

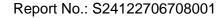
FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

Product Name :	ePaper Table PC, Smart Eink Table, Color Eink Table, Color ePaper Table, Note-Taking Table, Digital Writing Table
Trademark :	MUSNAP
Model Name :	SM10D-AKDC
Family Model :	SM10D-ATD
Report No. :	S24122706708001
FCC ID :	2BOCY-SM10D-AURAC

Prepared for

Shenzhen Palm Reading Technology Co., Ltd.


Room 907-909, 9th Floor, Building 8, Weixin Software Technology Park, Yuehai Street, Nanshan District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China

Tel. 0755-23200050 Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

ertificate #4298.01 Page 2 of 77

Applicant's name Shenzhen Palm Reading Technology Co., Ltd.			
Room 907-909, 9th Floor, Building 8, Weixin Software Technology Park, No. 009 Gaox Address			
Manufacturer's Name	Shenzhen Palm Reading Technology Co., Ltd.		
Address	Room 907-909, 9th Floor, Building 8, Weixin Software Technology Park, No. 009 Gaoxin South 9th Road, High tech Zone Community, Yuehai Street, Nanshan District, Shenzhen, Guangdong Province, China		
Product description			
Droduct nomo	ePaper Table PC, Smart Eink Table, Color Eink Table, Color ePaper Table,		
Product name	Note-Taking Table, Digital Writing Table		
Trademark	MUSNAP		
Model Name	SM10D-AKDC		
Family Model	SM10D-ATD		
	FCC 47 CFR Part 2(2.1093)		
Standarda	ANSI/IEEE C95.1-1992		
Standards	"IEEE Std 1528-2013		
	Published RF exposure KDB procedures		

This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests Feb. 26, 2025~ Feb. 28, 2025

Date of Issue Mar. 20, 2025

Test Result Pass

Prepared .	() wen	Xiao
By	Owen	Xiao
	(Project E	Engineer)

NTEK 北测

Reviewed .- By

(Supervisor)

Aawn Cheng Aaron Cheng

Approved By

(Manager)

\times \times Revision History \times \times

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	Mar. 20, 2025	Owen Xiao

TABLE OF CONTENTS

1.	General Information	6
	1.1. RF exposure limits	6
	1.2. Statement of Compliance	7
	1.3. EUT Description	7
	1.4. Test specification(s)	9
	1.5. Ambient Condition	9
	Facilities	9
	1.5.1. Laboratory Accreditations And Listings	9
2.	SAR Measurement System	10
	2.1. SATIMO SAR Measurement Set-up Diagram	10
	2.2. Robot	11
	2.3. E-Field Probe	12
	2.3.1. E-Field Probe Calibration	12
	2.4. SAM phantoms	13
	2.4.1. Technical Data	14
	2.5. Device Holder	15
	2.6. Test Equipment List	16
3.	SAR Measurement Procedures	18
	3.1. Power Reference	18
	3.2. Area scan & Zoom scan	18
	3.3. Description of interpolation/extrapolation scheme	20
	3.4. Volumetric Scan	20
	3.5. Power Drift	20
4.	System Verification Procedure	21
	4.1. Tissue Verification	
	4.1.1. Tissue Dielectric Parameter Check Results	22
	4.2. System Verification Procedure	23
	4.2.1. System Verification Results	24
5.	SAR Measurement variability and uncertainty	25
	5.1. SAR measurement variability	25
	5.2. SAR measurement uncertainty	25
6.	RF Exposure Positions	26
	6.1. Tablet host platform exposure conditions	26
7.	RF Output Power	27
	7.1. WLAN & Bluetooth Output Power	27
	7.1.1. Output Power Results Of WLAN	
	7.1.2. Output Power Results Of Bluetooth	
8.	Antenna Location	
9.	SAR Results	32

Certificate #4298.01 Page 5 of 77

NTEK 北测

	9.1. SAR measurement results	32
	9.1.1. SAR measurement Result of WLAN 2.4G	32
	9.1.2. SAR measurement Result of WLAN 5.2G	32
	9.1.3. SAR measurement Result of WLAN 5.8G	32
	9.2. Simultaneous Transmission Analysis	33
10.	Appendix A. Photo documentation	33
11.	Appendix B. System Check Plots	
12.	Appendix C. Plots of High SAR Measurement	41
	Appendix D. Calibration Certificate	

1. General Information

NTEK 北测[®]

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: *Whole-Body SAR* is averaged over the entire body, *partial-body SAR* is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. *SAR for hands, wrists, feet and ankles* is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

ertificate #4298.01 Page 6 of 77

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE TRUNK LIMIT 1.6 W/kg APPLIED TO THIS EUT

1.2. Statement of Compliance

NTEK 北测[®]

The maximum results of Specific Absorption Rate (SAR) found during testing for SM10D-AKDC are as follows.

Certificate #4298.01 Page 7 of 77

	Max Reported SAR Value(W/kg)
Band	1-g Body
	(Separation distance of 0mm)
WLAN 2.4G	0.274
WLAN 5.2G	0.486
WLAN 5.8G	0.536

Note: This device is in compliance with Specific Absorption Rate (SAR) for general population / uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

Device Information				
Product Name	ePaper Table PC, Smart Eink Table, Color Eink Table, Color			
Product Name	ePaper Table, Note-Taking	ePaper Table, Note-Taking Table, Digital Writing Table		
Trade Name	MUSNAP			
Model Name	SM10D-AKDC			
Family Model	SM10D-ATD			
	All models are the same ci	ircuit and RF module	e, except for the	
Madel Difference	color screen corresponds	to the SM10D-AKD0	C model, while	
Model Difference	the black and white screer	n corresponds to the	SM10D-ATD	
	model.	model.		
FCC ID				
Device Phase	Identical Prototype			
Exposure Category	General population / Uncontrolled environment			
Antenna Type	FPC Antenna			
Battery Information	DC 3.8V, 4000mAh			
Hardware version	N/A			
Firmware version	N/A			
Software version	N/A			
Device Operating Configurations				
Supporting Mode(s)	WLAN 2.4G/5G, Bluetooth			
Test Modulation	WLAN(DSSS/OFDM), Bluetooth(GFSK, π/4-DQPSK, 8DPSK)			
	Band	Tx (MHz)	Rx (MHz)	
Operating Frequency Range(s)	WLAN 2.4G	2412-2	2462	

WLAN 5.2G	5180-5240
WLAN 5.8G	5745-5825
Bluetooth	2402-2480

NTEK 北测®

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)

ANSI/IEEE C95.1-1992

IEEE Std 1528-2013

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04;

KDB 865664 D02 RF Exposure Reporting v01r02;

KDB 447498 D01 General RF Exposure Guidance v06;

KDB 248227 D01 802.11 Wi-Fi SAR v02r02;

1.5. Ambient Condition

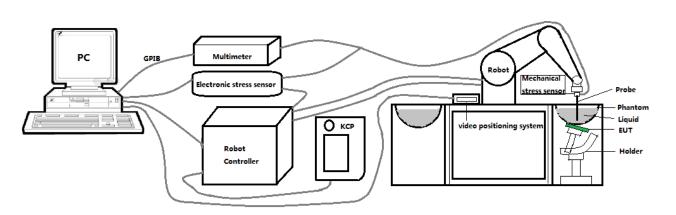
Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

Certificate #4298.01 Page 9 of 77

Facilities

All measurement facilities used to collect the measurement data are located at Building 1, No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of IEC/IEEE IEEE Std 1528-2013


1.5.1. Laboratory Accreditations And Listings

Site Description		
CNAS Lab.	:	The Certificate Registration Number is L5516
A2LA Lab.	:	The Certificate Registration Number is 4298.01
FCC Accredited		Test Firm Registration Number: 463705
		Designation Number: CN1184
ISED Registration	:	Company Number: 9270A
· ·		CAB identifier: CN0074

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ± 0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

ACCREDITED Certificate #4298.01 Page 11 of 77

NTEK 北测®

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

2.3. E-Field Probe

NTEK 北测

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

ACCREDITED Page 12 of 77

For the measurements the Specific Dosimetric E-Field Probe SN 08/16 EPGO287 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 2.5 mm
- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm).

