FCC RADIO TEST REPORT FCC ID : E2K-DWRFID2101 Equipment : RFID 13.56MHz Wireless Module Brand Name : DELL Model Name : DWRFID2101 Applicant : DELL Inc. One Dell Way, Round Rock, TX 78682, USA Manufacturer : DELL Inc. One Dell Way, Round Rock, TX 78682, USA Standard : FCC Part 15 Subpart C §15.225 The product was received on Nov. 30, 2021 and testing was performed from Dec. 09, 2021 to Dec. 23, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full. Lunis Wu Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: 886-3-327-3456 Page Number : 1 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## **Table of Contents** Report No. : FR1N3039-02 | History | y of this test report | 3 | |------------------|--|----| | | ary of Test Result | | | 1. Gen | eral Description | 5 | | 1.1 | Product Feature of Equipment Under Test | 5 | | 1.2 | Modification of EUT | 5 | | 1.3 | Testing Location | 6 | | 1.4 | Applicable Standards | 6 | | 2. Test | t Configuration of Equipment Under Test | 7 | | 2.1 | Descriptions of Test Mode | 7 | | 2.2 | Connection Diagram of Test System | 7 | | 2.3 | Table for Supporting Units | 8 | | 2.4 | EUT Operation Test Setup | 8 | | 3. Test | t Results | | | 3.1 | AC Power Line Conducted Emissions Measurement | | | 3.2 | 20dB and 99% OBW Spectrum Bandwidth Measurement | | | 3.3 | Frequency Stability Measurement | | | 3.4 | Field Strength of Fundamental Emissions and Mask Measurement | | | 3.5 | Radiated Emissions Measurement | | | 3.6 | Antenna Requirements | | | | of Measuring Equipment | | | 5. Unce | ertainty of Evaluation | 20 | | Appen | dix A. Test Results of Conducted Emission Test | | | Appen | dix B. Test Results of Conducted Test Items | | | B1. ⁻ | Test Result of 20dB Spectrum Bandwidth | | | B2. ⁻ | Test Result of Frequency Stability | | | Appen | dix C. Test Results of Radiated Test Items | | | C1. | Test Result of Field Strength of Fundamental Emissions | | | C2. I | Results of Radiated Emissions (9 kHz~30MHz) | | | C3. I | Results of Radiated Emissions (30MHz~1GHz) | | | Annen | dix D. Setup Photographs | | ## History of this test report Report No. : FR1N3039-02 | Report No. | Version | Description | Issue Date | |-------------|---------|-------------------------|---------------| | FR1N3039-02 | 01 | Initial issue of report | Jan. 05, 2022 | TEL: 886-3-327-3456 Page Number : 3 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## **Summary of Test Result** Report No. : FR1N3039-02 | Report
Clause | Ref Std.
Clause | Test Items | Result
(PASS/FAIL) | Remark | |------------------|---|---|-----------------------|--| | 3.1 | 15.207 | AC Power Line Conducted Emissions | Pass | 18.30 dB
under the limit at
24.027 MHz | | 3.2 | 15.215(c) | 20dB Spectrum Bandwidth | Pass | - | | 3.2 | 2.1049 | 99% OBW Spectrum Bandwidth | Reporting only | - | | 3.3 | 15.225(e) | Frequency Stability Pass | | - | | 3.4 | 15.225(a)(b)(c) | Field Strength of Fundamental Emissions | Pass | Max level
19.61 dBµV/m at
13.560 MHz | | 3.5 | 3.5 15.225(d) Radiated Spurious Emissions | | Pass | 6.04 dB
under the limit at
30.000MHz | | 3.6 | 15.203 | Antenna Requirements | Pass | - | #### Declaration of Conformity: The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. ### **Comments and Explanations:** The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity. Reviewed by: Sheng Kuo Report Producer: Tina Chuang TEL: 886-3-327-3456 Page Number : 4 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 1. General Description ## 1.1 Product Feature of Equipment Under Test **NFC** | Product Feature | | | |-----------------|-----------------|--| | Sample 1 | EUT with Host 1 | | | Sample 2 | EUT with Host 2 | | Report No. : FR1N3039-02 The product was installed into Portable Computer (Brand Name: DELL, Model Name: P154G, P154G001, P154G002) during test, and the host information was recorded in the following table. | Host Information | | | | | |----------------------------------|--|--|--|--| | Host 1 Host with Hong-Bo Antenna | | | | | | Host 2 Host with Speed Antenna | | | | | | Antenna Information | | | | | | |---------------------|--------------|---------|------|------|--| | NFC Antenna | Manufacturer | Hong-Bo | Туре | Loop | | | | Manufacturer | Speed | Туре | Loop | | **Remark:** The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary. ## 1.2 Modification of EUT No modifications made to the EUT during the testing. TEL: 886-3-327-3456 Page Number : 5 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 1.3 Testing Location | Test Site | Sporton International Inc. EMC & Wireless Communications Laboratory | | | |--|---|---------|--| | Test Site Location No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978 | | | | | Test Site No. | Sporton Site No. | | | | rest site No. | TH03-HY | CO05-HY | | | Test Engineer | Engineer Oscar Chi Calvin Wa | | | | Temperature 22~24°C 23~26 | | 23~26°C | | | Relative Humidity | 53~55% 45~55% | | | Report No. : FR1N3039-02 Note: The test site complies with ANSI C63.4 2014 requirement. | Test Site | Sporton International Inc. Wensan Laboratory | | | |--------------------|--|--|--| | Test Site Location | No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,
Taoyuan City 333010, Taiwan (R.O.C.)
