

FCC Test Report

Test report
On Behalf of
Guangzhou Unionlux Lighting Co., Limited
For

car devil eye projector Lens Model No.: PL-01, PL-02, PL-03, PL-04, PL-05, PL-06, PL-07, PL-08, PL-09

FCC ID: 2A6HD-PL-01

Prepared For: Guangzhou Unionlux Lighting Co., Limited

Room203, No.203-13 Yinglonglu, Guangzhou, Guangdong, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Nov. 18, 2024 ~ Nov. 28, 2024

Date of Report: Nov. 28, 2024 Report Number: HK2411186913-E

Test Result Certification

Applicant's name Guangzhou Unionlux Lighting Co., Limited

Room203, No.203-13 Yinglonglu, Guangzhou, Guangdong,

China

Manufacturer's Name: Guangzhou Unionlux Lighting Co., Limited

Room203, No.203-13 Yinglonglu, Guangzhou, Guangdong,

China

Product description

Trade Mark: N/A

Product name.....: car devil eye projector Lens

Model and/or type reference :: PL-01, PL-02, PL-03, PL-04, PL-05, PL-06, PL-07, PL-08, PL-09

FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Test Result..... Pass

Testing Engineer :

(Len Liao)

Technical Manager

10x vuon

(Sliver Wan)

Authorized Signatory:

(Jason Zhou)

Table of Contents

1.	Test Result Summary	5
	1.1. Test Procedures and Results	5
	1.2. Information of the Test Laboratory	5
	1.3. Measurement Uncertainty	
2.		7
	2.1. General Description of EUT	
	2.2. Carrier Frequency of Channels	8
	2.3. Operation of EUT During Testing	
	2.4. Description of Test Setup	9
	2.5. Description of Support Units	10
3.	Genera Information	11
	3.1. Test Environment and Mode	11
4.	Test Results and Measurement Data	14
	4.1. Conducted Emission	14
	4.2. Test Result	
	4.3. Maximum Conducted Output Power	17
	4.4. Emission Bandwidth	19
	4.5. Power Spectral Density	25
	4.6. Conducted Band Edge and Spurious Emission Measurement	32
	4.7. Radiated Spurious Emission Measurement	42
	4.8. Antenna Requirement	68
5.	Photograph of Test	69
C	Photos of the EUT	70

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Nov. 28, 2024	Jason Zhou
TNG	THE DIM	THE THE	G mG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1. Test Result Summary

1.1. Test Procedures and Results

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247(b)(4)	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Peak Output Power	§15.247(b)(3)	PASS
6dB Emission Bandwidth	§15.247(a)(2)	PASS
Power Spectral Density	§15.247(e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	ltem	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3 HUAKTE	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2. EUT Description

2.1. General Description of EUT

Equipment:	car devil eye projector Lens
Model Name:	PL-01
Series Model:	PL-02, PL-03, PL-04, PL-05, PL-06, PL-07, PL-08, PL-09
Model Difference:	All model's the function, software and electric circuit are the same, only with a product model named different. Test sample mode: PL-01.
FCC ID:	2A6HD-PL-01
Antenna Type:	PCB Antenna
Antenna Gain:	-0.58dBi
Operation frequency:	802.11b/g/n 20:2412~2462 MHz 802.11n 40: 2422~2452MHz
Number of Channels:	802.11b/g/n20: 11CH 802.11n 40: 7CH
Modulation Type:	DSSS, OFDM
Power Source:	DC12V DC12V
Power Rating:	DC12V

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Antenna gain Refer to the antenna specifications.
- 3. The cable loss data is obtained from the supplier.
- 4. The test results in the report only apply to the tested sample.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.2. Carrier Frequency of Channels

	Channel List For 802.11b/802.11g/802.11n (HT20)							
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel (MHz)							
01	2412	04	2427	07	2442	10	2457	
02	2417	05	2432	08	2447	11	2462	
03	2422	06	2437	09	2452	-STING		

Channel List For 802.11n (HT40)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
TING_	KTESTAL	04	2427	07	2442	TESTIN	NTE
@ H		05	2432	08	2447	HUAL.	ALONA HOM
03	2422	06	2437	09	2452		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. Operation of EUT During Testing

Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4. Description of Test Setup

Operation of EUT during conducted testing and radiation testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co

2.5. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark
1	car devil eye projector Lens	N/A	PL-01	N/A	EUT
		HUAKTESTA		HUANTEST	- HV
W TES	TING		W TESTING	W TESTING	LAK TESTING
MIN HUN		0	With What	O HINE	No.
"TESTIN	TESTINE		TESTING	TESTING	TESTING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3. Genera Information

3.1. Test Environment and Mode

Operating Environment:			
Temperature:	25.0 °C	MAKTESI	WAK TES
Humidity:	56 % RH	(a)	(1)
Atmospheric Pressure:	1010 mbar	OKTESTING	-NG
Test Mode:			
Engineering mode:	Keep the EUT by select chann		

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

Operation mode:

Keep the EUT in continuous transmitting with modulation

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11n(H40).

