

HCT CO., LTD.

CERTIFICATION DIVISION

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea TEL : +82 31 645 6300 $\,$ FAX : +82 31 645 6401

CERTIFICATE OF COMPLIANCE (ERM EVALUATION)

Manufacture:

10, 9th Floor, SOLiD Space, Pangyoyeok-ro 220, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400

SOLiD, Inc

Date of Issue: September 04, 2014

Test Report No.: HCT-R-1409-F002

Test Site: HCT CO., LTD.

IC Recognition No.: 5944A-3

FCC ID:

EUT Type:

IC:

APPLICANT:

W6UNH2100A 9354A-NH2100A SOLiD, Inc

FCC/ IC Model Name: TR-HRDU-2100A

Additional FCC/ IC Model Name: N20-HRDU-2100A

Frequency Ranges: 2110 MHz – 2155 MHz

Conducted Output Power: 25 W (44dBm)

Date of Test: August 05, 2014 ~ August 25, 2014

FCC Rules Part(s): CFR 47, Part 27

IC Rules: RSS-Gen (Issue 3, December 2010), RSS-131 (Issue 2, July 2003)

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 90 of the FCC Rules under normal use and maintenance.

HPRD (High Power Remote Drive Unit)

Report prepared by : Yong Hyun Lee

Engineer of RF Team

Report approved by : Chang Seok Choi

Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 2 of 106

Report Revision

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1409-F002	September 04, 2014	- First Approval Report

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 3 of 106

Table of Contents

1. CLIENT INFORMATION	4
2. FACILITIES AND ACCREDITATIONS	5
2.1. FACILITIES	5
2.2. EQUIPMENT	5
3. TEST SUMMARY	6
3.1. STANDARDS	
3.2. MODE OF OPERATION DURING THE TEST	6
4. STANDARDS ENVIRONMENTAL TEST CONDITIONS	7
5. TEST EQUIPMENT	8
6. RF OUTPUT POWER	9
7. OCCUPIED BANDWIDTH	28
8. PASSBAND GAIN AND BANDWIDTH & Out of Band Rejection	46
9. SPURIOUS AND HARMONIC EMISSION AT ANTENNA TERMINAL	48
10. RADIATED SPURIOUS EMISSIONS	101
11 EDECLIENCY STARILITY OVER TEMPERATURE AND VOLTAGE VARIATIONS	104

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 4 of 106

1. CLIENT INFORMATION

The EUT has been tested by request of

Company

SOLiD, Inc

10, 9th Floor, SOLiD Space, Pangyoyeok-ro 220, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400

■ FCC ID: W6UNH2100A

■ IC: 9354A-NH2100A

■ APPLICANT: SOLID, Inc

■ EUT Type: HPRD (High Power Remote Drive Unit)

■ Model: TR-HRDU-2100A

■ Additional Model: N20-HRDU-2100A

■ Frequency Ranges: 2110 MHz – 2155 MHz

■ Conducted Output Power: 25 W (44 dBm)

■ Antenna Gain(s): Manufacturer does not provide an antenna.

■ FCC Rules Part(s): CFR Title 47 Part 27

■ IC Rules Part(s): RSS-Gen (Issue3, December 2010), RSS-131(Issue 2, July 2003)

■ Measurement standard(s): ANSI/TIA-603-C-2004, KDB 971168 D01 v02,

KDB 935210 D03 v02r01, RSS-131(Issue 2, July 2003)

■ Place of Tests: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-

do, Korea. (IC Recognition No.: 5944A-3)

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 5 of 106

2. FACILITIES AND ACCREDITATIONS

2.1. FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2003) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated February 28, 2014 (Registration Number: 90661)

2.2. EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 6 of 106

3. TEST SUMMARY

3.1. STANDARDS

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 90, RSS-GEN, RSS-131.

Description	Reference (FCC)	Reference (IC)	Results
Conducted RF Output Power	§2.1046; §27.50	RSS-131, Section 4.3 RSS-131, Section 6.2	Compliant
Occupied Bandwidth	§2.1049	RSS-GEN, Section 4.6.1	Compliant
Passband Gain and Bandwidth & Out of Band Rejection	KDB 935210 D03 v02r01	RSS-131, Section 4.2 RSS-131, Section 6.1	Compliant
Spurious Emissions at Antenna Terminals	§2.1051, §27.53	RSS-131, Section 4.4 RSS-131, Section 6.3 RSS-131, Section 6.4	Compliant
Radiated Spurious Emissions	§2.1053, §27.53	-	Compliant
Frequency Stability	§2.1055, §27.54	RSS-131, Section 4.5 RSS-131, Section 6.5	Compliant

3.2. MODE OF OPERATION DURING THE TEST

The EUT was operated in a manner representative of the typical usage of the equipment.

During all testing, system components were manipulated within the confines of typical usage to maximize each emission.

The device does not supply antenna(s) with the system, so the dummy loads were connected to the RF output ports for radiated spurious emission testing.

QPSK was only selected and tested since it's the worst case configuration among all here modulations (QPSK, 16QAM, 64QAM).

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 7 of 106

4. STANDARDS ENVIRONMENTAL TEST CONDITIONS

Temperature :	+ 15 °C to + 35 °C
Relative humidity:	30 % to 60 %
Air pressure	860 mbar to 1 060 mbar

F-01P-02-014 (Rev.00)

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 8 of 106

5. TEST EQUIPMENT

Manufacturer	Model / Equipment	Cal Interval	Calibration Date	Serial No.
Agilent	E4438C /Signal Generator	Annual	09/05/2013	MY42082646
Agilent	N5182A /Signal Generator	Annual	09/30/2013	MY50141649
Agilent	E4416A /Power Meter	Annual	10/16/2013	GB41291412
Agilent	E9327A/ Power Sensor	Annual	03/31/2014	MY4442009
NANGYEUL CO., LTD.	NY-THR18750/ Temperature and Humidity Chamber	Annual	10/30/2013	NY-2009012201A
Agilent	N9020A /Signal Analyzer	Annual	04/16/2014	US46220219
WEINSCHEL	67-30-33 / Fixed Attenuator	Annual	11/05/2013	BU5347
MCE / Weinschel	2-10 / Fixed Attenuator	Annual	10/28/2013	BR0554
HD	MA240/ Antenna Position Tower	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	12
MITEQ	AMF-6D-001180-35-20P/AMP	Annual	09/12/2013	1081666
Schwarzbeck	BBHA 9120D/ Horn Antenna	Biennial	07/05/2013	1151
Schwarzbeck	BBHA 9120D/ Horn Antenna	Biennial	07/05/2013	1151
Schwarzbeck	VULB 9160/TRILOG Antenna	Biennial	12/17/2012	3150

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 9 of 106

6. RF OUTPUT POWER

FCC Rules

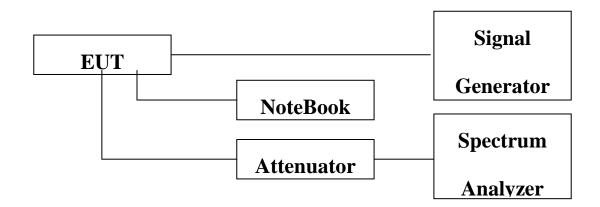
Test Requirements:

§ 2.1046 Measurements required: RF power output:

- § 2.1046 (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.
- § 2.1046 (b) For single sideband, independent sideband, and single channel, controlled carrier radiotelephone transmitters, the procedure specified in paragraph (a) of this section shall be employed and, in addition, the transmitter shall be modulated during the test as specified and as applicable in § 2.1046 (b) (1-5). In all tests, the input level of the modulating signal shall be such as to develop rated peak envelope power or carrier power, as appropriate, for the transmitter.
- § 2.1046 (c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

§ 27.50 Power and antenna height limits.