- Probe linearity: ±0.08 dB
- Axial isotropy: ±0.01 dB
- Hemispherical Isotropy: ±0.01 dB
- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.
- Lower detection limit: 8mW/kg

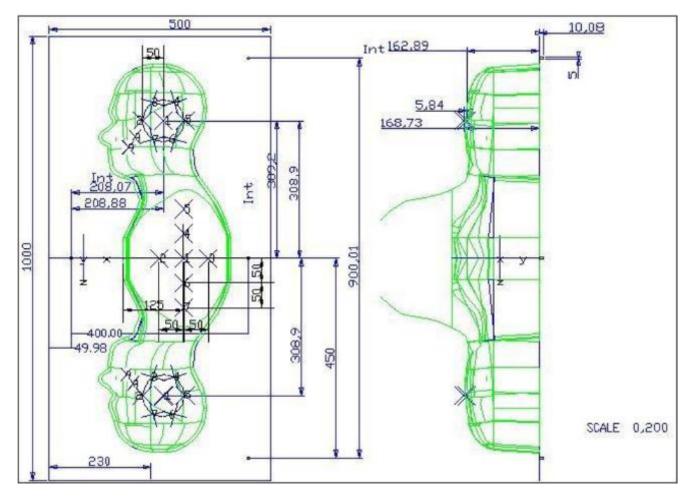
Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

2.4. SAM phantoms

Photo of SAM phantom SN 16/15 SAM119

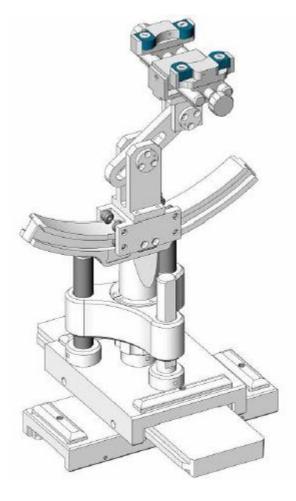

Certificate #4298.01 Page 13 of 77

The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

NTEK ILW®

2.4.1. Technical Data

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000mm Width:500mm Height:200mm	Gelcoat with fiberglass	3.4	0.02


Serial Number	Left Head(mm)		Righ	nt Head(mm)	Flat Part(mm)		
	2	2.02	2	2.08	1	2.09	
	3	2.05	3	2.06	2	2.06	
	4	2.07	4	2.07	3	2.08	
	5	2.08	5	2.08	4	2.10	
SN 16/15 SAM119	6	2.05	6	2.07	5	2.10	
	7	2.05	7	2.05	6	2.07	
	8	2.07	8	2.06	7	2.07	
	9	2.08	9	2.06	-	-	

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 μ m.

2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number	Holder Material	Permittivity	Loss Tangent
SN 16/15 MSH100	Delrin	3.7	0.005

NTEK 北测

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Certificate #4298.01 Page 16 of 77