3. Mode Test Duty Cycle

Tool Buly Gyolo		
Mode	Duty Cycle	Duty Cycle Factor (dB)
802.11b	0.909	-0.41
802.11g	0.925	-0.34
802.11n(H20)	0.924	-0.34
802.11n(H40)	0.910	-0.41

Test plots as follows:

4. Test Results and Measurement Data

4.1. Conducted Emission

Test Specification

Test Method: ANSI C63	5 C Section 1	15.207	KTE.	HUAKTED		
Kitsting	10.2012		(10)			
E. C.	ANSI C63.10:2013					
Frequency Range: 150 kHz to	150 kHz to 30 MHz					
Receiver setup: RBW=9 kl	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
Limits: (M 0.15 0.8		Limit (d Quasi-peak 66 to 56* 56 60	BuV) Average 56 to 46* 46 50	SAY TESTING		
Test Setup: Test t Remark E.U.T. Equip	Reference 40cm AC power able/Insulation plane ment Under Test pedence Stabilization New ight=0.8m	r 80cm LISN Filto	er — AC power	NATES PAR		
Test Mode: transmitting	g with modula	ation	IK TESTING	MAKTESTI		
Test Procedure: line improvides measuri 2. The per power to coupling refer to photogria. Both sinconduct emission the inter-	pedance stables a 50ohm/50 and	eted to the manification network out coupling out. The sare also cook of the cook of the cook of the cook on conducted out to the cook of	work (L.I.S.N. impedance onnected to the des a 500hm termination. (the test setulation of find the manged according the test anged according the test setulation of the test setulation of the manged according the test setulation of the manged according to the test setulation of the test setulation). This for the e main 1/50uH Please up and eximum and all of ding to		
Test Result: PASS	.C.	· KTES	TING			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment Manufacturer Model Serial Number Calibration Date Due						
Receiver	R&S	ESR-7	HKE-005	Feb. 20, 2024	Feb. 19, 2025	
LISN	R&S	ENV216	HKE-002	Feb. 20, 2024	Feb. 19, 2025	
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 20, 2024	Feb. 19, 2025	
10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 20, 2024	Feb. 19, 2025	
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2. Test Result

Not applicable.

Note: Since EUT is only for on-car use, so this test item not applicable.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

, all

Test Specification

4.3. Maximum Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02					
Limit:	30dBm					
Test Setup:	RF automatic control unit EUT HUMANTESTING HUMANTESTING					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the RF automatic control unit by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results in the test report. 					
Test Result:	PASS					

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025	
Power meter	Agilent	E4419B	HKE-085	Feb. 20, 2024	Feb. 19, 2025	
Power Sensor	Agilent	E9300A	HKE-086	Feb. 20, 2024	Feb. 19, 2025	
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

Mode	Test Channel	Frequency	Maximum Peak Conducted Output Power	LIMIT
	0.10.11101	(MHz)	(dBm)	dBm
802.11b	CH01	2412	12.49	30
802.11b	CH06	2437	12.51	30
802.11b	CH11	2462	12.96	30
802.11g	CH01	2412	12.44	30
802.11g	CH06	2437	12.52	30
802.11g	CH11	2462	12.88	30
802.11n(HT20)	CH01	2412	11.43	30
802.11n(HT20)	CH06	2437	11.67	30
802.11n(HT20)	CH11	2462	11.90	30
802.11n(HT40)	CH03	2422	12.22	30
802.11n(HT40)	CH06	2437	12.16	30
802.11n(HT40)	CH09	2452	12.36	30

Note: 1.The test results including the cable lose.

4.4. Emission Bandwidth

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	KDB 558074 D01 15.247 Meas Guidand	ce v05r02				
Limit:	>500kHz					
Test Setup:	Spectrum Analyzer EUT	NG HUAKTES THE				
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows FCC KDB Publica 15.247 Meas Guidance v05r02. Set to the maximum power setting an EUT transmit continuously. Make the measurement with the spectoresolution bandwidth (RBW) = 100 k Video bandwidth (VBW) = 300 kHz. an accurate measurement. The 6dB be greater than 500 kHz. Measure and record the results in the 	d enable the etrum analyzer's Hz. Set the In order to make bandwidth must				
Test Result:	PASS	0				

Test Instruments

ATTAL HOUSE	NO.	or Mr.	ALL HO.	ALL HOUSE	ALL HO.	
RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025	
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test data

Toot channel	6dB Emission Bandwidth (MHz)						
Test channel	802.11b	802.11g	802.11n(H20)	802.11n(H40)			
Lowest	9.040	16.040	17.280	34.800			
Middle	9.480	16.040	17.360	35.120			
Highest	9.080	16.360	16.320	35.040			
Limit:	>500kHz						
Test Result:	PASS MATES THE PASS						

Test plots as follows:

802.11b Modulation


Lowest channel

Middle channel

Highest channel

802.11g Modulation

Lowest channel

Middle channel

Highest channel

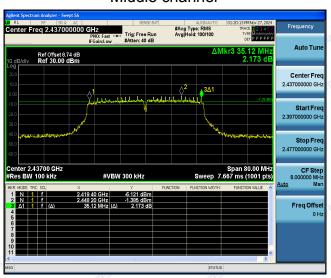


802.11n (HT20) Modulation

Lowest channel

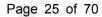
Middle channel

Highest channel


TEICATION.

