FCC SAR TEST REPORT APPLICANT : Honeywell International Inc. **Honeywell Safety and Productivity Solutions** **Report No. : FA052309** **EQUIPMENT**: RT10A BRAND NAME : Honeywell Model Name : RT10AL0N FCC ID : HD5-RT10AL0N STANDARD : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** **IEEE 1528-2013** The product was received on May 23, 2020 and testing was started from Aug. 05, 2020 and completed on Aug. 11, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full. Reviewed by: Rose Wang / Supervisor Approved by: Kat Yin / Manager Lat Kin Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China Sporton International (Kunshan) Inc. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 1 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 ### **Report No. : FA052309** ## **Table of Contents** | 1. Statement of Compliance | | |---|----| | 2. Administration Data | | | 3. Guidance Applied | | | 4. Equipment Under Test (EUT) Information | | | 4.1 General Information | | | 5. RF Exposure Limits | | | 5.1 Uncontrolled Environment | 7 | | 5.2 Controlled Environment | | | 6. Specific Absorption Rate (SAR) | 8 | | 6.1 Introduction | 8 | | 6.2 SAR Definition | | | 7. System Description and Setup | 9 | | 7.1 E-Field Probe | 10 | | 7.2 Data Acquisition Electronics (DAE) | 10 | | 7.3 Phantom | | | 7.4 Device Holder | 12 | | 8. Measurement Procedures | | | 8.1 Spatial Peak SAR Evaluation | | | 8.2 Power Reference Measurement | | | 8.3 Area Scan | | | 8.4 Zoom Scan | | | 8.5 Volume Scan Procedures | 15 | | 8.6 Power Drift Monitoring | | | 9. Test Equipment List | | | 10. System Verification | | | 10.1 Tissue Simulating Liquids | | | 10.2 Tissue Verification | | | 10.3 System Performance Check Results | | | 11. RF Exposure Positions | | | 11.1 SAR Testing for Tablet | | | 12. Conducted RF Output Power (Unit: dBm) | | | 13. WiFi/Bluetooth Output Power (Unit: dBm) | | | 14. Antenna Location | | | 15. SAR Test Results | | | 15.1 Body SAR | | | 15.2 Repeated SAR Measurement | | | 16. Simultaneous Transmission Analysis | | | 16.1 Body Exposure Conditions | | | 17. Uncertainty Assessment | | | 18. References | 31 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | | Appendix E. Conducted RF Output Power Table | | Form version: 181113 ## History of this test report | Report No. | Version | Description | Issued Date | |------------|---------|-------------------------|---------------| | FA052309 | Rev. 01 | Initial issue of report | Aug. 26, 2020 | TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 3 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 ### 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **Honeywell International Inc. Honeywell Safety and Productivity Solutions, RT10A, RT10AL0N,** are as follows. | Highest Standalone 1g SAR Summary | | | Highest
Simultaneous | | |-----------------------------------|------------------------------------|-------------|-------------------------|---------------| | Equipment Class | Juipment Class Frequency Band Body | | Transmission | | | Equipment olass | 1 Teque | nicy Dania | 1g SAR (W/kg) | 1g SAR (W/kg) | | DTS | WLAN | 2.4GHz WLAN | 1.11 | 1.16 | | NII | VVLAIN | 5GHz WLAN | 1.18 | 1.50 | | DSS | Bluetooth | Bluetooth | <0.10 | - | | Date of Testing: | | | 2020/8/5~2020/8/11 | | #### Declaration of Conformity: The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. #### Comments and Explanations: The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications Sporton International (Kunshan) Inc. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 4 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 ### 2. Administration Data Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02. | Testing Laboratory | | | |--------------------|---|--------------------------------| | Test Firm | Sporton International (Kunshan) Inc. | | | Test Site Location | No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL: +86-512-57900158 FAX: +86-512-57900958 | | | Toot Site No | FCC Designation No. | FCC Test Firm Registration No. | | Test Site No. | CN1257 | 314309 | | Applicant | | | |--------------|---|--| | Company Name | Honeywell International Inc.
Honeywell Safety and Productivity Solutions | | | Address | 9680 Old Bailes Rd. Fort Mill, SC 29707 United States | | | Manufacturer | | | |--------------|---|--| | Company Name | Honeywell International Inc.
Honeywell Safety and Productivity Solutions | | | Address | 9680 Old Bailes Rd. Fort Mill, SC 29707 United States | | ### 3. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - · ANSI/IEEE C95.1-1992 - · IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 616217 D04 SAR for laptop and tablets v01r02 Sporton International (Kunshan) Inc. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 5 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 ## 4. Equipment Under Test (EUT) Information ### 4.1 General Information | Product Feature & Specification | | | |--|---|--| | Equipment Name | RT10A | | | Brand Name | Honeywell | | | Model Name | RT10AL0N | | | FCC ID | HD5-RT10AL0N | | | SN Code | 20115R0005 | | | Wireless Technology and
Frequency Range | WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC: 13.56 MHz | | | Mode | WLAN 2.4GHz 802.11b/g/n HT20
WLAN 5GHz 802.11a/n HT20/HT40
WLAN 5GHz 802.11ac VHT20/VHT40/VHT80
Bluetooth BR/EDR/LE
NFC:ASK | | | HW Version | V1.0 | | | SW Version | WLAN.HL.1.0.1.c2.3 | | | EUT Stage | Identical Prototype | | | Remark: | | | - 1. 802.11n-HT40 is not supported in 2.4GHz WLAN. - 2. The EUT has no voice function means data only. - 3. There are two types of batteries, with the same brand name and model name. We only chose higher battery capacity to do full SAR testing. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 6 of 31 Issued Date \pm Aug. 26, 2020 Form version: 181113 ### 5. RF Exposure Limits ### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA052309 ### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general
population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. Page 7 of 31 Sporton International (Kunshan) Inc. Issued Date : Aug. 26, 2020 TEL: +86-512-57900158 / FAX: +86-512-57900958 Form version: 181113 FCC ID: HD5-RT10AL0N ## 6. Specific Absorption Rate (SAR) ### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. ### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N ### 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 9 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 ### 7.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <EX3DV4 Probe> | Construction | Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | |---------------|---|--| | Frequency | 10 MHz – >6 GHz
Linearity: ±0.2 dB (30 MHz – 6 GHz) | | | Directivity | ±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis) | | | Dynamic Range | 10 μW/g – >100 mW/g
Linearity: ±0.2 dB (noise: typically <1 μW/g) | | | Dimensions | Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | **Report No. : FA052309** ### 7.2 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Fig 5.1 Photo of DAE Sporton International (Kunshan) Inc. Page 10 of 31 Issued Date : Aug. 26, 2020 ### 7.3 Phantom #### <SAM Twin Phantom> | NOAM I WIII I Hantoin | | | |-----------------------|---|---------| | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | J. 2000 | | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | |-----------------|--|--| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 11 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 ### 7.4 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. **Report No. : FA052309** Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones Page 12 of 31 #### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops ### 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA052309 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value
consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement ### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g Sporton International (Kunshan) Inc. Page 13 of 31 TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Aug. 26, 2020 FCC ID: HD5-RT10AL0N Form version: 181113 ### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. ### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: $\Delta x_{Area},\Delta y_{Area}$ | When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test | on, is smaller than the above,
must be \leq the corresponding
levice with at least one | Sporton International (Kunshan) Inc. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 14 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 #### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA052309 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|--|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | oatial resolution,