2) Fixed and base stations transmit- ting a signal in the 746–757 MHz, 758–763 MHz, 776–787 MHz, and 788–793 MHz bands with an emission bandwidth of 1 MHz or less must not exceed an ERP of 1000 watts and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts ERP in accordance with Table 1 of this section.


Test Procedures:

As required by 47 CFR 2.1046, RF power output measurements were made at the RF output terminals using an attenuator and spectrum analyzer or power meter. This test was performed in all applicable modulations.

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 10 of 106

Block Diagram 1. RF Power Output Test Setup

Test Results:

Input Signal	Input Level (dBm)	Maximum Amp Gain
CDMA		
WCDMA	DI . 45 dD	DI . E0 dD
LTE 5 MHz	DL : -15 dBm	DL : 59 dB
LTE 10 MHz		

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 11 of 106

IC Rules

Test Requirements: RSS-131 6.2

The manufacturer's output power rating Prated MUST NOT be greater than Pmean for all types of enhancers.

Additional Power Back-off Condition for Multiple Carrier Operations:

An example of a single carrier operation is a band translator that incorporates an (IF) filter of a passband equal to one channel bandwidth. Another example of a single carrier operation is the use of an enhancer, before the connection to the antenna, to boost a low power transmitter (single carrier) to a higher power.

An example of a multiple carrier operation is the use of an enhancer to amplify off-air signals that contain the wanted carrier and two (or more) adjacent band carriers. If the enhancer passband is wide enough to pass more than the wanted channel bandwidth, the enhancer output stage will be loaded by the multiple carriers.

Examination: with 3 carrier signals (of assumed equal level), the peak voltage will be 3 times the single carrier voltage. The corresponding Peak Envelope Power (PEP) will be 3^2 times greater than a single carrier or 9/4 = 2.25 times greater than 2 tones PEP. Therefore the permissible wanted signal operating point has to be backed off by 3.5 dB (i.e. **Ppermissible = Prated - 3.5 dB**).

Note 1: All enhancers will be classified in the Radio Equipment List (REL) for a single carrier operation.

Note 2: For a multiple carrier operation, the rating must be reduced by 3.5 dB or more.

Note 3: If there are more than 3 carriers present at the amplifier input point, greater power back-off may be required. This can be examined on a case-by-case basis.

Test Procedures: RSS-131 4.3 4.3.1 Multi-channel Enhancer

The following subscript "o" denotes a parameter at the enhancer output point.

Connect two signal generators to the input of the Device Under Test (DUT), via a proper impedance matching network (and preferably via a variable attenuator) so that the two input signals are equal sinusoids (and can be raised equally).

Connect a dummy load of suitable load rating to the enhancer output point. Connect also a spectrum analyser to this output point via a coupling network and attenuator, so that only a portion of the output signal is coupled to the spectrum analyser. The coupling attenuation shall be stated in the test report.

Set the two generator frequencies f1 and f2 such that they and their third-order intermodulation product frequencies, f3 = 2f1-f2 and f4 = 2f2 - f1, are all within the passband of the DUT.

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 12 of 106

Raise the input level to the DUT while observing the output tone levels, Po1 and Po2, and the intermodulation product levels, Po3 and Po4.

For enhancers rated 500 watts or less: Raise the input level to the DUT until the greater level of the intermodulation products at the enhancer output terminals, Po3 or Po4, equals -43 dBW.

For enhancers rated over 500 watts: Raise the input level to the DUT until the greater level of the intermodulation products at the enhancer output terminals, Po3 or Po4, is 67 dB below the level of either output tone level, Po1 or Po2.

Record all signal levels and their frequencies. Calculate the mean output power (Pmean) under this testing condition using Pmean = Po1 + 3 dB.

4.3.2 Single Channel Enhancer

A suitably modulated signal, representative of the technology for which certification is sought, is applied to the input of the amplifier. The input power level is increased until the manufacturer's rated input power level is achieved or until a 2 dB increase in input level results in a 1 dB increase in output level (i.e. compression begins). Record the output power in the 99% emission bandwidth using any suitable means.

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 13 of 106

Single channel Enhancer

* Due to EUT's ALC function (Auto Level Control), even if input signal is increased,

The same output power is transmit.

[Downlink]

	Channel	Frequency	Output Power	
	Channel	(MHz)	(dBm)	(W)
	Low	2111.25	44.05	25.433
CDMA	Middle	2132.50	44.02	25.258
	High	2153.75	44.10	25.704
	Low	2111.25	44.08	25.556
EVDO	Middle	2132.50	44.02	25.235
	High	2153.75	44.07	25.551
	Low	2112.40	44.00	25.130
WCDMA	Middle	2132.40	44.06	25.468
	High	2152.60	44.09	25.639

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 14 of 106

[Downlink]

	Channel	Frequency	Output Power	
		(MHz)	(dBm)	(W)
	Low	2112.50	44.03	25.287
LTE 5 MHz	Middle	2132.50	44.17	26.098
	High	2152.50	44.12	25.805
	Low	2115.00	44.02	25.235
LTE 10 MHz	Middle	2132.50	44.04	25.375
	High	2150.00	44.03	25.316

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 15 of 106

Multi-channel Enhancer for IC

* Due to EUT's ALC function (Auto Level Control), even if input signal is increased,

The same output power is transmit.

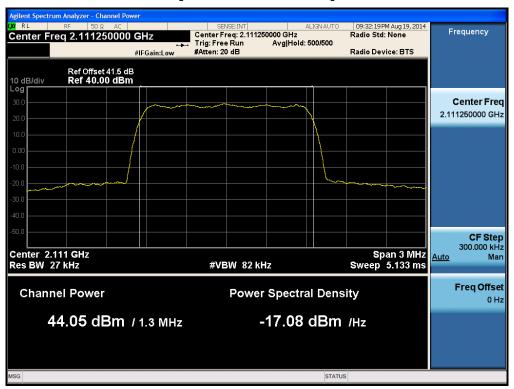
[Downlink]

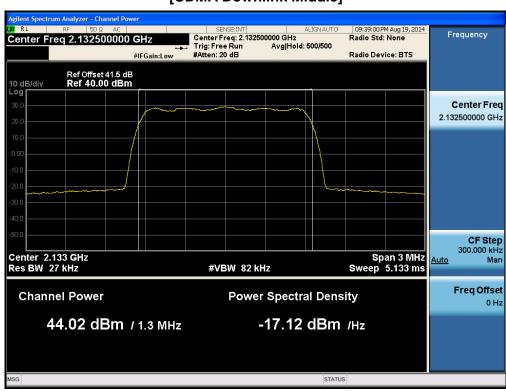
Channel	Frequency	Output Power		
Channel	(MHz)	Po1(dBm)	Pmean(dBm)	
Low	2110.40	41.02	44.02	
Middle	2132.50	41.00	44.00	
High	2154.60	41.00	44.00	

Additional Power Back-off Condition for Multiple Carrier Operations for IC

[Downlink]