TEL: +886-3-327-0868
FAX: +886-3-327-0855 | | | | Test Site No. | Sporton Site No. | | | | rest site No. | 03CH11-HY (TAF Code: 3786) | | | | Test Engineer | Troye Hsieh | | | | Temperature | 20.2~21.4°C | | | | Relative Humidity | 56.2~67.3% | | | | Remark | The Radiated Spurious Emission test item subcontracted to Sporton | | | | Remark | International Inc. Wensan Laboratory. | | | Note: The test site complies with ANSI C63.4 2014 requirement. FCC designation No.: TW1190 and TW3786 ## 1.4 Applicable Standards According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards: - FCC Part 15 Subpart C §15.225 - FCC KDB 414788 D01 Radiated Test Site v01r01 - + ANSI C63.10-2013 #### Remark: - 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing. - 2. The TAF code is not including all the FCC KDB listed without accreditation. TEL: 886-3-327-3456 Page Number : 6 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 2. Test Configuration of Equipment Under Test ## 2.1 Descriptions of Test Mode Investigation has been done on all the possible configurations. The following table is a list of the test modes shown in this test report. | Test Items | | | | |-----------------------------------|---|--|--| | AC Power Line Conducted Emissions | Field Strength of Fundamental Emissions | | | | 20dB Spectrum Bandwidth | Frequency Stability | | | | Radiated Emissions 9kHz~30MHz | Radiated Emissions 30MHz~1GHz | | | Report No. : FR1N3039-02 The EUT pre-scanned in reader mode with NFC tag (four NFC type A, B, F, V) and without reading tag. Based on the highest field strength of fundamental and spurious emissions, the worst case type (type F for Sample 1 and type V for Sample 2) was recorded in this report. | | Test Cases | | | | | | |--|--|--|--|--|--|--| | AC Conducted Emission | Mode 1: NFC Tx + Adapter for Sample 1 Mode 2: NFC Tx + Adapter for Sample 2 | | | | | | | Remark: The worst case of Conducted Emission is mode 1; only the test data of it was reported. | | | | | | | ## 2.2 Connection Diagram of Test System TEL: 886-3-327-3456 Page Number : 7 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 2.3 Table for Supporting Units | Item | Equipment | Brand Name | Model Name | FCC ID | Data Cable | Power Cord | |------|-----------|------------|------------|-------------|-----------------|-----------------| | 1. | WLAN AP | ASUS | RT-AC66U | MSQ-RTAC66U | N/A | Unshielded,1.8m | | 2. | iPod | Apple | A1285 | FCC DoC | Shielded, 1.0 m | N/A | | 3. | Adapter | Dell | DA90PM170 | N/A | N/A | Unshielded,1.8m | | 4. | NFC Card | N/A | N/A | N/A | N/A | N/A | Report No.: FR1N3039-02 ## 2.4 EUT Operation Test Setup The EUT is programmed to be in continuously transmitting mode. The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmitting signal (Power Level: Default) at 13.56MHz and is placed around 1 cm gap to the EUT. TEL: 886-3-327-3456 Page Number : 8 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 3. Test Results ### 3.1 AC Power Line Conducted Emissions Measurement #### 3.1.1 Limit of AC Conducted Emission For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table. Report No.: FR1N3039-02 | Frequency of Emission | Conducted Limit (dBμV) | | | |-----------------------|------------------------|-----------|--| | (MHz) | Quasi-Peak | Average | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | 0.5-5 | 56 | 46 | | | 5-30 | 60 | 50 | | ^{*}Decreases with the logarithm of the frequency. ## 3.1.2 Measuring Instruments Please refer to the measuring equipment list in this test report. #### 3.1.3 Test Procedures - 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface. - 2. Connect EUT to the power mains through a line impedance stabilization network (LISN). - 3. All the support units are connecting to the other LISN. - 4. The LISN provides 50 ohm coupling impedance for the measuring instrument. - 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used. - 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission. - 7. The frequency range from 150 kHz to 30 MHz is scanned. - Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively. TEL: 