ormal to phantom | | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | ≤ 1.5·∆z | Zoom(n-1) | | Minimum zoom scan volume | x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. Page 15 of 31 Sporton International (Kunshan) Inc. Issued Date : Aug. 26, 2020 TEL: +86-512-57900158 / FAX: +86-512-57900958 Form version: 181113 FCC ID: HD5-RT10AL0N When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}, \leq 8 \text{ mm}, \leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ### 9. Test Equipment List | Managartana | Name of Employment | Town of Manager | Osaist Normalism | Calib | ration | |-----------------|---------------------------------|-----------------|------------------|--------------|------------| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 908 | 2019/3/25 | 2022/3/24 | | SPEAG | 5000MHz System Validation Kit | D5GHzV2 | 1113 | 2019/9/24 | 2020/9/23 | | SPEAG | Data Acquisition Electronics | DAE4 | 690 | 2020/3/26 | 2021/3/25 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3843 | 2019/9/26 | 2020/9/25 | | SPEAG | ELI4 Phantom | QD 0VA 001 BB | TP-1201 | NCR | NCR | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Agilent | Wireless Communication Test Set | E5515C | MY52102706 | 2020/4/16 | 2021/4/15 | | Agilent | ENA Series Network Analyzer | E5071C | MY46111157 | 2020/4/16 | 2021/4/15 | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1071 | 2019/10/28 | 2020/10/27 | | Anritsu | Vector Signal Generator | MG3710A | 6201682672 | 2020/1/8 | 2021/1/7 | | Rohde & Schwarz | Power Meter | NRVD | 102081 | 2019/8/15 | 2020/8/14 | | Rohde & Schwarz | Power Sensor | NRV-Z5 | 100538 | 2019/8/14 | 2020/8/13 | | Rohde & Schwarz | Power Sensor | NRV-Z5 | 100539 | 2019/8/14 | 2020/8/13 | | R&S | CBT BLUETOOTH TESTER | CBT | 101641 | 2020/1/8 | 2021/1/7 | | EXA | Spectrum Analyzer | FSV7 | 101631 | 2020/1/8 | 2021/1/7 | | Testo | Hygrometer | 608-H1 | 1241332088 | 2020/1/8 | 2021/1/7 | | FLUKE | DIGITAC THERMOMETER | 51II | 97240029 | 2019/8/15 | 2020/8/14 | | BONN | POWER AMPLIFIER | BLMA 0830-3 | 087193A | No | te 1 | | BONN | POWER AMPLIFIER | BLMA 2060-2 | 087193B | No | te 1 | | ARRA | Power Divider | A3200-2 | N/A | No | te 1 | | MCL | Attenuation1 | BW-S10W5+ | N/A | No | te 1 | | MCL | MCL Attenuation2 | | N/A | No | te 1 | | MCL | Attenuation3 | BW-S10W5+ | N/A | No | te 1 | |
Agilent | Dual Directional Coupler | 778D | 20500 | 20500 Note 1 | | | Agilent | Dual Directional Coupler | 11691D | MY48151020 | No | te 1 | ### Note: - 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. - 2. Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval. - 3. The justification data of dipole can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 16 of 31 Issued Date : Aug. 26, 2020 Report No.: FA052309 Form version: 181113 ### 10. System Verification ### 10.1 Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 11.1. Fig 11.1 Photo of Liquid Height for Body SAR TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 17 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 ### 10.2 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. Report No.: FA052309 | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------| | | | | | For Head | | | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | Simulating Liquid for 5GHz, Manufactured by SPEAG | Ingredients | (% by weight) | |--------------------|---------------| | Water | 64~78% | | Mineral oil | 11~18% | | Emulsifiers | 9~15% | | Additives and Salt | 2~3% | ### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(°C) | Conductivity
(σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta
(σ)
(%) | Delta
(ε _r)
(%) | Limit
(%) | Date | |--------------------|----------------|-------------------------|---------------------|--------------------------------|----------------------------|--|---------------------|-----------------------------------|--------------|-----------| | 2450 | Head | 22.6 | 1.784 | 40.625 | 1.80 | 39.20 | -0.89 | 3.64 | ±5 | 2020/8/5 | | 5250 | Head | 22.7 | 4.667 | 35.173 | 4.71 | 35.90 | -0.91 | -2.03 | ±5 | 2020/8/7 | | 5600 | Head | 22.6 | 5.012 | 34.639 | 5.07 | 35.50 | -1.14 | -2.43 | ±5 | 2020/8/9 | | 5750 | Head | 22.8 | 5.174 | 34.396 | 5.22 | 35.40 | -0.88 | -2.84 | ±5 | 2020/8/11 | Sporton International (Kunshan) Inc. Page 18 of 31 TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Aug. 26, 2020 FCC ID: HD5-RT10AL0N Form version: 181113 C SAR Test Report No.: FA052309 ### 10.3 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|--------------------|----------------|------------------------|---------------|--------------|------------|------------------------------|------------------------------|--------------------------------|------------------| | 2020/8/5 | 2450 | Head | 250 | 908 | 3843 | 690 | 12.00 | 52.80 | 48 | -9.09 | | 2020/8/7 | 5250 | Head | 100 | 1113 | 3843 | 690 | 8.62 | 80.50 | 86.2 | 7.08 | | 2020/8/9 | 5600 | Head | 100 | 1113 | 3843 | 690 | 7.63 | 83.40 | 76.3 | -8.51 | | 2020/8/11 | 5750 | Head | 100 | 1113 | 3843 | 690 | 7.36 | 80.00 | 73.6 | -8.00 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 19 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 ### 11. RF Exposure Positions ### 11.1 SAR Testing for Tablet This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom. **Report No. : FA052309** #### <EUT Setup Photos> Please refer to Appendix D for the test setup photos. Page 20 of 31 Sporton International (Kunshan) Inc. Issued Date \pm Aug. 26, 2020 TEL: +86-512-57900158 / FAX: +86-512-57900958 Form version: 181113 FCC ID: HD5-RT10AL0N ### 12. Conducted RF Output Power (Unit: dBm) The detailed conducted power table can refer to Appendix E. ### 13. WiFi/Bluetooth Output Power (Unit: dBm) #### **General Note:** 1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions. Report No.: FA052309 - 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s). - 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band. - 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following: - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required
channels are tested. Sporton International (Kunshan) Inc. Page 21 of 31 TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Aug. 26, 2020 FCC ID: HD5-RT10AL0N Form version: 181113 #### <2.4GHz Bluetooth> #### **General Note:** - 1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power. - 2. The Bluetooth duty cycle is 77.26 % as following figure, according to 2016 Oct. TCB workshop for Bluetooth SAR scaling need further consideration and the theoretical duty cycle is 83.3%, therefore the actual duty cycle will be scaled up to the theoretical value of Bluetooth reported SAR calculation TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 22 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 ### **Report No. : FA052309** ### 14. Antenna Location Edge 3⊷ Bottom Face TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 23 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 #### <SAR test exclusion table> #### **General Note:** - 1. The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW" - 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units - 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold. - 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - · Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison - 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)-(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and ≤ 6 GHz | | Wireless Interface | BT
ANT 1 | 2.4GHz
WLAN
ANT 2 | 2.4GHz
WLAN
ANT 1 | 2.4GHz
WLAN
ANT 1+2 | 5GHz
WLAN
ANT 2 | 5GHz
WLAN
ANT 1 | 5GHz
WLAN
ANT 1+2 | |----------------------|-------------------------|-------------|-------------------------|-------------------------|---------------------------|-----------------------|-----------------------|-------------------------| | Exposure
Position | Calculated Frequency | 2480MHz | 2462MHz | 2462MHz | 2462MHz | 5825MHz | 5825MHz | 5825MHz | | | Maximum power (dBm) | 7 | 15.5 | 15.5 | 18.5 | 13.0 | 13.0 | 16.0 | | | Maximum rated power(mW) | 5.0 | 35.0 | 35.0 | 71.0 | 20.0 | 20.0 | 40.0 | | | Separation distance(mm) | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | | Bottom Face | exclusion threshold | 1.6 | 11.0 | 11.0 | 22.3 | 9.7 | 9.7 | 19.3 | | | Testing required? | No | Yes | Yes | Yes | Yes | Yes | Yes | | | Separation distance(mm) | 146.0 | 5.0 | 146.0 | 5.0 | 5.0 | 146.0 | 5.0 | | Edge 1 | exclusion threshold | 1055.0 | 11.0 | 1056.0 | 22.3 | 9.7 | 1022.0 | 19.3 | | | Testing required? | No | Yes | No | Yes | Yes | No | Yes | | | Separation distance(mm) | 245.0 | 16.0 | 245.0 | 16.0 | 16.0 | 245.0 | 16.0 | | Edge 2 | exclusion threshold | 2045.0 | 3.4 | 2046.0 | 7.0 | 3.0 | 2012.0 | 6.0 | | | Testing required? | No | Yes | No | Yes | Yes | No | Yes | | | Separation distance(mm) | 28.0 | 183.0 | 28.0 | 28.0 | 183.0 | 28.0 | 28.0 | | Edge 3 | exclusion threshold | 0.3 | 1426.0 | 2.0 | 4.0 | 1392.0 | 1.7 | 3.5 | | | Testing required? | No | No | No | Yes | No | No | Yes | | | Separation distance(mm) | 5.0 | 230.0 | 5.0 | 5.0 | 230.0 | 5.0 | 5.0 | | Edge 4 | exclusion threshold | 1.6 | 1896.0 | 11.0 | 22.3 | 1862.0 | 9.7 | 19.3 | | | Testing required? | No | No | Yes | Yes | No | Yes | Yes | Sporton International (Kunshan) Inc. TEL: +86-512-57900158 / FAX: +86-512-57900958 Iss FCC ID: HD5-RT10AL0N Form Issued Date : Aug. 26, 2020 Form version: 181113 Page 24 of 31 ### 15. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA052309 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 4. There are two types of batteries, with the same brand name and model name. We only chose higher battery capacity to do full SAR testing. #### **WLAN Note:** - 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. - 2. Per KDB 248227 D01v02r02, U-NII-1 SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band. - 3. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - 4. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. - 5. During SAR testing the WLAN transmission was verified using a spectrum analyzer. Sporton International (Kunshan) Inc. Page 25 of 31 TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Aug. 26, 2020 FCC ID: HD5-RT10AL0N Form version: 181113 ## 15.1 Body SAR ### <WLAN 2.4GHz SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Antenna | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-------------|---------|--------------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0mm | Ant 2 | Full Power | 6 | 2437 | 15.33 | 15.50 | 1.040 | 100 | 1.000 | -0.05 | 1.020 | 1.061 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 2 | 0mm | Ant 2 | Full Power | 6 | 2437 | 15.33 | 15.50 | 1.040 | 100 | 1.000 | 0.06 | 0.171 | 0.178 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0mm | Ant 2 | Full Power | 6 | 2437 | 15.33 | 15.50 | 1.040 | 100 | 1.000 | 0.07 | 0.016 | 0.017 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 4 | 0mm | Ant 2 | Full Power | 6 | 2437 | 15.33 | 15.50 | 1.040 | 100 | 1.000 | -0.01 | 0.170 | 0.177 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 2 | Full Power | 6 | 2437 | 15.33 | 15.50 | 1.040 | 100 | 1.000 | 0.02 | 0.687 | 0.714 | | 01 | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0mm | Ant 2 | Full Power | 1 | 2412 | 15.26 | 15.50 | 1.057 | 100 | 1.000 | 0.01 | 1.050 | <mark>1.110</mark> | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0mm | Ant 2 | Full Power | 11 | 2462 | 15.08 | 15.50 | 1.102 | 100 | 1.000 | 0.08 | 0.985 | 1.085 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0mm | Ant 1 | Full Power | 1 | 2412 | 15.36 | 15.50 | 1.033 | 100 | 1.000 | -0.05 | 0.050 | 0.052 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 2 | 0mm | Ant 1 | Full Power | 1 | 2412 | 15.36 | 15.50 | 1.033 | 100 | 1.000 | 0.06 | 0.001 | 0.002 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0mm | Ant 1 | Full Power | 1 | 2412 | 15.36 | 15.50 | 1.033 | 100 | 1.000 | 0.05 | 0.054 | 0.055 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 4 | 0mm | Ant 1 | Full Power | 1 | 2412 | 15.36 | 15.50 | 1.033 | 100 | 1.000 | 0.06 | 0.251 | 0.259 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 1 | Full Power | 1 | 2412 | 15.36 | 15.50 | 1.033 | 100 | 1.000 | 0.03 | 0.244 | 0.252 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 4 | 0mm | Ant 1 | Full Power | 6 | 2437 | 15.25 | 15.50 | 1.059 | 100 | 1.000 | 0.03 | 0.235 | 0.249 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 4 | 0mm | Ant 1 | Full Power | 11 | 2462 |
14.94 | 15.50 | 1.138 | 100 | 1.000 | 0.01 | 0.214 | 0.243 | ### <Bluetooth SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Antenna | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------|-------|------------------|-------------|---------|--------------------|-----|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------------|------------------------|------------------------------|------------------------------| | | Bluetooth | 1Mbps | Bottom Face | 0mm | Ant 1 | Full Power | 78 | 2480 | 5.75 | 7.00 | 1.334 | 77.26 | 1.078 | 0.01 | 0.015 | 0.021 | | 02 | Bluetooth | 1Mbps | Edge 4 | 0mm | Ant 1 | Full Power | 78 | 2480 | 5.75 | 7.00 | 1.334 | 77.26 | 1.078 | -0.03 | 0.018 | <mark>0.025</mark> | | | Bluetooth | 1Mbps | Edge 4 | 0mm | Ant 1 | Full Power | 0 | 2402 | 4.60 | 6.00 | 1.380 | 77.26 | 1.078 | 0.06 | 0.016 | 0.024 | | | Bluetooth | 1Mbps | Edge 4 | 0mm | Ant 1 | Full Power | 39 | 2441 | 3.76 | 5.00 | 1.330 | 77.26 | 1.078 | 0.05 | 0.017 | 0.025 | **Sporton International (Kunshan) Inc.**TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 26 of 31 Issued Date: Aug. 26, 2020 Form version: 181113 ## SPORTON LAB. FCC SAR Test Report ### <WLAN5G SAR> | | · · | | | | | | | | | | | | | | | | |-------------|------------|-------------------|------------------|-------------|---------|--------------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Antenna | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | Ant 2 | Full Power | 54 | 5270 | 12.55 | 13.00 | 1.109 | 91.61 | 1.092 | 0.02 | 0.652 | 0.790 | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 2 | 0mm | Ant 2 | Full Power | 54 | 5270 | 12.55 | 13.00 | 1.109 | 91.61 | 1.092 | -0.04 | 0.072 | 0.087 | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 3 | 0mm | Ant 2 | Full Power | 54 | 5270 | 12.55 | 13.00 | 1.109 | 91.61 | 1.092 | 0.02 | 0.001 | 0.001 | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 2 | Full Power | 54 | 5270 | 12.55 | 13.00 | 1.109 | 91.61 | 1.092 | 0.01 | 0.003 | 0.003 | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | Ant 2 | Full Power | 54 | 5270 | 12.55 | 13.00 | 1.109 | 91.61 | 1.092 | 0.07 | 0.325 | 0.394 | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | Ant 2 | Full Power | 62 | 5310 | 5.86 | 6.00 | 1.033 | 91.61 | 1.092 | 0.03 | 0.102 | 0.115 | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | Ant 1 | Full Power | 54 | 5270 | 12.68 | 13.00 | 1.076 | 92.91 | 1.076 | 0.07 | 0.013 | 0.015 | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 2 | 0mm | Ant 1 | Full Power | 54 | 5270 | 12.68 | 13.00 | 1.076 | 92.91 | 1.076 | 0.05 | 0.001 | 0.001 | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 3 | 0mm | Ant 1 | Full Power | 54 | 5270 | 12.68 | 13.00 | 1.076 | 92.91 | 1.076 | 0.01 | 0.030 | 0.034 | | 03 | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 54 | 5270 | 12.68 | 13.00 | 1.076 | 92.91 | 1.076 | 0.02 | 0.971 | 1.125 | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | Ant 1 | Full Power | 54 | 5270 | 12.68 | 13.00 | 1.076 | 92.91 | 1.076 | 0.05 | 0.402 | 0.466 | | | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 62 | 5310 | 5.80 | 6.00 | 1.047 | 92.91 | 1.076 | 0.05 | 0.244 | 0.275 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | Ant 2 | Full Power | 110 | 5550 | 10.10 | 11.50 | 1.380 | 91.61 | 1.092 | 0.01 | 0.461 | 0.695 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 2 | 0mm | Ant 2 | Full Power | 110 | 5550 | 10.10 | 11.50 | 1.380 | 91.61 | 1.092 | 0.03 | 0.407 | 0.614 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 3 | 0mm | Ant 2 | Full Power | 110 | 5550 | 10.10 | 11.50 | 1.380 | 91.61 | 1.092 | 0.08 | 0.013 | 0.020 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 2 | Full Power | 110 | 5550 | 10.10 | 11.50 | 1.380 | 91.61 | 1.092 | 0.03 | 0.011 | 0.016 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | Ant 2 | Full Power | 110 | 5550 | 10.10 | 11.50 | 1.380 | 91.61 | 1.092 | 0.06 | 0.194 | 0.292 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | Ant 2 | Full Power | 142 | 5710 | 9.89 | 11.50 | 1.449 | 91.61 | 1.092 | 0.03 | 0.409 | 0.647 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | Ant 2 | Full Power | 102 | 5510 | 9.57 | 10.00 | 1.104 | 91.61 | 1.092 | 0.04 | 0.411 | 0.496 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | Ant 1 | Full Power | 126 | 5630 | 10.35 | 11.50 | 1.303 | 92.91 | 1.076 | 0.01 | 0.018 | 0.026 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 2 | 0mm | Ant 1 | Full Power | 126 | 5630 | 10.35 | 11.50 | 1.303 | 92.91 | 1.076 | 0.05 | 0.013 | 0.018 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 3 | 0mm | Ant 1 | Full Power | 126 | 5630 | 10.35 | 11.50 | 1.303 | 92.91 | 1.076 | 0.03 | 0.024 | 0.034 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 126 | 5630 | 10.35 | 11.50 | 1.303 | 92.91 | 1.076 | 0.02 | 0.792 | 1.111 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | Ant 1 | Full Power | 126 | 5630 | 10.35 | 11.50 | 1.303 | 92.91 | 1.076 | -0.05 | 0.791 | 1.109 | | 04 | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 110 | 5550 | 10.30 | 11.50 | 1.318 | 92.91 | 1.076 | 0.1 | 0.830 | 1.177 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 134 | 5670 | 10.31 | 11.50 | 1.315 | 92.91 | 1.076 | 0.02 | 0.822 | 1.163 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 102 | 5510 | 8.83 | 10.00 | 1.309 | 92.91 | 1.076 | 0.01 | 0.751 | 1.058 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 142 | 5710 | 10.34 | 11.50 | 1.306 | 92.91 | 1.076 | 0.03 | 0.741 | 1.041 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | Ant 1 | Full Power | 102 | 5510 | 8.83 | 10.00 | 1.309 | 92.91 | 1.076 | 0.04 | 0.725 | 1.021 | | | WLAN5.5GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | Ant 1 | Full Power | 142 | 5710 | 10.34 | 11.50 | 1.306 | 92.91 | 1.076 | 0.05 | 0.772 | 1.085 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | Ant 2 | Full Power | 159 | 5795 | 12.76 | 13.00 | 1.057 | 91.61 | 1.092 | 0.01 | 0.636 | 0.734 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 2 | 0mm | Ant 2 | Full Power | 159 | 5795 | 12.76 | 13.00 | 1.057 | 91.61 | 1.092 | 0.04 | 0.057 | 0.066 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 3 | 0mm | Ant 2 | Full Power | 159 | 5795 | 12.76 | 13.00 | 1.057 | 91.61 | 1.092 | 0.02 | 0.013 | 0.015 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 2 | Full Power | 159 | 5795 | 12.76 | 13.00 | 1.057 | 91.61 | 1.092 | -0.07 | 0.012 | 0.014 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | Ant 2 | Full Power | 159 | 5795 | 12.76 | 13.00 | 1.057 | 91.61 | 1.092 | 0.06 | 0.332 | 0.383 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | Ant 2 | Full Power | 151 | 5755 | 12.64 | 13.00 | 1.086 | 91.61 | 1.092 | 0.04 | 0.561 | 0.666 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 1 | 0mm | Ant 1 | Full Power | 159 | 5795 | 11.83 | 13.00 | 1.309 | 92.91 | 1.076 | -0.02 | 0.020 | 0.028 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 2 | 0mm | Ant 1 | Full Power | 159 | 5795 | 11.83 | 13.00 | 1.309 | 92.91 | 1.076 | 0.04 | 0.001 | 0.001 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 3 | 0mm | Ant 1 | Full Power | 159 | 5795 | 11.83 | 13.00 | 1.309 | 92.91 | 1.076 | 0.01 | 0.045 | 0.064 | | 05 | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 159 | 5795 | 11.83 | 13.00 | 1.309 | 92.91 | 1.076 | 0.02 | 0.829 | 1.168 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Bottom Face | 0mm | Ant 1 | Full Power | 159 | 5795 | 11.83 | 13.00 | 1.309 | 92.91 | 1.076 | -0.05 | 0.253 | 0.356 | | | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 151 | 5755 | 11.81 | 13.00 | 1.315 | 92.91 | 1.076 | 0.09 | 0.705 | 0.998 | | | | I | | | | · | | | | l | · | <u> </u> | · | · | | | Sporton International (Kunshan) Inc. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page 27 of 31 Issued Date : Aug. 26, 2020 Form version: 181113 ### 15.2 Repeated SAR Measurement | No. | Band | Mode | Test
Position | Gap
(mm) | Antenna | Power
Reduction | Ch. | Freq.
