	443	13	5610	Yes
4002	14.5	398	12	5610	No
4003	19.1	385	16	5610	Yes
4004	11.5	352	15	5610	Yes
4005	16.6	485	16	5610	No
4006	18.5	348	13	5610	No
4007	14.9	494	15	5610	No
4008	13.1	370	12	5610	No
4009	14.8	277	16	5610	Yes
4010	13.4	417	14	5610	Yes
4011	15.5	470	14	5610	Yes
4012	14.6	254	12	5610	Yes
4013	13	320	14	5610	Yes
4014	12.5	368	15	5610	Yes
4015	11.3	329	13	5610	Yes
4016	16.2	389	14	5610	Yes
4017	15.5	363	12	5610	Yes
4018	16.5	318	16	5610	Yes
4019	16.2	305	14	5610	Yes
4020	17.7	273	13	5610	Yes
4021	13.7	406	12	5610	Yes
4022	15.6	269	12	5610	Yes
4023	16.9	415	13	5610	No
4024	19.3	290	16	5610	Yes
4025	11.9	449	15	5610	Yes
4026	19.6	337	13	5610	Yes
4027	12.7	273	12	5610	Yes
4028	11.7	425	13	5610	Yes
4029	14.9	374	15	5610	Yes

Data Sheet for FCC	Long Pulse	Radar Type 5
Trial	Frequency	
	(MHz)	(Yes/No)
1	5610	No
2	5610	No
3	5610	Yes
4	5610	Yes
5	5610	Yes
6	5610	Yes
7	5610	Yes
8	5610	Yes
9	5610	Yes
10	5610	Yes
11	5578	Yes
12	5578	No
13	5581	Yes
14	5579	Yes
15	5576	Yes
16	5578	Yes
17	5580	Yes
18	5579	Yes
19	5578	Yes
20	5580	Yes
21	5643	Yes
22	5642	Yes
23	5642	Yes
24	5640	Yes
25	5642	Yes
26	5642	Yes
27	5644	Yes
28	5640	Yes
29	5644	Yes
30	5642	Yes

Note: The Type 5 randomized parameters tested are shown in a separate document.

	for FCC Hopping Rada				
	e Width, 333 us PRI, ! ust 2005 Hopping Se		1 Burst per Hop	1	
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)	
1	212	5572	24	Yes	
2	687	5573	23	Yes	
3	1162	5574	29	Yes	
4	1637	5575	23	Yes	
5	2112	5576	20	Yes	
6	2587	5577	26	Yes	
7	3062	5578	22	Yes	
8	3537	5579	21	Yes	
9	4012	5580	17	Yes	
10	4487	5581	14	Yes	
11	4962	5582	30	Yes	
12	5437	5583	24	Yes	
13	5912	5584	18	Yes	
14	6387	5585	27	Yes	
15	6862	5586	20	Yes	
16	7337	5587	29	Yes	
17	7812	5588	26	Yes	
18	8287	5589	25	Yes	
19	8762	5590	25	Yes	
20 21	9237 9712	5591	23 25	Yes Yes	
22		5592	22	Yes	
23	10187	5593	24	Yes	
24	10662	5594 5505	21		
25	11137 11612	5595 5596	18	Yes Yes	
26	12087	5597	23	Yes	
27	12562	5598	28	Yes	
28	13037	5599	22	Yes	
29	13512	5600	20	Yes	
30	13987	5601	23	Yes	
31	14462	5602	23	Yes	
32	14937	5603	20	Yes	
33	15412	5604	22	Yes	
34	15887	5605	29	Yes	
35	16362	5606	26	Yes	
36	16837	5607	20	Yes	
37	17312	5608	21	Yes	
38	17787	5609	27	Yes	
39	18262	5610	22	Yes	

TYPE 6 DETECTION PROBABILITY (CONTINUED)