886-3-327-3456 Page Number : 9 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 3.1.4 Test setup Report No. : FR1N3039-02 AMN = Artificial mains network (LISN) AE = Associated equipment EUT = Equipment under test ISN = Impedance stabilization network ### 3.1.5 Test Result of AC Conducted Emission Please refer to Appendix A. TEL: 886-3-327-3456 Page Number : 10 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 3.2 20dB and 99% OBW Spectrum Bandwidth Measurement #### 3.2.1 Limit Intentional radiators must be designed to ensure that the 20 dB and 99% emission bandwidth in the specific band 13.553~13.567 MHz. Report No.: FR1N3039-02 ## 3.2.2 Measuring Instruments Please refer to the measuring equipment list in this test report. #### 3.2.3 Test Procedures - The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max Hold Mode. - 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used. - 3. Measured the spectrum width with power higher than 20 dB below carrier. - 4. Measured the 99% OBW. ### 3.2.4 Test Setup #### 3.2.5 Test Result of Conducted Test Items Please refer to Appendix B. TEL: 886-3-327-3456 Page Number : 11 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 3.3 Frequency Stability Measurement #### 3.3.1 Limit The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed by using a new battery. Report No.: FR1N3039-02 ### 3.3.2 Measuring Instruments Please refer to the measuring equipment list in this test report. #### 3.3.3 Test Procedures - 1. The spectrum analyzer connected via a receive antenna placed near the EUT. - 2. EUT has transmitted signal and fixed channelize. - 3. Set the spectrum analyzer span to view the entire emissions bandwidth. - 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings. - 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 100 ppm. - 6. Extreme temperature rule is -20°C~50°C. ## 3.3.4 Test Setup ## 3.3.5 Test Result of Conducted Test Items Please refer to Appendix B. TEL: 886-3-327-3456 Page Number : 12 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 3.4 Field Strength of Fundamental Emissions and Mask Measurement Report No.: FR1N3039-02 ### 3.4.1 Limit | Rules and specifications | FCC CFR 47 Part 15 section 15.225 | | | | | | |---------------------------|-----------------------------------|----------------------|----------------------|----------------|--|--| | Description | Compliance with th | e spectrum mask is t | ested with RBW set t | o 9kHz. | | | | From of Francisco (MIII-) | Field Strength | Field Strength | Field Strength | Field Strength | | | | Freq. of Emission (MHz) | (µV/m) at 30m | (dBµV/m) at 30m | (dBµV/m) at 10m | (dBµV/m) at 3m | | | | 1.705~13.110 | 30 | 29.5 | 48.58 | 69.5 | | | | 13.110~13.410 | 106 | 40.5 | 59.58 | 80.5 | | | | 13.410~13.553 | 334 | 50.5 | 69.58 | 90.5 | | | | 13.553~13.567 | 15848 | 84.0 | 103.08 | 124.0 | | | | 13.567~13.710 | 334 | 50.5 | 69.58 | 90.5 | | | | 13.710~14.010 | 106 | 40.5 | 59.58 | 80.5 | | | | 14.010~30.000 | 30 | 29.5 | 48.58 | 69.5 | | | #### Remark: ## 3.4.2 Measuring Instruments Please refer to the measuring equipment list in this test report. TEL: 886-3-327-3456 Page Number : 13 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ^{1.} The field strength test result is in 3m test distance, follow test rules the test data use distance extrapolation factor and reported in this report at 30m test result. ^{2.} Distance extrapolation factor = 40 log (specific distance / test distance) (dB) #### 3.4.3 Test Procedures Configure the EUT according to ANSI C63.10. The EUT is placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower is placed 3 meters far away from the turntable. Report No.: FR1N3039-02 - Power on the EUT and all the supporting units. The turntable is rotated by 360 degrees to determine the position of the highest radiation. - The height of the receiving antenna is fixed at one meter above ground to find the maximum emissions field strength. - 4. For Fundamental emissions, use the receiver to measure QP reading. - 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. - Compliance