	1 Carrier	3 Carrier	Power Back-off
	(dBm)	(dBm)	(dB)
LTE 5 MHz	44.17	39.24	4.93

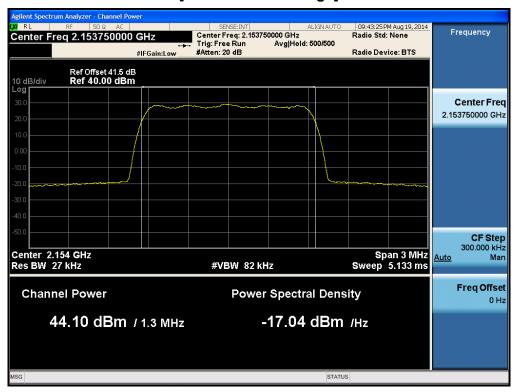

F-01P-02-014 (Rev.00) HCT CO., LTD


Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 16 of 106

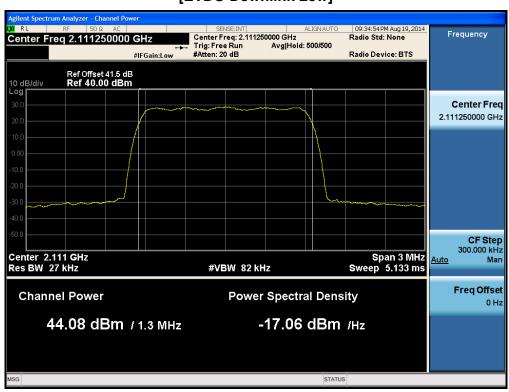
Plots of RF Output Power

[CDMA Downlink Low]

[CDMA Downlink Middle]



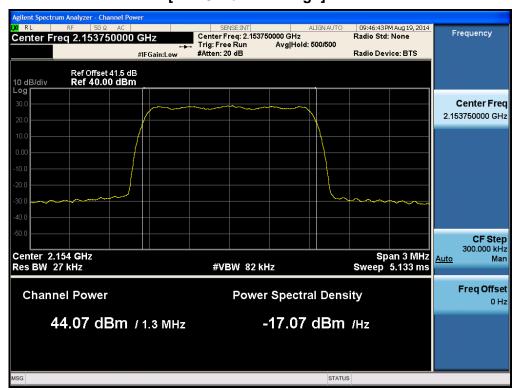
F-01P-02-014 (Rev.00) HCT CO., LTD



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 17 of 106

[CDMA Downlink High]


[EVDO Downlink Low]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 18 of 106

[EVDO Downlink Middle]


[EVDO Downlink High]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 19 of 106

[WCDMA Downlink Low]

[WCDMA Downlink Middle]

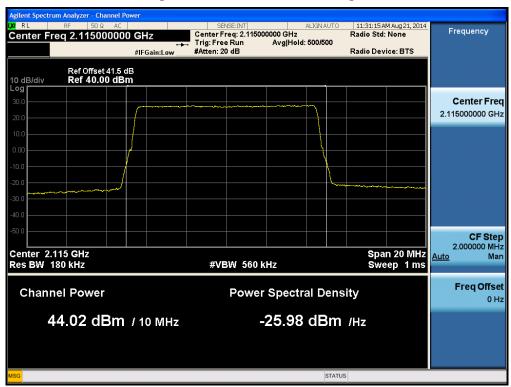
Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 20 of 106

[WCDMA Downlink High]

[LTE Downlink 5 MHz Low]

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 21 of 106

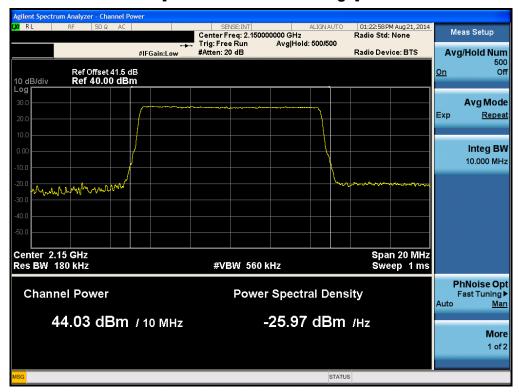
[LTE Downlink 5 MHz Middle]


[LTE Downlink 5 MHz High]



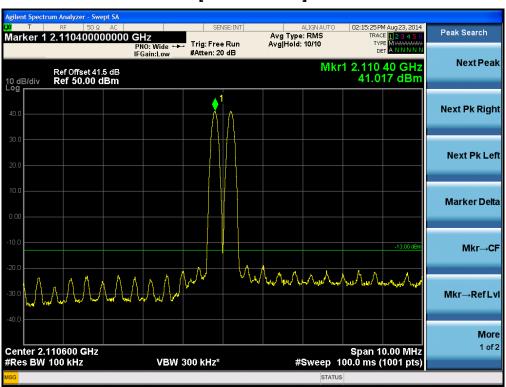
Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 22 of 106

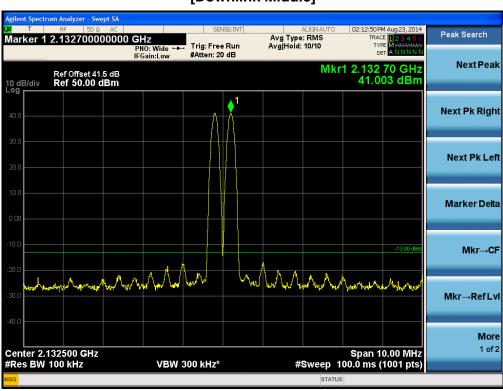
[LTE Downlink 10 MHz Low]


[LTE Downlink 10 MHz Middle]

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 23 of 106

[LTE Downlink 10 MHz High]

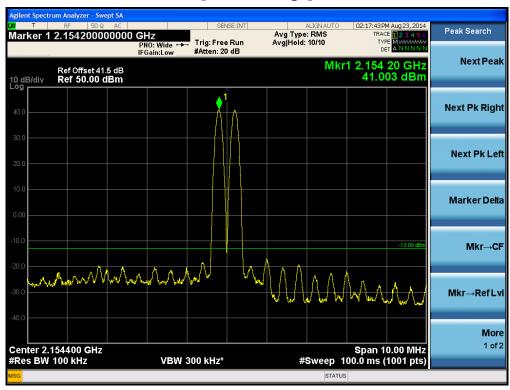



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 24 of 106

Multi-channel Enhancer for IC

[Downlink Low]

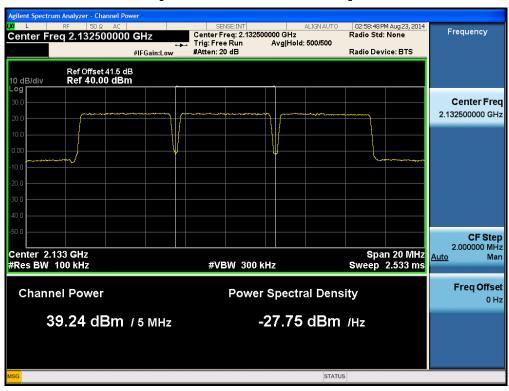
[Downlink Middle]



F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH2100A / IC: 9354A-NH2100A

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 25 of 106

[Downlink High]


Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 26 of 106

* Power Back-off for IC

[Downlink 3 Carrier Low]

[Downlink 3 Carrier Middle]

F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH2100A / IC: 9354A-NH2100A

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 27 of 106

[Downlink 3 Carrier High]

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 28 of 106

7. OCCUPIED BANDWIDTH

FCC Rules

Test Requirement(s): § 2.1049 Measurements required: Occupied bandwidth:

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the specified conditions of § 2.1049 (a) through (i) as applicable.

Test Procedures: As required by 47 CFR 2.1049, *occupied bandwidth measurements* were made with a Spectrum Analyzer connected to the RF ports for both Uplink and Downlink

The modulation characteristics of signal generator's carrier was measured first at a maximum RF level prescribed by the OEM. The signal generator was then connected to either the Uplink or Downlink input at the appropriate RF level. The resulting modulated signal through the EUT was measured and compared against the original signal.