802.11n (HT40) Modulation

Lowest channel


Middle channel

Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5. Power Spectral Density

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)				
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02				
Limit:	The average power spectral density shall not be greate than 8dBm in any 3kHz band at any time interval o continuous transmission.				
Test Setup:	Spectrum Analyzer EUI				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows Measurement procedure 10.2 method PKPSD of FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Employ trace averaging (Peak) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 				
Test Result:	PASS (MCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

EUT Set Mode	Channel	Test Result (dBm/30kHz)	Result (dBm/3kHz)
	Lowest	-1.95	-11.95
802.11b	Middle	-1.84	-11.84
	Highest	-1.39	-11.39
	Lowest	-2.46	-12.46
802.11g	Middle	-2.32	-12.32
	Highest	-2.61	-12.61
	Lowest	-3.48	-13.48
802.11n(H20)	Middle	-3.21	-13.21
	Highest	-3.42	-13.42
	Lowest	-5.11	-15.11
802.11n(H40)	Middle	-4.71	-14.71
	Highest	-4.47	-14.47
PSD test result (dE	3m/3kHz)= PSD	test result (dBm/30k	Hz)-10
Limit: 8dBm/3kHz			
Test Result:	STIN	PASS	STING
4 (190	N. P. C.	11/2/2	ak Tee

Test plots as follows:

802.11b Modulation

Lowest channel

Middle channel

Highest channel

802.11g Modulation

Lowest channel

Middle channel

Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

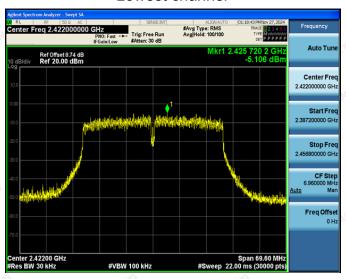
802.11n (HT20) Modulation


Lowest channel

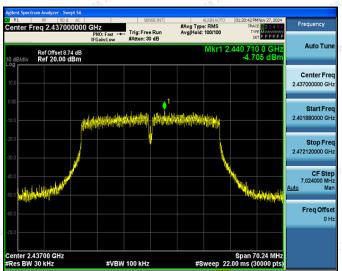
Middle channel

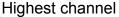
Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China




802.11n (HT40) Modulation

Lowest channel

Middle channel

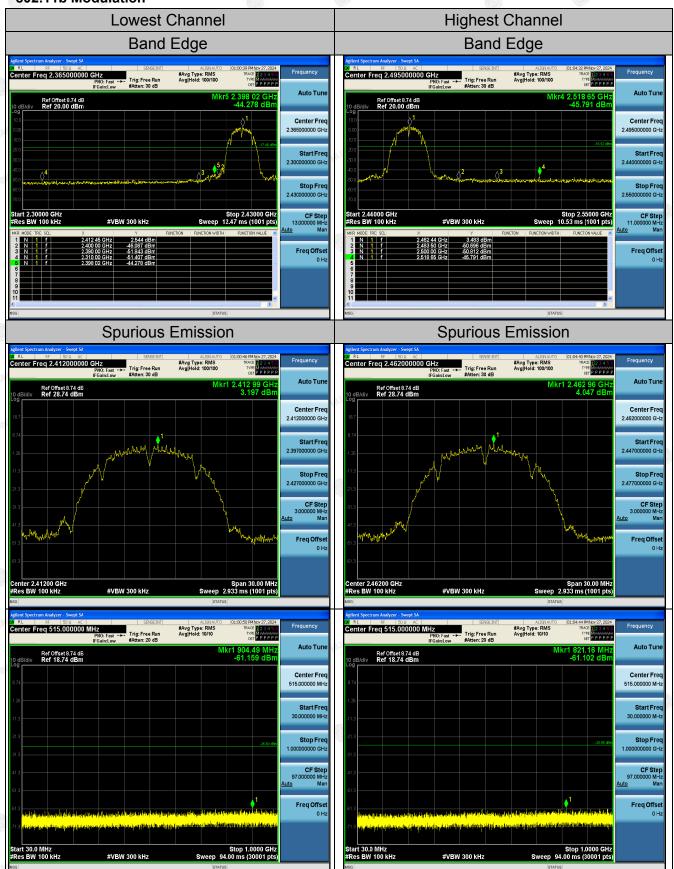
4.6. Conducted Band Edge and Spurious Emission Measurement

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02				
Limit:	In any 100 kHz bandwidth outside of the authorize frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB 30dB relative to the maximum PSD level in 100 kHz be RF conducted measurement and radiated emission which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 				
Test Result:	PASS				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

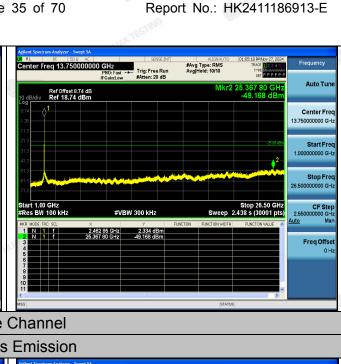
Test Instruments


RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025	
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 20, 2024	Feb. 19, 2025	
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 20, 2024	Feb. 19, 2025	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025	
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A	