with the spectrum mask is tested with RBW set to 9 kHz. Note: Emission level (dBμV/m) = 20 log Emission level (μV/m). ### 3.4.4 Test Setup #### For radiated test below 30MHz #### 3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask Please refer to Appendix C. TEL: 886-3-327-3456 Page Number : 14 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ### 3.5 Radiated Emissions Measurement #### 3.5.1 Limit The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits. Report No. : FR1N3039-02 | Frequencies | Field Strength | Measurement Distance | |-------------|----------------|----------------------| | (MHz) | (μV/m) | (meters) | | 0.009~0.490 | 2400/F(kHz) | 300 | | 0.490~1.705 | 24000/F(kHz) | 30 | | 1.705~30.0 | 30 | 30 | | 30~88 | 100 | 3 | | 88~216 | 150 | 3 | | 216~960 | 200 | 3 | | Above 960 | 500 | 3 | ## 3.5.2 Measuring Instruments Please refer to the measuring equipment list in this test report. ### 3.5.3 Measuring Instrument Setting The following table is the setting of receiver: | Receiver Parameter | Setting | |--------------------------------|---------------------| | Attenuation | Auto | | Frequency Range: 9kHz~150kHz | RBW 200Hz for QP | | Frequency Range: 150kHz~30MHz | RBW 9kHz for QP | | Frequency Range: 30MHz~1000MHz | RBW 120kHz for Peak | **Note:** The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector. TEL: 886-3-327-3456 Page Number : 15 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 #### 3.5.4 Test Procedures Configure the EUT according to ANSI C63.10. The EUT is placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower is placed 3 meters far away from the turntable. Report No.: FR1N3039-02 - Power on the EUT and all the supporting units. The turntable is rotated by 360 degrees to determine the position of the highest radiation. - The height of the broadband receiving antenna is varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. - 4. For each suspected emissions, the antenna tower is scanned (from 1 M to 4 M) and then the turntable is rotated (from 0 degree to 360 degrees) to find the maximum reading. - Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode. - 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. - 7. In case the emission is lower than 30 MHz, loop antenna has to be used for measurement and the recorded data shall be QP measured by receiver. TEL: 886-3-327-3456 Page Number : 16 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 3.5.5 Test Setup #### For radiated test below 30MHz Report No.: FR1N3039-02 #### For radiated test above 30MHz ### 3.5.6 Test Result of Radiated Emissions Measurement Please refer to Appendix C. **Remark:** There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar. TEL: 886-3-327-3456 Page Number : 17 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 3.6 Antenna Requirements ### 3.6.1 Standard Applicable Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Report No.: FR1N3039-02 The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule. ### 3.6.2 Antenna Anti-Replacement Construction An embedded-in antenna design is used. TEL: 886-3-327-3456 Page Number : 18 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## 4. List of Measuring Equipment | Instrument | Brand Name | Model No. | Serial No. | Characteristics | Calibration
Date | Test Date | Due Date | Remark | |--|--------------------|-------------------------------------|--------------------------------------|-------------------------------|---------------------|---------------|---------------|--------------------------| | 5kVA AC
Power Source | TESEQ | NSG 1007 | 1521A01677 | N/A | Jun. 08, 2021 | Dec. 09, 2021 | Jun. 07, 2022 | Conducted
(TH03-HY) | | Hygrometer | Testo | 608-H1 | 34893241 | N/A | Mar. 01, 2021 | Dec. 09, 2021 | Feb. 28, 2022 | Conducted
(TH03-HY) | | Spectrum
Analyzer | Rohde &
Schwarz | FSP30 | 101329 | 9kHz~30GHz | Sep. 30, 2021 | Dec. 09, 2021 | Sep. 29, 2022 | Conducted
(TH03-HY) | | Temperature & Humidity Cabinet Chamber | ESPEC | LHU-113 | 1012005860 | -20°C ~85°C | Dec. 09, 2021 | Dec. 09, 2021 | Dec. 08, 2022 | Conducted