Test Results: The EUT complies with the requirements of this section.

Input Signal	Input Level (dBm)	Maximum Amp Gain
CDMA		
WCDMA	DI . 45 dD	DI . 50 JD
GSM	DL : -15 dBm	DL : 59 dB
LTE 5 MHz		

IC Rules

Test Requirements: RSS-GEN 4.6.1

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Test Procedures: RSS-GEN 4.6.1

The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth.

Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

The trace data points are recovered and directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth.

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 29 of 106

[Downlink Output]

	Channel	Frequency (MHz)	OBW (MHz)
	Low	2111.25	1.262
CDMA	Middle	2132.50	1.257
	High	2153.75	1.262
	Low	2111.25	1.259
EVDO	Middle	2132.50	1.260
	High	2153.75	1.260
	Low	2112.40	4.129
WCDMA	Middle	2132.40	4.160
	High	2152.60	4.138

[Downlink Input]

	Channel	Frequency (MHz)	OBW (MHz)
CDMA	Low	2111.25	1.260
	Middle	2132.50	1.268
	High	2153.75	1.264
EVDO	Low	2111.25	1.262
	Middle	2132.50	1.261
	High	2153.75	1.262
WCDMA	Low	2112.40	4.134
	Middle	2132.40	4.125
	High	2152.60	4.127

F-01P-02-014 (Rev.00)

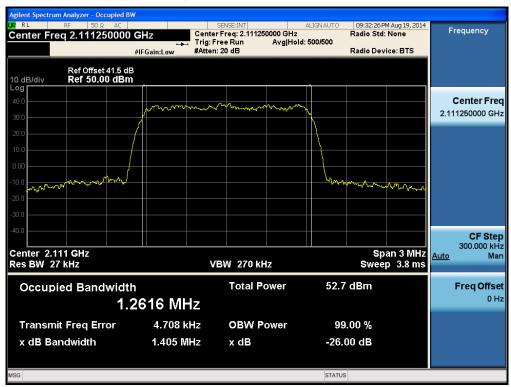
Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 30 of 106

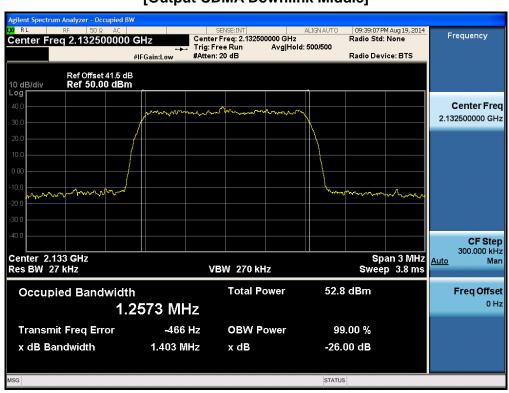
[Downlink Output]

	Channel	Frequency (MHz)	OBW (MHz)
LTE 5 MHz	Low	2112.50	4.520
	Middle	2132.50	4.514
	High	2152.50	4.513
LTE 10 MHz	Low	2115.00	9.011
	Middle	2132.50	8.984
	High	2150.00	9.010

[Downlink Input]

	Channel	Frequency (MHz)	OBW (MHz)
LTE 5 MHz	Low	2112.50	4.501
	Middle	2132.50	4.510
	High	2152.50	4.513
LTE 10 MHz	Low	2115.00	8.999
	Middle	2132.50	8.997
	High	2150.00	9.004

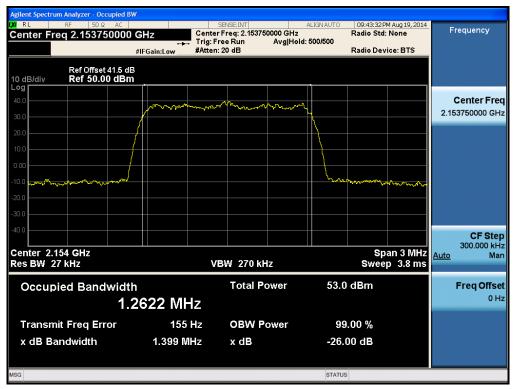

F-01P-02-014 (Rev.00) HCT CO., LTD


Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 31 of 106

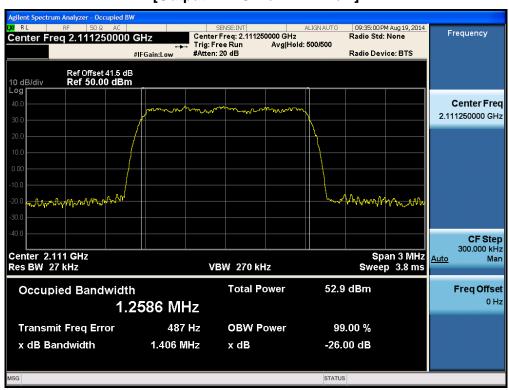
Plots of Occupied Bandwidth

[Output CDMA Downlink Low]

[Output CDMA Downlink Middle]

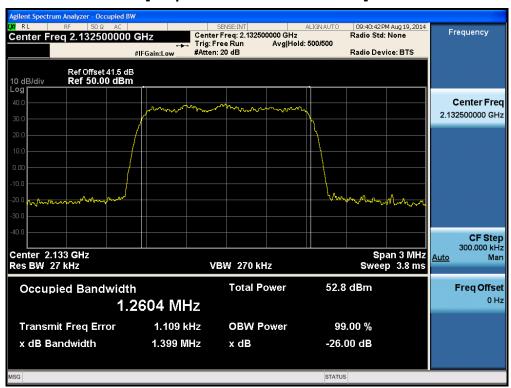


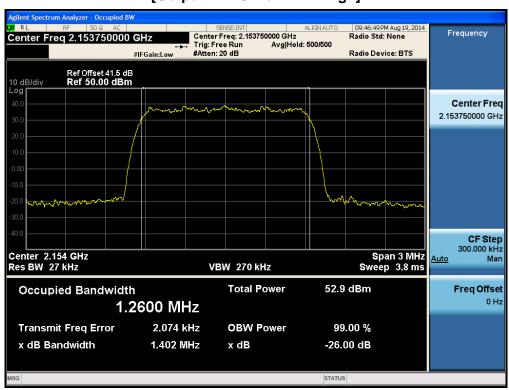
F-01P-02-014 (Rev.00) HCT CO., LTD



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 32 of 106

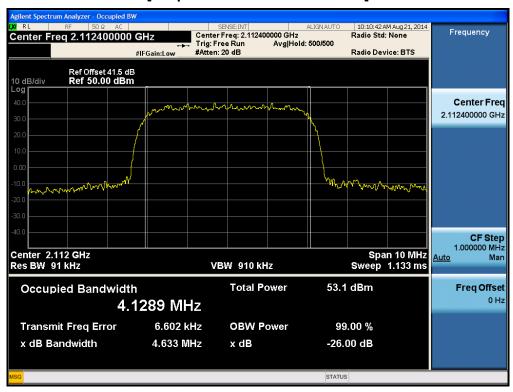
[Output CDMA Downlink High]

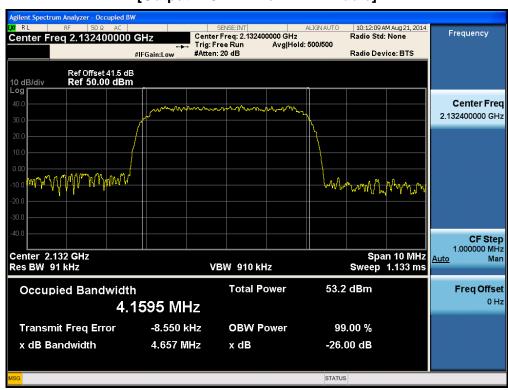

[Output EVDO Downlink Low]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 33 of 106