Devices used during the test described are marked \square

$\begin{tabular}{ c c c c c c } \hline c c c c c c c c c c c c c c c c c c $		Manufacturer	Name of	Type/Model	Serial Number	Calib	ration
MVG E FIELD PROBE SSE2 4024-EPGO-442 2024 2025 MVG 750 MHz Dipole SID750 SN 03/15 DIP Feb. 22, Feb. 21, 0G750-355 2024 2027 MVG 835 MHz Dipole SID750 SN 03/15 DIP Feb. 22, Feb. 21, 0G835-347 2024 2027 MVG 900 MHz Dipole SID900 SN 03/15 DIP Feb. 22, Feb. 21, 0G800-348 2024 2027 MVG 900 MHz Dipole SID900 SN 03/15 DIP Feb. 22, Feb. 21, 0G800-348 2024 2027 MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Feb. 22, Feb. 21, 10800-350 2024 2027 MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Feb. 22, Feb. 21, 10900-350 2024 2027 MVG 2000 MHz Dipole SID2000 2G000-351 2024 2027 MVG 2300 MHz Dipole SID2000 2G000-351 2024 2027 MVG 2600 MHz Dipole SID2450 SN 03/15 DIP Feb. 22, Feb. 21, 2027 2024 2027 MVG		Manufacturer	Equipment	i ype/wodei	Senar Number	Last Cal.	Due Date
Image: constraint of the sector of		MVG		SSE2	4024-EPCO-442	Oct. 04,	Oct. 03,
Image: Model matrix 750 MHz Dipole SID750 0G750-355 2024 2027 Image: Model matrix 835 MHz Dipole SID835 SN 03/15 DIP Feb. 22, Feb. 21, OG835-347 2024 2027 Image: Model matrix 900 MHz Dipole SID900 SN 03/15 DIP Feb. 22, Feb. 21, OG900-348 2024 2027 Image: Model matrix 1800 MHz Dipole SID1800 SN 03/15 DIP Feb. 22, Feb. 21, Geb. 22, Feb. 21, Geb. 21, Geb. 22, Feb. 21, Geb. 21, Geb. 22, Geb. 21, Geb. 21, Geb. 23, Geb. 22, Geb. 21, Geb. 23, Geb. 22, Geb. 21, Geb. 23, Geb. 24 2027 Image: Model matrix 2000 MHz Dipole SID2000 SN 03/15 DIP Feb. 22, Feb. 21, Geb. 21, Geb. 24 2027 Image: Model matrix 2000 MHz Dipole SID2000 SN 03/15 DIP Feb. 22, Feb. 21, Geb. 21, Geb. 21, Geb. 23, Geb. 23, Geb. 24 2027 Image: Model matrix SID2000 SID2000 SN 03/15 DIP Feb. 22, Feb. 21, Geb. 21, Geb. 24 2027 Image: Model matrix SID2000 SID2000 SN 03/15 DIP Feb. 22, Feb. 21, Geb. 24 2027 Image: Model matrix SiD2000 SID2600				55LZ	4024-EF GO-442	2024	2025
Image: style		MVG	750 MHz Dinole	SID750	SN 03/15 DIP	Feb. 22,	Feb. 21,
Image: Marked matrix displaysion of the system NVG 835 MHz Dipole SID835 OG835-347 2024 2027 Image: MVG 900 MHz Dipole SID900 SID900 SN 03/15 DIP Feb. 22, Feb. 21, 0G900-348 2024 2027 Image: MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Feb. 22, Feb. 21, 16800-349 2024 2027 Image: MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Feb. 22, Feb. 21, 16900-350 2024 2027 Image: MVG 2000 MHz Dipole SID1900 SN 03/15 DIP Feb. 22, Feb. 21, 2007 Feb. 21, 2007 2000 2024 2027 Image: MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Feb. 22, Feb. 21, 2007 2024 2027 Image: MVG 2300 MHz Dipole SID2300 SN 03/16 DIP Feb. 22, Feb. 21, 2027 2024 2027 Image: MVG 2450 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, Feb. 21, 2027 2024 2027 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, Feb. 21, 2027 2024				010730	0G750-355	2024	2027
Image: constraint of the constraint of thetex constraint of the constraint of the constraint of t		MVG	835 MHz Dinole	SID835	SN 03/15 DIP	Feb. 22,	Feb. 21,
Image: Marker intermediate interm				010000	0G835-347	2024	2027
Image: constraint of the second sec		MVG	900 MHz Dinole	0000	SN 03/15 DIP	Feb. 22,	Feb. 21,
Image: MVG 1800 MHz Dipole SID1800 1G800-349 2024 2027 Image: MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Feb. 22, Feb. 21, 1G900-350 2024 2027 Image: MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Feb. 22, Feb. 21, 2G00-351 2024 2027 Image: MVG 2300 MHz Dipole SID2000 SN 03/16 DIP Feb. 22, Feb. 21, 2G300-358 2024 2027 Image: MVG 2300 MHz Dipole SID2300 SN 03/16 DIP Feb. 22, Feb. 21, 2G300-358 2024 2027 Image: MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Feb. 22, Feb. 21, 2G450-352 2024 2027 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, Feb. 21, 2027 Feb. 22, Feb. 21, 2027 2024 2027 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, Feb. 21, 2027 2024 2027 Image: MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Feb. 22, Feb. 21, 2027 2024 2027 Image: MVG <td< td=""><td></td><td></td><td></td><td>010900</td><td>0G900-348</td><td>2024</td><td>2027</td></td<>				010900	0G900-348	2024	2027
Image: constraint of the second sec		MVG	1800 MHz Dipole	SID1800	SN 03/15 DIP	Feb. 22,	Feb. 21,
MVG 1900 MHz Dipole SID1900 1G900-350 2024 2027 MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Feb. 22, Feb. 21, 2027 MVG 2300 MHz Dipole SID2000 SN 03/15 DIP Feb. 22, Feb. 21, 2027 MVG 2300 MHz Dipole SID2300 SN 03/16 DIP Feb. 22, Feb. 21, 2027 MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Feb. 22, Feb. 21, 2027 MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Feb. 22, Feb. 21, 2027 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, Feb. 21, 2027 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, Feb. 21, 2027 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Feb. 22, Feb. 21, 2024 2027 MVG Liquid SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier				5101000	1G800-349	2024	2027
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		MVG	1000 MHz Dipolo	SID1000	SN 03/15 DIP	Feb. 22,	Feb. 21,
Image: MVG 2000 MHz Dipole SID2000 2G000-351 2024 2027 Image: MVG 2300 MHz Dipole SID2300 SN 03/16 DIP Feb. 22, Feb. 21, 2G300-358 2024 2027 Image: MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Feb. 22, Feb. 21, 2G450-352 2024 2027 Image: MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Feb. 22, Feb. 21, 2G450-352 2024 2027 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, Feb. 21, 2G600-356 2024 2027 Image: MVG 2600 MHz Dipole SWG5500 SN 13/14 WGA 33 Feb. 22, 2027 Feb. 21, 2024 2027 Image: MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Feb. 22, 2027 Feb. 21, 2024 2027 Image: MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NC				0061010	1G900-350	2024	2027
Image: book of the sector of the se		MVG	2000 MHz Dipolo	SID2000	SN 03/15 DIP	Feb. 22,	Feb. 21,
Image: MVG 2300 MHz Dipole SID2300 2G300-358 2024 2027 Image: MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Feb. 22, 2024 2027 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, 2024 2027 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, 2024 2027 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, 2024 2027 Image: MVG 2600 MHz Dipole SID2600 SN 13/14 WGA 33 Feb. 22, 2027 Feb. 21, 2024 2027 Image: MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Feb. 22, 2027 Feb. 21, 2024 2027 Image: MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image: MVG Power Amplifier N.A Ampr.26, 2024		NV G		3102000	2G000-351	2024	2027
Image: Constraint of the second sec] MVG 2300 r	IVG 2300 MHz Dipole		SN 03/16 DIP	Feb. 22,	Feb. 21,
MVG 2450 MHz Dipole SID2450 2G450-352 2024 2027 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Feb. 22, 2024 2027 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP 2024 2027 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Feb. 22, 2024 2027 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Feb. 22, 2024 2027 MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Milivoltmeter 2000 4072790 NCR NCR R&S Universal radio communication tester CMU200 105747 Apr. 26, 2024 2025 R&S Wideband radio communication tester CMW500 103917 Apr. 26, 2024 2025 HP Network Analyzer E5071C LPS-461 Oct. 15, 0ct. 14,				3102300	2G300-358	2024	2027
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c } \hline 26450-352 & 2024 & 2027 \\ \hline \end{tabular} & \e$		MVC	2450 MHz Dipolo	MHz Dipolo SID2450	SN 03/15 DIP	Feb. 22,	Feb. 21,
Image: MVG2600 MHz DipoleSID26002G600-35620242027Image: MVG5000 MHz DipoleSWG5500SN 13/14 WGA 33Feb. 22, 2024Feb. 21, 2024Image: MVGLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGMVGCMU200105747Apr. 26, 20242025Image: Mudeband radio communication testerCMW500103917Apr. 26, 20242025Image: MPNetwork AnalyzerE5071CLPS-461Oct. 15, Oct. 14,		NV G		SID2450	2G450-352	2024	2027
Image: constraint of the sector of the sec		MVG	2600 MHz Dipolo	SID2600	SN 03/15 DIP	Feb. 22,	Feb. 21,
MVG5000 MHz DipoleSWG5500SN 13/14 WGA 3320242027MVGLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRKEITHLEYMillivoltmeter20004072790NCRNCRR&SUniversal radio communication testerCMU200105747Apr. 26, 2024Apr. 25, 2024Apr. 25, 2025R&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2025Apr. 25, 2025R&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2025Apr. 25, 2025HPNetwork AnalyzerE5071CLPS-461Oct. 15,Oct. 14,				5102000	2G600-356	2024	2027
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \end{tabular} \\ \hline $		MVG	5000 MHz Dipolo	SWG5500	SNI 13/14 W/CA 33	Feb. 22,	Feb. 21,
Image: MVGMVGMVGSCLMPSN 21/15 OCPG 72NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGMillivoltmeter20004072790NCRNCRImage: MVGMillivoltmeter20004072790NCRNCRImage: MVGUniversal radio communication testerCMU200105747Apr. 26, 2024Apr. 25, 2025Image: MVGR&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2024Image: MVGHPNetwork AnalyzerE5071CLPS-461Oct. 15,Oct. 14,				5000000	5N 15/14 WOA 55	2024	2027
Image: Model of the interviewed of		MVG	Liquid	SCIMP			
KEITHLEYMillivoltmeter20004072790NCRNCRImage: Rest of the sterUniversal radio communication testerCMU200105747Apr. 26, 2024Apr. 25, 2024Apr. 25, 2025Image: Rest of the sterWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2025Image: Rest of the sterCMW500103917Apr. 26, 2024Apr. 25, 2025Image: Rest of the sterCMW500103917Oct. 15, Oct. 14,			measurement Kit	OOLIMI	SN 21/15 OCPG 72	NCR	NCR
Image: DecompositionUniversal radio communication testerCMU200105747Apr. 26, 2024Apr. 25, 2025Image: DecompositionCMU200105747Apr. 26, 2024Apr. 25, 20252025Image: DecompositionWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2024Image: DecompositionCMW500103917Apr. 26, 2024Apr. 25, 2025Image: DecompositionCMW500103917Apr. 26, 2024Apr. 25, 2025Image: DecompositionCMW500103917Oct. 15, Oct. 15,Oct. 14,	\square	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR
R&S communication tester CMU200 105747 Apr. 26, 2024 Apr. 25, 2024 R&S Wideband radio communication tester Wideband radio communication tester Apr. 26, 2024 Apr. 25, 2024 2025 HP Network Analyzer E5071C LPS-461 Oct. 15, Oct. 14,	\square	KEITHLEY	Millivoltmeter	2000	4072790	NCR	NCR
Image: R&Scommunication testerCMU20010574720242025Image: R&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2024Apr. 25, 2025Image: R&SHPNetwork AnalyzerE5071CLPS-461Oct. 15, Oct. 15,Oct. 14,			Universal radio			A	Amr. 05
testertesterR&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2024HPNetwork AnalyzerE5071CLPS-461Oct. 15, 0ct. 15,Oct. 14,		R&S	communication	CMU200	105747	•	-
R&S communication tester CMW500 103917 Apr. 26, 2024 Apr. 25, 2024 M HP Network Analyzer E5071C LPS-461 Oct. 15, Oct. 14,			tester			2024	2025
Image: Name Radio communication CMW500 103917 2024 2025 Image: Network Analyzer E5071C LPS-461 Oct. 15, Oct. 14,			Wideband radio			A == 00	Apr 05
tester Oct. 15, Oct. 14, HP Network Analyzer E5071C LPS-461		R&S	communication	CMW500	103917	•	-
I 🗠 I 🛛 ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬			tester			2024	2025
LPS-461 2024 2025		Цр				Oct. 15,	Oct. 14,
		L IE	Network Analyzer	E50/1C	LYS-461	2024	2025

	Agilent	Calibration Kit	85033E	N/A	May. 31, 2024	May. 30, 2025
\boxtimes	Agilent	MXG Vector Signal Generator	N5182A	MY47070317	Apr. 25, 2024	Apr. 24, 2025
\boxtimes	Agilent	Power meter	E4419B	MY45102538	Apr. 25, 2024	Apr. 24, 2025
\boxtimes	Agilent	Power sensor	E9301A	LES-413-C	May. 30, 2024	May. 29, 2025
\boxtimes	Agilent	Power sensor	E9301A	US39212148	Apr. 25, 2024	Apr. 24, 2025
\boxtimes	MCLI/USA	Directional Coupler	CB11-20	0D2L51502	Apr. 26, 2024	Apr. 25, 2027
	N/A	Thermometer	N/A	LES-085	Mar. 27, 2023	Mar. 26, 2026
\square	MVG	SAM Phantom	SSM2	SN 16/15 SAM119	NCR	NCR
\boxtimes	MVG	Device Holder	SMPPD	SN 16/15 MSH100	NCR	NCR

Measurement Software

Manufacturer	Software Name	Software Version
SATIMO	OpenSAR	V5.3.15.8

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

NTEK 北测[®]

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

ACCREDITED Page 18 of 77

(b) Read the WWAN RF power level from the base station simulator.