40	18737	5611	26	Yes
41	19212	5612	19	Yes
42	19687	5613	20	Yes
42	20162	5614	18	Yes
43	20102	5615	20	Yes
45	21112	5616	26	Yes
			17	
46 47	21587	5617	19	Yes
	22062	5618		Yes
48	22537	5619	14	Yes
49	23012	5620	28	Yes
50	23487	5621	21	Yes
51	23962	5622	22	Yes
52	24437	5623	27	Yes
53	24912	5624	21	Yes
54	25387	5625	26	Yes
55	25862	5626	25	Yes
56	26337	5627	22	Yes
57	26812	5628	26	Yes
58	27287	5629	18	Yes
59	27762	5630	27	Yes
60	28237	5631	23	Yes
61	28712	5632	27	Yes
62	29187	5633	20	Yes
63	29662	5634	19	Yes
64	30137	5635	19	Yes
65	30612	5636	25	Yes
66	31087	5637	20	Yes
67	31562	5638	24	Yes
68	32037	5639	18	Yes
69	32512	5640	24	Yes
70	32987	5641	26	Yes
71	33462	5642	26	Yes
72	33937	5643	18	Yes
73	34412	5644	24	Yes
74	34887	5645	29	Yes
75	35362	5646	22	Yes
76	35837	5647	16	Yes
77	36312	5648	27	Yes
78	36787	5649	22	Yes

5.10. BRIDGE MODE RESULTS

Per KDB 905462, Section 5.1 (footnote 1):

Networks Access Points with Bridge and/or MESH modes of operation are permitted to operate in the DFS bands but must employ a DFS function. The functionality of the Bridge mode as specified in §15.403(a) must be validated in the DFS test report. Devices operating as relays must also employ DFS function. The method used to validate the functionality must be documented and validation data must be documented. Bridge mode can be validated by performing a test statistical performance check (Section 7.8.4) on any one of the radar types. This is an abbreviated test to verify DFS functionality. MESH mode operational methodology must be submitted in the application for certification for evaluation by the FCC.

5.10.1. LOW BAND 20 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

FCC Radar Test Summ	агу									
Signal Type	Number	Detection	Limit	Pass/Fail	Dete Band			Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	86.67	60	Pass	5290	5310	17.87	DFS 1	29445	Version 3.0

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5300	Yes
1002	1	578	92	Α	5300	Yes
1003	1	598	89	Α	5300	Yes
1004	1	718	74	Α	5300	Yes
1005	1	678	78	Α	5300	Yes
1006	1	818	65	Α	5300	Yes
1007	1	778	68	Α	5300	Yes
1008	1	838	63	Α	5300	Yes
1009	1	698	76	Α	5300	Yes
1010	1	518	102	Α	5300	No
1011	1	658	81	Α	5300	Yes
1012	1	798	67	Α	5300	Yes
1013	1	898	59	Α	5300	Yes
1014	1	618	86	Α	5300	No
1015	1	738	72	Α	5300	No
1016	1	1638	33	В	5300	Yes
1017	1	2465	22	В	5300	Yes
1018	1	1226	44	В	5300	Yes
1019	1	2182	25	В	5300	No
1020	1	1073	50	В	5300	Yes
1021	1	964	55	В	5300	Yes
1022	1	2532	21	В	5300	Yes
1023	1	2553	21	В	5300	Yes
1024	1	1703	31	В	5300	Yes
1025	1	1291	41	В	5300	Yes
1026	1	2924	19	В	5300	Yes
1027	1	1138	47	В	5300	Yes
1028	1	2900	19	В	5300	Yes
1029	1	2597	21	В	5300	Yes

5.10.1. LOW BAND 40 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

FCC Radar Test Summ	агу									
Signal Type	Number	Detection	Limit	Pass/Fail	Dete Band			Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	76.67	60	Pass	5290	5330	36.39	DFS 1	29445	Version 3.0

