

APPLICATION CERTIFICATION FCC Part 15C On Behalf of SHEN ZHEN FANR TECHNOLOGY CO., LIMITED

Eye Massager Smart Eye Model No.: OE-0909

FCC ID: 2ATAW-OE0909

Prepared for Address	 SHEN ZHEN FANR TECHNOLOGY CO., LIMITED 6th Floor, Yusheng Building, Huafeng Second Industrial Park, Hangcheng Avenue, Xixiang Street, Baoan District, Shenzhen, Guangdong, China
Prepared by Address	 Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
	Tel: (0755) 26503290 Fax: (0755) 26503396

Report No.	:	ATE20190617
Date of Test	:	May 7-May 15, 2019
Date of Report	:	May 16, 2019

TABLE OF CONTENTS

Desc	rip	otion
	P	

Test Report Certification

TA	BLE	OF CONTENTS	2
1.	GE	ENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	
	1.2.	Accessory and Auxiliary Equipment	
	1.3.	Description of Test Facility	6
	1.4.	Measurement Uncertainty	6
2.	M	EASURING DEVICE AND TEST EQUIPMENT	7
3.	OP	PERATION OF EUT DURING TESTING	8
	3.1.	Operating Mode	
	3.2.	Configuration and peripherals	
4.	FR	REQUENCY HOPPING SYSTEM REQUIREMENTS	9
	4.1.	Standard and Limit	
	4.2.	EUT Pseudorandom Frequency Hopping Sequence	
	4.3.	Frequency Hopping System	
5.	TE	EST PROCEDURES AND RESULTS	
6.	201	DB BANDWIDTH TEST	
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(a)(1)	
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	
7.	CA	ARRIER FREQUENCY SEPARATION TEST	17
	7.1.	Block Diagram of Test Setup	
	7.2.	The Requirement For Section 15.247(a)(1)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	NU	JMBER OF HOPPING FREQUENCY TEST	
	8.1.	Block Diagram of Test Setup	
	8.2.	The Requirement For Section 15.247(a)(1)(iii)	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
	8.6.	Test Result	
9.		VELL TIME TEST	
	9.1.	Block Diagram of Test Setup	
	9.2.	The Requirement For Section 15.247(a)(1)(iii)	
	9.3.	EUT Configuration on Measurement	
	9.4.	Operating Condition of EUT	

9.5.	Test Procedure	
9.6.	Test Result	
10. M A	AXIMUM PEAK OUTPUT POWER TEST	
10.1.	Block Diagram of Test Setup	
10.2.	The Requirement For Section 15.247(b)(1)	
10.3.	EUT Configuration on Measurement	
10.4.	Operating Condition of EUT	
10.5.	Test Procedure	
10.6.	Test Result	
11. RA	DIATED EMISSION TEST	
11.1.	Block Diagram of Test Setup	
11.2.	The Limit For Section 15.247(d)	
11.3.	Restricted bands of operation	
11.4.	Configuration of EUT on Measurement	
11.5.	Operating Condition of EUT	
11.6.	Test Procedure	
11.7.	Data Sample	
11.8.	Test Result	
12 PA	ND EDGE COMPLIANCE TEST	52
14. DA		
	Block Diagram of Test Setup	
12. DA 12.1. 12.2.	Block Diagram of Test Setup The Requirement For Section 15.247(d)	
12.1.	The Requirement For Section 15.247(d)	
12.1. 12.2.	The Requirement For Section 15.247(d) EUT Configuration on Measurement	
12.1. 12.2. 12.3.	The Requirement For Section 15.247(d)	52 52 52 52 52 52
12.1. 12.2. 12.3. 12.4.	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT	52 52 52 52 52 52 53
12.1. 12.2. 12.3. 12.4. 12.5. 12.6.	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result	52 52 52 52 52 52 53 53
12.1. 12.2. 12.3. 12.4. 12.5. 12.6. 13. AC	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result C POWER LINE CONDUCTED EMISSION TEST	52 52 52 52 52 53 53 53 63
12.1. 12.2. 12.3. 12.4. 12.5. 12.6. 13. AC 13.1.	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result C POWER LINE CONDUCTED EMISSION TEST Block Diagram of Test Setup	52 52 52 52 52 52 53 53 53 63
12.1. 12.2. 12.3. 12.4. 12.5. 12.6. 13. AC 13.1. 13.2.	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result C POWER LINE CONDUCTED EMISSION TEST Block Diagram of Test Setup Test Limits	52 52 52 52 52 53 53 53 53 63 63 64
12.1. 12.2. 12.3. 12.4. 12.5. 12.6. 13. AC 13.1. 13.2. 13.3.	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result C POWER LINE CONDUCTED EMISSION TEST Block Diagram of Test Setup Test Limits Configuration of EUT on Measurement	52 52 52 52 53 53 53 63 64 64 64
12.1. 12.2. 12.3. 12.4. 12.5. 12.6. 13. AC 13.1. 13.2.	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result C POWER LINE CONDUCTED EMISSION TEST Block Diagram of Test Setup Test Limits Configuration of EUT on Measurement Operating Condition of EUT	52 52 52 52 52 53 53 53 63 63 64 64 64
12.1. 12.2. 12.3. 12.4. 12.5. 12.6. 13. AC 13.1. 13.2. 13.3. 13.4.	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result C POWER LINE CONDUCTED EMISSION TEST Block Diagram of Test Setup Test Limits Configuration of EUT on Measurement	52 52 52 52 52 53 53 53 63 63 64 64 64 64 64 64
12.1. 12.2. 12.3. 12.4. 12.5. 12.6. 13. AC 13.1. 13.2. 13.3. 13.4. 13.5.	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result CPOWER LINE CONDUCTED EMISSION TEST Block Diagram of Test Setup Test Limits Configuration of EUT on Measurement Operating Condition of EUT Test Procedure	52 52 52 52 53 53 53 63 63 64 64 64 64 64 64 65
12.1. 12.2. 12.3. 12.4. 12.5. 12.6. 13. AC 13.1. 13.2. 13.3. 13.4. 13.5. 13.6. 13.7.	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result C POWER LINE CONDUCTED EMISSION TEST Block Diagram of Test Setup Test Limits Configuration of EUT on Measurement Operating Condition of EUT Test Procedure Data Sample	52 52 52 52 53 53 63 63 64 64 64 64 64 64 65 65
12.1. 12.2. 12.3. 12.4. 12.5. 12.6. 13. AC 13.1. 13.2. 13.3. 13.4. 13.5. 13.6. 13.7.	The Requirement For Section 15.247(d)	52 52 52 52 53 53 53 63 63 64 64 64 64 64 64 64 64 64 65 65 65 65
12.1. 12.2. 12.3. 12.4. 12.5. 12.6. 13. AC 13.1. 13.2. 13.3. 13.4. 13.5. 13.6. 13.7. 14. AN	The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result C POWER LINE CONDUCTED EMISSION TEST Block Diagram of Test Setup Test Limits Configuration of EUT on Measurement Operating Condition of EUT Test Procedure Data Sample Test Result	52 52 52 52 53 53 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64

Test Report Certification

Applicant	:	SHEN ZHEN FANR TECHNOLOGY CO., LIMITED
Address	:	6th Floor, Yusheng Building, Huafeng Second Industrial Park, Hangcheng Avenue, Xixiang Street, Baoan District, Shenzhen, Guangdong, China
EUT Description	:	Eye Massager Smart Eye
Model No.	:	OE-0909

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test : Date of Report : May 7-May 15, 2019 May 16, 2019

Test Engineer :

(Frank Lü, Engineer)

Prepared by :

Approved & Authorized Signer :

(Sean Liu, Manager)

ATC

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Model Number	:	OE-0909
Bluetooth version	:	V4.2 (BR+EDR)
Frequency Range	:	2402MHz-2480MHz
Number of Channels	:	79
Antenna Gain(Max)	:	-0.68dBi
Antenna type	:	PCB antenna
Modulation mode	:	GFSK, $\pi/4$ DQPSK
Hardware version	:	V1.3
Software version	:	V1.0
Trade Mark	:	OGAWA
Power Supply	:	DC 3.7V (Powered by Lithium battery) or DC 5V (Powered by charging port)
Applicant Address	:	SHEN ZHEN FANR TECHNOLOGY CO., LIMITED 6th Floor, Yusheng Building, Huafeng Second Industrial Park, Hangcheng Avenue, Xixiang Street, Baoan District, Shenzhen, Guangdong, China
Manufacturer Address	:	SHEN ZHEN FANR TECHNOLOGY CO., LIMITED 6th Floor, Yusheng Building, Huafeng Second Industrial Park, Hangcheng Avenue, Xixiang Street, Baoan District, Shenzhen, Guangdong, China

1.2. Accessory and Auxiliary Equipment

AC/DC Power Adapter:	:	Model:TEKA006-0501000UKU
(provided by laboratory)		Input: 100-240V~50/60Hz 0.3A
		Output: DC 5V/1A

