GTS Global United Technology Services Co., Ltd.

Report No.: GTS2024090177F05

TEST REPORT

Applicant:	HANSHOW TECHNOLOGY CO., LTD.		
Address of Applicant: Manufacturer:	Building 1(IF podium building and 4F) and Building 5 (7F) in Jiaxing Photovolta High-tech Park, No. 1288 Kanghe Rd., Xiuzhou District, Jiaxing, Zhejiang, China HANSHOW TECHNOLOGY CO.,LTD.		
Address of Manufacturer:	HANSHOW TECHNOLOGY CO., LTD. Building 1(IF podium building and 4F) and Building 5 (7F) in Jiaxing Photovolta High-tech Park, No. 1288 Kanghe Rd., Xiuzhou District, Jiaxing, Zhejiang, China		
Equipment Under Test (E	EUT)		
Product Name:	ESL Controller		
Model No.:	HS_C09961		
FCC ID:	2AYMH-P9961		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart E Section 15.407		
Date of sample receipt:	September 25, 2024		
Date of Test:	September 25, 2024-October 24, 2024		
Date of report issued:	October 25, 2024		
Test Result :	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 32

2 Version

Version No.	Date	Description
00	October 25, 2024	Original

Prepared By:

Asmilla

Date:

October 25, 2024

Project Engineer

Check By:

insort lund at Reviewer

Date:

October 25, 2024

GTS

Report No.: GTS2024090177F05

3 Contents

Ρ	ag
	0

		Га	ye
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	5
5			~
Э	2022		
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	CARRIER FREQUENCY AND CHANNEL	
	5.3	TEST FACILITY	
	5.4	TEST LOCATION	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	DEVIATION FROM STANDARDS	
	5.7	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.8	Additional Instructions	
6	TES	T INSTRUMENTS LIST	9
7	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	10
	7.1	Тезт Setup	10
	7.2	DFS DETECTION THRESHOLDS FOR MASTER DEVICES AND CLIENT DEVICES WITH RADAR DETECTION	
8	REG	UIREMENTS AND PARAMETERS FOR DFS TEST	.12
	8.1	APPLICABILITY OF DFS REQUIREMENTS	12
	8.2	DFS DETECTION THRESHOLDS	
	8.3	DFS RESPONSE REQUIREMENTS	
	8.4	RADAR TEST WAVEFORMS	
	8.4.		
	8.4.2		
	8.4.3		
9		IBRATION OF RADAR WAVEFORM	
	9.1	RADAR WAVEFORM CALIBRATION PROCEDURE	
	9.2	CONDUCTED CALIBRATION SETUP	.19
10) DFS	TEST RESULTS	20
	10.1	CONDUCTED TEST SETUP CONFIGURATION	
	10.2	U-NII DETECTION BANDWIDTH (7.8.1)	
	10.2		
	10.2		
	10.3	CHANNEL AVAILABILITY CHECK (7.8.2)	
	10.3		
	10.3		.23
	10.4	IN-SERVICE MONITORING FOR CHANNEL MOVE TIME, CHANNEL CLOSING TRANSMISSION TIME AND NON-	
		ANCY PERIOD (7.8.3)	
	10.4 10.4		
	10.4 10.5	2 Test Procedure	
	10.5		
	10.5		.30

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

	10.5.2	Test Procedure	Report No.: GTS2024090177F05
11	TEST SE	ТИР РНОТО	
12	EUT CO	NSTRUCTIONAL DETAILS	

4 Test Summary

	Tested Bandwidth and Channel				
Item	Bandwidth (MHz) / mode	Frequency (MHz) / Channel No.	Limit	Result	
Channel Availability Check Time	20 / 802.11n	5500 / 100	≥ 60sec	Pass	
U-NII Detection	20 / 802.11n	5500 / 100	> 100% of the U-NII 99%	Pass	
Bandwidth	40 / 802.11n	5510 / 102	transmission power bandwidth		
Statistical	20 / 802.11n	5500 / 100	Type 1 ~ 4 ≥ 60%		
Performance Check	40 / 802.11n	5510 / 102	Type 1 ~ 4 and 5 ≥ 80% Type 6 ≥ 70%	Pass	
Channel Move Time	40 / 802.11n	5510 / 102	≤ 10sec	Pass	
Channel Closing Transmission Time	40 / 802.11n	5510 / 102	≤ 200ms + aggregate of 60ms over remaining 10sec period	Pass	
Non-Occupancy Period Test	40 / 802.11n	5510 / 102	≥ 30 minutes Pa		