(MHz) | Power | | Tune-up
Scaling
Factor | Cycle | | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|------------|-------------------|------------------|-------------|---------|--------------------|-----|----------------|-------|-------|------------------------------|-------|-------|------------------------|------------------------------|-------|------------------------------| | 1st | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0mm | Ant 2 | Full Power | 1 | 2412 | 15.26 | 15.50 | 1.057 | 100 | 1.000 | 0.01 | 1.050 | 1 | 1.110 | | 2nd | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0mm | Ant 2 | Full Power | 1 | 2412 | 15.26 | 15.50 | 1.057 | 100 | 1.000 | 0.04 | 0.992 | 1.058 | 1.048 | | 1st | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 54 | 5270 | 12.68 | 13.00 | 1.076 | 92.91 | 1.076 | 0.02 | 0.971 | 1 | 1.125 | | 2nd | WLAN5.3GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 54 | 5270 | 12.68 | 13.00 | 1.076 | 92.91 | 1.076 | 0.04 | 0.951 | 1.021 | 1.102 | | 1st
 WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 110 | 5550 | 10.30 | 11.50 | 1.318 | 92.91 | 1.076 | 0.1 | 0.830 | 1 | 1.177 | | 2nd | WLAN5.5GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 110 | 5550 | 10.30 | 11.50 | 1.318 | 92.91 | 1.076 | 0.05 | 0.800 | 1.038 | 1.135 | | 1st | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 159 | 5795 | 11.83 | 13.00 | 1.309 | 92.91 | 1.076 | 0.02 | 0.829 | 1 | 1.168 | | 2nd | WLAN5.8GHz | 802.11n-HT40 MCS0 | Edge 4 | 0mm | Ant 1 | Full Power | 159 | 5795 | 11.83 | 13.00 | 1.309 | 92.91 | 1.076 | 0.03 | 0.811 | 1.022 | 1.142 | #### **General Note:** - 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. FCC ID: HD5-RT10AL0N Issued Date: Aug. 26, 2020 Form version: 181113 Page 28 of 31 ### 16. Simultaneous Transmission Analysis | No | . Simultaneous Transmission Configurations | Body | |----|--|------| | 1. | 2.4GHz WLAN Ant 1 + 2.4GHz WLAN Ant 2 | Yes | | 2. | 5GHz WLAN Ant 1 + 5GHz WLAN Ant 2 | Yes | Report No.: FA052309 #### **General Note:** - 1. The EUT has no voice function means data only. - 2. According to the EUT character, WLAN 5GHz and Bluetooth can't transmit simultaneously - 3. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment though they have independent antenna. - 4. WLAN 2.4GHz and Bluetooth share the same antenna so can't transmit simultaneously. - 5. The reported SAR summation is calculated based on the same configuration and test position. - 6. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. #### 16.1 Body Exposure Conditions | Exposure Position | 1
2.4GHz WLAN
Ant 2
1g SAR
(W/kg) | 2
2.4GHz WLAN
Ant 1
1g SAR
(W/kg) | 3
5GHz WLAN
Ant 2
1g SAR
(W/kg) | 4
5GHz WLAN
Ant 1
1g SAR
(W/kg) | 1+2
Summed
1g SAR (W/kg) | 3+4
Summed
1g SAR (W/kg) | |--------------------|---|---|---|---|--------------------------------|--------------------------------| | Bottom Face at 0mm | 0.714 | 0.252 | 0.394 | 1.109 | 0.97 | <mark>1.50</mark> | | Edge 1 at 0mm | 1.110 | 0.052 | 0.790 | 0.028 | <mark>1.16</mark> | 0.82 | | Edge 2 at 0mm | 0.178 | 0.002 | 0.614 | 0.018 | 0.18 | 0.63 | | Edge 3 at 0mm | 0.017 | 0.055 | 0.020 | 0.064 | 0.07 | 0.08 | | Edge 4 at 0mm | 0.177 | 0.259 | 0.016 | 1.177 | 0.44 | 1.19 | Test Engineer: Nick Hu, Tony Zhang, Hank Chang, Yuankai Kong Sporton International (Kunshan) Inc. Page 29 of 31 TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Aug. 26, 2020 FCC ID: HD5-RT10AL0N Form version: 181113 ### 17. Uncertainty Assessment Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg. Therefore, the measurement uncertainty table is not required in this report. **Report No. : FA052309** Sporton International (Kunshan) Inc. Page 30 of 31 TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Aug. 26, 2020 FCC ID: HD5-RT10AL0N Form version: 181113 ### 18. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" **Report No. : FA052309** - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015. - [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [8] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [9] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015 Sporton International (Kunshan) Inc. Page 31 of 31 TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Aug. 26, 2020 FCC ID: HD5-RT10AL0N Form version: 181113 ## Appendix A. Plots of System Performance Check The plots are shown as follows. **Sporton International (Kunshan) Inc.**TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page: A1 of A1 Issued Date: Aug. 26, 2020 Form version: 181113 ### System Check Head 2450MHz #### **DUT: D2450V2 - SN:908** Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.784$ S/m; $\epsilon_r = 40.625$; $\rho = 1000$ Date: 2020.8.5 kg/m^3 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.06, 7.06, 7.06); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2020.3.26 - Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=250mW/Area Scan (71x71x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 16.5 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.54 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 25.0 W/kg SAR(1 g) = 12 W/kg; SAR(10 g) = 5.53 W/kg Maximum value of SAR (measured) = 16.0 W/kg ### System Check Head 5250MHz #### **DUT: D5GHzV2 - SN:1113** Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5250 MHz; $\sigma = 4.667$ S/m; $\epsilon_r = 35.173$; $\rho = 1000$ Date: 2020.8.7 kg/m^3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.74, 4.74, 4.74); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2020.3.26 - Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=100mW/Area Scan (71x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.5 W/kg Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 46.46 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 31.0 W/kg SAR(1 g) = 8.62 W/kg; SAR(10 g) = 2.52 W/kgMaximum value of SAR (measured) = 19.1 W/kg 0 dB = 19.1 W/kg = 12.81 dBW/kg ### System Check_Head_5600MHz #### **DUT: D5GHzV2 - SN:1113** Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: HSL 5000 Medium parameters used: f = 5600 MHz; $\sigma = 5.012$ S/m; $\varepsilon_r = 34.639$; $\rho = 1000$ Date: 2020.8.9 kg/m^3 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.47, 4.47, 4.47); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2020.3.26 - Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=100mW/Area Scan (71x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.4 W/kg Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 39.21 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.16 W/kgMaximum value of SAR (measured) = 18.3 W/kg 0 dB = 18.3 W/kg = 12.62 dBW/kg ### System Check Head 5750MHz #### **DUT: D5GHzV2 - SN:1113** Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5750 MHz; σ = 5.174 S/m; ϵ_r = 34.396; ρ = 1000 Date: 2020.8.11 kg/m^3 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.44, 4.44, 4.44); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2020.3.26 - Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201 - Measurement SW: DASY52, Version
52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=100mW/Area Scan (71x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.2 W/kg Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 37.48 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.08 W/kgMaximum value of SAR (measured) = 18.3 W/kg 0 dB = 18.3 W/kg = 12.62 dBW/kg #### Appendix B. Plots of SAR Measurement Report No.: FA052309 The plots are shown as follows. Sporton International (Kunshan) Inc. Page: B1 of B1 TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Aug. 26, 2020 Form version: 181113 FCC ID: HD5-RT10AL0N #### 01_WLAN2.4GHz_802.11b 1Mbps_Edge 1_0mm_Ant2_Ch1 Communication System: UID 0, 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.738$ S/m; $\epsilon_r = 40.776$; $\rho = 1000$ Date: 2020.8.5 kg/m^3 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.06, 7.06, 7.06); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2020.3.26 - Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (61x111x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.81 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.813 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.41 W/kg SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.436 W/kg Maximum value of SAR (measured) = 1.88 W/kg 0 dB = 1.88 W/kg = 2.74 dBW/kg #### 02 Buletooh 1Mbps Edge 4 0mm Ch78 Communication System: UID 0, Bluetooth (0); Frequency: 2480 MHz; Duty Cycle: 1:1.294 Medium: HSL_2450 Medium parameters used: f = 2480 MHz; σ = 1.817 S/m; ϵ_r = 40.531; ρ = 1000 kg/m³ Date: 2020.8.5 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.06, 7.06, 7.06); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2020.3.26 - Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (51x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0329 