1.3.Description of Test Facility

EMC Lab	:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358 Listed by Innovation, Science and Economic Development
		Canada (ISEDC)
		The Registration Number is 5077A-2
		Accredited by China National Accreditation Service for Conformity Assessment (CNAS)
		The Registration Number is CNAS L3193
		Accredited by American Association for Laboratory Accreditation (A2LA)
		The Certificate Number is 4297.01
Name of Firm	:	Shenzhen Accurate Technology Co., Ltd.
Site Location	:	1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

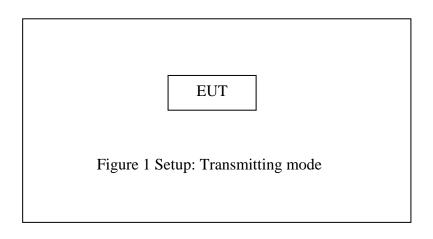
2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 05, 2019	1 Year
EMI Test Receiver	Rohde& Schwarz	ESR	101817	Jan. 05, 2019	1 Year
Spectrum Analyzer	Rohde&Schwarz	FSV40	101495	Jan. 05, 2019	1 Year
Pre-Amplifier	Compliance Direction	RSU-M2	38322	Jan. 05, 2019	1 Year
Pre-Amplifier	Agilent	8447D	294A10619	Jan. 05, 2019	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 05, 2019	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 05, 2019	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 05, 2019	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 05, 2019	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 05, 2019	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18G-10S S	N/A	Jan. 05, 2019	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2485-2 375/2510-60/11SS	N/A	Jan. 05, 2019	1 Year
RF Coaxial Cable	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.3	Jan. 05, 2019	1 Year
RF Coaxial Cable	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.4	Jan. 05, 2019	1 Year
RF Coaxial Cable	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.5	Jan. 05, 2019	1 Year
RF Coaxial Cable	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.6	Jan. 05, 2019	1 Year
Temporary antenna connector	NTGS	14AE	N/A	May 13, 2019	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

3. OPERATION OF EUT DURING TESTING


3.1.Operating Mode

The mode is used: Transmitting mode Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz Hopping

Note: The equipment under test (EUT) was tested under fully-charged battery. The Bluetooth has been tested under continuous transmission mode.

EUT is connected to a computer through the usb-serial controller tool and Use test software to set the test mode. Test software is (FCCAssist_2.4)

3.2. Configuration and peripherals

4. FREQUENCY HOPPING SYSTEM REQUIREMENTS

4.1.Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

4.2.EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 34, 51, 72, 09, 01, 64, 22, 33, 41, 32, 47, 65, 73, 53, 69, 06, 17, 04, 20, 36, 52, 38, 66, 70, 78, 68, 76, 21, 29, 10, 26, 49, 00, 58, 44, 59, 75, 13, 03, 14, 11, 35, 43, 37, 50, 61, 77, 55, 71, 02, 23, 07, 27, 39, 54, 46, 48, 15, 63, 62, 67, 25, 31, 12, 28, 19, 60, 42, 57, 74, 16, 05, 18, 30, 45, etc.

The system receiving have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

4.3. Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.

5. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.207	AC Power Line Conducted Emissions Limits Test	Compliant
Section 15.203	Antenna Requirement	Compliant

6. 20DB BANDWIDTH TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

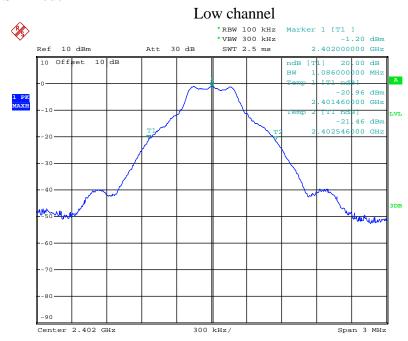
6.4. Operating Condition of EUT

6.4.1.Setup the EUT and simulator as shown as Section 6.1.

- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

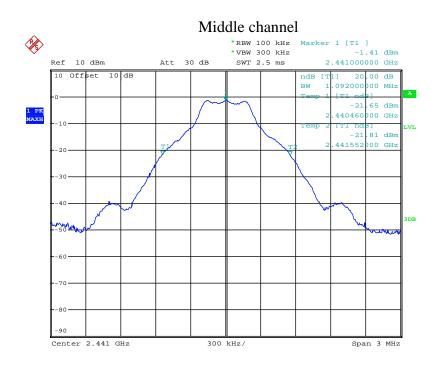
- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW.
- 6.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

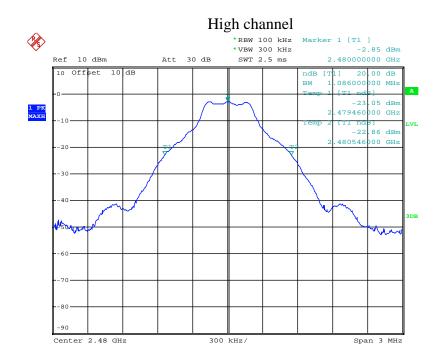


6.6.Test Result

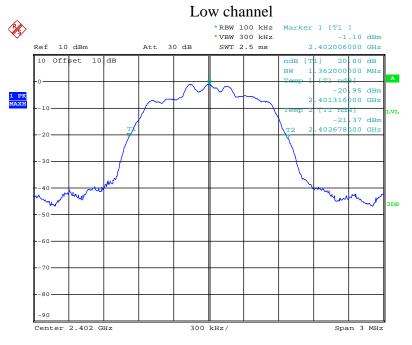
Test Lab: Shielding room Test Engineer: Frank

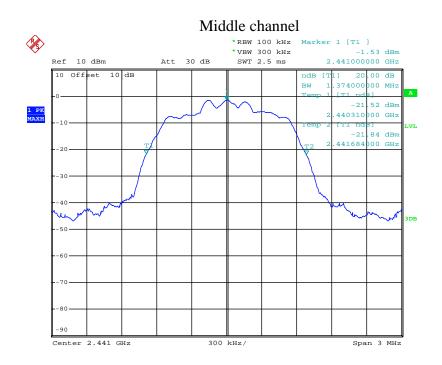
Channel	Frequency (MHz)	GFSK 20dB Bandwidth (MHz)	∏/4-DQPSK 20dB Bandwidth (MHz)	Result
Low	2402	1.086	1.362	Pass
Middle	2441	1.092	1.374	Pass
High	2480	1.086	1.368	Pass


The spectrum analyzer plots are attached as below.

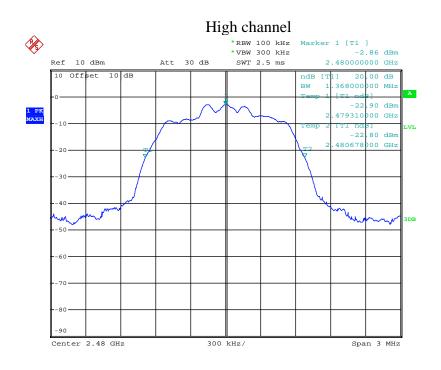

GFSK Mode

Date: 13.MAY.2019 10:46:28


Date: 13.MAY.2019 10:48:35


Date: 13.MAY.2019 10:50:13

Π /4-DQPSK Mode



Date: 13.MAY.2019 10:54:10

Date: 13.MAY.2019 10:52:30

Date: 13.MAY.2019 10:51:16

7. CARRIER FREQUENCY SEPARATION TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1.Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

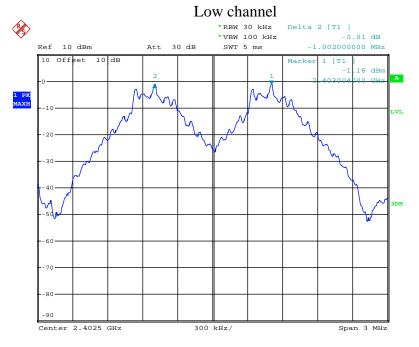
7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 3 MHz.
- 7.5.3.Set the adjacent channel of the EUT Maxhold another trace.
- 7.5.4.Measurement the channel separation

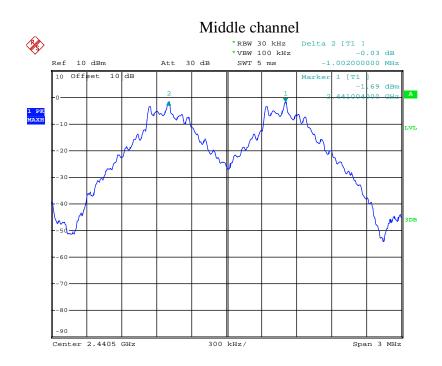
7.6.Test Result

Test Lab: Shielding room Test Engineer: Star

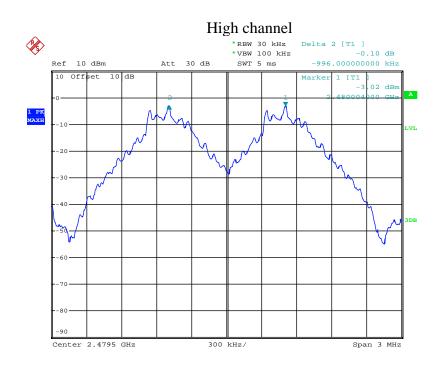
GFSK


Channel	Frequency	Channel	Limit	Result
	(MHz)	Separation(MHz)	(MHz)	Result
Low	2402	1.002	25KHz or 2/3*20dB	Pass
Low	2403		bandwidth	
Middle	2440	1.002	25KHz or 2/3*20dB	Pass
	2441		bandwidth	
High	2479	0.996	25KHz or 2/3*20dB	Daga
	2480		bandwidth	Pass