(c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band.

(d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power.

<SAR measurement>

(a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel.

(b) Place the EUT in the positions as Appendix A demonstrates.

- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.

(f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan

Certificate #4298.01 Page 19 of 77

above the hot spot to calculate the 1g and 10g SAR value.

NTEK 北测

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz		
Maximum distance from (geometric center of pre-			$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle surface normal at the m			$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$		
			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \text{ GHz:} \leq 12 \text{ mm} \\ 4-6 \text{ GHz:} \leq 10 \text{ mm} \end{array}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one		
Maximum zoom scan s	patial reso	lution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$ 3 - 4 GHz: $\leq 5 \text{ mm}^*$ 4 - 6 GHz: $\leq 4 \text{ mm}^*$			
	uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z	•	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm		

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

NTEK 北测

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

ACCREDITED Page 20 of 77

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

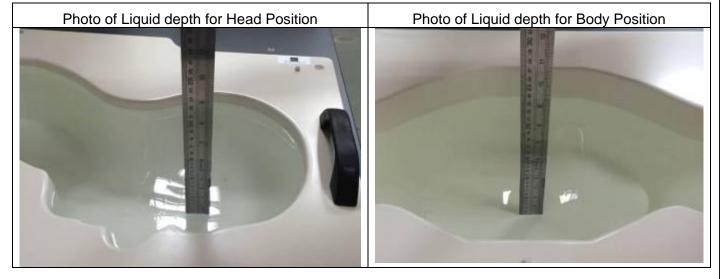
The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than $\pm 5\%$, the SAR will be retested.

4. System Verification Procedure

NTEK 北测


4.1. Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Certificate #4298.01 Page 21 of 77

Ingredients (% of weight)					Head	Tissue				
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23
Ingredients (% of weight)					Body	Tissue				
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	50.30	50.30	50.30	69.91	69.91	71.88	71.88	71.88	79.54	79.54
NaCl	0.60	0.60	0.60	0.13	0.13	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	49.10	49.10	49.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	9.99	9.99	19.97	19.97	19.97	11.24	11.24
DGBE	0.00	0.00	0.00	19.97	19.97	7.99	7.99	7.99	9.22	9.22

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

4.1.1. Tissue Dielectric Parameter Check Results

NTEK 北测

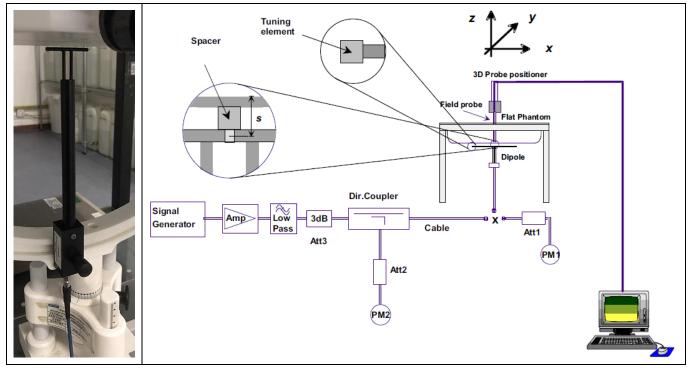
The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

Certificate #4298.01

Tissue	Measured	Target	Tissue	Measure	ed Tissue	Delt	a(%)	Liquid	Test
Туре	Frequency (MHz)	٤r	σ (S/m)	εr	σ (S/m)	٤r	σ (S/m)	Temp.	Date
Head 2450	2450	39.20	1.80	37.20	1.77	-5.10	-1.67	21.6 °C	Feb. 26, 2025
Head 2450	2437	39.22	1.79	38.25	1.75	-2.47	-2.23	21.6 °C	Feb. 26, 2025
Head 5200	5200	36.00	4.66	37.28	4.59	3.56	-1.50	21.6 °C	Feb. 27, 2025
Head 5200	5210	35.99	4.67	37.21	4.59	3.39	-1.71	21.6 °C	Feb. 27, 2025
Head 5800	5800	35.30	5.27	36.22	5.14	2.61	-2.47	21.4 °C	Feb. 28, 2025
Head 5800	5795	35.30	5.27	36.21	5.15	2.58	-2.28	21.4 °C	Feb. 28, 2025

NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

4.2. System Verification Procedure


NTEK 北测

® Ilac MRA

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Certificate #4298.01 Page 23 of 77

The system verification is shown as below picture:

4.2.1. System Verification Results

NTEK 北测[®]

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of $\pm 10\%$. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

Certificate #4298.01 Page 24 of 77

						Measur	ed SAR				
System	Target SAR (1W)		Meas	Measured SAR		`	lized to	Delta	a (%)	Liquid	Test
Verification						1\	V)			Tomp	Date
venincation	1-g (W/Kg)	10-g (W/Kg)	Input Power	1-g	10-g	1-g	10-g	1-g (%)	10-g	Temp.	Date
	1-g (W/Rg)	10-g (W/Rg)	(mW)	(W/Kg)	(W/Kg)	(W/Kg)	(W/Kg)	1-y (76)	(%)		
											Feb.
2450MHz	50.05	23.80	100.00	5.167	2.214	51.67	22.14	3.24	-6.97	21.3 °C	26,
											2025
											Feb.
5200MHz	162.59	56.21	10.00	1.673	0.617	167.30	61.70	2.90	9.77	21.4 °C	27,
											2025
											Feb.
5800MHz	182.20	61.32	10.00	1.702	0.638	170.20	63.80	-6.59	4.04	21.9 °C	28,
											2025

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

NTEK 北测[®]

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

ACCREDITED Page 25 of 77

 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. RF Exposure Positions

NTEK 北测[®]

6.1. Tablet host platform exposure conditions

Refer to KDB616217 D04, when the modular approach is used, transmitters and modules must be initially tested for standalone operations in generic host conditions according to the following minimum test separation distance and antenna installation requirements for incorporation in the tablet platform. The separation distance required for incorporation in qualified hosts is described in KDB 447498; item 5) of section 4.1 and item 1) of section 5.2.2 etc.

ACCREDITED Page 26 of 77

- \leq 5 mm between the antenna and user for both back surface and edge exposure conditions
- the antennas used by the host must have been tested for equipment approval or qualify for SAR test exclusion
- the antenna polarization, physical orientation, rotation and installation configurations used by the host must have been tested for compliance or qualify for test exclusion
- when the *SAR Test Exclusion Threshold* in KDB 447498 applies, a *test separation distance* of 5 mm is required to determine test exclusion for the tablet platform

The antennas embedded in tablets are typically ≤ 5 mm from the outer housing. The required antenna to user test separation distance is a "not to exceed test" distance required to apply the modular approach. Instead of the typical zero gap tablet edge test requirement between the edge of a tablet and the user, when an antenna has been tested at ≤ 5 mm according to the modular approach it can be incorporated into tablets with at least twice the tested distance from the outer housing of the tablet edge; otherwise, the tablet edge zero gap test requirement applies. When the dedicated host approach is applied, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom.

NTEK 北测

Certificate #4298.01

7. RF Output Power

7.1. WLAN & Bluetooth Output Power

7.1.1. Output Power Results Of WLAN

Mode	Channel	Frequency (MHz)	max tune-up power(dBm)	Output Power (dBm)
	1	2412	16.00	15.08
802.11b	6	2437	16.00	15.50
	11	2462	16.00	15.25
	1	2412	14.00	13.74
802.11g	6	2437	14.00	13.76
	11	2462	14.00	13.84
000.44	1	2412	13.00	12.72
802.11n	6	2437	13.00	12.83
HT20	11	2462	13.00	12.94

NOTE: Power measurement results of WLAN 2.4G.