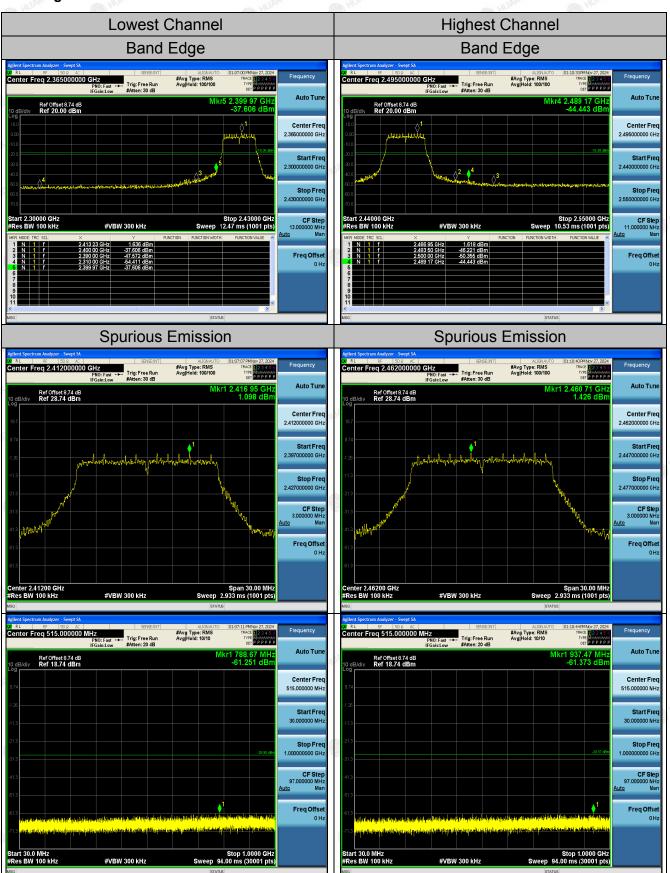
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