5 General Information

5.1 General Description of EUT

. To General Description of EOT			
Product Name:	ESL Controller		
Model No.:	HS_C09961		
Test sample(s) ID:	GTS2024090177-1		
Sample(s) Status	Engineer sample		
S/N:	927430061594116723		
Modulation Type:	802.11a/n/ac : OFDM		
Operating Frequency:	U-NII-2A:5250~5350MHz		
Operating r requency.	U-NII-2C:5470~5725MHz		
sTPC Support	NO		
Operation Mode:	Master		
Sample Type:	Mobile Portable Fix Location		
Antenna Type:	Internal Antenna		
Antenna Gain:	ANT 1: 4.81dBi @Band II-2A, 5.70dBi @Band II-2C		
	ANT 2: 2.93dBi @Band II-2A, 3.60dBi @Band II-2C		
Power supply:	DC 12.0V by Adapter		
	Or		
	DC 36V~57V by POE		

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

3. Both two power supply modes were tested and only reported the worst case adapter.

5.2 Carrier Frequency and Channel

U-NII-1			
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
36	5180 MHz	44	5220 MHz
38	5190 MHz	46	5230 MHz
40	5200 MHz	48	5240 MHz
42	5210 MHz		

U-NII-2A

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
52	5260 MHz	60	5300 MHz
54	5270 MHz	62	5310 MHz
56	5280 MHz	64	5320 MHz
58	5290 MHz		

U-NII-2C

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
100	5500 MHz	112	5560 MHz
102	5510 MHz	116	5580 MHz
104	5520 MHz	132	5660 MHz
106	5530 MHz	134	5670 MHz
108	5540 MHz	136	5680 MHz
110	5550 MHz	140	5700 MHz

U-NII-3

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
149	5745 MHz	159	5795 MHz
151	5755 MHz	161	5805 MHz
153	5765 MHz	163	5815 MHz
155	5775 MHz	165	5825 MHz
157	5785 MHz		

TDWR

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
118	5590 MHz	124	5620 MHz
120	5600 MHz	126	5630 MHz
106	5530 MHz	128	5640 MHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All other tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

Manufacturer	acturer Description		Serial Number	
GTS	PAD	MT10	N/A	
GTS	Adapter	K651-1205000D	N/A	

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

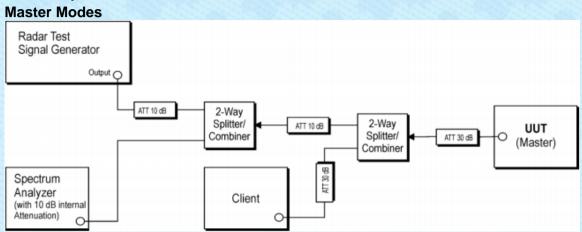
None.

5.8 Additional Instructions

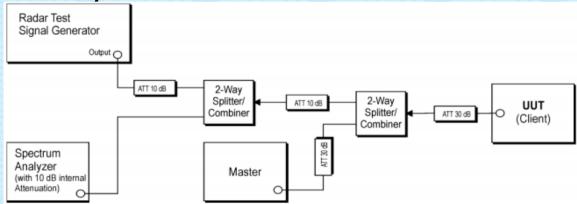
Software (Used for test) from client

Built-in by manufacturer, power set default.