Mode	Mode Channel F		max tune-up power(dBm)	Output Power (dBm)
	36	5180	11.50	11.12
802.11a	40	5200	11.50	10.79
	48	5240	11.50	11.30
	36	5180	11.00	10.81
802.11n HT20	40	5200	11.00	10.78
	48	5240	11.00	10.99
000 44 m LIT 40	38	5190	11.00	11.00
802.11n HT40 –	46	5230	11.00	10.86
	36	5180	11.00	10.74
802.11ac VHT20	40	5200	11.00	10.83
	48	5240	11.00	10.98
902 11cc \/UT40	38	5190	11.50	10.60
802.11ac VHT40	46	5230	11.50	11.14
802.11ac VHT80	42	5210	11.50	11.17

NOTE: Power measurement results of WLAN 5.2G.

Mode	Channel	Frequency (MHz)	Frequency (MHz) max tune-up power(dBm)	
802.11a	149	5745	11.50	10.96

	157	5785	11.50	11.20
	165	5825	11.50	11.29
	149	5745	11.50	10.81
802.11n HT20	157	5785	11.50	10.96
	165	5825	11.50	11.39
802.11n HT40	151	5755	11.50	10.72
802.11111140	159	5795	11.50	11.18
	149	5745	11.50	10.68
802.11ac VHT20	157	5785	11.50	11.17
	165	5825	11.50	11.13
802.11ac VHT40	151	5755	11.50	10.90
002.11ac v1140	159	5795	11.50	11.22
802.11ac VHT80	155	5775	11.00	10.96

NOTE: Power measurement results of WLAN 5.8G.


7.1.2. Output Power Results Of Bluetooth

BLE	Channel	Tune-up (dBm)	Output Power (dBm)	
	0CH	6.00	5.30	
	19CH	6.00	5.65	
	39CH	6.00	5.92	

	Output Power (dBm)							
BR+EDR	Data Patas	Tune-up	Channel					
	Data Rates	(dBm)	0CH	39CH	78CH			
	1M	9.50	9.46	9.43	9.47			
	2M	9.50	8.84	8.23	9.43			
	3M	9.50	8.82	8.38	9.46			

NOTE: Power measurement results of Bluetooth.

NTEK 北测

Certificate #4298.01 Page 29 of 77

Right Side

Front View

Distance of the Antenna to the EUT surface/edge								
Antennas	Front Side	Back Side	Left Side	Right Side	Top Side	Bottom Side		
WLAN	5	5	52	51	5	150		

Note: When the minimum separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Positions for SAR tests							
Test separation distances \leq 50 mm							
	Tune-up Maximum p	ower of WLAN 2.4G					
Exposure Positions	16.00dBm	39.81mW					
	Antenna to user(mm)	5					
Front Side	SAR exclusion threshold	10 mW					
	SAR testing required?	YES					
	Antenna to user(mm)	5					
Back Side	SAR exclusion threshold	10 mW					
	SAR testing required?	YES					
	Antenna to user(mm)	5					
Top Side	SAR exclusion threshold	10 mW					
	SAR testing required?	YES					
	Tune-up Maximum p	ower of WLAN 5.2G					
Exposure Positions	11.50dBm	14.13 mW					

Certificate #4298.0

Report No.: S24122706708001

	Antenna to user(mm)	5		
Front Side	SAR exclusion threshold(mW)	7		
	SAR testing required?	YES		
	Antenna to user(mm)	5		
Back Side	SAR exclusion threshold(mW)	7		
	SAR testing required?	YES		
	Antenna to user(mm)	5		
Top Side	SAR exclusion threshold(mW)	7		
	SAR testing required?	YES		
Expective Desitions	Tune-up Maximum p	ower of WLAN 5.8G		
Exposure Positions	11.50dBm	14.13 mW		
	Antenna to user(mm)	5		
Front Side	SAR exclusion threshold(mW)	6		
	SAR testing required?	YES		
	Antenna to user(mm)	5		
Back Side	SAR exclusion threshold(mW)	6		
	SAR testing required?	YES		
	Antenna to user(mm)	5		
Top Side	SAR exclusion threshold(mW)	6		
	SAR testing required?	YES		
Exposure Positions	Tune-up Maximum	power of BT/BLE		
	9.50dBm	8.91 mW		
	Antenna to user(mm)	5		
Front Side	SAR exclusion threshold(mW)	10		
	SAR testing required?	NO		
	Antenna to user(mm)	5		
Back Side	SAR exclusion threshold(mW)	10		
	SAR testing required?	NO		
	Antenna to user(mm)	5		
Top Side	SAR exclusion threshold(mW)	10		
	SAR testing required?	NO		

NOTE: Refer to section 4.3.1 of KDB 447498 D01.

Positions for SAR tests						
Test separation distances > 50 mm						
European Desilities	Tune-up Maximum p	oower of WLAN 2.4G				
Exposure Positions	16.00 dBm	39.81 mW				
	Antenna to user(mm)	52				
Left Side	SAR exclusion threshold(mW)	116				
	SAR testing required?	NO				

Certificate #4298.01

Report No.: S24122706708001

	Antenna to user(mm)	51				
Right Side	SAR exclusion threshold	106				
-	SAR testing required?	NO				
	Antenna to user(mm)	150				
Bottom Side	SAR exclusion threshold(mW)	1096				
	SAR testing required?	NO				
		power of WLAN 5.2G				
Exposure Positions	11.50 dBm	14.13 mW				
	Antenna to user(mm)	52				
Left Side	SAR exclusion threshold(mW)	86				
	SAR testing required?	NO				
	Antenna to user(mm)	51				
Right Side	SAR exclusion threshold	76				
ragin oldo	SAR testing required?	NO				
	Antenna to user(mm)	150				
Bottom Side	SAR exclusion threshold(mW)	1066				
Dottom Side						
		SAR testing required? NO Tune-up Maximum power of WLAN 5.8G				
Exposure Positions	11.50 dBm	14.13 mW				
		52				
	Antenna to user(mm)					
Left Side	SAR exclusion threshold(mW)	82				
	SAR testing required?	NO				
Disht Cide	Antenna to user(mm)	51				
Right Side	SAR exclusion threshold	72				
	SAR testing required?	NO				
	Antenna to user(mm)	150				
Bottom Side	SAR exclusion threshold(mW)	1062				
	SAR testing required?	NO				
Exposure Positions	· · · · · · · · · · · · · · · · · · ·	n power of BT/BLE				
•	9.50 dBm	8.91 mW				
	Antenna to user(mm)	52				
Left Side	SAR exclusion threshold(mW)	116				
	SAR testing required?	NO				
	Antenna to user(mm)	51				
Right Side	SAR exclusion threshold	106				
	SAR testing required?	NO				
	Antenna to user(mm)	150				
Bottom Side	SAR exclusion threshold(mW)	1096				
	SAR testing required?	NO				

NTEK 北测

 ACCREDITED
 Page 32 of 77
 Report No.: S24122706708001

9. SAR Results

9.1. SAR measurement results

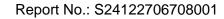
9.1.1. SAR measurement Result of WLAN 2.4G

Test	Test		SAR	Value		Conducted	Tung up	Scaled		
Position of	channel	Mode	(W)	/kg)	Power	Conducted Power	Tune-up Power	SAR	Date	Plot
Body with	/Freg.	WOUE	1 a	10 a	Drift(%)	(dBm)	(dBm)	1-g	Dale	FIOL
0mm	/rieq.		1-g	10-g		(UDIII)	(UDIII)	(W/Kg)		
Front Side	6/2437	802.11b	0.050	0.020	3.34	15.50	16.00	0.056	2025/2/26	
Back Side	6/2437	802.11b	0.244	0.097	2.03	15.50	16.00	0.274	2025/2/26	3#
Top Side	6/2437	802.11b	0.075	0.028	2.48	15.50	16.00	0.084	2025/2/26	

NOTE: Body SAR test results of WLAN 2.4G

9.1.2. SAR measurement Result of WLAN 5.2G

Test Position of	Test	Mode	SAR \ (W/		Power	Conducted	Tune-up	Scaled SAR	Date	Plot
-		Mode	1-g	10-g	Drift(%)		Power (dBm)	1-g (W/Kg)	Date	FIOL
Front Side	42/5210	802.11ac VHT80	0.135	0.054	-3.18	11.17	11.50	0.146	2025/2/27	
Back Side	42/5210	802.11ac VHT80	0.450	0.188	4.23	11.17	11.50	0.486	2025/2/27	1#
Top Side	42/5210	802.11ac VHT80	0.162	0.065	2.19	11.17	11.50	0.175	2025/2/27	