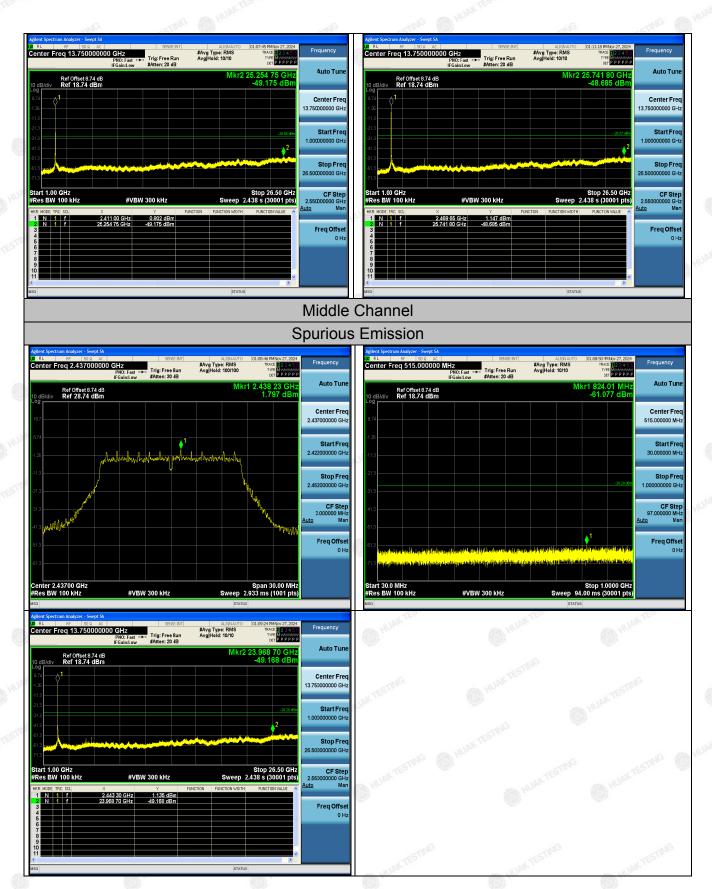
Test Data


802.11b Modulation

#Avg Type: RMS Avg|Hold: 10/10

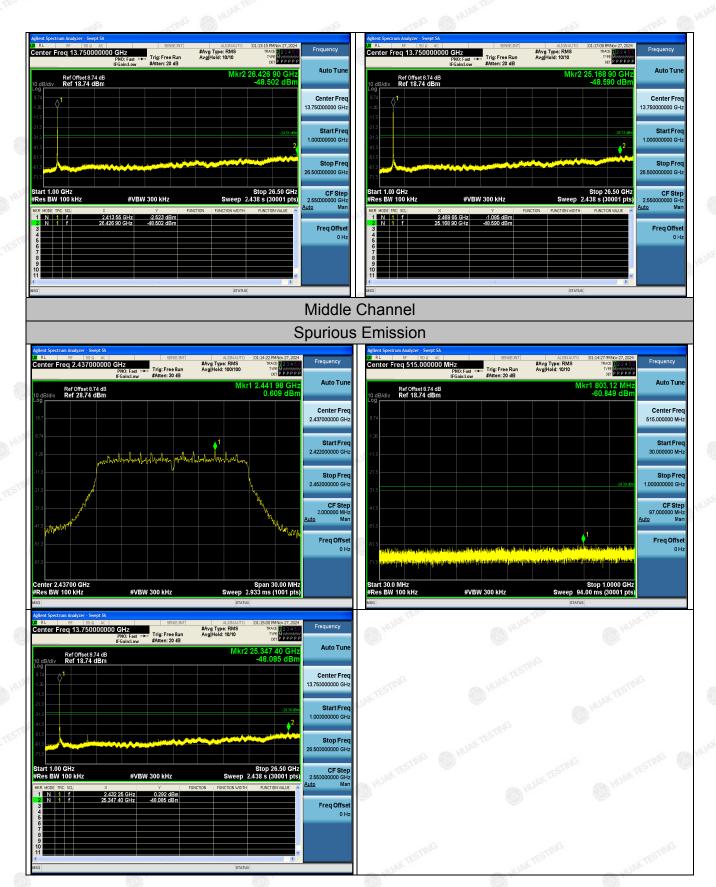

nter Freq 13.750000000 GHz

Ref Offset 8.74 dB Ref 18.74 dBm



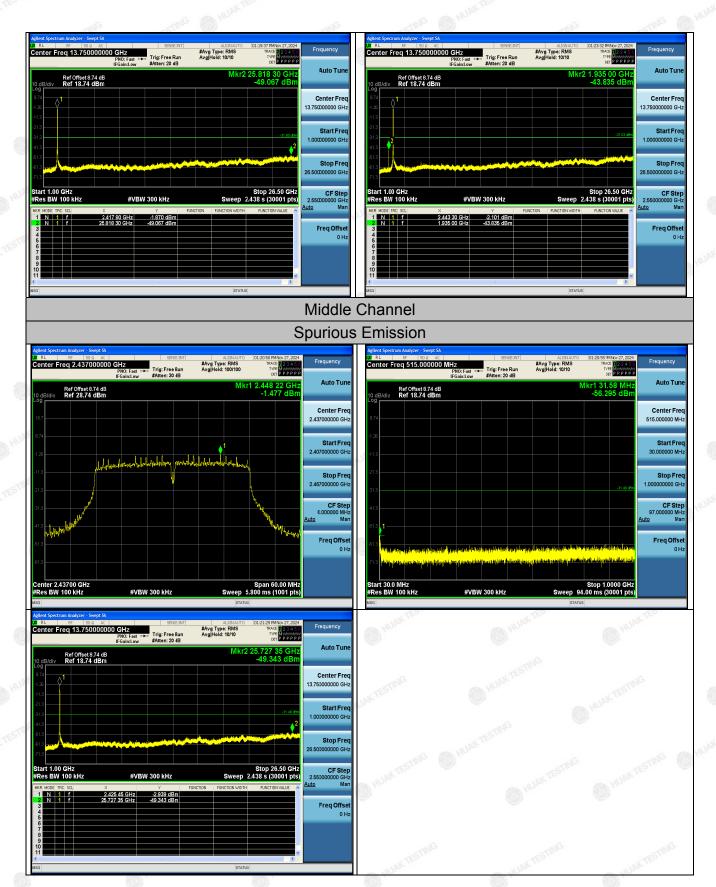
Stop Fre 26.500000000 GH CF Step 2.550000000 GH 2.412 70 GHz 2.363 dBm 25.892 25 GHz 48.069 dBm Freq Offse Middle Channel Spurious Emission #Avg Type: RMS Avg|Hold: 100/100 #Avg Type: RMS Avg|Hold: 10/10 2.437 99 GI 3.880 dE Ref Offset 8.74 dB Ref 28.74 dBm Ref Offset 8.74 dB Ref 18.74 dBm Center Free Center Fr #Avg Type: RMS Avg|Hold: 10/10 Ref Offset 8.74 dB Ref 18.74 dBm Start 1.00 GHz Res BW 100 kH:


802.11g Modulation

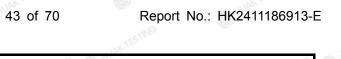


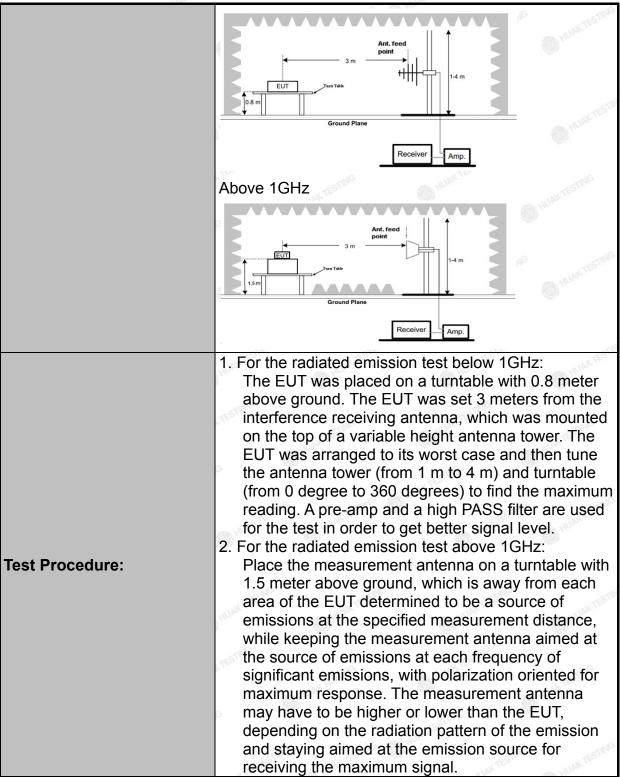
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