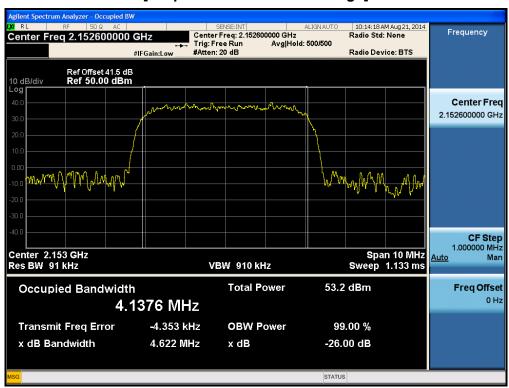
[Output EVDO Downlink Middle]

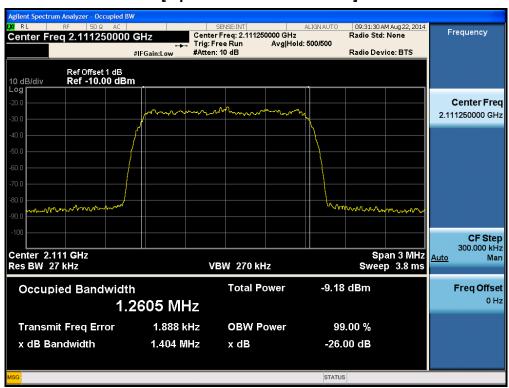

[Output EVDO Downlink High]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 34 of 106

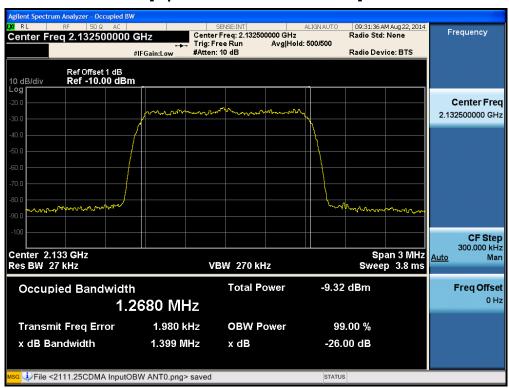
[Output WCDMA Downlink Low]

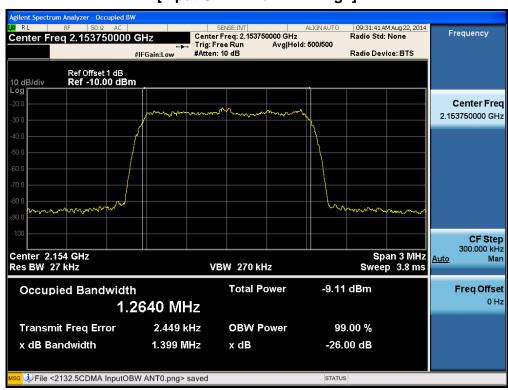

[Output WCDMA Downlink Middle]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 35 of 106

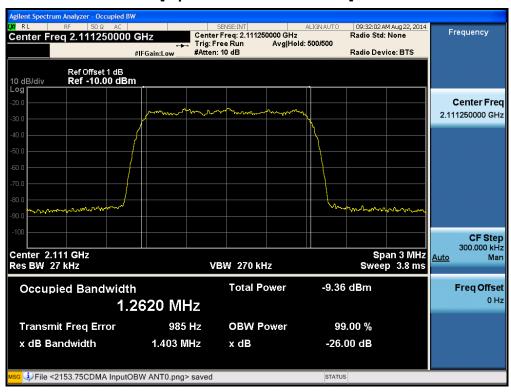
[Output WCDMA Downlink High]

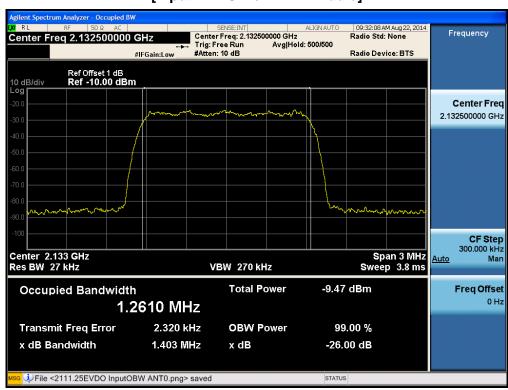

[Input CDMA Downlink Low]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 36 of 106

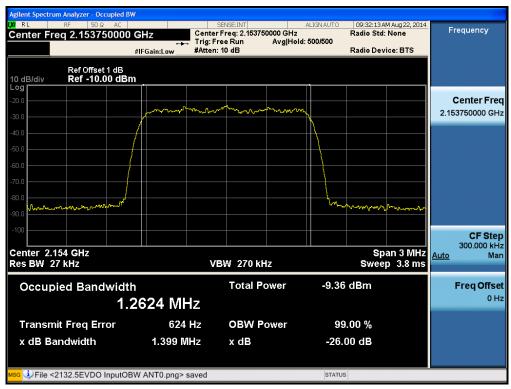
[Input CDMA Downlink Middle]

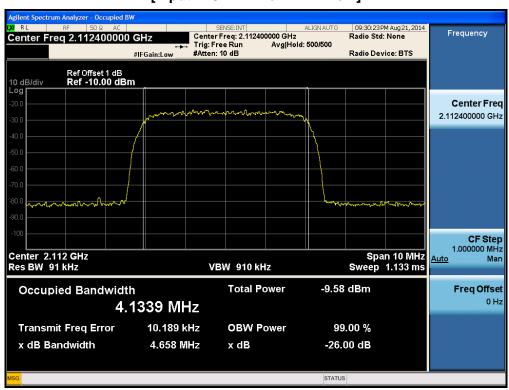

[Input CDMA Downlink High]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 37 of 106

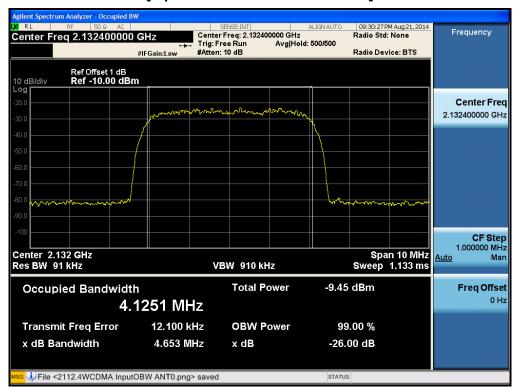
[Input EVDO Downlink Low]

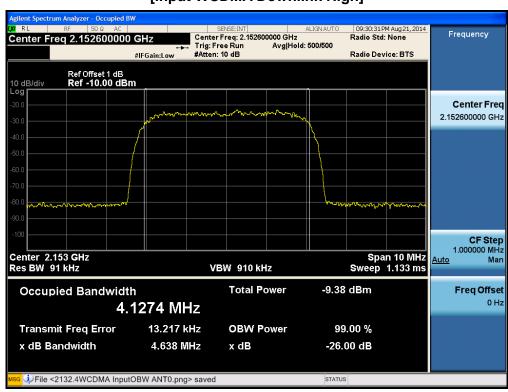

[Input EVDO Downlink Middle]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 38 of 106