(TH03-HY) | | Coupling loop antenna | EMCI | LF R 400 | N/A | 100KHz~50MH
z | N/A | Dec. 09, 2021 | N/A | Conducted
(TH03-HY) | | AC Power
Source | ChainTek | APC-1000W | N/A | N/A | N/A | Dec. 23, 2021 | N/A | Conduction
(CO05-HY) | | EMI Test
Receiver | Rohde &
Schwarz | ESR3 | 102388 | 9kHz~3.6GHz | Dec. 01, 2021 | Dec. 23, 2021 | Nov. 30, 2022 | Conduction
(CO05-HY) | | Hygrometer | Testo | 608-H1 | 34913912 | N/A | Nov. 17, 2021 | Dec. 23, 2021 | Nov. 16, 2022 | Conduction
(CO05-HY) | | LISN | Rohde &
Schwarz | ENV216 | 100080 | 9kHz~30MHz | Dec. 03, 2021 | Dec. 23, 2021 | Dec. 02, 2022 | Conduction
(CO05-HY) | | Software | Rohde &
Schwarz | EMC32 | N/A | N/A | N/A | Dec. 23, 2021 | N/A | Conduction
(CO05-HY) | | Pulse Limiter | SCHWARZBE
CK | VTSD 9561-F
N | 00691 | N/A | Jul. 28, 2021 | Dec. 23, 2021 | Jul. 27, 2022 | Conduction
(CO05-HY) | | LISN Cable | MVE | RG-400 | 260260 | N/A | Dec. 31, 2020 | Dec. 23, 2021 | Dec. 30, 2021 | Conduction
(CO05-HY) | | Amplifier | SONOMA | 310N | 187312 | 9kHz~1GHz | Dec. 10, 2021 | Dec. 20, 2021 | Dec. 09, 2022 | Radiation
(03CH11-HY) | | Bilog Antenna | TESEQ | CBL 6111D &
N-6-06 | 35414 &
AT-N0602 | 30MHz~1GHz | Oct. 09, 2021 | Dec. 20, 2021 | Oct. 08, 2022 | Radiation
(03CH11-HY) | | Hygrometer | TECPEL | DTM-303B | TP140325 | N/A | Nov. 26, 2021 | Dec. 20, 2021 | Nov. 25, 2022 | Radiation
(03CH11-HY) | | Hygrometer | TECPEL | DTM-303B | TP200880 | QA-3-031 | Sep. 30, 2021 | Dec. 20, 2021 | Sep. 29, 2022 | Radiation
(03CH11-HY) | | Loop Antenna | Rohde &
Schwarz | HFH2-Z2 | 100488 | 9 kHz~30 MHz | Sep. 07, 2021 | Dec. 20, 2021 | Sep. 06, 2022 | Radiation
(03CH11-HY) | | Spectrum
Analyzer | Keysight | N9010A | MY54200486 | 10Hz~44GHz | Oct. 15, 2021 | Dec. 20, 2021 | Oct. 14, 2022 | Radiation
(03CH11-HY) | | Filter | Wainwright | WHK20/1000C
7/40SS | SN2 | 20MHz High
Pass Filter | Sep. 13, 2021 | Dec. 20, 2021 | Sep. 12, 2022 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
102,
SUCOFLEX
104 | 811852/4,MY
2859/2,MY98
37/4PE | 30MHz~18GHz | Nov. 15, 2021 | Dec. 20, 2021 | Nov. 14, 2022 | Radiation
(03CH11-HY) | | Controller | EMEC | EM 1000 | N/A | Control Turn table & Ant Mast | N/A | Dec. 20, 2021 | N/A | Radiation
(03CH11-HY) | | Antenna Mast | EMEC | AM-BS-4500-B | N/A | 1~4m | N/A | Dec. 20, 2021 | N/A | Radiation
(03CH11-HY) | | Turn Table | EMEC | TT 2000 | N/A | 0~360 Degree | N/A | Dec. 20, 2021 | N/A | Radiation
(03CH11-HY) | | EMI Test
Receiver | Keysight | N9038A(MXE) | MY55420170 | 20MHz~8.4GHz | Jul. 15, 2021 | Dec. 20, 2021 | Jul. 14, 2022 | Radiation
(03CH11-HY) | | Software | Audix | E3
6.2009-8-24 | RK-000992 | N/A | N/A | Dec. 20, 2021 | N/A | Radiation
(03CH11-HY) | | Amplifier | SONOMA | 310N | 363440 | 9kHz~1GHz | Dec. 28, 2020 | Dec. 20, 2021 | Dec. 27, 2021 | Radiation
(03CH11-HY) | TEL: 886-3-327-3456 FAX: 886-3-328-4978 Report Template No.: BU5-FR15CNFC Version 2.4 Page Number : 19 of 20 Issue Date : Jan. 05, 2022 Report No. : FR1N3039-02 Report Version : 01 ## 5. Uncertainty of Evaluation ### **Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)** | Measuring Uncertainty for a Level of Confidence | 3.1 dB | |---|--------| | of 95% (U = 2Uc(y)) | 3.1 dB | Report No. : FR1N3039-02 ### Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz) | Measuring Uncertainty for a Level of Confidence | 3.7 dB | |---|--------| | of 95% (U = 2Uc(y)) | 3.7 dB | ### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz) | Measuring Uncertainty for a Level of Confidence | 5.8 dB | |---|--------| | of 95% (U = 2Uc(y)) | 3.0 UB | TEL: 886-3-327-3456 Page Number : 20 of 20 FAX: 886-3-328-4978 Issue Date : Jan. 05, 2022 ## **Appendix A. Test Results of Conducted Emission Test** | Test Engineer : Calvin Wang | | Temperature : | 23~26 ℃ | |-----------------------------|-------------|---------------------|----------------| | | Calvin wang | Relative Humidity : | 45~55% | Report No. : FR1N3039-02 TEL: 886-3-327-3456 Page Number : A1 of A1 ## **EUT Information** Report NO: 1N3039-02 Test Mode: Mode 1 Test Voltage: 120Vac/60Hz Phase: Line ### FullSpectrum ## Final_Result | Frequency