802.11n (HT20) Modulation



802.11n (HT40) Modulation


4.7. Radiated Spurious Emission Measurement


Test Specification

Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value Measurement Distance (meters)	
Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value Measurement Distance (meters)	
Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value Measurement Distance (meters)	
Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value Measurement Distance (meters)	
Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value Measurement Distance (meters)	
Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value Measurement Distance (meters)	
Quasi-peak Value Quasi-peak Value Peak Value Average Value Measurement Distance (meters)	
Iz Quasi-peak Value Peak Value Average Value Measurement Distance (meters)	
Peak Value Average Value Measurement Distance (meters)	
Average Value Measurement Distance (meters)	
Measurement Distance (meters)	
Distance (meters)	
300	
300	
30	
30	
3 3	
3	
3	
urement tance Detector eters)	
3 Average	
3 Peak	
tance eters) 3	

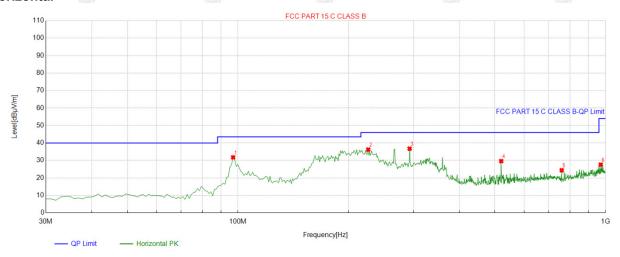
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

10%	" LAN
	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. 6.For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent.VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

Test Instruments

	Radiated Emission Test Site (966)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due						
Receiver	R&S	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025						
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025						
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 20, 2024	Feb. 19, 2025						
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 21, 2024	Feb. 20, 2026						
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 20, 2024	Feb. 19, 2025						
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 20, 2024	Feb. 19, 2025						
Preamplifier	Agilent	83051A	HKE-016	Feb. 20, 2024	Feb. 19, 2025						
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 21, 2024	Feb. 20, 2026						
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 21, 2024	Feb. 20, 2026						
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026						
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 20, 2024	Feb. 19, 2025						
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A						
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 20, 2024	Feb. 19, 2025						
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A						
RF cable	Times	9kHz-1GHz	HKE-117	Feb. 20, 2024	Feb. 19, 2025						
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025						
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 21, 2024	Feb. 20, 2026						
RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	NANTESTING.	HARTESTING MIN						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz

Horizontal

OP Detector

Suspe	Suspected List										
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	96.996997	-14.95	46.73	31.78	43.50	11.72	100	356	Horizontal		
2	226.13613	-13.91	50.14	36.23	46.00	9.77	100	58	Horizontal		
3	293.13313	-11.96	48.70	36.74	46.00	9.26	100	6	Horizontal		
4	520.34034	-7.44	37.08	29.64	46.00	16.36	100	345	Horizontal		
5	760.17017	-4.95	29.36	24.41	46.00	21.59	100	350	Horizontal		
6	970.87087	-0.61	28.22	27.61	54.00	26.39	100	232	Horizontal		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Vertical

S	Suspected List									
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	66.896897	-16.17	35.93	19.76	40.00	20.24	100	332	Vertical
	2	95.055055	-15.40	47.59	32.19	43.50	11.31	100	271	Vertical
3	3	190.21021	-15.90	54.11	38.21	43.50	5.29	100	80	Vertical
	4	319.34934	-11.24	45.60	34.36	46.00	11.64	100	15	Vertical
	5	473.73373	-8.30	36.24	27.94	46.00	18.06	100	200	Vertical
	6	880.57057	-2.02	26.00	23.98	46.00	22.02	100	246	Vertical

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

	Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)			
2	TING	WAYTES TING	- WAKTES -			
	- MAKTES-	- MARTES	Julak Tee			
	*	O				
	ox T	<u></u>	AK TESTII.			

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Above 1GHz

Radiated Emission Test

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.99	-3.64	49.35	74	-24.65	peak
4824	40.24	-3.64	36.6	54	-17.4	AVG
7236	51.12	-0.95	50.17	74	-23.83	peak
7236	37.99	-0.95	37.04	54	-16.96	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	50.89	-3.64	47.25	74	-26.75	peak
4824	40.18	-3.64	36.54	54	-17.46	AVG
7236	48.73	-0.95	47.78	74	-26.22	peak
7236	39.19	-0.95	38.24	54	-15.76	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = I evel-I imit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.13	-3.51	47.62	74	-26.38	peak
4874	42.35	-3.51	38.84	54	-15.16	AVG
7311	46.73	-0.82	45.91	74	-28.09	peak
7311	39.81	-0.82	38.99	54	-15.01	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.54	-3.51	48.03	74	-25.97	peak
4874	42.23	-3.51	38.72	54	-15.28	AVG
7311	49.36	-0.82	48.54	74	-25.46	peak
7311	37.56	-0.82	36.74	54	-17.26	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = I evel-I imit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	52.95	-3.43	49.52	74	-24.48	peak
4924	40.43	-3.43	37	54	-17	AVG
7386	49.89	-0.75	49.14	74	-24.86	peak
7386	40.46	-0.75	39.71	54	-14.29	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
3	4924	53.17	-3.43	49.74	74	-24.26	peak
	4924	39.18	-3.43	35.75	54	-18.25	AVG
600	7386	49.37	-0.75	48.62	74	-25.38	peak
	7386	38.57	-0.75	37.82	54	-16.18	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	50.25	-3.64	46.61	74	-27.39	peak
4824	44.08	-3.64	40.44	54	-13.56	AVG
7236	49.85	-0.95	48.9	74	-25.1	peak
7236	38.51	-0.95	37.56	54	-16.44	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	51.76	-3.64	48.12	74	-25.88	peak
4824	41.37	-3.64	37.73	54	-16.27	AVG
7236	49.76	-0.95	48.81	74 TESTIN	-25.19	peak
7236	38.44	-0.95	37.49	54	-16.51	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	52.22	-3.51	48.71	74	-25.29	peak
4874	40.22	-3.51	36.71	54	-17.29	AVG
7311	48.04	-0.82	47.22	74	-26.78	peak
7311	37.99	-0.82	37.17	54	-16.83	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.02	-3.51	47.51	74	-26.49	peak
4874	43.39	-3.51	39.88	54	-14.12	AVG
7311	47.43	-0.82	46.61	74	-27.39	peak
7311	40.38	-0.82	39.56	54	-14.44	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	49.96	-3.43	46.53	74	-27.47	peak
4924	41.65	-3.43	38.22	54	-15.78	AVG
7386	50.37	-0.75	49.62	74 HUM	-24.38	peak
7386	39.67	-0.75	38.92	54	-15.08	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	52.17	-3.43	48.74	74	-25.26	peak
4924	40.52	-3.43	37.09	54	-16.91	AVG
7386	49.28	-0.75	48.53	74	-25.47	peak
7386	41.57	-0.75	40.82	54	-13.18	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.04	-3.64	48.4	74	-25.6	peak
4824	41.46	-3.64	37.82	54	-16.18	AVG
7236	51.77	-0.95	50.82	74 HUAR	-23.18	peak
7236	39.64	-0.95	38.69	54	-15.31	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	50.17	-3.64	46.53	74	-27.47	peak
4824	39.68	-3.64	36.04	54	-17.96	AVG
7236	49.45	-0.95	48.5	74	-25.5	peak
7236	38.55	-0.95	37.6	54	-16.4	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