NOTE: Body SAR test results of WLAN 5.2G

9.1.3. SAR measurement Result of WLAN 5.8G

Test Position of	on of with /Freq.	Mode	-	SAR Value (W/kg) Po		Conducted	Tune-up Power	Scaled SAR	Date	Plot
Body with 0mm		Mode	1-g	10-g	Drift(%)	Power (dBm)	(dBm)	1-g (W/Kg)	Dale	FIOL
Front Side	159/5795	802.11n HT40	0.162	0.059	0.04	11.18	11.50	0.174	2025/2/28	
Back Side	159/5795	802.11n HT40	0.498	0.186	3.15	11.18	11.50	0.536	2025/2/28	2#
Top Side	159/5795	802.11n HT40	0.172	0.063	-2.11	11.18	11.50	0.185	2025/2/28	

NOTE: Body SAR test results of WLAN 5.8G

9.2. Simultaneous Transmission Analysis

N/A

10. Appendix A. Photo documentation

Refer to appendix Test Setup photo---SAR

11. Appendix B. System Check Plots

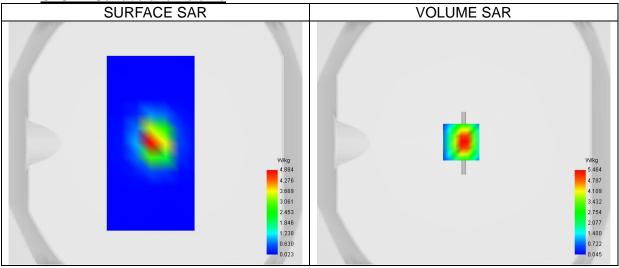
Table of contents

MEASUREMENT 1 System Performance Check - 2450MHz

MEASUREMENT 2 System Performance Check - 5200MHz

MEASUREMENT 3 System Performance Check - 5800MHz

<u>1# System check at 2450 MHz</u> Date of measurement: 26/2/2025

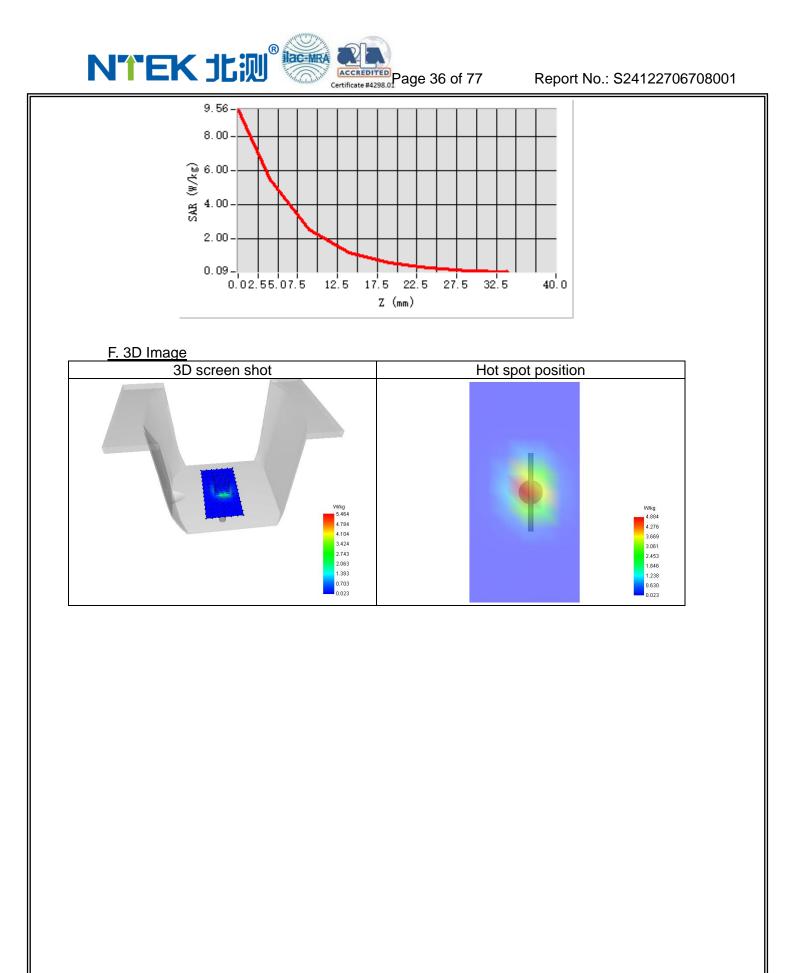

A. Experimental conditions.

Probe	4024-EPGO-442			
ConvF	2.74			
Area Scan	dx=12mm dy=12mm, Complete			
Zoom Scan	7x7x7,dx=5mm dy=5mm			
	dz=5.0mm,Complete			
Phantom	Validation plane			
Device Position	Dipole			
Band	CW2450			
Channels/Frequency	Middle			
Signal	CW			

B. Permitivity

2450.000
37.20
13.00
1.77

C. SAR Surface and Volume


Maximum location: X=-2.00, Y=1.00 ; SAR Peak: 9.84 W/kg

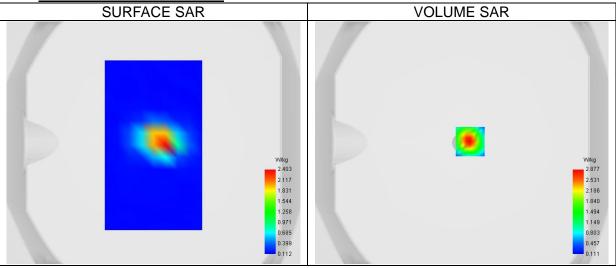
D. SAR 1g & 10g

<u>Dron at 19 a 109</u>	
SAR 10g (W/Kg)	2.214
SAR 1g (W/Kg)	5.167
Variation (%)	0.68
Horizontal validation criteria: minimum	10.00
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	46.34
(%)	

E. Z Axis Scan

	, eouil						
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	9.560	5.464	2.532	1.215	0.599	0.304	0.161

<u>2# System check at 5200 MHz</u> Date of measurement: 27/2/2025

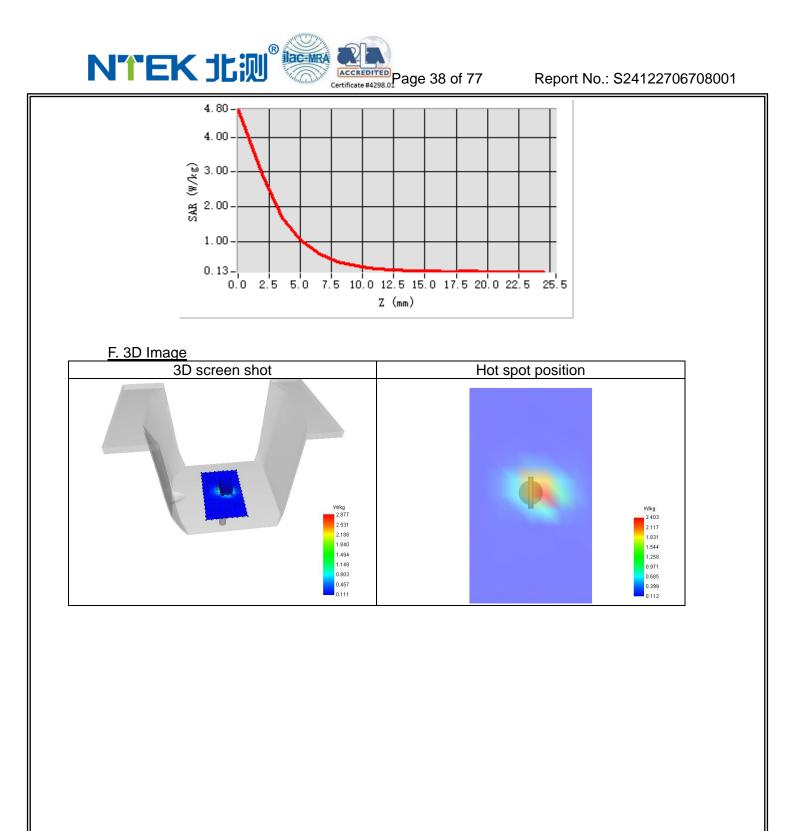

A. Experimental conditions.

Probe	4024-EPGO-442
ConvF	1.89
Area Scan	dx=10mm dy=10mm, Complete
Zoom Scan	9x9x16,dx=3mm dy=3mm
	dz=1.5mm,Complete
Phantom	Validation plane
Device Position	Body
Band	CW5200
Channels/Frequency	Middle
Signal	CW