W/kg **Zoom Scan (7x8x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.251 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.0620 W/kg SAR(1 g) = 0.018 W/kg; SAR(10 g) = 0.006 W/kg Maximum value of SAR (measured) = 0.0311 W/kg #### 03 WLAN5GHz 802.11n-HT40 MCS0 Edge 4 0mm Ant 1 Ch54 Communication System: UID 0, 802.11n (0); Frequency: 5270 MHz; Duty Cycle: 1:1.076 Medium: HSL_5000 Medium parameters used: f = 5270 MHz; σ = 4.686 S/m; ϵ_r = 35.148; ρ = 1000 kg/m³ Date: 2020.8.7 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.74, 4.74, 4.74); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2020.3.26 - Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (61x121x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.20 W/kg **Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.821 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 4.43 W/kg SAR(1 g) = 0.971 W/kg; SAR(10 g) = 0.257 W/kg Maximum value of SAR (measured) = 2.43 W/kg 0 dB = 2.43 W/kg = 3.86 dBW/kg #### 04 WLAN5GHz 802.11n-HT40 MCS0 Edge 4 0mm Ant 1 Ch110 Communication System: UID 0, 802.11n (0); Frequency: 5550 MHz; Duty Cycle: 1:1.076 Medium: HSL_5000 Medium parameters used: f = 5550 MHz; $\sigma = 4.966$ S/m; $\epsilon_r = 34.711$; $\rho = 1000$ kg/m³ Date: 2020.8.9 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.47, 4.47, 4.47); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2020.3.26 - Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (61x121x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.38 W/kg **Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 3.448 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 4.36 W/kg **SAR(1 g) = 0.830 W/kg; SAR(10 g) = 0.241 W/kg**Maximum value of SAR (measured) = 2.50 W/kg 0 dB = 2.50 W/kg = 3.98 dBW/kg #### 05 WLAN5GHz 802.11n-HT40 MCS0 Edge 4 0mm Ant 1 Ch159 Communication System: UID 0, 802.11n (0); Frequency: 5795 MHz; Duty Cycle: 1:1.076 Medium: HSL_5000 Medium parameters used: f = 5795 MHz; $\sigma = 5.22$ S/m; $\epsilon_r = 34.35$; $\rho = 1000$ kg/m³ Date: 2020.8.11 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.44, 4.44, 4.44); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2020.3.26 - Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1201 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (61x121x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.95 W/kg **Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 3.228 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 4.14 W/kg SAR(1 g) = 0.829 W/kg; SAR(10 g) = 0.222 W/kg Maximum value of SAR (measured) = 2.27 W/kg ### Appendix C. DASY Calibration Certificate The DASY calibration certificates are shown as follows. Sporton International (Kunshan) Inc. TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: HD5-RT10AL0N Page: C1 of C1 Issued Date: Aug. 26, 2020 Form version: 181113 Report No.: FA052309 In Collaboration with ### CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl/a/chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60087 ### CALIBRATION CERTIFICATE Object D2450V2 - SN: 908 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 25, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 28, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.com Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA
connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60087 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.com #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) "C | 39.6 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | rain: | | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.8 ± 6 % | 2.00 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | ines. | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.91 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.6 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60087 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 57.3Ω+ 5.18 μΩ | | | |--------------------------------------|----------------|--|--| | Return Loss | - 21.6dB | | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 52.6Ω+ 5.81 JΩ | | | |--------------------------------------|----------------|--|--| | Return Loss | - 24.1dB | | | #### General Antenna Parameters and Design | Electrical Delay (one direction) 1.020 ns | Electrical Delay (one direction) | 1.020 ns | |---|----------------------------------|----------| |---|----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | NAME OF THE PROPERTY PR | 1,000,000 | |--|-----------| | Manufactured by | SPEAG | | | | Certificate No: Z19-60087 Page 4 of 8 Add: No.51 Xuryuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cm #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 908 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.841$ S/m; $\varepsilon_t = 39.63$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.62, 7.62, 7.62) @ 2450 MHz; Calibrated: 1/31/2019 Date: 03.25.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.04 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.07 W/kg Maximum value of SAR (measured) = 22.4 W/kg 0 dB = 22.4 W/kg = 13.50 dBW/kg Certificate No: Z19-60087 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.com #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 908 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.003$ S/m; $\varepsilon_r = 53.78$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.79, 7.79, 7.79) @ 2450 MHz; Calibrated: 1/31/2019 Date: 03.25.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.51 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kg Maximum value of SAR (measured) = 21.4 W/kg 0 dB = 21.4 W/kg = 13.30 dBW/kg Certificate No: Z19-60087 Page 7 of 8 ### Impedance Measurement Plot for Body TSL ### D2450V2, Serial No. 908 Extended Dipole Calibrations Referring to KDB 865664 D01 v01r02, if
dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | | | | | 2450V2 | ? – serial no. 9 | 908 | | | | | | |------------------------|---------------------|--------------|----------------------|----------------|---------------------------|------------------|---------------------|--------------|----------------------|----------------|---------------------------|----------------| | | | | 2450 | Head | | | | | 2450 | Body | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real Impedance (ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | Return-Loss
(dB) | Delta
(%) | Real Impedance (ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2019.3.25 | -21.6 | | 57.3 | | 5.2 | | -24.1 | | 52.6 | | 5.8 | | | 2020.3.24 | -22.7 | -0.05 | 57.5 | -0.18 | 2.4 | 2.81 | -26.1 | -0.08 | 55.01 | -2.40 | 1.493 | 4.32 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 #### Dipole Verification Data> D2450V2, serial no. 908 #### 2450MHz - Head #### 2450MHz - Body TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D5GHzV2-1113 Sep19 Accreditation No.: SCS 0108 ### CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1113 Calibration procedure(s) QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: September 24, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 3503 | 25-Mar-19 (No. EX3-3503_Mar19) | Mar-20 | | DAE4 | SN: 601 | 30-Apr-19 (No. DAE4-601_Apr19) | Apr-20 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 2/12 | | Approved by: | Katja Pokovic | Technical Manager | mm | Issued: September 25, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | #### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | to tollering parameters | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 4.53 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 3500 | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 5000 | 2003 | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2,40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1113_Sep19 ## Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |---