NG TING MILL

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.36	-3.51	47.85	74.00	-26.15	peak
4874	41.35	-3.51	37.84	54.00	-16.16	AVG
7311	46.80	-0.82	45.98	74.00	-28.02	peak
7311	39.48	-0.82	38.66	54.00	-15.34	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	49.42	-3.51	45.91	74.00	-28.09	peak
4874	42.78	-3.51	39.27	54.00	-14.73	AVG
7311	48.37	-0.82	47.55	74.00	-26.45	peak
7311	38.19	-0.82	37.37	54.00	-16.63	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	50.52	-3.43	47.09	74	-26.91	peak
4924	40.09	-3.43	36.66	54	-17.34	AVG
7386	50.83	-0.75	50.08	74	-23.92	peak
7386	39.12	-0.75	38.37	54	-15.63	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Datastar Tyna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	52.34	-3.43	48.91	74	-25.09	peak
4924	40.01	-3.43	36.58	54	-17.42	AVG
7386	49.61	-0.75	48.86	74	-25.14	peak
7386	38.25	-0.75	37.5	54	-16.5	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	50.32	-3.63	46.69	74	-27.31	peak
4844	41.04	-3.63	37.41	54	-16.59	AVG
7266	50.06	-0.94	49.12	74	-24.88	peak
7266	40.46	-0.94	39.52	54	-14.48	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	53.89	-3.63	50.26	74	-23.74	peak
4844	39.80	-3.63	36.17	54	-17.83	AVG
7266	48.38	-0.94	47.44	74	-26.56	peak
7266	40.16	-0.94	39.22	54	-14.78	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	52.55	-3.51	49.04	74	-24.96	peak
4874	44.15	-3.51	40.64	54	-13.36	AVG
7311	50.32	-0.82	49.5	74	-24.5	peak
7311	38.32	-0.82	37.5	54	-16.5	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	50.06	-3.51	46.55	74	-27.45	peak
4874	39.39	-3.51	35.88	54	-18.12	AVG
7311	46.85	-0.82	46.03	74	-27.97	peak
7311	40.41	-0.82	39.59	54	-14.41	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

LAYTES!

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tyre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	51.22	-3.43	47.79	74	-26.21	peak
4904	38.16	-3.43	34.73	54	-19.27	AVG
7356	49.59	-0.75	48.84	74	-25.16	peak
7356	36.82	-0.75	36.07	54	-17.93	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detectal Av TESTI
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	50.91	-3.43	47.48	74	-26.52	peak
4904	42.57	-3.43	39.14	54	-14.86	AVG
7356	49.06	-0.75	48.31	74	-25.69	peak
7356	39.39	-0.75	38.64	54	-15.36	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	50.05	-5.81	44.24	74	-29.76	peak
2310.00	39.64	-5.81	33.83	54	-20.17	AVG
2390.00	49.46	-5.84	43.62	74	-30.38	peak
2390.00	37.91	-5.84	32.07	54	-21.93	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	50.61	-5.81	44.8	74	-29.2	peak
2310.00	41.63	-5.81	35.82	54	-18.18	AVG
2390.00	50.32	-5.84	44.48	74	-29.52	peak
2390.00	37.36	-5.84	31.52	(II) ^G 54	-22.48	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	HUAK TES IN
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	_ Detector Type
2483.50	52.28	-5.81	46.47	74	-27.53	peak
2483.50	40.89	-5.81	35.08	54	-18.92	AVG
2500.00	51.56	-6.06	45.5	74	-28.5	peak
2500.00	39.97	-6.06	33.91	54	-20.09	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	41.11	1/1/	4.11		44.11	41.11
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	_ Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	STING
2483.50	55.72	-5.81	49.91	74	-24.09	peak
2483.50	41.28	-5.81	35.47	54	-18.53	AVG
2500.00	50.45	-6.06	44.39	74	-29.61	peak
2500.00	38.55	-6.06	32.49	54	-21.51	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