B. Permitivity

Middle TX Frequency (MHz)	5200.000
Relative permitivity (real part)	37.28
Relative permitivity (imaginary part)	15.88
Conductivity (S/m)	4.59

C. SAR Surface and Volume



Maximum location: X=7.00, Y=1.00 ; SAR Peak: 5.16 W/kg

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.617
SAR 1g (W/Kg)	1.673
Variation (%)	-0.32
Horizontal validation criteria: minimum	9.00
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	58.73
(%)	

		-														
Z (mm)	0.0	2.0	3.5	5.0	6.5	8.0	9.5	11.	12.	14.	15.	17.	18.	20.	21.	23.
	0	0	0	0	0	0	0	00	50	00	50	00	50	00	50	00
SAR (W/Kg)	4.8	2.8	1.6	1.0	0.6	0.4	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	04	77	90	44	56	25	91	07	81	62	45	40	49	32	36	28

3# System check at 5800 MHz

Date of measurement: 28/2/2025

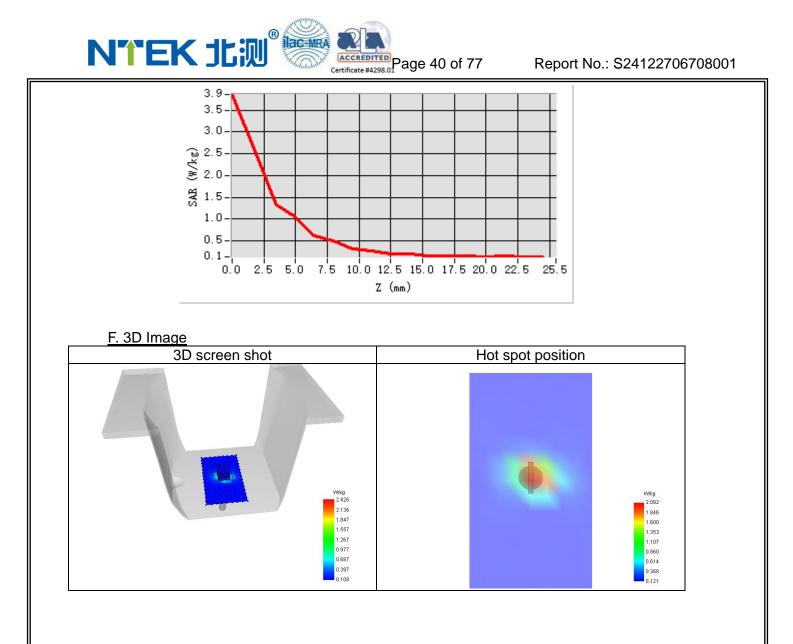
A. Experimental conditions.

4024-EPGO-442
1.90
dx=10mm dy=10mm, Complete
9x9x16,dx=3mm dy=3mm
dz=1.5mm,Complete
Validation plane
Dipole
CW5800
Middle
CW

B. Permitivity

Middle TX Frequency (MHz)	5800.000
Relative permitivity (real part)	36.22
Relative permitivity (imaginary part)	15.94
Conductivity (S/m)	5.14

C. SAR Surface and Volume


SURFACE SAR		VOLUME SAR	
SURFACE SAR	Wikg 2.092 1.846 1.600 1.353 1.107 0.860	VOLUME SAR	W/kg 2.426 2.136 1.847 1.557 1.267 0.977
	0.614 0.368 0.121		0.687 0.397 0.108

Maximum location: X=2.00, Y=0.00 ; SAR Peak: 4.14 W/kg

D. SAR 1g & 10g

<u>D: Orar ig a rog</u>	
SAR 10g (W/Kg)	0.638
SAR 1g (W/Kg)	1.702
Variation (%)	0.23
Horizontal validation criteria: minimum	9.00
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	63.57
(%)	

		<u>.</u>														
Z (mm)	0.0	2.0	3.5	5.0	6.5	8.0	9.5	11.	12.	14.	15.	17.	18.	20.	21.	23.
	0	0	0	0	0	0	0	00	50	00	50	00	50	00	50	00
SAR (W/Kg)	3.8	2.4	1.3	1.0	0.6	0.4	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	60	26	19	46	07	99	21	61	10	98	66	53	47	42	45	33

12. Appendix C. Plots of High SAR Measurement

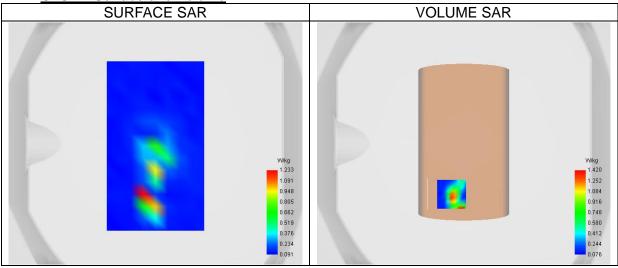
Table of contents

MEASUREMENT 1 WLAN 5.2G Body

MEASUREMENT 2 WLAN 5.8G Body

MEASUREMENT 3 WLAN 2.4G Body

<u>1# SAR Measurement at U-NII-1 (Body, Validation Plane)</u> Date of measurement: 27/2/2025

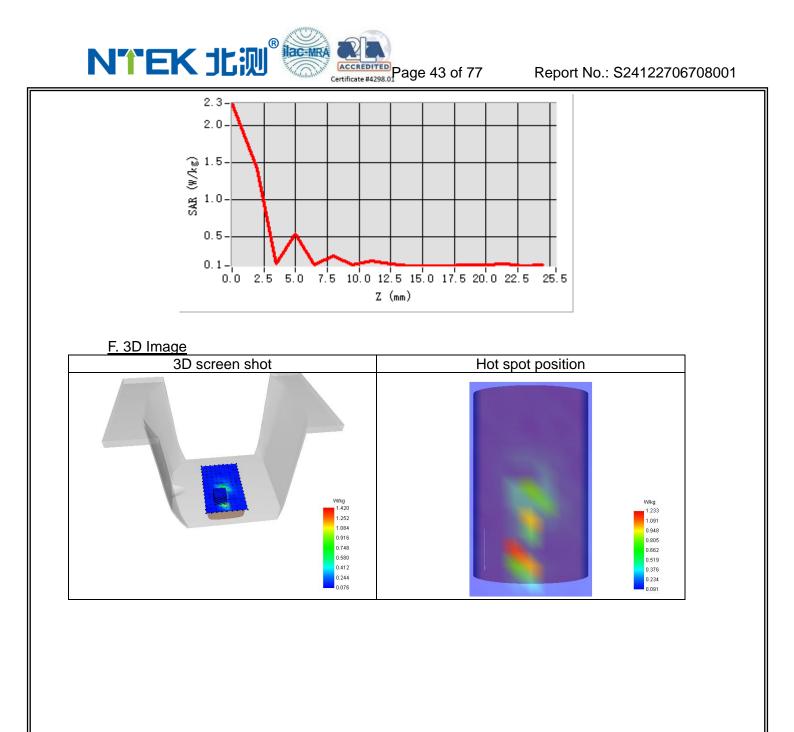

A. Experimental conditions.

Probe	4024-EPGO-442
ConvF	1.89
Area Scan	dx=10mm dy=10mm, Complete
Zoom Scan	9x9x16,dx=3mm dy=3mm
	dz=1.5mm,Complete
Phantom	Validation plane
Device Position	Body
Band	U-NII-1
Channels/Frequency	Middle (42)/ frequency 5210.000 Mhz
Signal	IEEE 802.11 ac
Channels/Frequency	Middle (42)/ frequency 5210.000 Mhz

B. Permitivity

Middle TX Frequency (MHz)	5210.000
Relative permitivity (real part)	37.21
Relative permitivity (imaginary part)	15.86
Conductivity (S/m)	4.59

C. SAR Surface and Volume



Maximum location: X=-10.00, Y=-42.00 ; SAR Peak: 2.76 W/kg

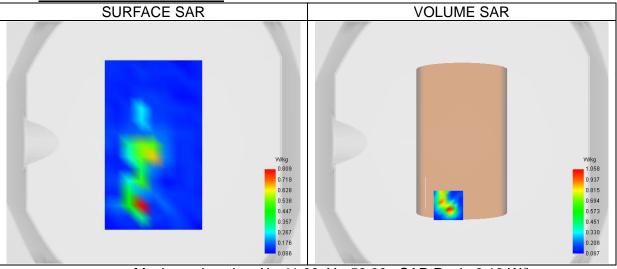
D. SAR 1g & 10g

SAR 10g (W/Kg)	0.188
SAR 1g (W/Kg)	0.450
Variation (%)	4.23
Horizontal validation criteria: minimum	4.24
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	58.08
(%)	