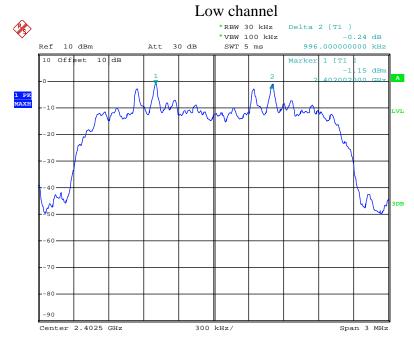
Π /4-DQPSK

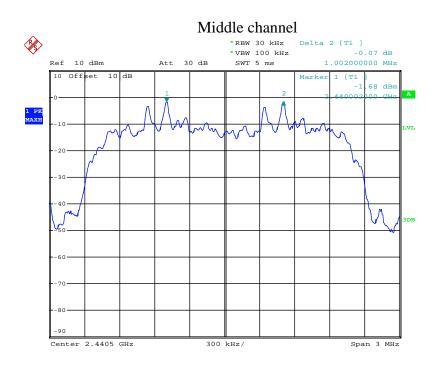

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	0.996	25KHz or 2/3*20dB	Pass
LOW	2403		bandwidth	
Middle	2440	1.002	25KHz or 2/3*20dB	Pass
	2441		bandwidth	
High	2479	0.996	25KHz or 2/3*20dB	Pass
	2480		bandwidth	1 885

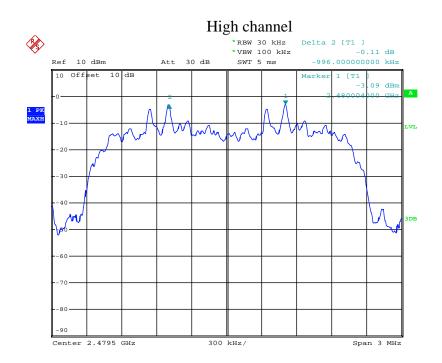
GFSK Mode



Date: 13.MAY.2019 11:47:02


Date: 13.MAY.2019 11:46:17


Date: 13.MAY.2019 11:45:38



Date: 13.MAY.2019 11:42:48

Date: 13.MAY.2019 11:44:15

Date: 13.MAY.2019 11:44:56

8. NUMBER OF HOPPING FREQUENCY TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

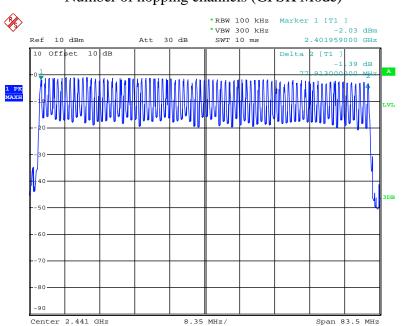
8.4.Operating Condition of EUT

8.4.1.Setup the EUT and simulator as shown as Section 8.1.

- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it.

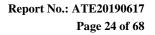
8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz.
- 8.5.3.Max hold, view and count how many channel in the band.

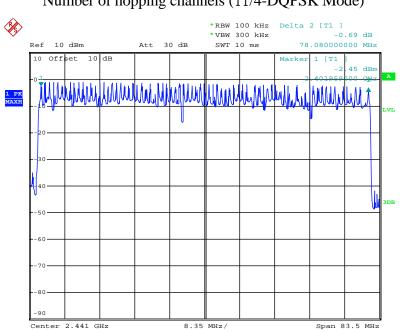


8.6.Test Result

Test Lab: Shielding room Test Engineer: Frank

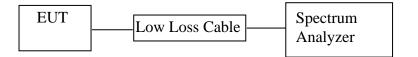

Total number of hopping channel	Measurement result(CH)	Limit(CH)	Result
	79	≥15	Pass

The spectrum analyzer plots are attached as below.



Number of hopping channels (GFSK Mode)

Date: 13.MAY.2019 11:22:14


Number of hopping channels (Π /4-DQPSK Mode)

Date: 13.MAY.2019 11:23:35

9. DWELL TIME TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4.Operating Condition of EUT

- 9.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2.Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 9.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.
- 9.5.4.Repeat above procedures until all frequency measured were complete.

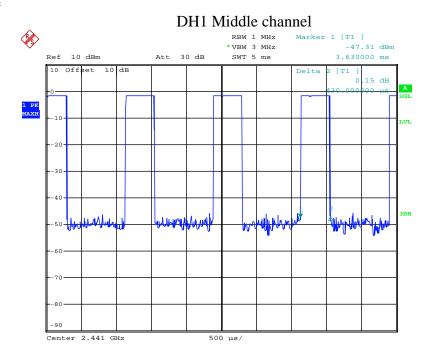
9.6.Test Result

Test Lab: Shielding room Test Engineer: Frank

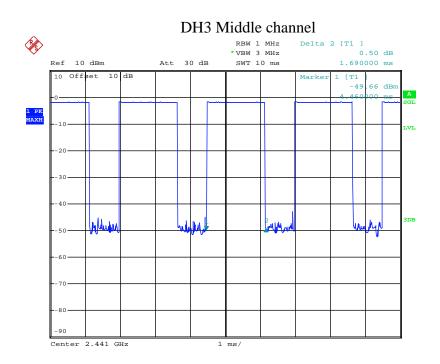
GFSK Mode (Worse case)

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
DH1	2441	0.430	137.6	400	
A period t	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				
DH3	2441	1.690	270.4	400	
A period t	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
DH5	2441	2.990	218.9	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$					

$\Pi/4$ -DQPSK Mode (Worse case)

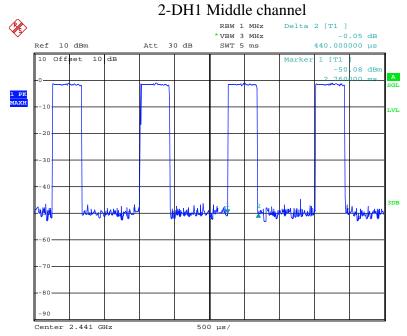

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
2-DH1	2441	0.440	140.8	400	
A period t	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				
2-DH3	2441	1.720	275.2	400	
A period t	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
2-DH5	2441	2.980	217.9	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$					

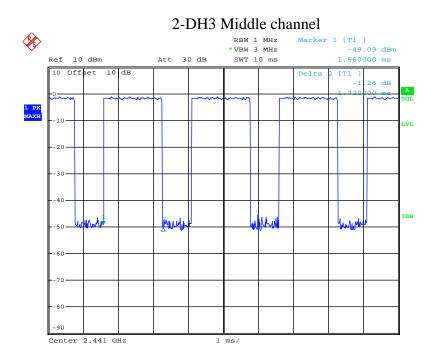
Note: We tested GFSK mode and Π /4-DQPSK mode the low, middle and high channel and recorded the worse case data for all test mode.

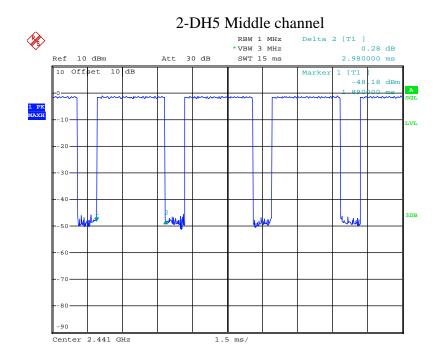

The spectrum analyzer plots are attached as below.

GFSK Mode

Date: 13.MAY.2019 13:44:30


Date: 13.MAY.2019 13:44:03


Date: 13.MAY.2019 13:43:40



Date: 13.MAY.2019 13:48:07

Date: 13.MAY.2019 13:48:33

Date: 13.MAY.2019 13:49:08

10.MAXIMUM PEAK OUTPUT POWER TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement For Section 15.247(b)(1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

10.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.4. Operating Condition of EUT

- 10.4.1.Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2.Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

10.5.Test Procedure

- 10.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz.
- 10.5.3.Measurement the maximum peak output power.