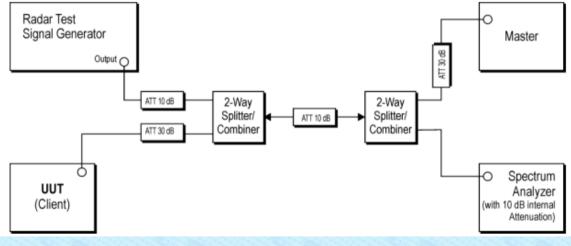
6 Test Instruments list


RF Co	RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	Apr. 13, 2024	Apr. 12, 2025	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 13, 2024	Apr. 12, 2025	
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	Apr. 13, 2024	Apr. 12, 2025	
4	MXG vector Signal Generator	Agilent	N5182A GTS567	Apr. 13, 2024	Apr. 12, 2025		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	Apr. 13, 2024	Apr. 12, 2025	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	Apr. 13, 2024	Apr. 12, 2025	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	Apr. 13, 2024	Apr. 12, 2025	
8	Programmable Constant Temp & Humi Test Chamber	Temp & Humi Test WEWON WHTH-15		GTS572	Apr. 13, 2024	Apr. 12, 2025	
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	Apr. 18, 2024	Apr. 17, 2025	
10	EXA Signal Analyzer	Keysight	N9010B	MY60241168	Nov. 03, 2023	Nov. 02, 2024	

Gen	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	KUMAO	SF132	GTS647	Apr. 18, 2024	Apr. 17, 2025		



7 Test Configuration of Equipment Under Test


7.1 Test Setup

Client with injection at the Client Modes

Client with injection at the Master Modes

7.2 DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)			
EIRP ≥ 200 milliwatt	-64 dBm			
EIRP < 200 milliwatt and power spectral density < 10	-62 dBm			
dBm/MHz				
EIRP < 200 milliwatt that do not meet the power	-64 dBm			
spectral density requirement				
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.				
Note 2: Throughout these test procedures an additional	al 1 dB has been added to the amplitude of the test			

transmission waveforms to account for variations in measurement equipment. This will ensure that the test

signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain.

8 Requirements and Parameters for DFS Test

8.1 Applicability of DFS requirements

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode				
Requirement	Master	Client Without Radar Detection	Client with Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required
Note: Frequencies selected for st	atistical performance check (S	Section 7.8.4) should include

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices, it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

8.2 DFS Detection Thresholds

Table 3 below provides the DFS Detection Thresholds for Master Devices as well as Client Devices incorporating In-Service Monitoring.

Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

	Detection
Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the	-64 dBm
power spectral density requirement	
Note This is the level at the input of the	receiver assuming a 0 dBi receive antenna.
1:	
Note Throughout these test procedures	an additional 1 dB has been added to the
2: amplitude of the test transmission	waveforms to account for variations in
measurement equipment. This wil	ensure that the test signal is at or above the
detection threshold level to trigger	a DFS response.
Note EIRP is based on the highest ante	nna gain. For MIMO devices refer to KDB
3: Publication 662911 D01.	

8.3 DFS Response Requirements

l able 4:	Table 4: DFS Response Requirement values					
Parameter	Value					
Non-occupancy period	Minimum 30 minutes					
Channel Availability Check	60 seconds					
Time						
Channel Move Time	10 seconds					
	See Note 1.					
Channel Closing Transmission	200 milliseconds + an aggregate of 60 milliseconds over					
Time	remaining 10 second period.					
	See Notes 1 and 2.					
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power					
	bandwidth. See Note 3.					
Note Channel Move Time and	the Channel Closing Transmission Time should be					
1: performed with Radar Ty	pe 0. The measurement timing begins at the end of the					
Radar Type 0 burst.						
Note The Channel Closing Tra	ansmission Time is comprised of 200 milliseconds starting					
2: at the beginning of the C	channel Move Time plus any additional intermittent control					
signals required facilitating	ng a Channel move (an aggregate of 60 milliseconds)					
during the remainder of t	the 10 second period. The aggregate duration of control					
signals will not count qui	et periods in between transmissions.					
Note During the U-NII Detection	During the U-NII Detection Bandwidth detection test, radar type 0 should be used.					
3: For each frequency step	, the minimum percentage of detection is 90 percent.					
Measurements are perfo	rmed with no data traffic.					