-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 5.03 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | (4000) | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 51.7 Ω - 6.2 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.0 dB | | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.0 Ω - 2.7 Ω | | |--------------------------------------|-----------------|--| | Return Loss | - 24.1 dB | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 56.7 Ω - 1.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.9 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.195 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| #### DASY5 Validation Report for Head TSL Date: 24.09.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1113 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.53$ S/m; $\epsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.88$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.03$ S/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.4, 5.4, 5.4) @ 5250 MHz, ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 25.03.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.04.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.54 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 18.1 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.00 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.40 W/kg; SAR(10 g) = 2.40 W/kg Maximum value of SAR (measured) = 19.4 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.13 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.30 W/kg Maximum value of SAR (measured) = 19.0 W/kg 0 dB = 18.1 W/kg = 12.58 dBW/kg ### Impedance Measurement Plot for Head TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 C Client Sporton Certificate No: DAE4-690 Mar20 ### CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 690 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) Calibration date: March 26, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%: Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 03-Sep-19 (No:25949) | Sep-20 | | Secondary Standards | 1D # | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 09-Jan-20 (in house check) | In house check: Jan-21 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 09-Jan-20 (in house check) | In house check: Jan-21 | Name Function Signature Calibrated by: Eric Hainfeld Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: March 26, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-690 Mar20 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ## DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV, full range = -100...+300 mV full range = -1.....+3mV Low Range: 1LSB = 61nV , DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | × | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.708 ± 0.02% (k=2) | 404.320 ± 0.02% (k=2) | 405.284 ± 0.02% (k=2) | | Low Range | 3,98091 ± 1.50% (k=2) | 3.99691 ± 1.50% (k=2) | 3.93809 ± 1.50% (k=2) | #### Connector Angle | Connector Angle to be used in DASY system | 34.0 ° ± 1 ° | |---|--------------| | | O4.0 | ### Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200033.46 | 0.84 | 0.00 | | Channel X +
Input | 20008.04 | 2.81 | 0.01 | | Channel X - Input | -20004.44 | 1.63 | -0.01 | | Channel Y + Input | 200033.01 | 0.28 | 0.00 | | Channel Y + Input | 20004.74 | -0.31 | -0.00 | | Channel Y - Input | -20006.65 | -0.48 | 0.00 | | Channel Z + Input | 200032.64 | -2.81 | -0.00 | | Channel Z + Input | 20006.13 | 1.16 | 0.01 | | Channel Z - Input | -20004.98 | 1.17 | -0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.43 | -0.43 | -0.02 | | Channel X + Input | 200.02 | -0.96 | -0.48 | | Channel X - Input | -198.74 | 0,19 | -0.09 | | Channel Y + Input | 2001.49 | 0.62 | 0,03 | | Channel Y + Input | 200.61 | -0.27 | -0.13 | | Channel Y - Input | -200.64 | -1.61 | 0.81 | | Channel Z + Input | 2001.03 | 0.27 | 0.01 | | Channel Z + Input | 200.69 | -0.18 | -0.09 | | Channel Z - Input | -199.00 | 0.18 | -0.09 | | | | | | Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (µV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 14.15 | 12.87 | | | - 200 | -12.83 | -14.22 | | Channel Y | 200 | 2.88 | 2.89 | | | - 200 | -4.30 | -4.61 | | Channel Z | 200 | 0.04 | 0.39 | | | - 200 | -0.98 | -1.01 | | | | | | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (µV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | 15V | -2.69 | -2.68 | | Channel Y | 200 | 7.95 | 120 | -0.72 | | Channel Z | 200 | 6.90 | 5.66 | 7.1 | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16115 | 16314 | | Channel Y | 16039 | 16490 | | Channel Z | 16004 | 15469 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MO | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.25 | -1.26 | 1.64 | 0.55 | | Channel Y | -0.70 | -1.97 | 1.10 | 0.51 | | Channel Z | 1.51 | -0.80 | 2.84 | 0.58 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA | | |----------------|-------------------|---------------|------------------|--| | Supply (+ Vcc) | +0.01 | +6 | +14 | | | Supply (- Vcc) | -0.01 | -8 | -9 | | #### 7Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: EX3-3843_Sep19 C ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3843 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: September 26, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards ID | | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-19 (No. 217-02894) | Apr-20 | | DAE4 | SN: 660 | 19-Dec-18 (No. DAE4-660_Dec18) | Dec-19 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-18 (No. ES3-3013_Dec18) | Dec-19 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | Territorii i marijasi adobbit | | | | Calibrated by: Name Function Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued, October 1, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: tissue simulating liquid TSL sensitivity in free space NORMx,y,z sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A. B. C. D o rotation around probe axis Polarization o 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 3 i.e., 8 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by
determining the NORMx (no uncertainty required). Page 2 of 9 Certificate No: EX3-3843_Sep19 September 26, 2019 EX3DV4 - SN:3843 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3843 **Rasic Calibration Parameters** | Basic Calibration Para | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.34 | 0.35 | 0.25 | ± 10.1 % | | DCP (mV) ^b | 110.9 | 96.1 | 101.1 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | C | dB | WR
mV | Max
dev. | Unc
(k=2) | |------|---------------------------|---|---------|------------|-----|------|----------|-------------|--------------| | 0 CW | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 134.1 | ±3.8 % | ±4.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 146.5 | | | | | + | Z | 0.0 | 0.0 | 1.0 | | 132.2 | | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). Numerical linearization parameter; uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3843 September 26, 2019 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3843 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (") | -34.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3843 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz)° | Parameter D
Relative
Permittivity | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ⁰
(mm) | Unc
(k=2) | |----------|---|-----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0,89 | 9.37 | 9.37 | 9.37 | 0.50 | 0.87 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.07 | 9.07 | 9.07 | 0.43 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.92 | 8.92 | 8.92 | 0.41 | 0.90 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.17 | 8.17 | 8.17 | 0.32 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.95 | 7.95 | 7.95 | 0,34 | 0.87 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.67 | 7.67 | 7.67 | 0.32 | 0.87 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.66 | 7.66 | 7.66 | 0.34 | 0.87 | ± 12.0 % | | 2300 | 39.5 | 1,67 | 7.30 | 7.30 | 7.30 | 0.26 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.06 | 7.06 | 7.06 | 0.35 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.90 | 6.90 | 6.90 | 0.43 | 0.80 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 4.74 | 4.74 | 4.74 | 0.40 | 1.80 | ± 14.0 % | | 5600 | 35.5 | 5.07 | 4,47 | 4.47 | 4.47 | 0.40 | 1.80 | ± 14.0 % | | 5750 | 35.4 | 5.22 | 4.44 | 4.44 | 4.44 | 0.40 | 1.80 | ± 14.0 % | Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConyE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. September 26, 2019 EX3DV4- SN:3843 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3843 September 26, 2019 ### Receiving Pattern (\$\phi\$), \$\theta = 0^\circ\$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3843 September 26, 2019 ### **Conversion Factor Assessment** ### Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz #### Appendix E. Conducted RF Output Power Table Report No.: FA052309 The detailed power tables are shown as follows. Sporton International (Kunshan) Inc. Page: E1 of E1 TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Aug. 26, 2020 Form version: 181113 FCC ID: HD5-RT10AL0N | 2.4GHz WLAN | Ant 1 | | | | | | | | |-------------|-------------------|-----|------|------------------------|------------------|--------------|--|--| | | | | | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | | | - 1 | 2412 | 15.38 | 15.50 | | | | | | 802.11b 1Mbps | 6 | 2437 | 15.25 | 15.50 | 100.00 | | | | 2.4GHz WLAN | | 11 | 2462 | 14.94 | 15.50 | | | | | | | 1 | 2412 | 14.45 | 15.00 | | | | | | 802.11g 6Mbps | 6 | 2437 | 14.67 | 15.00 | 95.64 | | | | | | 11 | 2462 | 13.44 | 13.50 | | | | | | | - | 2412 | 12.51 | 13.00 | | | | | | 802.11n-HT20 MCS0 | 6 | 2437 | 14.57 | 15.00 | 95.34 | | | | | | 11 | 2462 | 10.84 | 11.00 | | | | | 5GHz WLAN | | | Ant 1 | | | | |-------------|---------------------|----|--------------------|------------------------|------------------|--------------| | | | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | 36 | 5180 | 11.89 | 13.00 | | | | 802.11a 6Mbps | 40 | 5200 | 11.90 | 13.00 | 96.62 | | | OUL TIE ORDJE | 44 | 5220 | 12.00 | 13.00 | 30.02 | | | | 48 | 5240 | 12.07 | 13.00 | | | | 802.11n-HT20 MC80 | 36 | 5180 | 11.86 | 13.00 | 95.68 | | | | 40 | 5200 | 11.77 | 13.00 | | | 5 20Hz WLAN | | 44 | 5220 | 11.91 | 13.00 | | | 5.2GHZ WLAN | | 48 | 5240 | 11.97 | 13.00 | | | | 802 116-HT40 MCS0 | 38 | 5190 | 10.13 | 10.50 | 92.91 | | | 802 11H-1140 MCS0 | 46 | 5230 | 12.96 | 13.00 | 92.91 | | | | 36 | 5180 | 11.91 | 13.00 | | | | 802.11ac-VHT20 MCS0 | 40 | 5200 | 11.89 | 13.00 | 95.36 | | | 802.11MC-VH120 MCS0 | 44 | 5220 | 11.97 | 13.00 | 90.30 | | | | 48 | 5240 | 12.06 | 13.00 | | | | 802.11ac-VHT40 MCS0 | 38 | 5190 | 10.13 | 10.50 | 92.31 | | | SULT INC-VALAGEMENT | 46 | 5230 | 13.00 | 13.00 | as-31 | | | 802.11ac-VHT80 MC90 | 42 | 5210 | 3.48 | 3.50 | 85.79 | | 5GHz WLAN | | | Ant 1 | | | | |-------------|-----------------------|----|-------|------------------------|------------------|--------------| | | | | | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | 52 | 5260 | 11.93 | 13.00 | | | | 802.11a 6Mbps | 56 | 5280 | 11.67 | 13.00 | 96.62 | | | 802. I I iii GMDpsi | 60 | 5300 | 11.63 | 13.00 | 90.02 | | | | 64 | 5320 | 11.47 | 13.00 | 1 | | | 802.11n-HT20 MCS0 | 52 | 5260 | 11.77 | 13.00 | 95.68 | | | | 56 | 5280 | 11.55 | 13.00 | | | 5.3GHz WLAN | | 60 | 5300 | 11.44 | 13.00 | | | 5.3GHZ WLAN | | 64 | 5320 | 11.41 | 13.00 | | | | 000 44- 1/740 14000 | 54 | 5270 | 12.68 | 13.00 | 92.91 | | | 802.11n-HT40 MCS0 | 62 | 5310 | 5.80 | 6.00 | 92.91 | | | | 52 | 5260 | 11.82 | 13.00 | | | | 802 11anJ/HT20 MCS0 | 56 | 5280 | 11.69 | 13.00 | 95.36 | | | 802.11W0-VH120 MIC60 | 60 | 5300 | 11.56 | 13.00 | 90.30 | | | | 64 | 5320 | 11.43 | 13.00 | | | | 802 11an VHT40 MCS0 | 54 | 5270 | 12.70 | 13.00 | 92.31 | | | OUE.TIME-VITI40 MICSO | 62 | 5310 | 5.83 | 6.00 | aa.31 | | | 802.11ac-VHT80 MCS0 | 58 | 5290 | 3.45 | 3.50 | 85.79 | | 5GHz WLAN | | | Ant 1 | | | Ant 1 | | | | | | | |--------------|---------------------|-----|--------------------|------------------------|------------------|--------------|--|--|--|--|--|--| | | Mode | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | | | | | | | 100 | 5500 | 10.88 | 11.50 | | | | | | | | | | | 116 | 5580 | 10.75 | 11.50 | | | | | | | | | | 802.11a 6Mbps | 124 | 5620 | 10.97 | 11.50 | 96.62 | | | | | | | | | OUZ. I I M GMDps | 132 | 5660 | 10.70 | 11.50 | 90.02 | | | | | | | | | | 140 | 5700 | 10.75 | 11.50 | | | | | | | | | | | 144 | 5720 | 10.91 | 11.50 | 1 | | | | | | | | | | 100 | 5500 | 10.61 | 11.50 | | | | | | | | | | | 116 | 5580 | 10.70 | 11.50 | 1 | | | | | | | | | 802 11n-HT20 MCS0 | 124 | 5620 | 10.80 | 11.50 | 95.68 | | | | | | | | | 802.11n-H120 MCs0 | 132 | 5660 | 10.60 | 11.50 | 90.00 | | | | | | | | | | 140 | 5700 | 10.57 | 11.50 | 1 | | | | | | | | | | 144 | 5720 | 10.78 | 11.50 | | | | | | | | | | 802.11n-HT40 MCS0 | 102 | 5510 | 8.83 | 10.00 | | | | | | | | | 5 SOHO WI AN | | 110 | 5550 | 10.30 | 11.50 | | | | | | | | | 5.5GHZ WLAN | | 126 | 5630 | 10.35 | 11.50 | 92.91 | | | | | | | | | | 134 | 5670 | 10.31 | 11.50 | | | | | | | | | | | 142 | 5710 | 10.34 | 11.50 | 1 | | | | | | | | | | 100 | 5500 | 10.69 | 11.50 | | | | | | | | | | | 116 | 5580 | 10.79 | 11.50 | 1 | | | | | | | | | | 124 | 5620 | 10.97 | 11.50 | 95.96 | | | | | | | | | 802.11ac-VHT20 MCS0 | 132 | 5660 | 10.73 | 11.50 | 95.36 | | | | | | | | | | 140 | 5700 | 10.80 | 11.50 | 1 | | | | | | |
 | | 144 | 5720 | 10.82 | 11.50 | | | | | | | | | | | 102 | 5510 | 8.74 | 10.00 | | | | | | | | | | | 110 | 5550 | 10.47 | 11.50 | 1 | | | | | | | | | 802.11ac-VHT40 MCS0 | 126 | 5630 | 10.50 | 11.50 | 92.31 | | | | | | | | | | 134 | 5670 | 10.43 | 11.50 | 1 | | | | | | | | | | 142 | 5710 | 10.44 | 11.50 | | | | | | | | | | | 106 | 5530 | 6.49 | 8.00 | | | | | | | | | | 802.11ac-VHT80 MCS0 | 122 | 5610 | 10.74 | 11.00 | 85.79 | | | | | | | | | | 138 | 5690 | 10.54 | 11.00 | 1 | | | | | | | | 5GHz WLAN | Ant 1 | | | | | | | | |-----------|----------------------|-----|--------------------|------------------------|------------------|--------------|--|--| | | | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | | | 149 | 5745 | 11.93 | 13.00 | | | | | | 802.11a 6Mbps | 157 | 5785 | 12.14 | 13.00 | 96.62 | | | | | | 165 | 5825 | 11.74 | 13.00 | | | | | | 802.11n-HT20 MCS0 | 149 | 5745 | 11.87 | 13.00 | 95.68 | | | | | | 157 | 5785 | 11.98 | 13.00 | | | | | | | 165 | 5825 | 11.63 | 13.00 | | | | | | 802 116-HT40 MCS0 | 151 | 5755 | 11.81 | 13.00 | | | | | | 802 11HH140 MCS0 | 159 | 5795 | 11.83 | 13.00 | 92.91 | | | | | | 149 | 5745 | 11.93 | 13.00 | | | | | | 802.11ac-VHT20 MCS0 | 157 | 5785 | 12.10 | 13.00 | 95.36 | | | | | | 165 | 5825 | 11.74 | 13.00 | | | | | | 802 11ar-JVHT40 MCS0 | 151 | 5755 | 11.86 | 13.00 | 00.04 | | | | | 802.11MC-VH140 MCS0 | 159 | 5795 | 11.83 | 13.00 | | | | | | 802.11ac-VHT80 MCS0 | 155 | 5775 | 11.20 | 12.00 | 85.79 | | | | BT BR/FDR | | | | | | | | |-----------|-----------|-----------|---------------------|---------------------|---------------|--|--| | Mode | Channel | Frequency | A | Average power (dBm) | | | | | MODE | Createred | (MHz) | 11/ | tops | Tune-up Limit | | | | | CH00 | 2402 | 4.60 | | 6.00 | | | | BR / EDR | CH39 | 2441 | 3. | 76 | 5.00 | | | | | CH78 | 2480 | 5. | 75 | 7.00 | | | | BT BR/EDR | | | | | | | | | Mode | | Frequency | Average power (dBm) | | | | | | MODE | Criamin | (MHz) | 2Mbps | 3Mbps | Tune-up Limit | | | | | CH00 | 2402 | 1.28 | 1.49 | 2.00 | | | | BR/EDR | CH39 | 2441 | 0.25 | 0.38 | 2.00 | | | | | CH78 | 2480 | 2.53 | 2.61 | 3.00 | | | | BT LE 4.0 | | | | | | | | | Morte | Channel | Frequency | k | verage power (c | tBm) | | | | mode. | | (MHz) | | GFSK | | | | | | CH00 | 2402 | | 0.69 | | | | | LE | CH 19 | 2440 | | -0.59 | | | | | | CH39 | 2480 | 0.85 | | | | | | BT LE 5.0 | | | | |-----------|---------------|-----------|---------------------| | Mode | Channel | Frequency | Average power (dBm) | | | | (MHz) | 1Mbps | | | CH00 | 2402 | 0.87 | | LE | | 2440 | -0.42 | | | CH39 | 2480 | 1.08 | | | Tuno un Limit | | 1.60 | | 2.4GHz WLAN | Ant 2 | | | | | | | | |-------------|-------------------|-----|--------------------|------------------------|------------------|--------------|--|--| | | | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | | 802.11b 1Mbps | - 1 | 2412 | 15.26 | 15.50 | | | | | | | 6 | 2437 | 15.33 | 15.50 | 100.00 | | | | 2.4GHz.WLAN | | 11 | 2462 | 15.08 | 15.50 | | | | | | 802.11g 6Mbps | 1 | 2412 | 13.90 | 15.00 | 95.64 | | | | | | 6 | 2437 | 14.71 | 15.00 | | | | | | | 11 | 2462 | 12.85 | 13.50 | | | | | | | 1 | 2412 | 12.02 | 13.00 | | | | | | 802.11n-HT20 MCS0 | 6 | 2437 | 14.69 | 15.00 | 95.32 | | | | | | 11 | 2462 | 10.43 | 11.00 | | | | | 5GHz WLAN | | | Ant 2 | | | | |--------------|-------------------------|----|--------------------|------------------------|------------------|--------------| | | | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | 36 | 5180 | 11.81 | 13.00 | | | | 802.11a 6Mbos | 40 | 5200 | 11.89 | 13.00 | 95.98 | | | ouz. I ia oviopa | 44 | 5220 | 12.01 | 13.00 | 95.96 | | | | 48 | 5240 | 11.90 | 13.00 | | | | 802.11n-HT20 MCS0 | 36 | 5180 | 11.80 | 13.00 | 95.00 | | | | 40 | 5200 | 11.84 | 13.00 | | | 5 20Hz WI AN | | 44 | 5220 | 11.85 | 13.00 | | | | | 48 | 5240 | 11.80 | 13.00 | | | | 802 116HT40 MCS0 | 38 | 5190 | 9.90 | 10.50 | 91.61 | | | 802.11HH140 MCS0 | 46 | 5230 | 12.64 | 13.00 | 91.01 | | | | 36 | 5180 | 11.81 | 13.00 | | | | 802 11as VHT20 MCS0 | 40 | 5200 | 11.86 | 13.00 | 95.36 | | | 802 11W0-VH120 MC00 | 44 | 5220 | 11.94 | 13.00 | 95.36 | | | | 48 | 5240 | 11.91 | 13.00 | | | | 802 Has VHT40 MCS0 | 38 | 5190 | 9.92 | 10.50 | 91.61 | | | 802 I IND-VITI-40 MICSO | 46 | 5230 | 12.90 | 13.00 | 91.61 | | | 802.11ac-VHT80 MCS0 | 42 | 5210 | 2.66 | 3.50 | 86.25 | | | | - | | | | | | | |-------------|-----------------------|----|--------------------|------------------------|------------------|----------------------------------|--|--| | 5GHz WLAN | Ant 2 | | | | | | | | | | | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | | | | | | 802.11a 6Mbos | 52 | 5260 | 11.82 | 13.00 | | | | | | | 56 | 5280 | 11.87 | 13.00 | 05.00 | | | | | ouz. i ia oviopa | 60 | 5300 | 12.00 | 13.00 | 95.95 | | | | | | 64 | 5320 | 11.86 | 13.00 | | | | | | 802.11n-HT20 MCS0 | 52 | 5260 | 11.73 | 13.00 | 95.98
95.00
91.61