		-														
Z (mm)	0.0	2.0	3.5	5.0	6.5	8.0	9.5	11.	12.	14.	15.	17.	18.	20.	21.	23.
	0	0	0	0	0	0	0	00	50	00	50	00	50	00	50	00
SAR (W/Kg)	2.3	1.4	0.1	0.5	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	04	20	22	35	08	40	19	66	23	00	06	05	16	09	24	06

Report No.: S24122706708001

<u>2# SAR Measurement at U-NII-3 (Body, Validation Plane)</u> Date of measurement: 28/2/2025

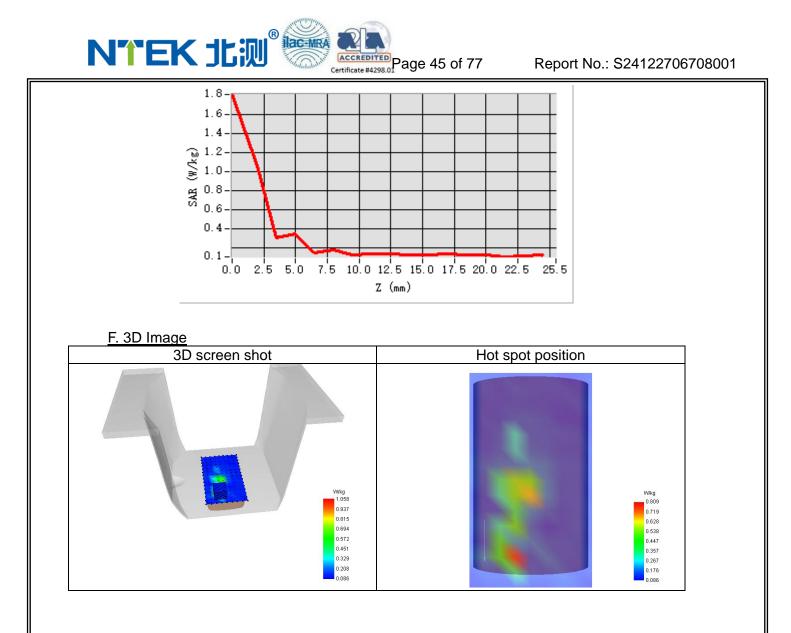

A. Experimental conditions.

Probe	4024-EPGO-442
ConvF	1.90
Area Scan	dx=10mm dy=10mm, Complete
Zoom Scan	9x9x16,dx=3mm dy=3mm
	dz=1.5mm,Complete
Phantom	Validation plane
Device Position	Body
Band	U-NII-3
Channels/Frequency	Middle (159)/ frequency 5795.000 Mhz
Signal	IEEE 802.11 n

B. Permitivity

Middle TX Frequency (MHz)	5795.000
Relative permitivity (real part)	36.21
Relative permitivity (imaginary part)	15.99
Conductivity (S/m)	5.15

C. SAR Surface and Volume

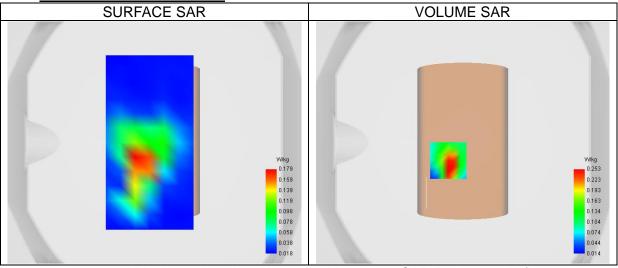


Maximum location: X=-11.00, Y=-52.00 ; SAR Peak: 2.13 W/kg

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.186
SAR 1g (W/Kg)	0.498
Variation (%)	3.15
Horizontal validation criteria: minimum	4.24
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	55.79
(%)	

Z (mm)	0.0	2.0	3.5	5.0	6.5	8.0	9.5	11.	12.	14.	15.	17.	18.	20.	21.	23.
	0	0	0	0	0	0	0	00	50	00	50	00	50	00	50	00
SAR (W/Kg)	1.8	1.0	0.3	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	05	58	06	49	50	75	28	42	36	22	23	39	27	30	06	12

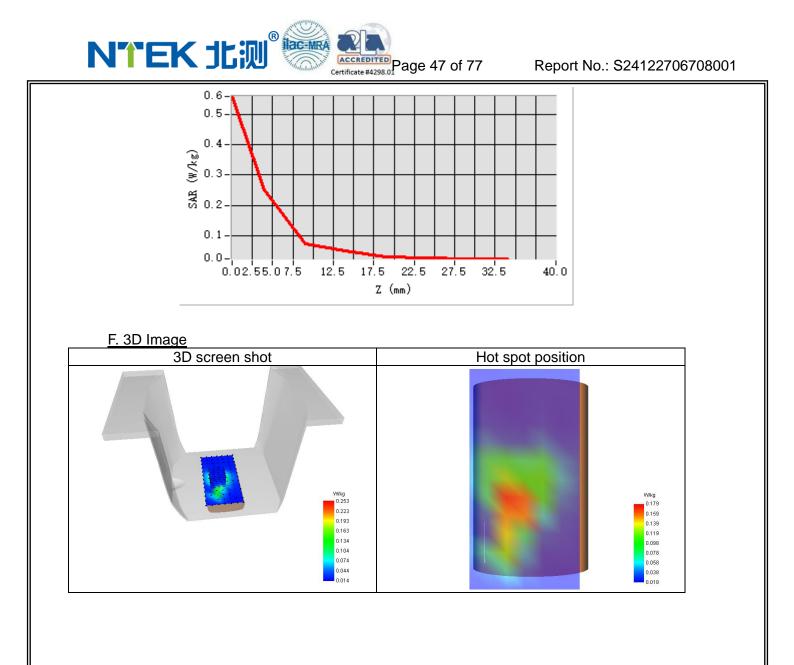

<u>3# SAR Measurement at ISM (Body, Validation Plane)</u> Date of measurement: 26/2/2025

A. Experimental conditions.	
Probe	4024-EPGO-442
ConvF	2.74
Area Scan	dx=12mm dy=12mm, Complete
Zoom Scan	7x7x7,dx=5mm dy=5mm
	dz=5.0mm,Complete
Phantom	Validation plane
Device Position	Body
Band	ISM
Channels/Frequency	Middle (6)/ frequency 2437.000 Mhz
Signal	IEEE 802.11 b

B. Permitivity

Middle TX Frequency (MHz)	2437.000
Relative permitivity (real part)	38.25
Relative permitivity (imaginary part)	12.92
Conductivity (S/m)	1.75

C. SAR Surface and Volume



Maximum location: X=-12.00, Y=-15.00 ; SAR Peak: 0.52 W/kg

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.097
SAR 1g (W/Kg)	0.244
Variation (%)	2.03
Horizontal validation criteria: minimum	5.00
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	38.07
(%)	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.561	0.253	0.071	0.048	0.029	0.026	0.022

13. Appendix D. Calibration Certificate

Table of contents

E Field Probe - 4024-EPGO-442

2450 MHz Dipole - SN 03/15 DIP 2G450-352

5000-6000 MHz Dipole - SN 13/14 WGA 33

Certificate #4298.01 Page 49 of 77

Report No.: S24122706708001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-Field Probe Calibration Report

Ref: ACR.278.12.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: 4024-EPGO-442

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 10/04/2024

Accreditations #2-6789 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/10

Report No.: S24122706708001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Certificate #4298.01

Ref: ACR.278.12.24 BES.A

2	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	10/4/2024	B
Checked & approved by:	Pedro Ruiz	Technical Manager	10/4/2024	feduciping
Authorized by:	Pedro Ruiz	Laboratory Director	10/4/2024	nado por:
	*	**	Pedr	no RUIZ

- 29093B31C46F428...

	Customer Name
Distribution :	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
А	Cyrille ONNEE	10/4/2024	Initial release
<u>a</u>			

Page: 2/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vM This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.