Table 4: DFS Response Requirement Values

8.4 RADAR TEST WAVEFORMS

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

8.4.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials			
0	1	1428	18	See Note 1	See Note 1			
1	1	Test A	$\operatorname{Roundup}\left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix} \\ \begin{pmatrix} \frac{19 \cdot 10^6}{\operatorname{PRI}_{\mu sec}} \end{pmatrix} \right\}$	60%	30			
		Test B						
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
Aggrega	ate (Radar T	Types 1-4)		80%	120			
Note	Short Pulse	e Radar Ty	/pe 0 should be use	ed for the detection ba	andwidth test, channel			
1:	move time,							
Test A:	15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a							
Test B:	15 unique l	PRI values	s randomly selected	d within the range of 5	518-3066 µsec, with a			
	minimum increment of 1 µsec, excluding PRI values selected in Test A							

Table 5 Short Pulse Radar Test Waveforms

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous the previous waveforms in Tests A or B.

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4.

Pulse Repetition Frequency	Pulse Repetition Frequency	Pulse Repetition Interval
Number	(Pulses Per Second)	(Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 5a - Pulse Repetition Intervals Values for Test A

8.4.2 Long Pulse Radar Test Waveforms

		and the second second second						
A STATE AND	Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Number of Trials
the second	5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 6 – Long Pulse Radar Test Waveform

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

- 1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- 2) There are a total of 8 to 20 *Bursts* in the 12 second period, with the number of *Bursts* being randomly chosen. This number is *Burst Count*.
- 3) Each *Burst* consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each *Burst* within the 12 second sequence may have a different number of pulses.
- 4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a *Burst* will have the same pulse width. Pulses in different *Bursts* may have different pulse widths.
- 5) Each pulse has a linear frequency modulated chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a *transmission period* will have the same chirp width. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
- 6) If more than one pulse is present in a *Burst*, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a *Burst*, the random time interval between the first and second pulses is chosen independently of the random time interval between the second and third pulses.
- 7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to *Burst Count*. Each interval is of length (12,000,000 / *Burst Count*) microseconds. Each interval contains one *Burst*. The start time for the *Burst*, relative to the beginning of the interval, is between 1 and [(12,000,000 / *Burst Count*) (Total *Burst* Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each *Burst*

is chosen randomly.

GTS

A representative example of a Long Pulse Radar Type waveform:

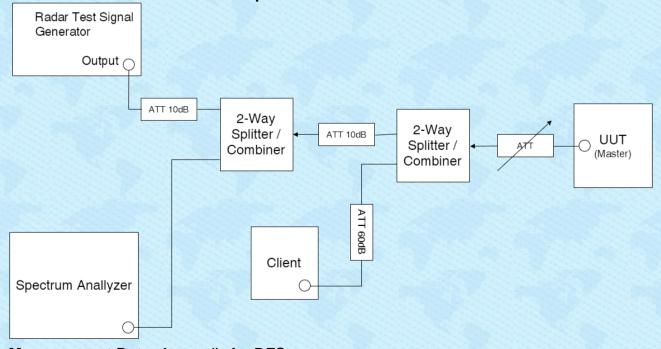
- 1) The total test waveform length is 12 seconds.
- 2) Eight (8) Bursts are randomly generated for the Burst Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.
- 7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 3,000,000 microsecond range).

8.4.3 Frequency Hopping Radar Test Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Table 7 – Frequency Hopping Radar Test Waveform

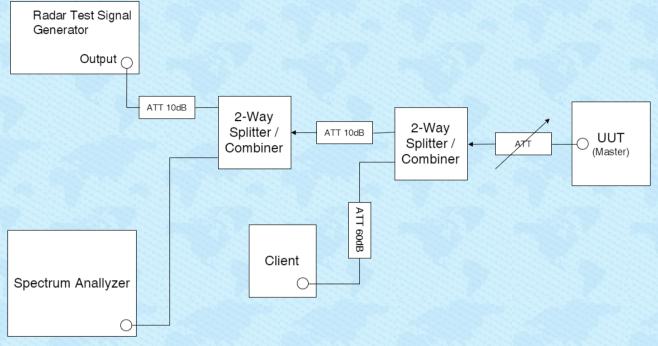
For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:


The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

9 Calibration of Radar Waveform

9.1 Radar Waveform Calibration Procedure

- 1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master
- The interference Radar Detection Threshold Level is -62dBm + 0dBi +1dB = -61dBm that had been taken into account the output power range and antenna gain.
- 3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process, there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.
- 4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was -62dBm + 0dBi +1dB = -61dBm. Capture the spectrum analyzer plots on short pulse radar waveform.


9.2 Conducted Calibration Setup

Measurement Data: Appendix for DFS

10 DFS Test Results

10.1 Conducted Test Setup Configuration

Channel Loading

System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:

	a) The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be transmitting in a streaming mode.			
	b) Software to ping the client is permitted to simulate data transfer but must have			
	random ping intervals.			
\square	c) Timing plots are required with calculations demonstrating a minimum channel			
	loading of approximately 17% or greater. For example, channel loading can be			
	estimated by setting the spectrum analyzer for zero span and approximate the Time			
	On/ (Time On + Off Time). This can be done with any appropriate channel BW and			
	modulation type.			
	d) Unicast or Multicast protocols are preferable but other protocols may be used. The			
	appropriate protocol used must be described in the test procedures.			

10.2 U-NII Detection Bandwidth (7.8.1)

10.2.1 Limit of U-NII Detection Bandwidth

The U-NII Detection Bandwidth shall contain minimum 100% of the 99% power bandwidth.

10.2.2 Test Procedure

- Adjust the equipment to produce a single *Burst* of any one of the Short Pulse Radar Types 0 – 4 in **Table 5** at the center frequency of the UUT *Operating Channel* at the specified *DFS Detection Threshold* level found in **Table 3**.
- 2. Set the UUT up as a standalone device (no associated Client or Master, as appropriate) and no traffic. Frame based systems will be set to a talk/listen ratio reflecting the worst case (maximum) that is user configurable during this test.
- 3. Generate a single radar *Burst*, and note the response of the UUT. Repeat for a minimum of 10 trials. The UUT must detect the *Radar Waveform* within the DFS band using the specified *U-NII Detection Bandwidth* criterion shown in **Table 4**. In cases where the channel bandwidth may exceed past the DFS band edge on specific channels (i.e., 802.11ac or wideband frame based systems) select a channel that has the entire emission bandwidth within the DFS band. If this is not possible, test the detection BW to the DFS band edge.
- 4. Starting at the center frequency of the UUT operating *Channel*, increase the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the *U-NII Detection Bandwidth* criterion specified in **Table 4**. Repeat this measurement in 1MHz steps at frequencies 5 MHz below where the detection rate begins to fall. Record the highest frequency (denote as F_H) at which detection is greater than or equal to the *U-NII Detection Bandwidth* criterion. Recording the detection rate at frequencies above F_H is not required to demonstrate compliance.
- 5. Starting at the center frequency of the UUT operating *Channel*, decrease the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the *U-NII Detection Bandwidth* criterion specified in **Table 4**. Repeat this measurement in 1MHz steps at frequencies 5 MHz above where the detection rate begins to fall. Record the lowest frequency (denote as F_L) at which detection is greater than or equal to the *U-NII Detection Bandwidth* criterion. Recording the detection rate at frequencies below F_L is not required to demonstrate compliance.

The U-NII Detection Bandwidth is calculated as follows: U-NII Detection Bandwidth = $F_H - F_L$

Measurement Data: Appendix for DFS

10.3 Channel Availability Check (7.8.2) 10.3.1 Limit of Channel Availability Check

The Initial *Channel Availability Check Time* tests that the UUT does not emit beacon, control, or data signals on the test *Channel* until the power-up sequence has been completed and the U-NII device checks for *Radar Waveforms* for one minute on the test *Channel*.

10.3.2 Test Procedure

This test does not use any *Radar Waveforms* and only needs to be performed one time.