10.6.Test Result

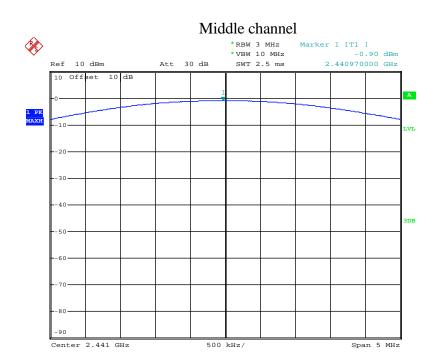
Test Lab: Shielding room Test Engineer: Frank

GFSK Mode

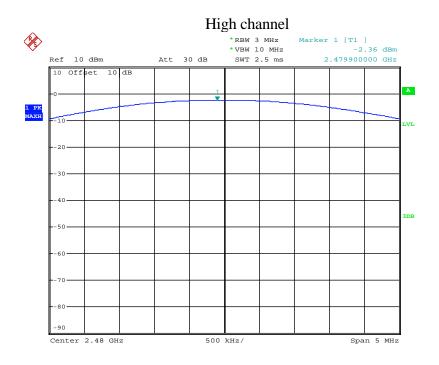
Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits (dBm/W)	Result
Low	2402	-0.35/0.0009	21 / 0.125	Pass
Middle	2441	-0.90/0.0008	21 / 0.125	Pass
High	2480	-2.36/0.0006	21 / 0.125	Pass

Π /4-DQPSK Mode

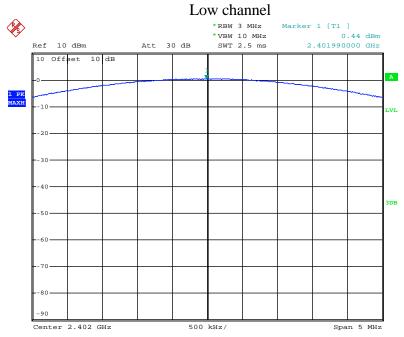
Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits (dBm/W)	Result
Low	2402	0.44/0.0011	21 / 0.125	Pass
Middle	2441	0.14/0.0010	21 / 0.125	Pass
High	2480	-1.24/0.0008	21 / 0.125	Pass

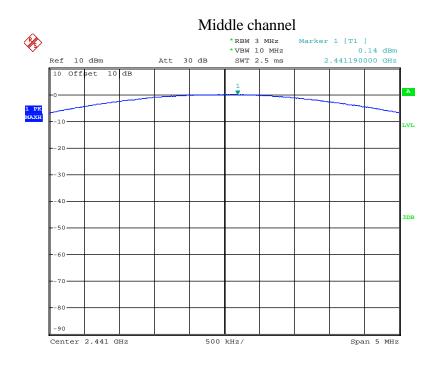

The spectrum analyzer plots are attached as below.

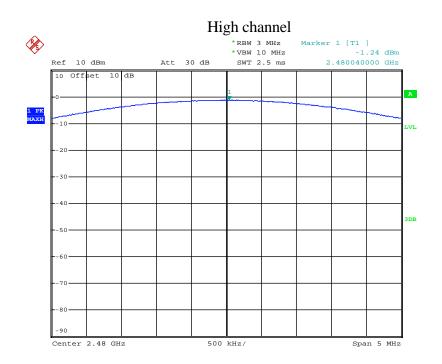
GFSK Mode



Date: 15.MAY.2019 16:16:12

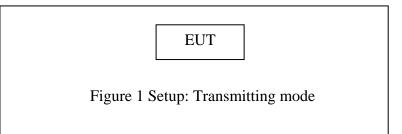

Date: 15.MAY.2019 16:17:12

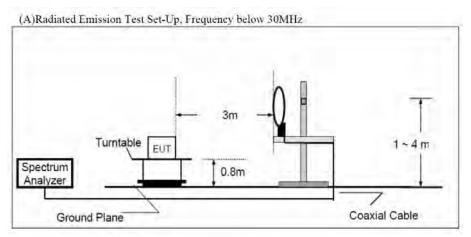

Date: 15.MAY.2019 16:17:45



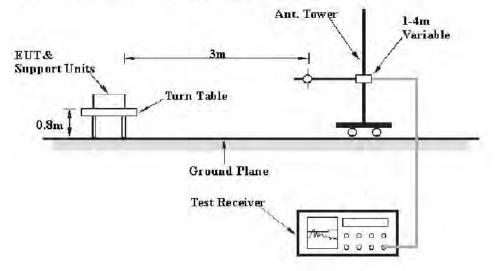
Date: 15.MAY.2019 16:24:52

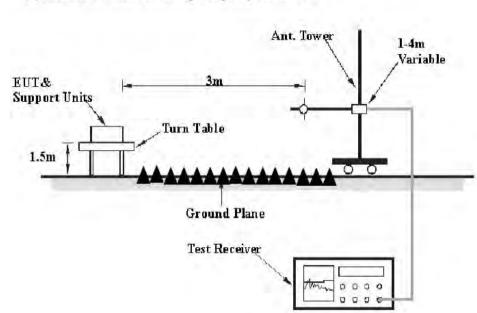
Date: 15.MAY.2019 16:24:26


Date: 15.MAY.2019 16:23:50


11.RADIATED EMISSION TEST

11.1.Block Diagram of Test Setup


11.1.1.Block diagram of connection between the EUT and peripherals


11.1.2.Semi-Anechoic Chamber Test Setup Diagram

(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

(C) Radiated Emission Test Set-Up. Frequency above 1GHz

11.2.The Limit For Section 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.Restricted bands of operation

11.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

	nuou in ung or the neque	ney builds listed below.	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
$^{1}0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^{2})$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

 2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

11.4.Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.5. Operating Condition of EUT

- 11.5.1.Setup the EUT and simulator as shown as Section 11.1.
- 11.5.2.Turn on the power of all equipment.
- 11.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

11.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the Worse case position data was reported.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

	_
11.7.Data Sa	ample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	28.66	-15.19	13.47	40.0	-26.53	QP

Frequency(MHz) = Emission frequency in MHz

 $\begin{aligned} & \text{Reading}(dB\mu\nu) = \text{Uncorrected Analyzer/Receiver reading} \\ & \text{Factor } (dB/m) = \text{Antenna factor + Cable Loss - Amplifier gain} \\ & \text{Result}(dB\mu\nu/m) = \text{Reading}(dB\mu\nu) + \text{Factor}(dB/m) \\ & \text{Limit } (dB\mu\nu/m) = \text{Limit stated in standard} \\ & \text{Margin } (dB) = \text{Result}(dB\mu\nu/m) - \text{Limit } (dB\mu\nu/m) \\ & \text{QP} = \text{Quasi-peak Reading} \end{aligned}$

Calculation Formula: Margin(dB) = Result (dB μ V/m)–Limit(dB μ V/m) Result(dB μ V/m)= Reading(dB μ V)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

11.8.Test Result

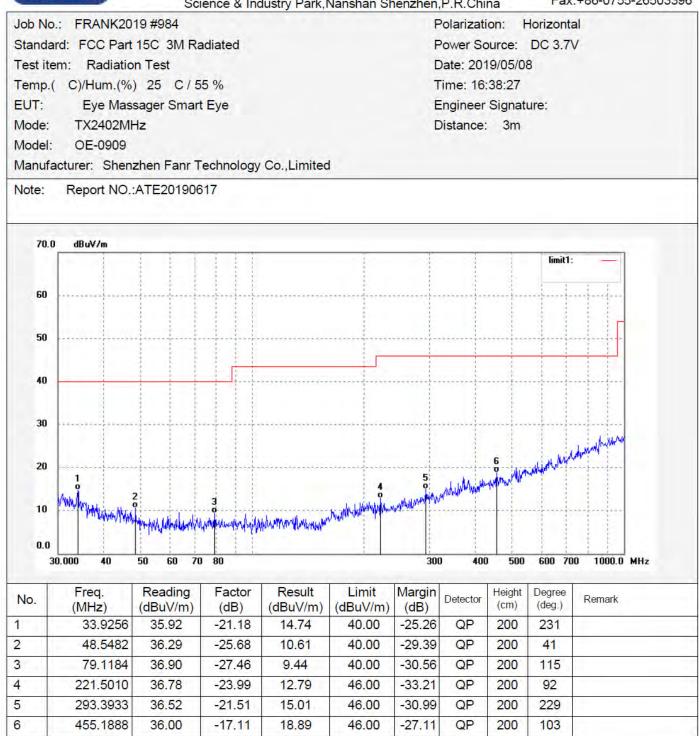
Pass.

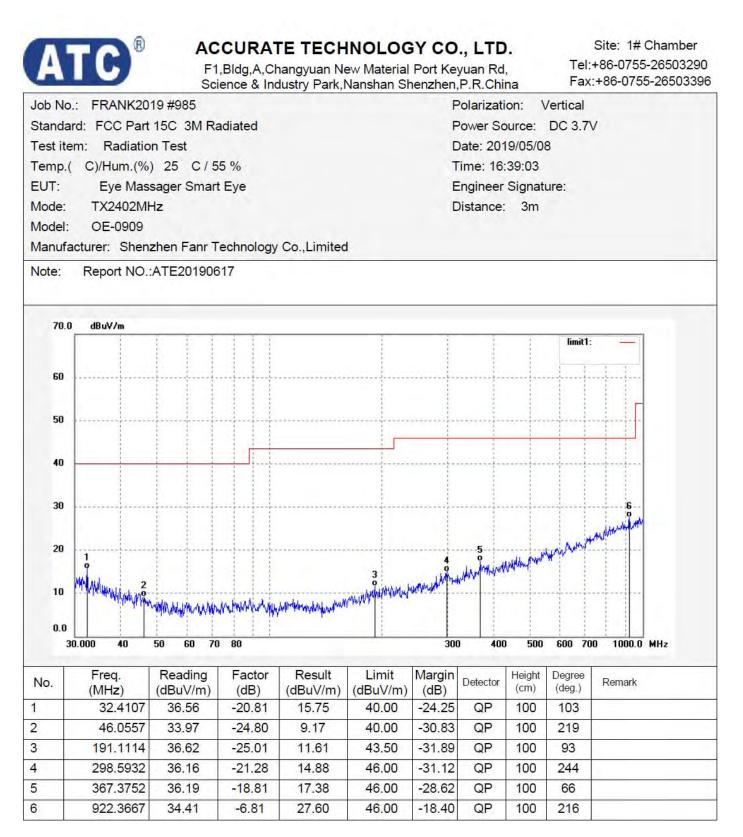
Test Lab: 3m Anechoic chamber Test Engineer: Frank

Note: 1.We tested GFSK mode, $\Pi/4$ -DQPSK Mode and recorded the Worse case data ($\Pi/4$ -DQPSK mode) for all test mode.

2. Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

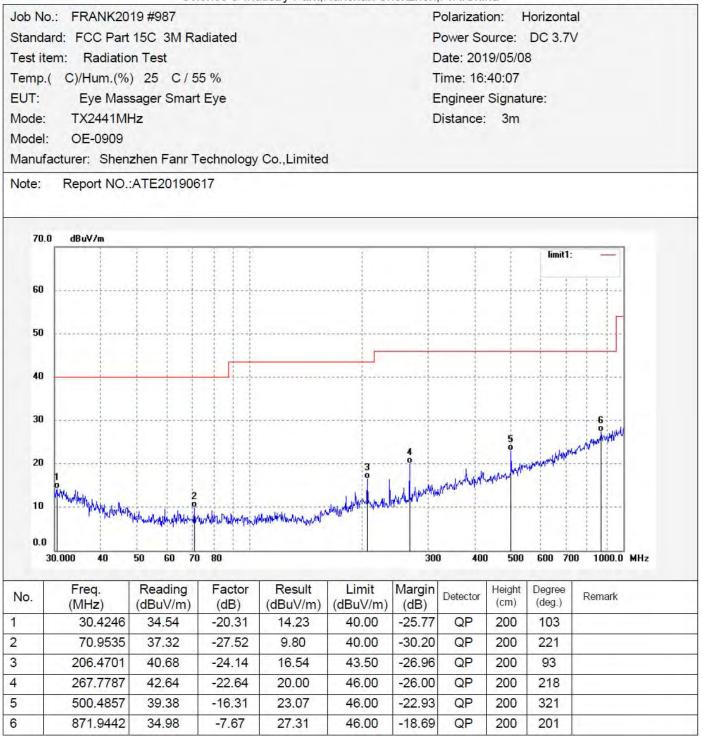
The measurements greater than 20dB below the limit from 9kHz to 30MHz and 18 to 26.5GHz.

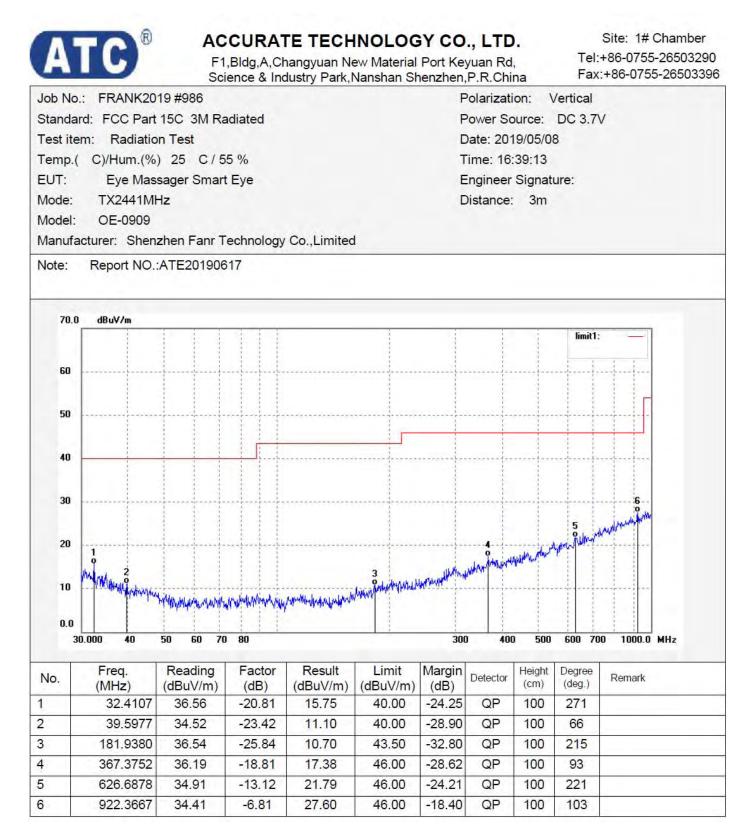

The spectrum analyzer plots are attached as below.


Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China



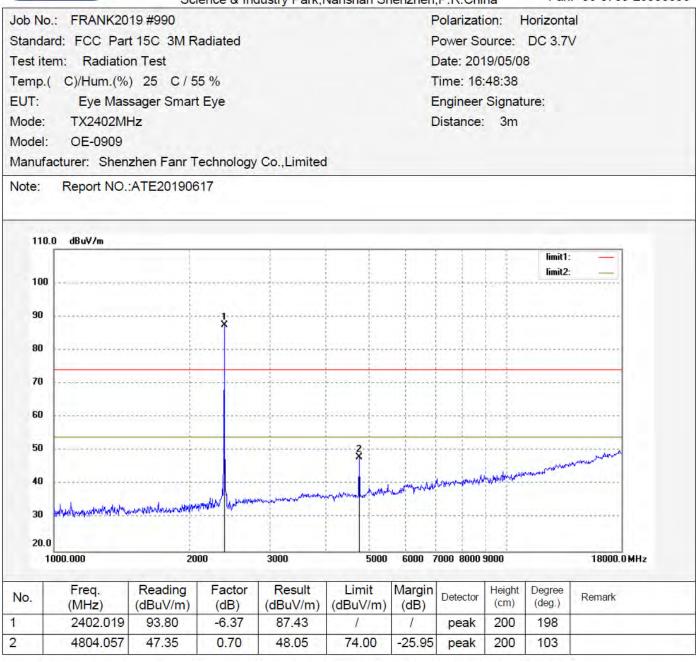


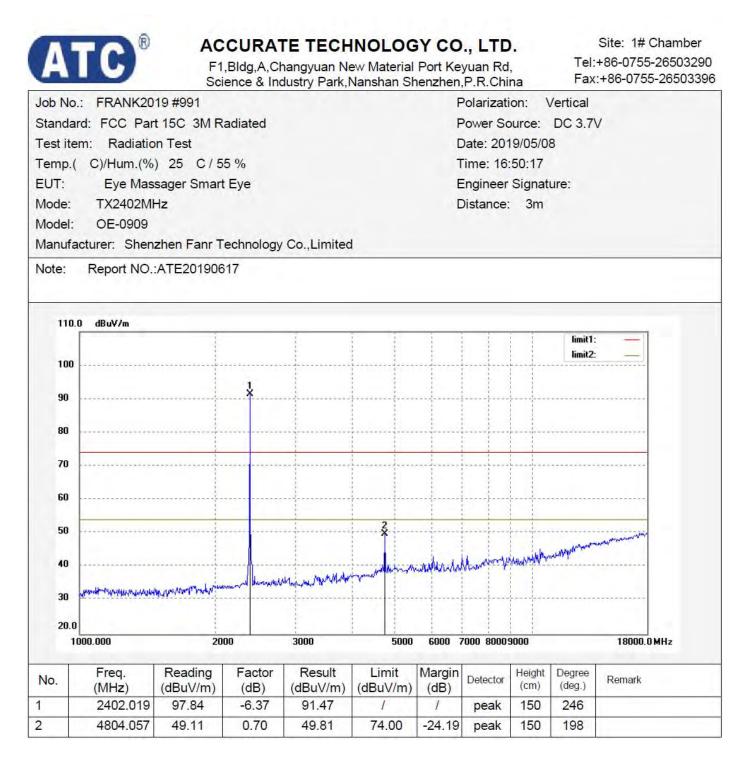
ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

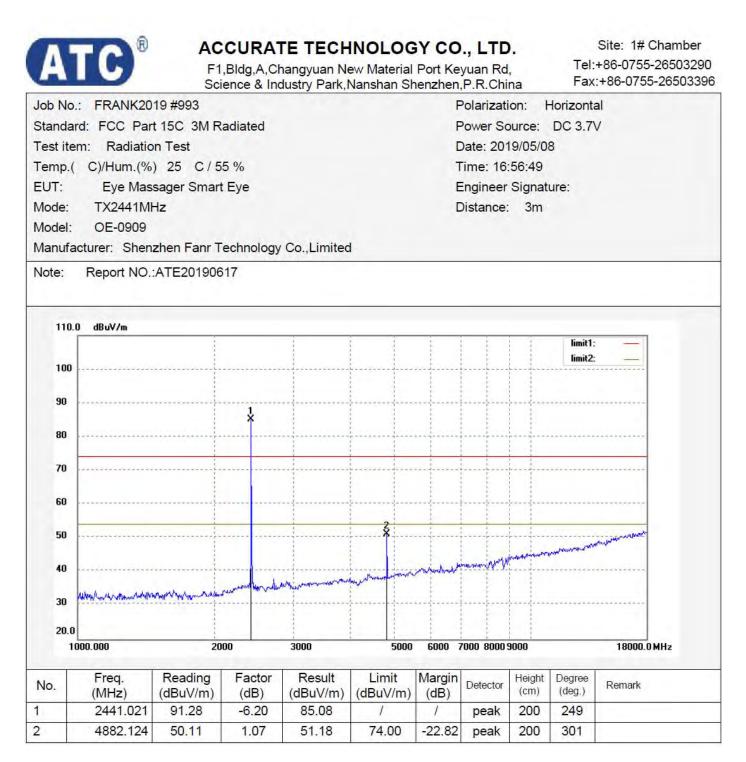
ACCURATE TECHNOLOGY CO., LTD.