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5310	No
1002	1	578	92	Α	5310	Yes
1003	1	598	89	Α	5310	Yes
1004	1	718	74	Α	5310	Yes
1005	1	678	78	Α	5310	Yes
1006	1	818	65	Α	5310	Yes
1007	1	778	68	Α	5310	No
1008	1	838	63	A	5310	Yes
1009	1	698	76	А	5310	Yes
1010	1	518	102	Α	5310	Yes
1011	1	658	81	Α	5310	Yes
1012	1	798	67	Α	5310	Yes
1013	1	898	59	Α	5310	Yes
1014	1	618	86	Α	5310	Yes
1015	1	738	72	Α	5310	Yes
1016	1	1638	33	В	5310	No
1017	1	2465	22	В	5310	Yes
1018	1	1226	44	В	5310	Yes
1019	1	2182	25	В	5310	Yes
1020	1	1073	50	В	5310	Yes
1021	1	964	55	В	5310	Yes
1022	1	2532	21	В	5310	Yes
1023	1	2553	21	В	5310	Yes
1024	1	1703	31	В	5310	Yes
1025	1	1291	41	В	5310	Yes
1026	1	2924	19	В	5310	No
1027	1	1138	47	В	5310	No
1028	1	2900	19	В	5310	No
1029	1	2597	21	В	5310	Yes
1030	1	747	71	В	5310	No

5.10.2. LOW BAND 80 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

FCC Radar Test Summ	агу									
Signal Type	Number	Detection	Limit	Pass/Fail		ction width		Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	90.00	60	Pass	5251	5329	76.41	DFS 1	29445	Version 3.0

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5290	Yes
1002	1	578	92	Α	5290	Yes
1003	1	598	89	Α	5290	Yes
1004	1	718	74	Α	5290	Yes
1005	1	678	78	Α	5290	Yes
1006	1	818	65	Α	5290	Yes
1007	1	778	68	Α	5290	Yes
1008	1	838	63	Α	5290	Yes
1009	1	698	76	Α	5290	Yes
1010	1	518	102	Α	5290	Yes
1011	1	658	81	Α	5290	Yes
1012	1	798	67	Α	5290	Yes
1013	1	898	59	Α	5290	Yes
1014	1	618	86	Α	5290	Yes
1015	1	738	72	Α	5290	Yes
1016	1	1638	33	В	5290	Yes
1017	1	2465	22	В	5290	No
1018	1	1226	44	В	5290	Yes
1019	1	2182	25	В	5290	Yes
1020	1	1073	50	В	5290	Yes
1021	1	964	55	В	5290	Yes
1022	1	2532	21	В	5290	Yes
1023	1	2553	21	В	5290	No
1024	1	1703	31	В	5290	Yes
1025	1	1291	41	В	5290	Yes
1026	1	2924	19	В	5290	Yes
1027	1	1138	47	В	5290	Yes
1028	1	2900	19	В	5290	No
1029	1	2597	21	В	5290	Yes
1030	1	747	71	В	5290	Yes

5.10.3. LOW BAND 160 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING (80 MHz HIGH COMPONENT)

FCC Radar Test Summ	агу									
Signal Type	Number	Detection	Limit	Pass/Fail	Dete Band	ction width		Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	90.00	60	Pass	5251	5328	76.16	DFS 1	29445	Version 3.0