-allo	2/100	la.	ق ا	Sla.	Slav	Sla.
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	_ Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	,,,,
2310.00	48.75	-5.81	42.94	74 HUAY	-31.06	peak
2310.00	41.08	-5.81	35.27	54	-18.73	AVG
2390.00	46.13	-5.84	40.29	74	-33.71	peak
2390.00	39.66	-5.84	33.82	54	-20.18	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	49.73	-5.81	43.92	74	-30.08	peak
2310.00	43.31	-5.81	37.5	54	-16.5	AVG
2390.00	52.04	-5.84	46.2	74	-27.8	peak
2390.00	38.98	-5.84	33.14	54	-20.86	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	53.23	-5.65	47.58	74	-26.42	peak
2483.50	40.31	-5.65	34.66	54	-19.34	AVG
2500.00	47.22	-5.65	41.57	74	-32.43	peak
2500.00	38.19	-5.65	32.54	54	-21.46	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)] "
2483.50	52.51	-5.65	46.86	74 HU ^{AV}	-27.14	peak
2483.50	41.15	-5.65	35.5	54	-18.5	AVG
2500.00	50.02	-5.65	44.37	74	-29.63	peak
2500.00	40.28	-5.65	34.63	54	-19.37	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	51.23	-5.81	45.42	74	-28.58	peak
2310.00	42.06	-5.81	36.25	54	-17.75	AVG
2390.00	47.68	-5.84	41.84	74	-32.16	peak
2390.00	40.68	-5.84	34.84	54	-19.16	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	52.21	-5.81	46.4	74	-27.6	peak
2310.00	41.23	-5.81	35.42	54	-18.58	AVG
2390.00	48.05	-5.84	42.21	74	-31.79	peak
2390.00	39.26	-5.84	33.42	54	-20.58	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.45	-5.65	48.8	74	-25.2	peak
2483.50	40.51	-5.65	34.86	54	-19.14	AVG
2500.00	49.92	-5.65	44.27	74	-29.73	peak
2500.00	39.14	-5.65	33.49	54	-20.51	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	4 Jps	11 1/20	4 100		A IPO	4 120
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	TESTING
2483.50	54.95	-5.65	49.3	74	-24.7	peak
2483.50	39.68	-5.65	34.03	54	-19.97	AVG
2500.00	49.54	-5.65	43.89	74	-30.11	peak
2500.00	37.77	-5.65	32.12	54	-21.88	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

AL

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	52.48	-5.81	46.67	74	-27.33	peak
2310.00	ESTING /	-5.81	- JUAY (ESTING	54	1	AVG
2390.00	50.47	-5.84	44.63	74	-29.37	peak
2390.00	THE HUA	-5.84	1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	55.42	-5.81	49.61	74	-24.39	peak
2310.00	1	-5.81	0 1	54	, , ()	AVG
2390.00	55.20	-5.84	49.36	74	-24.64	peak
2390.00	NAK TES	-5.84	AULIX TES.	54	WAK TSTING	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High (2452MHz)

Horizontal

	-all	Alan.			- Clar	Mar
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	52.73	-5.65	47.08	74	-26.92	peak
2483.50	1	-5.65	· /	54	1 🥯	AVG
2500.00	50.89	-5.65	45.24	74	-28.76	peak
2500.00	MAKTE	-5.65	AUAKTE	54	AMAK TES	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

			9		-		
SIN	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	WAX TESTING
	2483.50	52.44	-5.65	46.79	74	-27.21	peak
	2483.50	STING WHILE	-5.65	NIG /	54	I	AVG
N AUT	2500.00	57.13	-5.65	51.48	74	-22.52	peak
9	2500.00	1	-5.65	1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

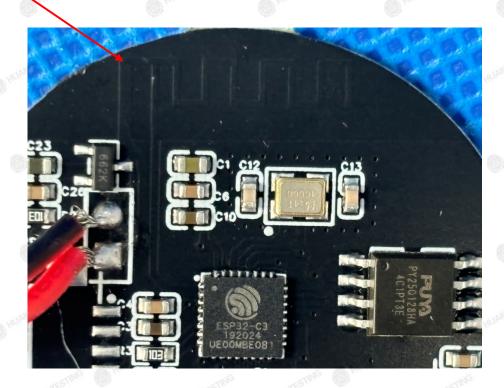
- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

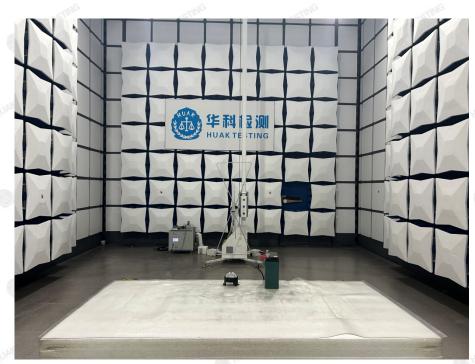

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, is a permanently attached antenna on the PCB. It conforms to the standard requirements. The directional gains of antenna used for transmitting is -0.58dBi.

Antenna



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. Photograph of Test

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.