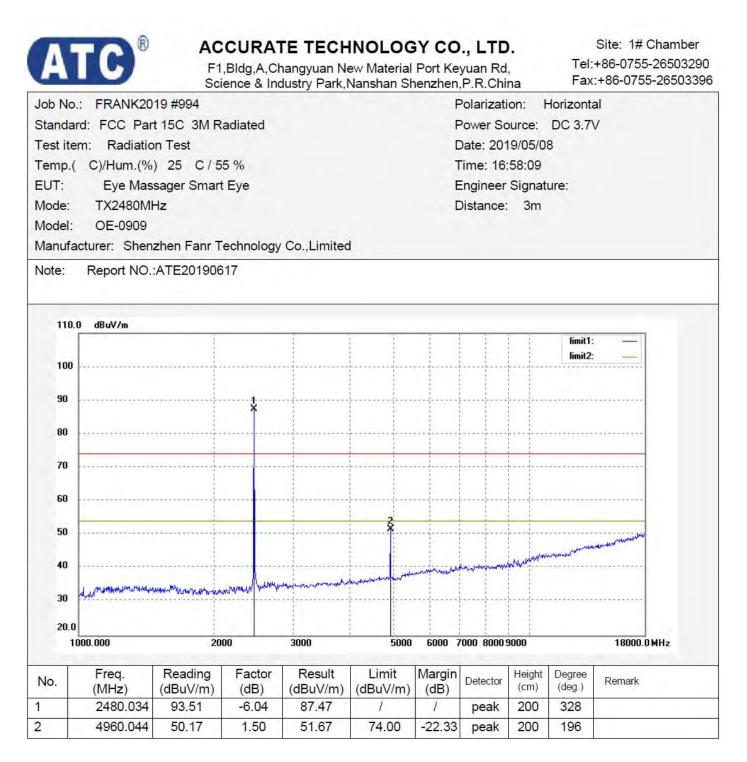
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China



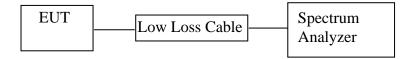

ATC®

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China







12.BAND EDGE COMPLIANCE TEST

12.1.Block Diagram of Test Setup

12.2.The Requirement For Section 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

12.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.4.Operating Condition of EUT

- 12.4.1.Setup the EUT and simulator as shown as Section 12.1.
- 12.4.2.Turn on the power of all equipment.
- 12.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

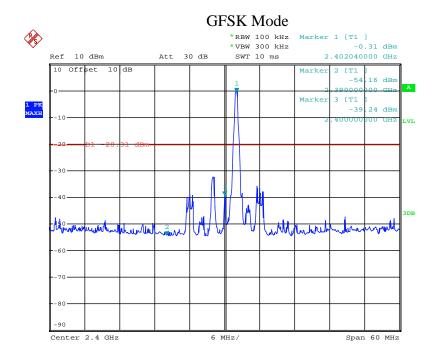
12.5.Test Procedure

- 12.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 12.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 12.5.3.The band edges was measured and recorded.

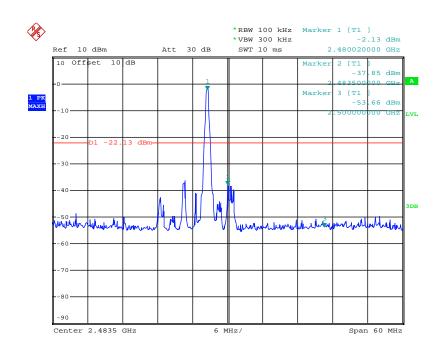
12.6.Test Result

Test Lab: Shielding room Test Engineer: Frank

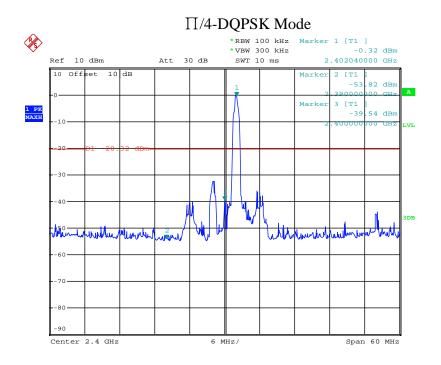
Note: Both hopping-on mode and hopping-off mode had been pre-tested, and only the Worse case was recorded in the test report.


Conducted Band Edge Result

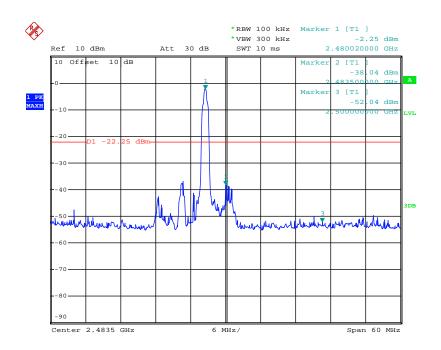
Non-hopping mode


Frequency	Result of Band Edge	Limit of Band Edge	Result									
(MHz)	(dBc)	(dBc)										
	GFSK Mode											
2400.00	38.93	> 20dBc	Pass									
2483.50	35.72	> 20dBc	Pass									
	П/4-DQPSK Mode											
2400.00	39.22	> 20dBc	Pass									
2483.50	35.79	> 20dBc	Pass									

The spectrum analyzer plots are attached as below.



Date: 15.MAY.2019 16:21:32



Date: 15.MAY.2019 16:20:17

Date: 15.MAY.2019 16:22:27

Date: 15.MAY.2019 16:23:05

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

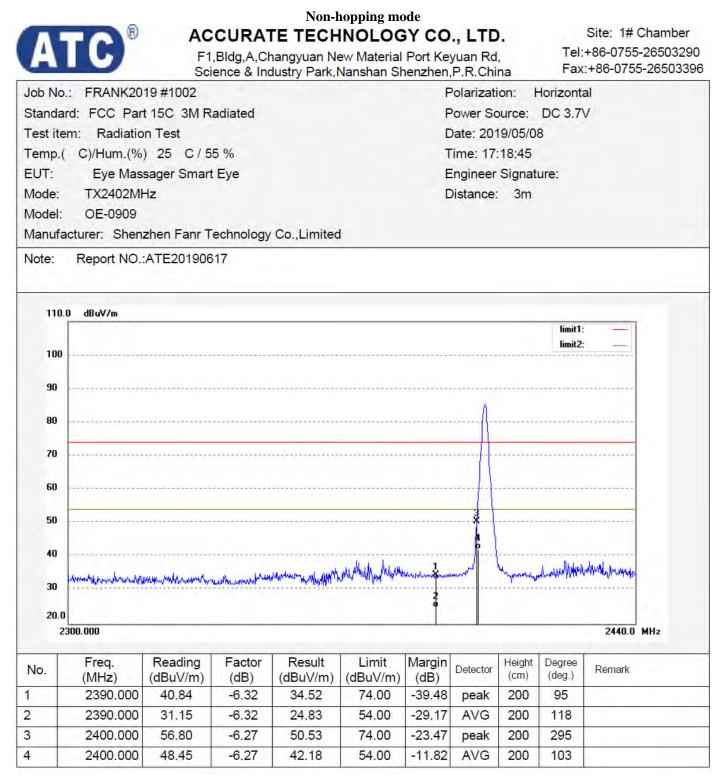
Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode).