- The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII *Channel* that must incorporate DFS functions. At the same time the UUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the *Channel* occupied by the radar (Chr) with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.
- 2. The UUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.
- 3. Confirm that the UUT initiates transmission on the channel

A) Radar Burst at the Beginning of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test *Channel* during a period equal to the *Channel Availability Check Time* and avoidance of operation on that *Channel* when a radar *Burst* with a level equal to the *DFS Detection Threshold* + 1 dB occurs at the beginning of the *Channel Availability Check Time*. This is illustrated in **Figure 15**.

- 1. The *Radar Waveform* generator and UUT are connected using the applicable test setup described in the sections on configuration for Conducted Tests (7.2) or Radiated Tests (7.3) and the power of the UUT is switched off.
- The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The *Channel Availability Check Time* commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.
- 3. A single *Burst* of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1. An additional 1 dB is added to the radar test signal to ensure it is at or above the *DFS Detection Threshold*, accounting for equipment variations/errors.
- 4. Visual indication or measured results on the UUT of successful detection of the radar *Burst* will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar *Burst* has been generated.
- 5. Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The *Channel Availability Check* results will be recorded.

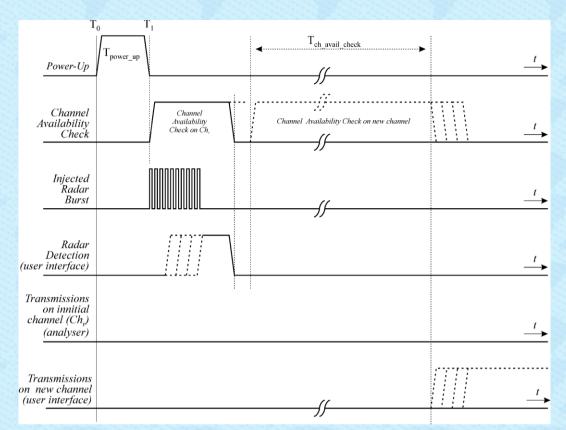


Figure 15: Example of timing for radar testing at the beginning of the Channel Availability Check Time

B) Radar Burst at the End of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar *Burst* with a level equal to the *DFS Detection Threshold* + 1dB occurs at the end of the *Channel Availability Check Time*. This is illustrated in **Figure 16**.

- 1. The *Radar Waveform* generator and UUT are connected using the applicable test setup described in the sections for Conducted Tests (7.2) or Radiated Tests (7.3) and the power of the UUT is switched off.
- The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The *Channel Availability Check Time* commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.
- 3. A single *Burst* of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1 + 54 seconds. An additional 1 dB is added to the radar test signal to ensure it is at or above the *DFS Detection Threshold*, accounting for equipment variations/errors.
- 4. Visual indication or measured results on the UUT of successful detection of the radar *Burst* will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar *Burst* has been generated.
- 5. Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The *Channel Availability Check* results will be recorded.

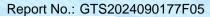


Figure 16: Example of timing for radar testing towards the end of the Channel Availability Check Time

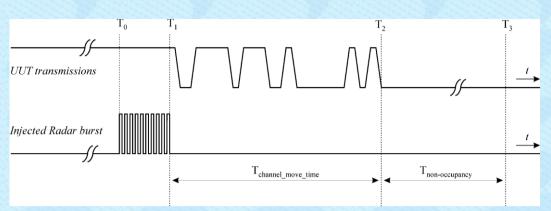
Measurement Data: Appendix for DFS

10.4 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period (7.8.3)

10.4.1 Limit of In-Service Monitoring

The EUT has In-Service Monitoring function to continuously monitor the radar signals. If radar is detected, it must leave the channel (Shutdown). The Channel Move Time to cease all transmissions on the current Channel upon detection of a Radar Waveform above the DFS Detection Threshold within 10 sec. The total duration of Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. Non-Occupancy Period time is 30 minutes during which a Channel will not be utilized after a Radar

Waveform is detected on that Channel.