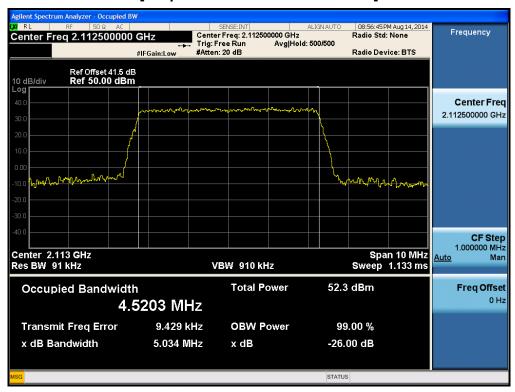
[Input EVDO Downlink High]

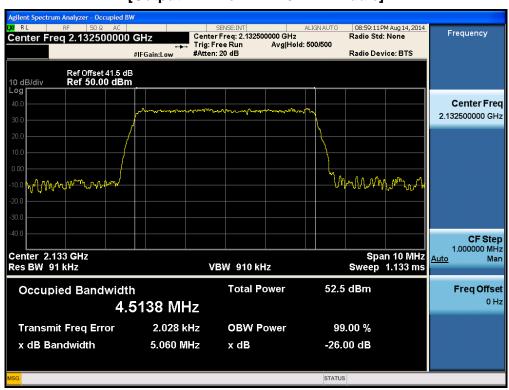

[Input WCDMA Downlink Low]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 39 of 106

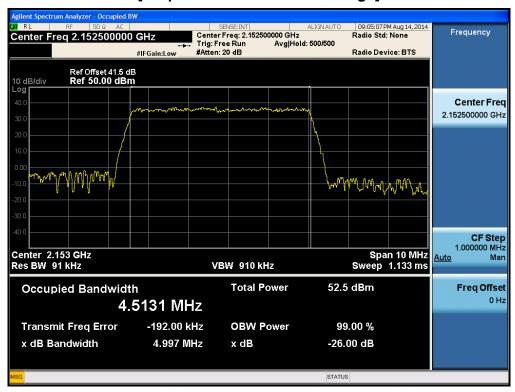
[Input WCDMA Downlink Middle]

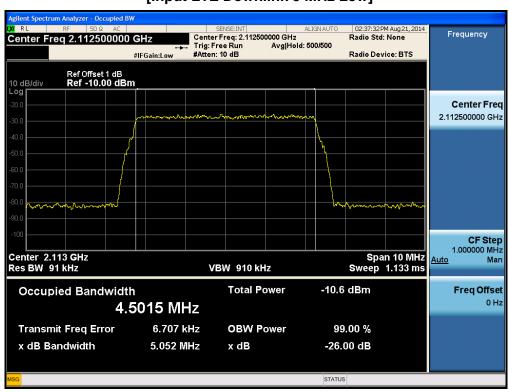

[Input WCDMA Downlink High]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 40 of 106

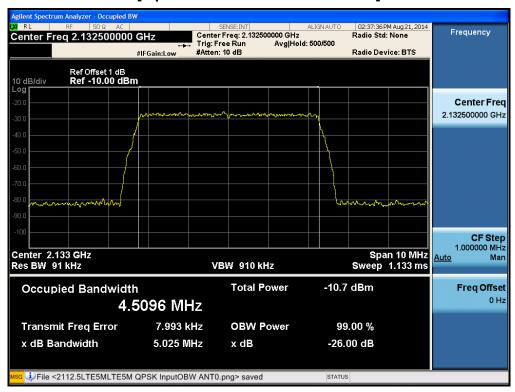
[Output LTE Downlink 5 MHz Low]

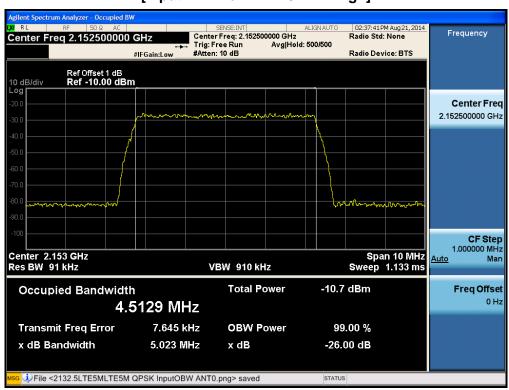

[Output LTE Downlink 5 MHz Middle]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 41 of 106

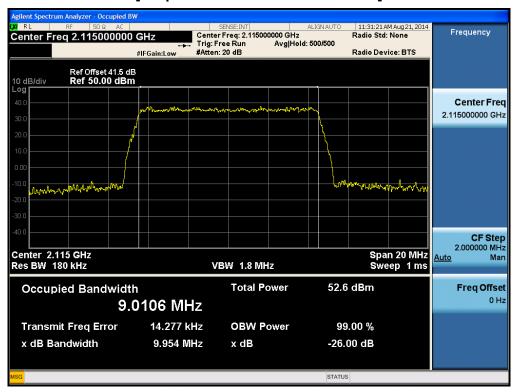
[Output LTE Downlink 5 MHz High]

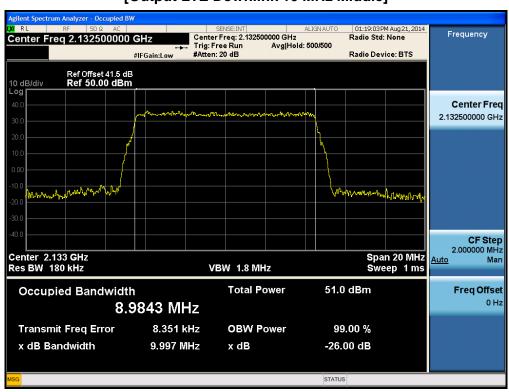

[Input LTE Downlink 5 MHz Low]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 42 of 106

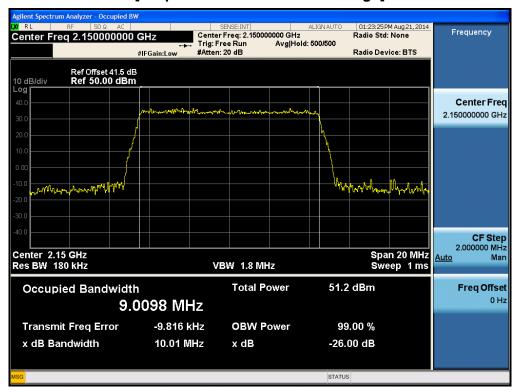
[Input LTE Downlink 5 MHz Middle]

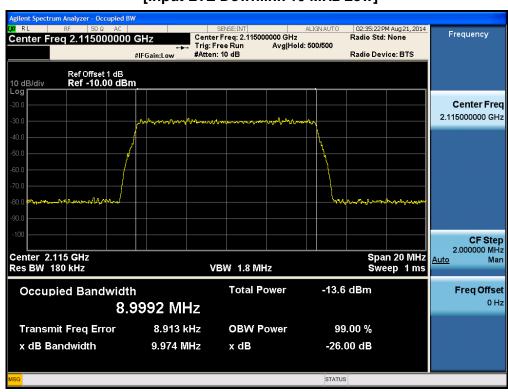

[Input LTE Downlink 5 MHz High]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 43 of 106

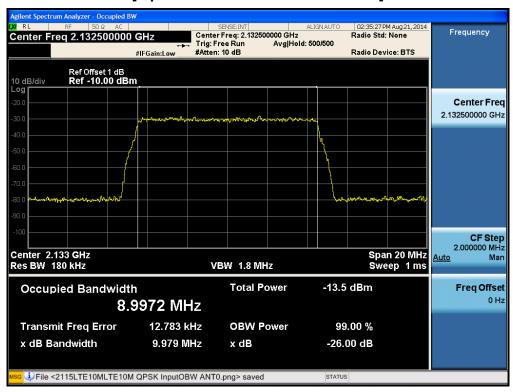
[Output LTE Downlink 10 MHz Low]