(MHz) | QuasiPeak
(dBuV) | CAverage
(dBuV) | Limit
(dBuV) | Margin
(dB) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|--------------------|-----------------|----------------|------|--------|---------------| | ` ' | (ubuv) | , | , | ` ' | | | . , | | 0.161250 | | 24.77 | 55.40 | 30.63 | L1 | OFF | 19.6 | | 0.161250 | 35.30 | | 65.40 | 30.10 | L1 | OFF | 19.6 | | 0.190500 | | 23.04 | 54.02 | 30.98 | L1 | OFF | 19.6 | | 0.190500 | 37.14 | | 64.02 | 26.88 | L1 | OFF | 19.6 | | 0.368250 | | 20.88 | 48.54 | 27.66 | L1 | OFF | 19.6 | | 0.368250 | 30.39 | | 58.54 | 28.15 | L1 | OFF | 19.6 | | 2.987250 | | 25.38 | 46.00 | 20.62 | L1 | OFF | 19.9 | | 2.987250 | 30.70 | - | 56.00 | 25.30 | L1 | OFF | 19.9 | | 13.560000 | | 19.83 | 50.00 | 30.17 | L1 | OFF | 19.9 | | 13.560000 | 23.68 | - | 60.00 | 36.32 | L1 | OFF | 19.9 | | 21.954750 | | 30.76 | 50.00 | 19.24 | L1 | OFF | 20.0 | | 21.954750 | 38.64 | | 60.00 | 21.36 | L1 | OFF | 20.0 | | 24.027000 | | 31.70 | 50.00 | 18.30 | L1 | OFF | 20.0 | | 24.027000 | 40.01 | | 60.00 | 19.99 | L1 | OFF | 20.0 | ## **EUT Information** Report NO: 1N3039-02 Test Mode: Mode 1 Test Voltage: 120Vac/60Hz Phase: Neutral FullSpectrum ## Final_Result | Frequency
(MHz) | QuasiPeak
(dBuV) | CAverage
(dBuV) | Limit
(dBuV) | Margin | Line | Filter | Corr. | |--------------------|---------------------|--------------------|-----------------|--------|------|--------|-------| | (IVITIZ) | (ubuv) | (ubuv) | (ubuv) | (dB) | | | (dB) | | 0.170250 | | 30.00 | 54.95 | 24.95 | N | OFF | 19.6 | | 0.170250 | 41.37 | - | 64.95 | 23.58 | N | OFF | 19.6 | | 0.237750 | | 26.26 | 52.17 | 25.91 | N | OFF | 19.6 | | 0.237750 | 36.19 | | 62.17 | 25.98 | N | OFF | 19.6 | | 3.383250 | | 21.85 | 46.00 | 24.15 | N | OFF | 19.9 | | 3.383250 | 25.89 | | 56.00 | 30.11 | N | OFF | 19.9 | | 13.560000 | | 23.31 | 50.00 | 26.69 | N | OFF | 19.9 | | 13.560000 | 28.47 | | 60.00 | 31.53 | N | OFF | 19.9 | | 14.241750 | | 24.24 | 50.00 | 25.76 | N | OFF | 19.9 | | 14.241750 | 29.53 | - | 60.00 | 30.47 | N | OFF | 19.9 | | 24.722250 | | 28.04 | 50.00 | 21.96 | N | OFF | 20.1 | | 24.722250 | 36.49 | | 60.00 | 23.51 | N | OFF | 20.1 | | 25.714500 | | 27.66 | 50.00 | 22.34 | N | OFF | 20.2 | | 25.714500 | 35.49 | | 60.00 | 24.51 | N | OFF | 20.2 | ## **Appendix B. Test Results of Conducted Test Items** ## **B1. Test Result of 20dB Spectrum Bandwidth** ## <Sample 1> Report No. : FR1N3039-02 **Remark:** Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW. TEL: 886-3-327-3456 Page Number : B1 of B6 ## <Sample 2> Report No. : FR1N3039-02 **Remark:** Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW. TEL: 886-3-327-3456 Page Number: B2 of B6 ## **B2. Test Result of Frequency Stability** ## <Sample 1> | Voltage vs. Freq | uency Stability | Temper | ature vs. Frequ | ency Stability | |------------------|-----------------------------|------------------|-----------------|-----------------------------| | Voltage (Vac) | Measurement Frequency (MHz) | Temperature (°C) | Time | Measurement Frequency (MHz) | | 120 | 13.560230 | -20 | 0 | 13.560280 | | 102 | 13.560240 | | 2 | 13.560280 | | 138 | 13.560240 | | 5 | 13.560280 | | | | | 10 | 13.560270 | | | | -10 | 0 | 13.560270 | | | | | 2 | 13.560260 | | | | | 5 | 13.560260 | | | | | 10 | 13.560280 | | | | 0 | 0 | 13.560250 | | | | | 2 | 13.560260 | | | | | 5 | 13.560260 | | | | | 10 | 13.560260 | | | | 10 | 0 | 13.560240 | | | | | 2 | 13.560240 | | | | | 5 | 13.560240 | | | | | 10 | 13.560240 | | | | 20 | 0 | 13.560240 | | | | | 2 | 13.560240 | | | | | 5 | 13.560240 | | | | | 10 | 13.560240 | | | | 30 | 0 | 13.560240 | | | | | 2 | 13.560240 | | | | | 5 | 13.560240 | | | | | 10 | 13.560080 | | | | 40 | 0 | 13.560240 | | | | | 2 | 13.560240 | | | | | 5 | 13.560240 | | | | | 10 | 13.560240 | Report No. : FR1N3039-02 TEL: 886-3-327-3456 Page Number : B3 of B6 | Voltage vs. Frequency Stability | | Temperature vs. Frequency Stability | | | | |---------------------------------|--------------------------------|-------------------------------------|-----------------------|---------------|--| | Voltage (Vac) | Measurement