1001 1 3 1002 1 5 1003 1 5 1004 1 7 1005 1 6 1006 1 8 1007 1 7 1008 1 8 1009 1 6 1010 1 5 1011 1 6 1012 1 7 1013 1 8 1014 1 6 1015 1 7 1016 1 1 1017 1 2 1018 1 1 1017 1 2 1018 1 1 1019 1 2 1020 1 1 1021 1 9 1022 1 9 1022 1 9	066 78 98 18 78 18 78 38 98 18 58 98 18	Per Burst 18 92 89 74 78 65 68 63 76 102 81 67 59 86	(A/B) A A A A A A A A A A A A A A A A A A A	(MHz) 5290 5290 5290 5290 5290 5290 5290 5290	(Yes/No) Yes
1002 1 5 1003 1 5 1004 1 7 1005 1 6 1006 1 8 1007 1 7 1008 1 8 1009 1 6 1010 1 5 1011 1 6 1012 1 7 1013 1 8 1014 1 6 1015 1 7 1016 1 1 1017 1 2 1018 1 1 1020 1 1 1021 1 9 1022 1 2 1023 1 2	78 98 118 78 118 78 138 98 148 58 98 98 18	92 89 74 78 65 68 63 76 102 81 67	A A A A A A A A	5290 5290 5290 5290 5290 5290 5290 5290	Yes
1003 1 5 1004 1 7 1005 1 6 1006 1 8 1007 1 7 1008 1 8 1009 1 6 1010 1 5 1011 1 6 1012 1 7 1013 1 8 1014 1 6 1015 1 7 1016 1 1 1017 1 2 1018 1 1 1020 1 1 1021 1 9 1022 1 2 1023 1 2	98 18 78 18 78 38 98 18 58 98 98	89 74 78 65 68 63 76 102 81 67	A A A A A A A A	5290 5290 5290 5290 5290 5290 5290 5290	Yes
1004 1 7 1005 1 6 1006 1 8 1007 1 7 1008 1 8 1009 1 6 1010 1 5 1011 1 6 1012 1 7 1013 1 8 1014 1 6 1015 1 7 1016 1 1 1017 1 2 1018 1 1 1020 1 1 1021 1 9 1022 1 2 1023 1 2	18 78 18 78 38 98 18 58 98 98	74 78 65 68 63 76 102 81 67	A A A A A A A	5290 5290 5290 5290 5290 5290 5290 5290	Yes
1005	78 18 78 38 98 18 58 98 98	78 65 68 63 76 102 81 67	A A A A A A	5290 5290 5290 5290 5290 5290 5290 5290	Yes
1006	18 78 38 98 18 58 98 98	65 68 63 76 102 81 67	A A A A A A	5290 5290 5290 5290 5290 5290 5290 5290	Yes Yes Yes Yes Yes Yes Yes Yes Yes
1007	78 38 98 18 58 98 98	68 63 76 102 81 67 59	A A A A A	5290 5290 5290 5290 5290 5290 5290	Yes Yes Yes Yes Yes Yes Yes Yes
1008	38 98 18 58 98 98	63 76 102 81 67 59	A A A A	5290 5290 5290 5290 5290 5290	Yes Yes Yes Yes Yes
1009 1 6 1010 1 5 1011 1 6 1012 1 7 1013 1 8 1014 1 6 1015 1 7 1016 1 1 1017 1 2 1018 1 1 1019 1 2 1020 1 1 1021 1 9 1022 1 2 1023 1 2	98 18 58 98 98	76 102 81 67 59	A A A A	5290 5290 5290 5290 5290	Yes Yes Yes Yes Yes
1010 1 5 1011 1 6 1012 1 7 1013 1 8 1014 1 6 1015 1 7 1016 1 1 1017 1 2 1018 1 1 1019 1 2 1020 1 1 1021 1 9 1022 1 2 1023 1 2	18 58 98 98 18	102 81 67 59	A A A	5290 5290 5290 5290	Yes Yes Yes Yes
1011 1 6 1012 1 7 1013 1 8 1014 1 6 1015 1 7 1016 1 1 1017 1 2 1018 1 1 1019 1 2 1020 1 1 1021 1 9 1022 1 2 1023 1 2	58 98 98 18	81 67 59	A A	5290 5290 5290	Yes Yes Yes
1012 1 7 1013 1 8 1014 1 6 1015 1 7 1016 1 1 1017 1 2 1018 1 1 1019 1 2 1020 1 1 1021 1 9 1022 1 2 1023 1 2	98 98 18	67 59	A	5290 5290	Yes Yes
1013 1 8 1014 1 6 1015 1 7 1016 1 1 1017 1 2 1018 1 1 1019 1 2 1020 1 1 1021 1 9 1022 1 2 1023 1 2	98 18	59	Α	5290	Yes
1014 1 6 1015 1 7 1016 1 1 1017 1 2 1018 1 1 1019 1 2 1020 1 1 1021 1 9 1022 1 2 1023 1 2	18				
1015 1 7 1016 1 1 1017 1 2 1018 1 1 1019 1 2 1020 1 1 1021 1 9 1022 1 2 1023 1 2		86	۸		
1016 1 1017 1 1018 1 1019 1 1020 1 1021 1 1022 1 1023 1 2	20		~	5290	Yes
1017 1 2 1018 1 1 1019 1 2 1020 1 1 1021 1 9 1022 1 2 1023 1 2	38	72	Α	5290	Yes
1018 1 1 1019 1 2 1020 1 1 1021 1 9 1022 1 2 1023 1 2	638	33	В	5290	Yes
1019 1 2 1020 1 1 1021 1 9 1022 1 2 1023 1 2	165	22	В	5290	Yes
1020 1 1 1021 1 9 1022 1 2 1023 1 2	226	44	В	5290	Yes
1021 1 9 1022 1 2 1023 1 2	182	25	В	5290	Yes
1022 1 2 1023 1 2	073	50	В	5290	Yes
1023 1 2	64	55	В	5290	Yes
	532	21	В	5290	No
1024 1 1	553	21	В	5290	Yes
	703	31	В	5290	No
1025 1 1	291	41	В	5290	Yes
1026 1 2	924	19	В	5290	No
1027 1 1	138	47	В	5290	Yes
1028 1 2	900	19	В	5290	Yes
1029 1 2	700	21	В	5290	Yes