95.36 | | | | | | 56 | 5280 | 11.78 | 13.00 | | | | | 5.3GHz WLAN | | 60 | 5300 | 11.83 | 13.00 | | | | | 5.3GH2 WLAN | | 64 | 5320 | 11.75 | 13.00 | | | | | | 802.11n-HT40 MCS0 | 54 | 5270 | 12.55 | 13.00 | | | | | | 802.11n-H140 MCS0 | 62 | 5310 | 5.86 | 6.00 | 91.61 | | | | | | 52 | 5260 | 11.79 | 13.00 | | | | | | 802.11ac-VHT20 MCS0 | 56 | 5280 | 11.86 | 13.00 | 05.00 | | | | | 802 TIMO-VITIZO MICOO | 60 | 5300 | 11.83 | 13.00 | 95.36 | | | | | | 64 | 5320 | 11.75 | 13.00 | | | | | | 802.11ac-VHT40 MCS0 | 54 | 5270 | 12.63 | 13.00 | 91.61 | | | | | 802 TING-VITING MICSO | 62 | 5310 | 5.94 | 6.00 | 91.01 | | | | | 802.11ac-VHT80 MCS0 | 58 | 5290 | 2.68 | 3.50 | 86.25 | | | | 5GHz WLAN | | | Ant 2 | | | | |-----------|---------------------|-----|--------------------|------------------------|------------------|--------------| | | Mode | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | 100 | 5500 | 10.73 | 11.50 | | | | | 116 | 5580 | 10.76 | 11.50 | | | | 802.11a 6Mbps | 124 | 5620 | 10.75 | 11.50 | 95.98 | | | | 132 | 5860 | 10.70 | 11.50 | 95.98 | | | | 140 | 5700 | 11.10 | 11.50 | 1 | | | | 144 | 5720 | 11.20 | 11.50 | | | | | 100 | 5500 | 10.66 | 11.50 | | | | | 116 | 5580 | 10.64 | 11.50 | 1 | | | 802.11n-HT20 MCS0 | 124 | 5620 | 10.60 | 11.50 | 95.00 | | | | 132 | 5660 | 10.53 | 11.50 | 95.00 | | | | 140 | 5700 | 10.94 | 11.50 | | | | | 144 | 5720 | 10.84 | 11.50 | | | | | 102 | 5510 | 9.57 | 10.00 | | | | 802:11n-HT40 MCS0 | 110 | 5550 | 10.10 | 11.50 | 1 | | | | 126 | 5630 | 10.00 | 11.50 | 91.61 | | | | 134 | 5670 | 9.96 | 11.50 | | | | | 142 | 5710 | 9.89 | 11.50 | | | | | 100 | 5500 | 10.69 | 11.50 | | | | | 116 | 5580 | 10.67 | 11.50 | | | | | 124 | 5620 | 10.66 | 11.50 | | | | 802.11ac-VHT20 MCS0 | 132 | 5660 | 10.64 | 11.50 | 95.38 | | | | 140 | 5700 | 11.02 | 11.50 | | | | | 144 | 5720 | 11.05 | 11.50 | 1 | | | | 102 | 5510 | 9.54 | 10.00 | | | | | 110 | 5550 | 10.13 | 11.50 | | | | 802.11ac-VHT40 MCS0 | 126 | 5630 | 10.20 | 11.50 | 91.61 | | | | 134 | 5670 | 9.98 | 11.50 | | | | | 142 | 5710 | 10.00 | 11.50 | | | | | 106 | 5530 | 7.25 | 8.00 | | | | 802.11ac-VHT80 MCS0 | 122 | 5610 | 10.12 | 11.00 | 86.25 | | | | 138 | 5890 | 9.98 | 11.00 | | | 5GHz WLAN | Ant 2 | | | | | | | | | |-----------|---------------------|-----|--------------------|------------------------|------------------|--------------|--|--|--| | | | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | | | 802.11a 6Mbps | 149 | 5745 | 12.63 | 13.00 | | | | | | | | 157 | 5785 | 12.59 | 13.00 | 95.98 | | | | | | | 165 | 5825 | 12.66 | 13.00 | 1 | | | | | | 802.11n-HT20 MC90 | 149 | 5745 | 12.56 | 13.00 | | | | | | | | 157 | 5785 | 12.54 | 13.00 | 95.00 | | | | | | | 165 | 5825 | 12.32 | 13.00 | | | | | | | 802.11n-HT40 MCS0 | 151 | 5755 | 12.64 | 13.00 | 91.61 | | | | | | 802.11hH140 MC80 | 159 | 5795 | 12.76 | 13.00 | 91.01 | | | | | | | 149 | 5745 | 12.64 | 13.00 | | | | | | | 802.11ac-VHT20 MCS0 | 157 | 5785 | 12.59 | 13.00 | 95.36 | | | | | | | 165 | 5825 | 12.33 | 13.00 | | | | | | | 802.11ac-VHT40 MCS0 | 151 | 5755 | 12.04 | 13.00 | 91.61 | | | | | | 802 HWS-VHI-40 MCS0 | 159 | 5795 | 12.17 | 13.00 | 91.61 | | | | | | 802.11ac-VHT80 MCS0 | 155 | 5775 | 10.84 | 12.00 | 86.25 | | | | | 2.4GHz WLAN | | Ant 1+2 | | | | | | | | |--------------|-------------------|---------|------|------------------------|------------------|--------|--|--|--| | | | Charmel | | Average power
(dBm) | Tune-Up
Limit | | | | | | | | 1 | 2412 | 18.32 | 18.50 | | | | | | | 802.11b 1Mbps | 6 | 2437 | 18.30 | 18.50 | 100.00 | | | | | 2.4GHz WLAN | | 11 | 2462 | 18.02 | 18.50 | | | | | | 2 A GHZ WLAN | | 1 | 2412 | 17.20 | 18.00 | | | | | | | 802.11g 6Mbps | 6 | 2437 | 17.70 | 18.00 | 95.64 | | | | | | | 11 | 2462 | 16.17 | 16.50 | | | | | | | | - | 2412 | 15.28 | 16.00 | 95.34 | | | | | | 802:11n-HT20 MCS0 | 6 | 2437 | 17.64 | 18.00 | | | | | | | | 11 | 2462 | 10.43 | 14.00 | | | | | | 5GHz WLAN | Ant 1+2 | | | | | | | | | |-------------|---------------------|---------------------|--------------------|------------------------|------------------|--------------|--|--|--| | | | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | | | | 38 | 5180 | 14.88 | 16.00 | | | | | | | 802.11a 6Mbos | 40 | 5200 | 14.90 | 16.00 | 95.98 | | | | | | ouz. I la oviops | 44 | 5220 | 15.01 | 16.00 | 90.96 | | | | | | | 48 | 5240 | 14.99 | 16.00 | | | | | | | 802.11n-HT20 MC80 | 36 | 5180 | 14.84 | 16.00 | | | | | | | | 40 | 5200 | 14.82 | 16.00 | 95.00 | | | | | 5.2GHz WLAN | | 44 | 5220 | 14.89 | 16.00 | | | | | | | | 48 5240 14.90 16.00 | 16.00 | | | | | | | | | 802 116/HT40 MCS0 | 38 | 5190 | 13.03 | 13.50 | 91.61 | | | | | | 802.11hH140 MCSU | 46 | 5230 | 15.81 | 16.00 | 91.61 | | | | | | | 36 | 5180 | 14.87 | 16.00 | | | | | | | 802 11as-VHT20 MCS0 | 40 | 5200 | 14.88 | 16.00 | 95.36 | | | | | | 802 11W5-VH120
MCS0 | 44 | 5220 | 14.96 | 16.00 | 90.36 | | | | | | | 48 | 5240 | 14.99 | 16.00 | | | | | | | 802.11ac-VHT40 MCS0 | 38 | 5190 | 13.04 | 13.50 | 91.61 | | | | | | 802 1180-VH140 MCS0 | 46 | 5230 | 15.96 | 16.00 | 91.61 | | | | | | 802.11ac-VHT80 MCS0 | 42 | 5210 | 6.10 | 6.50 | 86.25 | | | | | 5GHz WLAN | Ant 1+2 | | | | | | | | |--------------|----------------------|----|------|------------------------|------------------|-------------------------|--|--| | | | | | Average power
(dBm) | Tune-Up
Limit | | | | | | | 52 | 5260 | 14.88 | 16.00 | | | | | | 802.11a 6Mbos | 56 | 5280 | 14.78 | 16.00 | 05.00 | | | | | ouz. i nii owops | 60 | 5300 | 14.83 | 16.00 | 90.96 | | | | | | 64 | 5320 | 14.68 | 16.00 | 95.98
95.00
91.81 | | | | | 802.11n-HT20 MCS0 | 52 | 5260 | 14.76 | 16.00 | 95.00 | | | | | | 56 | 5280 | 14.68 | 16.00 | | | | | 5 3GHz WI AN | | 60 | 5300 | 14.65 | 16.00 | | | | | 5.3GHZ WLAN | | 64 | 5320 | 14.60 | 16.00 | | | | | | 802.11n-HT40 MCS0 | 54 | 5270 | 15.63 | 16.00 | | | | | | 802.116-H140 MCS0 | 62 | 5310 | 8.84 | 9.00 | 91.61 | | | | | | 52 | 5260 | 14.81 | 16.00 | | | | | | 802 11as VHT20 MCS0 | 56 | 5280 | 14.78 | 16.00 | 95.36 | | | | | BUZ TING-VHI 20 MCS0 | 60 | 5300 | 14.70 | 16.00 | 90.36 | | | | | | 64 | 5320 | 14.60 | 16.00 | | | | | | 802.11ac-VHT40 MCS0 | 54 | 5270 | 15.67 | 16.00 | 91.61 | | | | | 802.11W0-VH140 MICOU | 62 | 5310 | 8.89 | 9.00 | 91.01 | | | | | 802.11ac-VHT80 MCS0 | 58 | 5290 | 6.09 | 6.50 | 86.25 | | | | EQ11-140 441 | | | | • | | | |--------------|----------------------|-----|--------------------|------------------------|------------------|--------------| | 5GHz WLAN | | | Ant 1+ | 2 | | | | | Mode | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | | 100 | 5500 | 13.81 | 14.50 | | | | | 116 | 5580 | 13.76 | 14.50 | | | | 802.11a 6Mbos | 124 | 5620 | 13.87 | 14.50 | 95.98 | | | Usa. I In Unispi | 132 | 5660 | 13.71 | 14.50 | 30.30 | | | | 140 | 5700 | 13.94 | 14.50 | | | | | 144 | 5720 | 14.07 | 14.50 | | | | 802.11n-HT20 MC90 | 100 | 5500 | 13.65 | 14.50 | | | | | 116 | 5580 | 13.68 | 14.50 | | | | | 124 | 5620 | 13.71 | 14.50 | 95.00 | | | | 132 | 5660 | 13.58 | 14.50 | 95.00 | | | | 140 | 5700 | 13.77 | 14.50 | | | | | 144 | 5720 | 13.82 | 14.50 | | | | 802.11n-HT40 MCS0 | 102 | 5510 | 12.23 | 13.00 | 91.61 | | 5.5GHz WLAN | | 110 | 5550 | 13.21 | 14.50 | | | D.DURZ WLAN | | 126 | 5630 | 13.19 | 14.50 | | | | | 134 | 5670 | 13.15 | 14.50 | | | | | 142 | 5710 | 13.13 | 14.50 | | | | | 100 | 5500 | 13.70 | 14.50 | | | | | 116 | 5580 | 13.74 | 14.50 | | | | 802.11ac-VHT20 MCS0 | 124 | 5620 | 13.82 | 14.50 | 95.36 | | | 802.11ac-VHI 20 MCS0 | 132 | 5660 | 13.69 | 14.50 | 95.36 | | | | 140 | 5700 | 13.92 | 14.50 | | | | | 144 | 5720 | 13.94 | 14.50 | | | | | 102 | 5510 | 12.17 | 13.00 | | | | | 110 | 5550 | 13.31 | 14.50 | | | | 802.11ac-VHT40 MCS0 | 126 | 5630 | 13.36 | 14.50 | 91.61 | | | | 134 | 5670 | 13.22 | 14.50 | | | | | 142 | 5710 | 13.23 | 14.50 | | | | | 106 | 5530 | 9.90 | 11.00 | | | | 802.11ac-VHT80 MCS0 | 122 | 5610 | 13.45 | 14.00 | 86.25 | | | | 138 | 5690 | 13.28 | 14.00 | | | 5GHz WLAN | Ant 1+2 | | | | | | |-----------|---------------------|-----|--------------------|------------------------|------------------|--------------| | | | | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | | | 802.11a 6Mbps | 149 | 5745 | 15.30 | 16.00 | 95.98 | | | | 157 | 5785 | 15.38 | 16.00 | | | | | 165 | 5825 | 15.23 | 16.00 | | | | 802.11n-HT20 MCS0 | 149 | 5745 | 15.24 | 16.00 | 95.00 | | | | 157 | 5785 | 15.28 | 16.00 | | | | | 165 | 5825 | 15.00 | 16.00 | | | | 802.11n-HT40 MC90 | 151 | 5755 | 15.26 | 16.00 | 91.61 | | | | 159 | 5795 | 15.33 | 16.00 | | | | 802.11ac-VHT20 MCS0 | 149 | 5745 | 15.31 | 16.00 | 95.36 | | | | 157 | 5785 | 15.38 | 16.00 | | | | | 165 | 5825 | 15.05 | 16.00 | | | | 802.11ac-VHT40 MCS0 | 151 | 5755 | 14.96 | 16.00 | 91.61 | | | | 159 | 5795 | 15.01 | 16.00 | | | | 802.11ac-VHT80 MCS0 | 155 | 5775 | 14.03 | 15.00 | 86.25 |