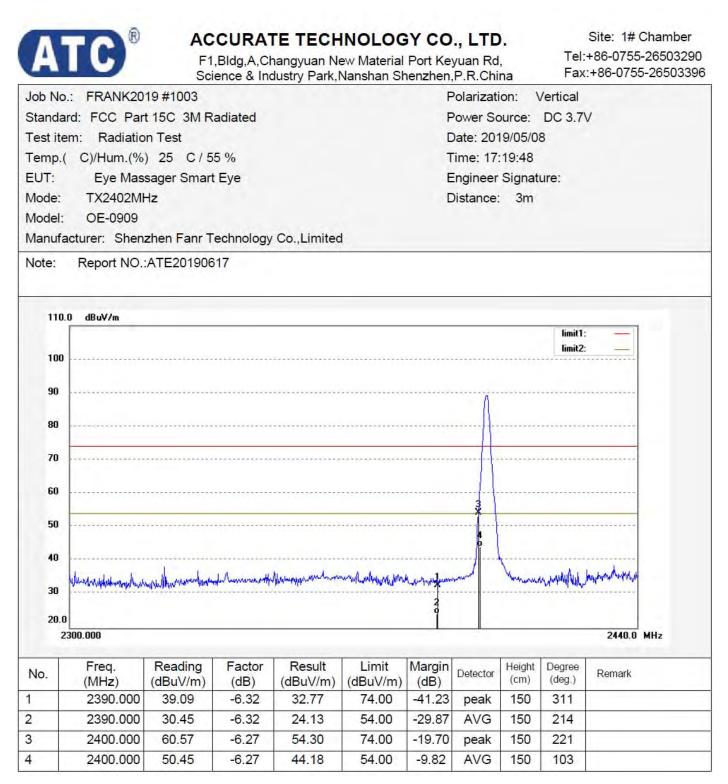
During the radiated emission test, the spectrum analyzer was set with the following configurations:

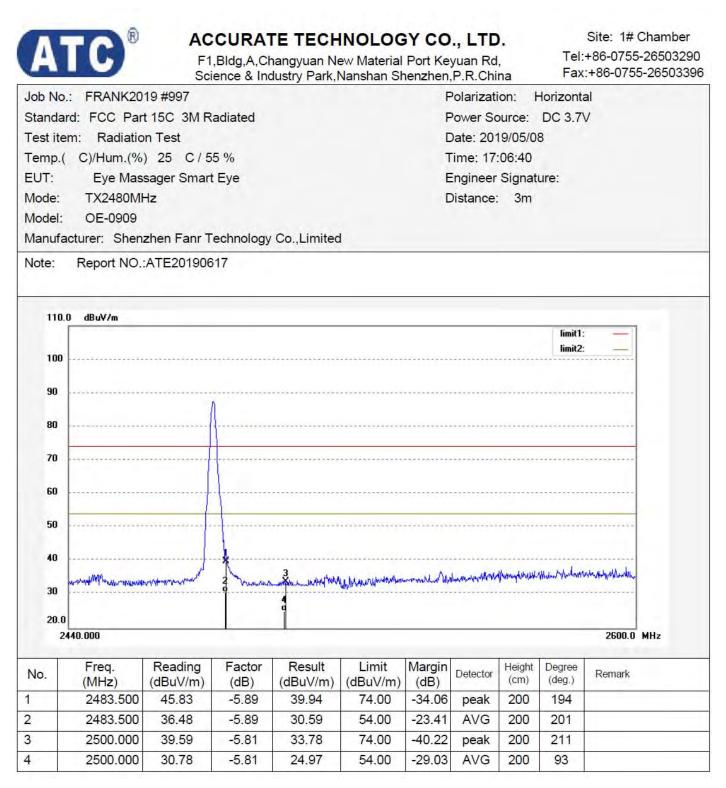
1. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.


2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

3.All modes of operation were investigated and the Worse case (Π /4-DQPSK Mode) emissions are reported.

Test Lab: 3m Anechoic chamber Test Engineer: Frank


The spectrum analyzer plots are attached as below.


Note: Average measurement with peak detection at No.2&4

Note: Average measurement with peak detection at No.2&4

Note: Average measurement with peak detection at No.2&4

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

-			ence & In	dustry Park,	Nanshan Sh	nenzhen	,P.R.Chi			:+86-0755	-2650339	
	.: FRANK20					Polarization: Vertical						
tanda	rd: FCC Par	t 15C 3M R	adiated		Power Source: DC 3.7V							
est ite	em: Radiatio	n Test			Date: 2019/05/08 Time: 17:05:42 Engineer Signature:							
emp.(C)/Hum.(%) 25 C/5	5 %									
UT:	Eye Mas	sager Smart	Eye									
lode:	TX2480MH	Ηz			Distance: 3m							
Nodel:	OE-0909											
lanufa	acturer: Shen	zhen Fanr T	echnology	Co.,Limited	ł							
lote:	Report NO.	:ATE201906	517									
110.	0 dBu∀/m											
									limit1:	-		
100	himmini		mantaana	haanahaa	hannana			nana	limit2:			
90			1									
80	*****						*********	********	*********	*********		
70												
60												
	-		-									
50												
40												
	marinkohmuni	and the branch and the	Francis	monthen	where manadering a provide a	harmon and the	warman the the side	10411410-14 days	companyable	Amplehaples		
30			- 9					*******				
20.0				ľ								
	440.000		-							2600.0	MHz	
1		D r							-			
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
	2483.500	45.13	-5.89	39.24	74.00	-34.76	peak	150	141			
	2483.500	36.78	-5.89	30.89	54.00	-23.11	AVG	150	92			
	2500.000	41.04	-5.81	35.23	74.00	-38.77	peak	150	252			
							Sec. Sec.					

Note: Average measurement with peak detection at No.2&4

-5.81

26.67

54.00

-27.33

AVG

150

103

32.48

2500.000

4

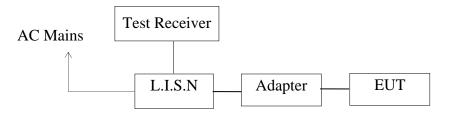
A	TC®	F1	Bldg,A,Cl	Hoj TE TECH nangyuan No dustry Park,I	ew Material	Port Ke	yuan Rd	,		+86-075	Chamber 5-26503290 5-26503396
Job No	D.: FRANK20	19 #1005				Polarization: Horizontal					
Standa	ard: FCC Par	t 15C 3M R	adiated			F	ower Sc	ource:	DC 3.7	V	
Test it	em: Radiatio	n Test				C	Date: 201	9/05/0	8		
Temp.	(C)/Hum.(%) 25 C/5	5 %			П	ime: 17:	23:29			
EUT:	Eye Mas	sager Smart	Eye			E	Ingineer	Signat	ure:		
Mode:	HOPPING					C	Distance:	3m			
Model:	OE-0909										
Manuf	acturer: Shen	zhen Fanr T	echnology	Co.,Limited	ł						
Note:	Report NO.	:ATE201906	17								
110	0.0 dBuV/m								limit1:		r
									limit2:		
100							*******				
90											
				in it of the	AL AMARATEN AND	~					
80	*******			ALLEN AL	St			••••••			
-				h to he h		-					
70		******					**********		*********	**********	
60		يبذر معاومتها وم			assiansias.		بنمشم		وتصادمت	أستعمينهم	
50		***********									
40	and the second s		-								
30	altideen and many and a	Martinolomy				5	Zaumunu 8	watnessig	longehalteren	naferlanderarik	
20.	2300.000									2600.0	MHz
			Factor	Result	Limit	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	S
	Freq. (MHz)	Reading (dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(ub)					
No.					(dBuV/m) 74.00	-41.27	peak	200	174		
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)			peak AVG	200 200	174 96		
No.	(MHz) 2390.000	(dBuV/m) 39.05	(dB) -6.32	(dBuV/m) 32.73	74.00	-41.27	- 12 2 2 2 1 1		1000		
No. 1 2 3	(MHz) 2390.000 2390.000	(dBuV/m) 39.05 30.45	(dB) -6.32 -6.32	(dBuV/m) 32.73 24.13	74.00 54.00	-41.27 -29.87	AVG	200	96		
No. 1 2 3 4	(MHz) 2390.000 2390.000 2400.000	(dBuV/m) 39.05 30.45 45.16	(dB) -6.32 -6.32 -6.27	(dBuV/m) 32.73 24.13 38.89	74.00 54.00 74.00	-41.27 -29.87 -35.11	AVG peak AVG	200 200	96 111		
No. 1 2	(MHz) 2390.000 2390.000 2400.000 2400.000	(dBuV/m) 39.05 30.45 45.16 36.45	(dB) -6.32 -6.32 -6.27 -6.27	(dBuV/m) 32.73 24.13 38.89 30.18	74.00 54.00 74.00 54.00	-41.27 -29.87 -35.11 -23.82	AVG peak AVG	200 200 200	96 111 224		
No. 1 2 3 4 5	(MHz) 2390.000 2390.000 2400.000 2400.000 2483.500	(dBuV/m) 39.05 30.45 45.16 36.45 40.35	(dB) -6.32 -6.32 -6.27 -6.27 -5.89	(dBuV/m) 32.73 24.13 38.89 30.18 34.46	74.00 54.00 74.00 54.00 74.00	-41.27 -29.87 -35.11 -23.82 -39.54	AVG peak AVG peak AVG	200 200 200 200	96 111 224 95		

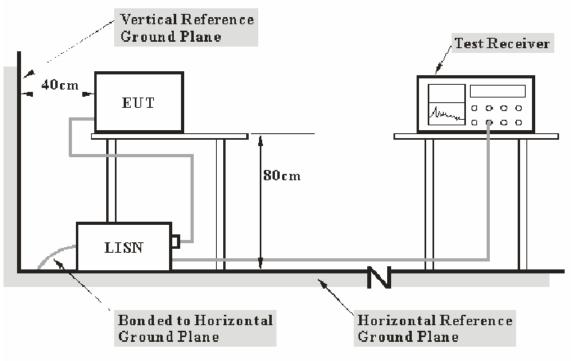
Note: Average measurement with peak detection at No.2&4&6&8