5.10.4. HIGH BAND 20 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

FCC Radar Test Summ	агу									
Signal Type	Number	Detection	Limit	Pass/Fail	Dete Band			Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	93.33	60	Pass	5490	5509	17.94	DFS 1	29445	Version 3.0

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5500	Yes
1002	1	578	92	Α	5500	Yes
1003	1	598	89	Α	5500	Yes
1004	1	718	74	Α	5500	Yes
1005	1	678	78	Α	5500	Yes
1006	1	818	65	Α	5500	Yes
1007	1	778	68	Α	5500	Yes
1008	1	838	63	Α	5500	No
1009	1	698	76	A	5500	Yes
1010	1	518	102	Α	5500	Yes
1011	1	658	81	Α	5500	Yes
1012	1	798	67	Α	5500	Yes
1013	1	898	59	Α	5500	Yes
1014	1	618	86	Α	5500	Yes
1015	1	738	72	Α	5500	Yes
1016	1	1638	33	В	5500	Yes
1017	1	2465	22	В	5500	Yes
1018	1	1226	44	В	5500	Yes
1019	1	2182	25	В	5500	Yes
1020	1	1073	50	В	5500	Yes
1021	1	964	55	В	5500	Yes
1022	1	2532	21	В	5500	Yes
1023	1	2553	21	В	5500	Yes
1024	1	1703	31	В	5500	Yes
1025	1	1291	41	В	5500	Yes
1026	1	2924	19	В	5500	Yes
1027	1	1138	47	В	5500	Yes
1028	1	2900	19	В	5500	No
1029	1	2597	21	В	5500	Yes
1030	1	747	71	В	5500	Yes

5.10.5. HIGH BAND 40 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

FCC Radar Test Summ	iary							
Signal Type	Number	Detection	Limit	Pass/Fail	Dete Band		Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	Number	Version
FCC Short Pulse Type 1	30	83.33	60	Pass	5490	5529	29445	Version 3.0

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5510	No
1002	1	578	92	Α	5510	No
1003	1	598	89	Α	5510	Yes
1004	1	718	74	Α	5510	Yes
1005	1	678	78	A	5510	Yes
1006	1	818	65	Α	5510	Yes
1007	1	778	68	Α	5510	Yes
1008	1	838	63	Α	5510	Yes
1009	1	698	76	A	5510	Yes
1010	1	518	102	Α	5510	Yes
1011	1	658	81	Α	5510	Yes
1012	1	798	67	Α	5510	Yes
1013	1	898	59	Α	5510	Yes
1014	1	618	86	Α	5510	Yes
1015	1	738	72	Α	5510	Yes
1016	1	1638	33	В	5510	Yes
1017	1	2465	22	В	5510	Yes
1018	1	1226	44	В	5510	Yes
1019	1	2182	25	В	5510	Yes
1020	1	1073	50	В	5510	No
1021	1	964	55	В	5510	Yes
1022	1	2532	21	В	5510	Yes
1023	1	2553	21	В	5510	Yes
1024	1	1703	31	В	5510	No
1025	1	1291	41	В	5510	No
1026	1	2924	19	В	5510	Yes
1027	1	1138	47	В	5510	Yes
1028	1	2900	19	В	5510	Yes
1029	1	2597	21	В	5510	Yes
1030	1	747	71	В	5510	Yes