10.4.2 Test Procedure

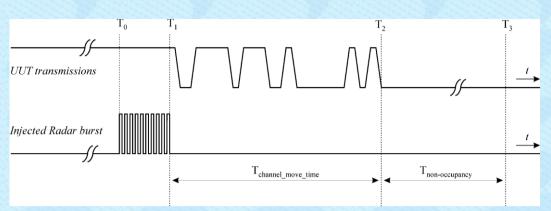
The steps below define the procedure to determine the above-mentioned parameters when a radar *Burst* with a level equal to the *DFS Detection Threshold* + 1dB is generated on the *Operating Channel* of the U-NII device (*In- Service Monitoring*).

- 1. One frequency will be chosen from the *Operating Channels* of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.
- 2. In case the UUT is a U-NII device operating as a *Client Device* (with or without DFS), a U-NII device operating as a *Master Device* will be used to allow the UUT (Client device) to *Associate* with the *Master Device*. In case the UUT is a *Master Device*, a U-NII device operating as a *Client Device* will be used and it is assumed that the Client will *Associate* with the UUT (Master). In both cases for conducted tests, the *Radar Waveform* generator will be connected to the *Master Device*. For radiated tests, the emissions of the *Radar Waveform* generator will be directed towards the *Master Device*. If the *Master Device* has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.
- 3. Stream the channel loading test file from the *Master Device* to the *Client Device* on the test *Channel* for the entire period of the test.
- 4. At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- 5. Observe the transmissions of the UUT at the end of the radar *Burst* on the *Operating Channel* for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (*Channel Move Time*). Measure and record the *Channel Move Time* and *Channel Closing Transmission Time* if radar detection occurs. **Figure 17** illustrates *Channel Closing Transmission Transmission Time*.
- 6. When operating as a *Master Device*, monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this *Channel*. Perform this test once and record the measurement result.
- 7. In case the UUT is a U-NII device operating as a *Client Device* with *In-Service Monitoring*, perform steps 1 to 6.

Figure 17: Example of Channel Closing Transmission Time & Channel Closing Time **Measurement Data**: Appendix for DFS

10.5 Statistical Performance Check (7.8.4)

10.5.1 Limit of Statistical Performance Check


Refer to Table 5, 5a, 6, 7

10.5.2 Test Procedure

The steps below define the procedure to determine the minimum percentage of successful detection requirements found in **Tables 5-7** when a radar burst with a level equal to the *DFS Detection Threshold* + 1dB is generated on the *Operating Channel* of the U-NII device (*In- Service Monitoring*).

- 1. One frequency will be chosen from the *Operating Channels* of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands.
- 2. In case the UUT is a U-NII device operating as a *Client Device* (with or without Radar Detection), a U-NII device operating as a *Master Device* will be used to allow the UUT (Client device) to *Associate* with the *Master Device*. In case the UUT is a *Master Device*, a U-NII device operating as a *Client Device* will be used and it is assumed that the Client will *Associate* with the UUT (Master). In both cases for conducted tests, the *Radar Waveform* generator will be connected to the *Master Device*. For radiated tests, the emissions of the *Radar Waveform* generator will be directed towards the *Master Device*. If the *Master Device* has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.
- 3. Stream the channel loading test file from the *Master Device* to the Client Device on the test *Channel* for the entire period of the test.
- 4. At time T0 the Radar Waveform generator sends the individual waveform for each of the Radar Types 1- 6 in Tables 5-7, at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- 5. Observe the transmissions of the UUT at the end of the Burst on the *Operating Channel* for duration greater than 10 seconds for Radar Type 0 to ensure detection occurs.
- 6. Observe the transmissions of the UUT at the end of the Burst on the *Operating Channel* for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs.
- 7. In case the UUT is a U-NII device operating as a *Client Device* with *In-Service Monitoring*, perform steps 1 to 6.

Figure 17: Example of Channel Closing Transmission Time & Channel Closing Time **Measurement Data**: Appendix for DFS

11 Test Setup Photo

Reference to the appendix I for details.

12 EUT Constructional Details

Reference to the appendix II for details.

----End----