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

		Sci	ence & In	dustry Park,	Nanshan Sh	nenzhen	P.R.Chi	na	Fax	:+86-0755-2	6503396
Job No	.: FRANK20	19 #1004				F	Polarizati	ion: \	/ertical		
Standa	ard: FCC Par	t 15C 3M R	adiated			F	Power So	ource:	DC 3.7	V	
Test ite	em: Radiatio	n Test			Date: 2019/05/08						
Temp.	(C)/Hum.(%) 25 C/5	5 %		Time: 17:21:38						
EUT:		sager Smart				E	Ingineer	Signat	ure:		
Mode:							Distance:				
Model:	OE-0909										
Manufa	acturer: Shen	zhen Fanr T	echnology	Co.,Limited	ł						
Note:	Report NO.:	:ATE201906	17								
110	.0 dBuV/m								limit1:	-1	
100									limit2:		
100								********			
90					contraction of the s	MA					
	1.1.1			MUL	and the f	11					
80		*****	**********							******	
70		/33.201.201							1		
10											
60											
50				Lanner							
40		AWIMMAN	1.1			5	7	to the		and sufficient	
30	millionaliseraliseraliser	W/WWWwwwwww	the second second		antiskák	- marine	Sundaryayah	where	wand a sheer florede	eren address and the state	
50			4			•	8		100110000		
20.0)			J				
	2300.000									2600.0 MH	Iz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2390.000	42.49	-6.32	36.17	74.00	-37.83	peak	150	97		
	2390.000	33.15	-6.32	26.83	54.00	-27.17	AVG	150	159		
3	2400.000	45.39	-6.27	39.12	74.00	-34.88	peak	150	325		
	2400.000	36.48	-6.27	30.21	54.00	-23.79	AVG	150	66		
i	2483.500	42.67	-5.89	36.78	74.00	-37.22	peak	150	115		
	2483.500	33.46	-5.89	27.57	54.00	-26.43	AVG	150	93		
			5.04	04.00	74.00	20.00	nook	150	22		
,	2500.000	40.73	-5.81	34.92	74.00	-39.08	peak	150	22		


Note: Average measurement with peak detection at No.2&4&6&8


13.AC POWER LINE CONDUCTED EMISSION TEST

13.1.Block Diagram of Test Setup

13.1.1.Block diagram of connection between the EUT and simulators

13.1.2.Test System Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

13.2.Test Limits

Frequency	Limit dB(µV)									
(MHz)	Quasi-peak Level	Average Level								
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *								
0.50 - 5.00	56.0 46.0									
5.00 - 30.00										
NOTE1: The lower limit sha	NOTE1: The lower limit shall apply at the transition frequencies.									
NOTE2: The limit decreases	linearly with the logarithm of	the frequency in the range								
0.15MHz to 0.50M	lHz.									

13.3.Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

13.4.Operating Condition of EUT

13.4.1.Setup the EUT and simulator as shown as Section 13.1.

13.4.2.Turn on the power of all equipment.

13.4.3.Let the EUT work in test mode and measure it.

13.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

13.6.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.6	25.3	17.0	59.0	49.0	33.4	31.7	Pass

Frequency(MHz) = Emission frequency in MHz

Transducer value(dB) = Insertion loss of LISN + Cable Loss Level(dB μ V) = Quasi-peak Reading/Average Reading + Transducer value Limit (dB μ V) = Limit stated in standard Margin = Limit (dB μ V) - Level (dB μ V)

Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

13.7.Test Result

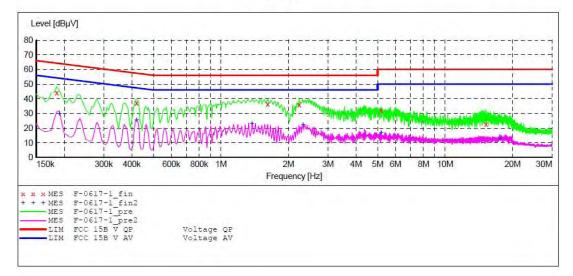
Pass. Test Lab: Shielding room Test Engineer: Frank

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT. Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT:Eye Massager Smart Eye M/N:OE-0909Manufacturer:Shenzhen Fanr Technology Co.,LimitedOperating Condition:BT CommunicationTest Site:1#Shielding RoomOperator:FrankTest Specification:N 120V/60HzComment:Report NO.:ATE20190617Start of Test:5/7/2019 / 10:20:27AM

SCAN TABLE: "V 9K-30MHz fin"

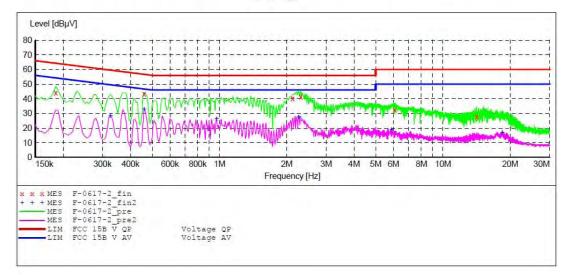
-	Short Desc.	ription:	S	UB STD VTE	RM2 1.70			
	Start Frequency			Detector	Meas. Time	IF Bandw.	Transducer	
	9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak Average	1.0 s	200 Hz	NSLK8126 2008	
	150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008	

MEASUREMENT RESULT: "F-0617-1 fin"

5/7/2019 10:25AM Level Transd Limit Margin Detector Line PE Frequency dBµV MHz dB dBµV dB 0.185000 44.30 10.5 64 20.0 QP Ν GND 0.420000 36.90 10.7 57 20.5 QP GND Ν 36.50 1.615000 10.9 56 19.5 QP GND Ν 20.0 27.9 11.0 2.230000 36.00 56 QP Ν GND 5.180000 32.10 11.2 60 QP Ν GND 15.220000 22.50 11.4 60 37.5 QP Ν GND

MEASUREMENT RESULT: "F-0617-1_fin2"

5/7/2019 10:2		- 1					
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.190000	29.70	10.5	54	24.3	AV	N	GND
0.420000	25.30	10.7	47	22.1	AV	N	GND
1.375000	23.10	10.9	46	22.9	AV	N	GND
2.320000	22.30	11.0	46	23.7	AV	N	GND
5.180000	17.00	11.2	50	33.0	AV	N	GND
17.575000	12.50	11.4	50	37.5	AV	N	GND

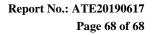

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT:Eye Massager Smart Eye M/N:OE-0909Manufacturer:Shenzhen Fanr Technology Co.,LimitedOperating Condition:BT CommunicationTest Site:1#Shielding RoomOperator:FrankTest Specification:L 120V/60HzComment:Report NO.:ATE20190617Start of Test:5/7/2019 / 10:26:03AM

SCAN TABLE: "V 9K-30MHz fin"

Short Desc	ription:	S	UB STD VTE	RM2 1.70			
Start Frequency	Stop Frequency		Detector	Meas. Time	IF Bandw.	Transducer	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak Average	1.0 s	200 Hz	NSLK8126 2008	
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008	

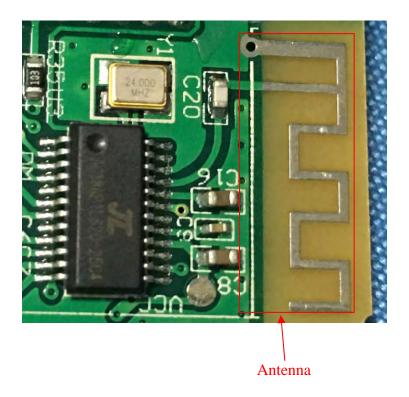


MEASUREMENT RESULT: "F-0617-2 fin"

5/7/2019 10:29AM Level Transd Limit Margin Detector Line PE Frequency MHz dBµV dB dBµV dB 0.185000 44.20 10.5 64 20.1 QP GND L1 0.460000 43.30 10.7 57 13.4 QP L1 GND 2.120000 2.310000 56 QP GND 40.40 11.0 15.6 L1 41.60 11.0 56 14.4 QP L1 GND 6.070000 32.30 11.2 60 27.7 QP L1 GND 14.155000 27.90 11.4 60 32.1 QP L1 GND

MEASUREMENT RESULT: "F-0617-2 fin2"

5/7/2019 10:2 Frequency MHz	9AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.325000	28.20	10.6	50	21.4	AV	L1	GND
0.460000	32.70	10.7	47	14.0	AV	L1	GND
0.970000	26.20	10.8	46	19.8	AV	L1	GND
2.260000	27.30	11.0	46	18.7	AV	L1	GND
5.880000	19.00	11.2	50	31.0	AV	L1	GND
18.415000	16.70	11.4	50	33.3	AV	L1	GND


14.ANTENNA REQUIREMENT

14.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is -0.68dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****