5.10.6. HIGH BAND 80 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING

FCC Radar Test Summ	агу									
Signal Type	Number	Detection	Limit	Pass/Fail	Dete Band	ction width		Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	83.33	60	Pass	5490	5569	76.58	DFS 1	29445	Version 3.0

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5530	No
1002	1	578	92	Α	5530	Yes
1003	1	598	89	Α	5530	Yes
1004	1	718	74	Α	5530	Yes
1005	1	678	78	Α	5530	Yes
1006	1	818	65	Α	5530	No
1007	1	778	68	Α	5530	Yes
1008	1	838	63	Α	5530	Yes
1009	1	698	76	А	5530	Yes
1010	1	518	102	А	5530	Yes
1011	1	658	81	Α	5530	Yes
1012	1	798	67	Α	5530	Yes
1013	1	898	59	А	5530	Yes
1014	1	618	86	А	5530	Yes
1015	1	738	72	А	5530	Yes
1016	1	1638	33	В	5530	Yes
1017	1	2465	22	В	5530	Yes
1018	1	1226	44	В	5530	Yes
1019	1	2182	25	В	5530	Yes
1020	1	1073	50	В	5530	Yes
1021	1	964	55	В	5530	No
1022	1	2532	21	В	5530	Yes
1023	1	2553	21	В	5530	Yes
1024	1	1703	31	В	5530	Yes
1025	1	1291	41	В	5530	Yes
1026	1	2924	19	В	5530	No
1027	1	1138	47	В	5530	Yes
1028	1	2900	19	В	5530	No
1029	1	2597	21	В	5530	Yes
1030	1	747	71	В	5530	Yes

5.10.7. HIGH BAND 160 MHz BANDWIDTH BRIDGE MODE IN-SERVICE MONITORING (80 MHz HIGH COMPONENT)

FCC Radar Test Summ	агу									
Signal Type	Number	Detection	Limit	Pass/Fail		ction width		Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	76.67	60	Pass	5572	5649	76.14	DFS 1	29445	Version 3.0

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection (Yes/No)	
	(us)	(us)	Per Burst	(A/B)	(MHz)		
1001	1	3066	18	Α	5610	Yes	
1002	1	578	92	А	5610	Yes	
1003	1	598	89	А	5610	Yes	
1004	1	718	74	Α	5610	Yes	
1005	1	678	78	Α	5610	Yes	
1006	1	818	65	А	5610	Yes	
1007	1	778	68	А	5610	Yes	
1008	1	838	63	Α	5610	Yes	
1009	1	698	76	А	5610	Yes	
1010	1	518	102	А	5610	Yes	
1011	1	658	81	А	5610	Yes	
1012	1	798	67	Α	5610	Yes	
1013	1	898	59	Α	5610	Yes	
1014	1	618	86	А	5610	No	
1015	1	738	72	А	5610	Yes	
1016	1	1638	33	В	5610	Yes	
1017	1	2465	22	В	5610	Yes	
1018	1	1226	44	В	5610	Yes	
1019	1	2182	25	В	5610	Yes	
1020	1	1073	50	В	5610	No	
1021	1	964	55	В	5610	Yes	
1022	1	2532	21	В	5610	No	
1023	1	2553	21	В	5610	No	
1024	1	1703	31	В	5610	No	
1025	1	1291	41	В	5610	No	
1026	1	2924	19	В	5610	Yes	
1027	1	1138	47	В	5610	Yes	
1028	1	2900	19	В	5610	Yes	
1029	1	2597	21	В	5610	No	
1030	1	747	71	В	5610	Yes	