Frequency (MHz) | Temperature (°C) | Temperature (°C) Time | | | | | | 50 | 0 | 13.560230 | | | | | | 2 | 13.560220 | | | | | | 5 | 13.560230 | | | | | | 10 | 13.560230 | | | Max.Deviation (MHz) | 0.000240 | Max.Deviati | on (MHz) | 0.000280 | | | Max.Deviation (ppm) | 17.6991 | Max.Deviation (ppm) | | 20.6490 | | | Limit | FS < ±100 ppm | Limit | | FS < ±100 ppm | | | Test Result | PASS | Test Result | | PASS | | TEL: 886-3-327-3456 Page Number : B4 of B6 ## <Sample 2> | Voltage vs. Fred | uency Stability | Temperature vs. Frequency Stability | | | | | | |------------------|--------------------------------|-------------------------------------|------|-----------------------------|--|--|--| | Voltage (Vac) | Measurement
Frequency (MHz) | Temperature (°C) | Time | Measurement Frequency (MHz) | | | | | 120 | 13.560130 | -20 | 0 | 13.560140 | | | | | 102 | 13.560120 | | 2 | 13.560140 | | | | | 138 | 13.560120 | | 5 | 13.560140 | | | | | | | | 10 | 13.560140 | | | | | | | -10 | 0 | 13.560150 | | | | | | | | 2 | 13.560160 | | | | | | | | 5 | 13.560140 | | | | | | | | 10 | 13.560160 | | | | | | | 0 | 0 | 13.560140 | | | | | | | | 2 | 13.560140 | | | | | | | | 5 | 13.560140 | | | | | | | | 10 | 13.560140 | | | | | | | 10 | 0 | 13.560140 | | | | | | | | 2 | 13.560140 | | | | | | | | 5 | 13.560140 | | | | | | | | 10 | 13.560130 | | | | | | | 20 | 0 | 13.560120 | | | | | | | | 2 | 13.560120 | | | | | | | | 5 | 13.560120 | | | | | | | | 10 | 13.560120 | | | | | | | 30 | 0 | 13.560140 | | | | | | | | 2 | 13.560140 | | | | | | | | 5 | 13.560140 | | | | | | | | 10 | 13.560140 | | | | | | | 40 | 0 | 13.560150 | | | | | | | | 2 | 13.560140 | | | | | | | | 5 | 13.560150 | | | | | | | | 10 | 13.560140 | | | | Report No. : FR1N3039-02 TEL: 886-3-327-3456 Page Number: B5 of B6 | Voltage vs. Freque | ency Stability | Temperature vs. Frequency Stability | | | | | | |---------------------|--------------------------------|-------------------------------------|---------------------|--------------------------------|--|--|--| | Voltage (Vac) | Measurement
Frequency (MHz) | Temperature (°C) Time | | Measurement
Frequency (MHz) | | | | | | | 50 0 | | 13.560140 | | | | | | | 5
10 | | 13.560140 | | | | | | | | | 13.560140 | | | | | | | | | 13.560140 | | | | | Max.Deviation (MHz) | 0.000130 | Max.Deviati | Max.Deviation (MHz) | | | | | | Max.Deviation (ppm) | 9.5870 | Max.Deviation (ppm) | | 11.7994 | | | | | Limit | FS < ±100 ppm | Limit | | FS < ±100 ppm | | | | | Test Result | PASS | Test Re | PASS | | | | | TEL: 886-3-327-3456 Page Number : B6 of B6 ## **Appendix C. Test Results of Radiated Test Items** # C1. Test Result of Field Strength of Fundamental Emissions <Sample 1> Report No. : FR1N3039-02 TEL: 886-3-327-3456 Page Number : C1 of C12 #### Note: 1. Distance extrapolation factor = 40 log (specific distance / test distance) (dB) 2. Level = Antenna Factor + Cable Loss + Read Level - Distance extrapolation factor. TEL: 886-3-327-3456 Page Number : C2 of C12 <Sample 2> TEL: 886-3-327-3456 Page Number : C3 of C12 TEL: 886-3-327-3456 Page Number : C4 of C12 ## C2. Results of Radiated Spurious Emissions (9 kHz~30MHz) Report No.: FR1N3039-02 #### <Sample 1> TEL: 886-3-327-3456 Page Number : C5 of C12 | Frequency | Level | Distance extrapolation | Over | Limit | Read | Antenna | Cable | Ant | Table | Remark | |-----------|------------|------------------------|--------|---------------|--------|---------|-------|--------|-------|---------| | | | Factor | Limit | Line | Level | Factor | Loss | Pos | Pos | | | (MHz) | (dBµV/m) | (dB) | (dB) | $(dB\mu V/m)$ | (dBµV) | (dB) | (dB) | (cm) | (deg) | | | 0.0191 | -22.86 | 80 | -64.84 | 41.98 | 36.93 | 20.19 | 0.02 | - | - | Average | | 0.08748 | -39.19 | 80 | -67.96 | 28.77 | 20.82 | 19.97 | 0.02 | - | - | Average | | 0.09986 | -37.72 | 80 | -65.34 | 27.62 | 22.32 | 19.94 | 0.02 | - | - | QP | | 0.14724 | -37.14 | 80 | -61.38 | 24.24 | 22.92 | 19.92 | 0.02 | - | - | Average | | 0.44206 | -27.07 | 80 | -41.76 | 14.69 | 33.06 | 19.85 | 0.02 | - | - | Average | | 0.51253 | 5.15 | 40 | -28.26 | 33.41 | 25.29 | 19.84 | 0.02 | - | - | QP | | 13.56 | 6.94 | 40 | -22.56 | 29.5 | 27.29 | 19.64 | 0.01 | - | - | QP | | 14.544 | -3.29 | 40 | -32.79 | 29.5 | 17.07 | 19.63 | 0.01 | - | - | QP | | 17.71 | -2.15 | 40 | -31.65 | 29.5 | 18.19 | 19.63 | 0.03 | - | - | QP | | 29.125 | -4.43 | 40 | -33.93 | 29.5 | 15.73 | 19.59 | 0.25 | - | - | QP | #### Note: - 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. - 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB) - 3. Level = Antenna Factor + Cable Loss + Read Level Distance extrapolation factor. - 4. 