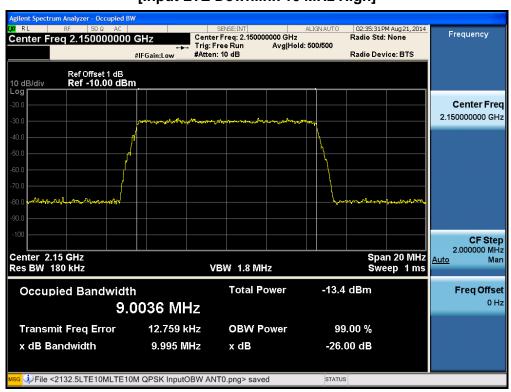

[Output LTE Downlink 10 MHz Middle]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 44 of 106

[Output LTE Downlink 10 MHz High]


[Input LTE Downlink 10 MHz Low]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 45 of 106

[Input LTE Downlink 10 MHz Middle]

[Input LTE Downlink 10 MHz High]

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 46 of 106

8. PASSBAND GAIN AND BANDWIDTH & Out of Band Rejection

FCC Rules

Test Requirement(s): KDB 935210 D03 v02r01

Out of Band Rejection – Test for rejection of out of band signals. Filter freq. response plots are acceptable.

Test Procedures:

A modulated carrier generated by the signal generator carrier was connected to either the Uplink or Downlink RF port at a maximum level as determined by the spectrum analyzer was connected to either the Uplink or Downlink port depending on the circuitry being measured. Signal generator sweep from the frequency more lower than the operating frequency to the frequency more higher than it, find the product band filter characteristic

IC Rules

Test Requirements: RSS-131 6.1

The passband gain shall not exceed the nominal gain by more than 1.0 dB. The 20 dB bandwidth shall not exceed the nominal bandwidth that is stated by the manufacturer. Outside of the 20 dB bandwidth, the gain shall not exceed the gain at the 20 dB point.

Test Procedures: RSS-131 4.2

Adjust the internal gain control of the equipment under test to the nominal gain for which equipment certification is sought.

With the aid of a signal generator and spectrum analyzer, measure the 20 dB bandwidth of the amplifier (i.e. at the point where the gain has fallen by 20 dB). Measure the gain-versus-frequency response of the amplifier from the midband frequency f0 of the passband up to at least f0 + 250% of the 20 dB bandwidth.

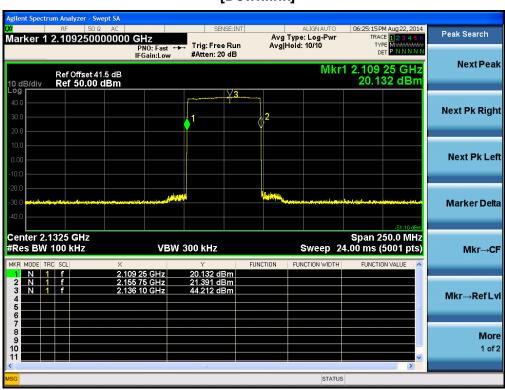
Signal generator sweep from the frequency more lower than the low frequency -250% to the frequency more higher than high frequency +250%.

Test Results: The EUT complies with the requirements of this section.

Input Level (dBm) Input Signal : Sinusoidal	Maximum Amp Gain
DL : -15 dBm	DL : 59 dB

F-01P-02-014 (Rev.00) HCT CO., LTD

FCC ID: W6UNH2100A / IC: 9354A-NH2100A



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 47 of 106

[Downlink]

Output power (dBm)	Gain (dB)
44.21	59.21
	(dBm)

Plots of Passband Gain and Bandwidth & Out of Band Rejection [Downlink]

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 48 of 106

9. SPURIOUS AND HARMONIC EMISSION AT ANTENNA TERMINAL

FCC Rules

Test Requirement(s): § 2.1051 Measurements required: Spurious emissions at antenna terminals:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in § 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 27.53 Emission limits

- (c) For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
- (1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

Test Procedures: A modulated carrier generated by the signal generator carrier was connected to either the Uplink or Downlink RF port at a maximum level as determined by the spectrum analyzer was connected to either the Uplink or Downlink port depending on the circuitry being measured.

The spectrum was investigated from 9 kHz to the 12.75 of the carrier.

Test Results: The EUT complies with the requirements of this section. There were no Detectable Spurious emissions for this EUT.

IC Rules

Test Requirement(s): RSS-131 6.4

Spurious emissions of zone enhancers and translators shall be suppressed as much as

F-01P-02-014 (Rev.00) HCT CO., LTD

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 49 of 106

possible.

Spurious emissions shall be attenuated below the rated power of the enhancer by at least:

43 + 10 Log10(Prated in watts), or 70 dB, whichever is less stringent.

Note: If the minimum standard is not met, check to see if the input signal generators have a high harmonic content.

Test Procedures: RSS-131 4.4 4.4.1 Multi-channel Enhancer

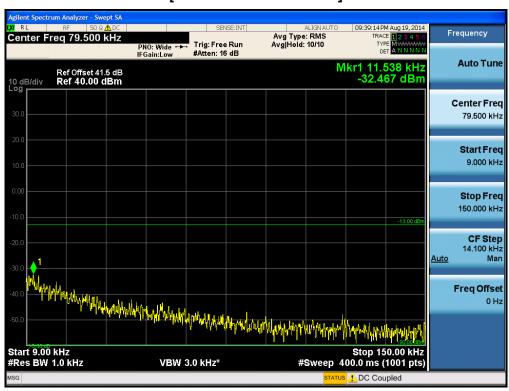
The spurious emissions of the equipment under test shall be measured using the twotone method in section 4.3.1, with the two tones Po1 and Po2 set to the required levels. Using a spectrum analyser with a resolution bandwidth set at 100 kHz, search for spurious emissions from 30 MHz to at least 5 times the highest RF passband frequency. The search may omit the band that contains the test tones and intermodulation products.

4.4.2 Single channel Enhancer

The enhancer shall be operated as described in section 4.3.2 during the search for spurious emissions.

Using a spectrum analyser with a resolution bandwidth set at 100 kHz, search for spurious emissions from 30 MHz to at least 5 times the highest RF passband frequency. The search may omit the band that contains the input signal.

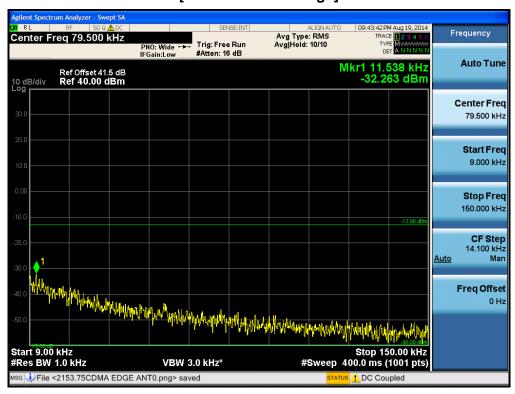
F-01P-02-014 (Rev.00) HCT CO., LTD FCC ID: W6UNH2100A / IC: 9354A-NH2100A


Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 50 of 106

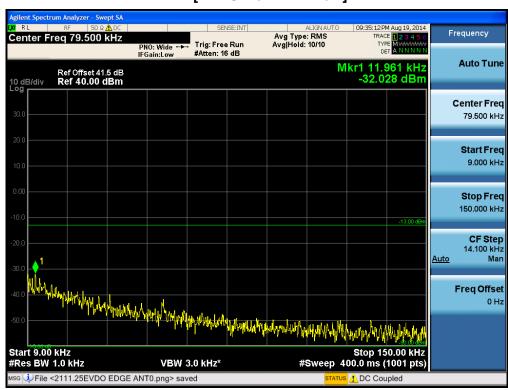
Single channel Enhancer Plots of Spurious Emission Conducted Spurious Emissions (9 kHz – 150 kHz)

[CDMA Downlink Low]

[CDMA Downlink Middle]

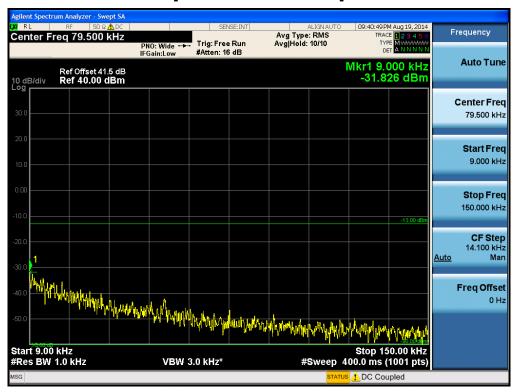


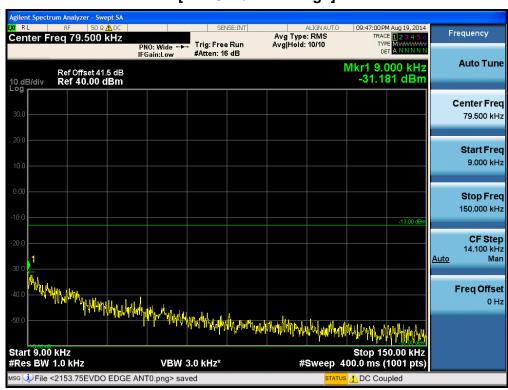
F-01P-02-014 (Rev.00) HCT CO., LTD



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 51 of 106

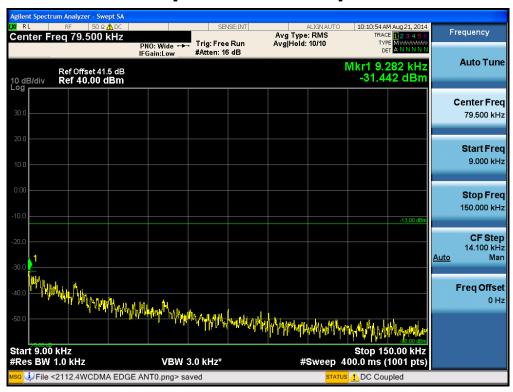
[CDMA Downlink High]

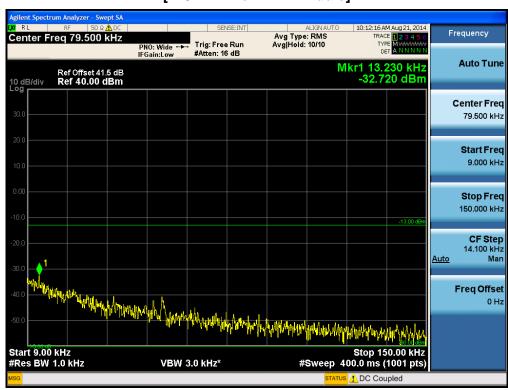

[EVDO Downlink Low]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 52 of 106

[EVDO Downlink Middle]

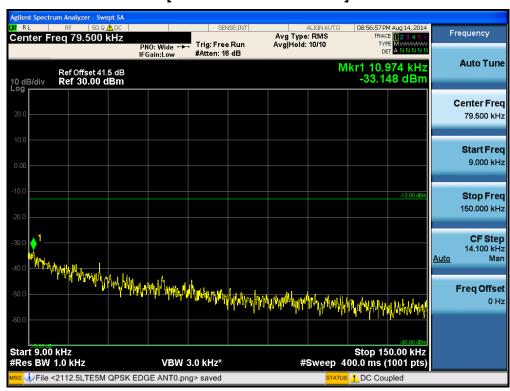

[EVDO Downlink High]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 53 of 106

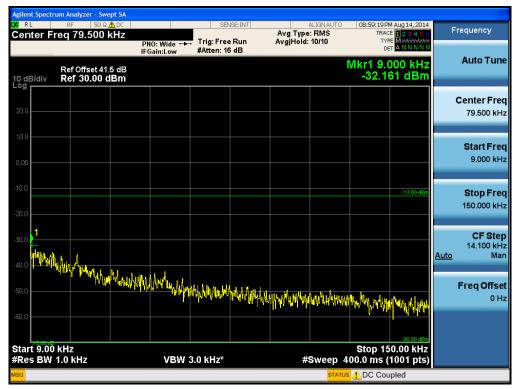
[WCDMA Downlink Low]

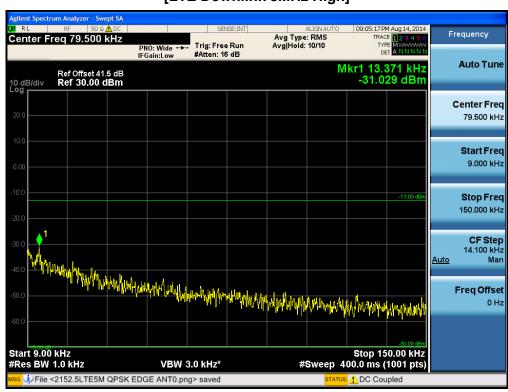
[WCDMA Downlink Middle]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 54 of 106

[WCDMA Downlink High]

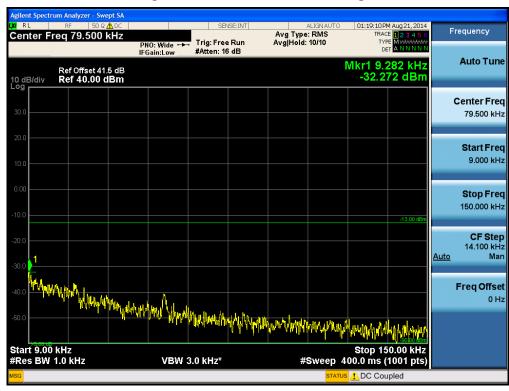

[LTE Downlink 5MHz Low]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 55 of 106

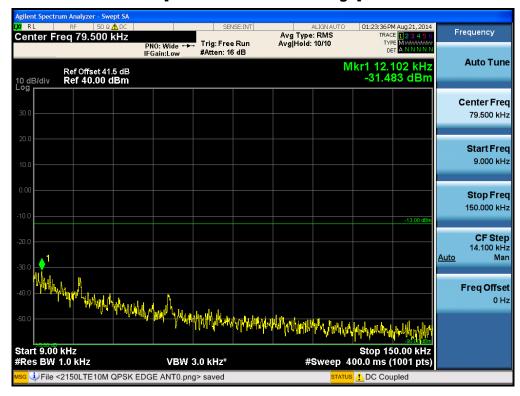
[LTE Downlink 5MHz Middle]

[LTE Downlink 5MHz High]



Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 56 of 106

[LTE Downlink 10 MHz Low]


[LTE Downlink 10 MHz Middle]

Report No.: HCT-R-1409-F002 MODEL: TR-HRDU-2100A Page 57 of 106

[LTE Downlink 10 MHz High]