13.56 MHz is fundamental signal which can be ignored TEL: 886-3-327-3456 Page Number : C6 of C12 <Sample 2> TEL: 886-3-327-3456 Page Number : C7 of C12 FAX: 886-3-328-4978 16.27 29.99 -3.91 -4.4 40 40 -33.41 -33.9 29.5 29.5 16.46 15.82 19.61 19.5 0.02 0.28 QΡ QP | Frequency | Level | Distance extrapolation | Over | Limit | Read | Antenna | Cable | Ant | Table | Remark | |-----------|---------------|------------------------|--------|---------------|--------|---------|-------|--------|-------|---------| | | | Factor | Limit | Line | Level | Factor | Loss | Pos | Pos | | | (MHz) | $(dB\mu V/m)$ | (dB) | (dB) | $(dB\mu V/m)$ | (dBµV) | (dB) | (dB) | (cm) | (deg) | | | 0.01925 | -16.52 | 80 | -58.44 | 41.92 | 43.27 | 20.19 | 0.02 | | | Average | | 0.0873 | -27.29 | 80 | -56.07 | 28.78 | 32.72 | 19.97 | 0.02 | | | Average | | 0.09018 | -29.13 | 80 | -57.63 | 28.5 | 30.89 | 19.96 | 0.02 | | | QP | | 0.11 | -34.42 | 80 | -61.2 | 26.78 | 25.62 | 19.94 | 0.02 | | | Average | | 0.17176 | -27.02 | 80 | -49.93 | 22.91 | 33.06 | 19.9 | 0.02 | | | Average | | 0.85048 | 15.09 | 40 | -13.92 | 29.01 | 35.25 | 19.82 | 0.02 | | | QP | | 9.68 | -3.69 | 40 | -33.19 | 29.5 | 16.56 | 19.73 | 0.02 | | | QP | | 13.56 | 18.83 | 40 | -10.67 | 29.5 | 39.18 | 19.64 | 0.01 | | | QP | | 17.35 | -3.88 | 40 | -33.38 | 29.5 | 16.47 | 19.62 | 0.03 | | | QP | | 25.97 | -4.29 | 40 | -33.79 | 29.5 | 15.71 | 19.87 | 0.13 | | | QP | #### Note: - 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. - 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB) - 3. Level = Antenna Factor + Cable Loss + Read Level Distance extrapolation factor. - 4. 13.56 MHz is fundamental signal which can be ignored TEL: 886-3-327-3456 Page Number : C8 of C12 ## C3. Results of Radiated Spurious Emissions (30MHz~1GHz) Report No. : FR1N3039-02 ### <Sample 1> TEL: 886-3-327-3456 Page Number : C9 of C12 #### Note: 964.11 32.48 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. 31 5.82 31.14 Peak 26.8 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m). -21.52 54 - 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level. - The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only. TEL: 886-3-327-3456 Page Number : C10 of C12 <Sample 2> | Frequency | Level | Over | Limit | Read | Antenna | Cable | Preamp | Ant | Table | Remark | |-----------|----------|--------|----------|--------|---------|-------|--------|--------|-------|--------| | | | Limit | Line | Level | Factor | Loss | Factor | Pos | Pos | | | (MHz) | (dBµV/m) | (dB) | (dBµV/m) | (dBµV) | (dB) | (dB) | (dB) | (cm) | (deg) | | | 62.98 | 27.36 | -12.64 | 40 | 46.78 | 11.81 | 1.31 | 32.54 | - | - | Peak | | 105.66 | 30.24 | -13.26 | 43.5 | 44.84 | 16.26 | 1.65 | 32.51 | - | - | Peak | | 211.39 | 30.45 | -13.05 | 43.5 | 45.72 | 14.91 | 2.25 | 32.43 | - | - | Peak | | 267.65 | 32.83 | -13.17 | 46 | 43.52 | 19.23 | 2.51 | 32.43 | - | - | Peak | | 478.14 | 32.47 | -13.53 | 46 | 38.15 | 23.48 | 3.35 | 32.51 | - | - | Peak | | 979.63 | 32.2 | -21.8 | 54 | 26.46 | 30.62 | 6.09 | 30.97 | - | - | Peak | TEL: 886-3-327-3456 Page Number : C11 of C12 #### Note: 935.98 988.36 31.58 32.28 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. 29.64 30.3 5.6 6.24 31.39 30.88 Peak Peak 27.73 26.62 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m). -14.42 -21.72 46 54 - 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level. - 4. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only. TEL: 886-3-327-3456 Page Number : C12 of C12