KTL Test Report:	8R01001
Applicant:	Allen Telecom Group 140 Vista Centre Drive Forest, Virginia 24551
Equipment Under Test: (E.U.T.)	"Prism Plus Indoor" Repeater
FCC ID:	BCR-DBE60-ABE
In Accordance With:	FCC Part 22, Subpart H Cellular Band Repeaters
Tested By:	KTL Ottawa Inc. 3325 River Road, R.R. 5 Ottawa, Ontario K1V 1H2
Authorized By:	
	W. Waterhouse, RF Engineering Lab Manager
Date:	
Total Number of Pages:	92

Table of Contents

Section 1. Summary of Test Results

General Summary of Test Data

Section 2. General Equipment Specification

Specifications Description of Modifications for Class II Permissive Change Modifications Made During Testing Theory of Operation System Diagram

Section 3. RF Power Output

Test Results Measurement Data Power Over Bandwidth Graphs

Section 4. Occupied Bandwidth

Occupied Bandwidth (Voice + SAT) **Test Results** Test Data Voice + SAT Input and Ouput Graphs Occupied Bandwidth (WB Data) **Test Results** Test Data Wideband Data Input and Ouput Graphs Occupied Bandwidth (ST) **Test Results** Test Data ST Input and Ouput Graphs Occupied Bandwidth (Digital Mod.) Test Results Test Data Digital Mod. Input and Ouput Graphs

Section 5. Spurious Emissions at Antenna Terminals

Test Results Test Data Graphs

Table of Contents, continued

Section 6. Field Strength of Spurious

Test Results Test Data Test Data - Radiated Emissions - Uplink Test Data - Radiated Emissions - Downlink Photographs of Test Setup Pre-Scan Data

Section 7. Frequency Stability

Test Results Measurement Data Graphs

Section 8. Test Equipment List

Annex A - Test Methodologies

RF Power Output Occupied Bandwidth (Voice & SAT) Occupied Bandwidth (WB Data) Occupied Bandwidth (ST) Occupied Bandwidth (Digital Modulation) Spurious Emission at Antenna Terminals Field Strength of Spurious Radiation Frequency Stability

Annex B - Test Diagrams

R.F. Power Output Occupied Bandwidth Spurious Emissions at Antenna Terminals Field Strength of Spurious Radiation Frequency Stability

EQUIPMENT: "Prism Plus Indoor"	Repeater	
FCC ID: BCR-DBE60-ABE		

Section 1. Summary of Test Results

Manufacturer: Allen Telecom Group

Model No.: Prism Plus Indoor

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 22, Subpart H.

\boxtimes	New Submission		Production Unit
	Class II Permissive Change	\square	Pre-Production Unit

Equipment Code

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

NVLAD

NVLAP LAB CODE: 100351-0

ГЕSTED BY:	_ DATE:
Kevin Carr, Technologist	
FECHNICAL REVIEW:	DATE:
Tom Tidwell, Wireless Group Manager	

KTL Ottawa Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

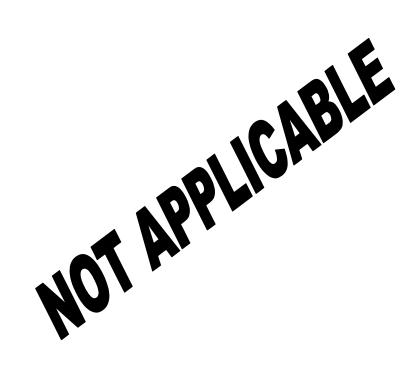
Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. KTL Ottawa Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report applies only to the items tested.

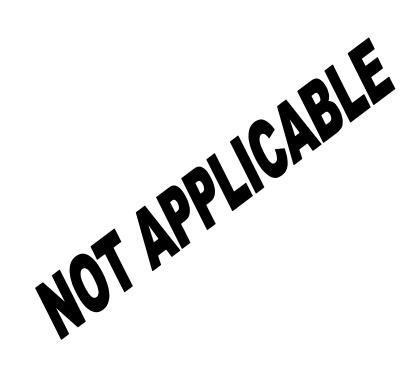
Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	MEAS.	RESULT
RF Power Output	22.913(a)	500W ERP	Plot	Complies
Occupied Bandwidth (Voice & SAT)	22.917(c)	Mark C	Plot	Complies
Occupies Bandwidth (Wideband Data)	22.917(d)	Mask D	Plot	Complies
Occupied Bandwidth (ST)	22.917(d)	Mask D	Plot	Complies
Occupied Bandwidth (Digital)	None	Input vs. Output	Plot	Complies
Spurious Emissions at Antenna Terminals	22.917	-13 dBm	Plot	Complies
Field Strength of Spurious Emissions	22.917	-13 dBm E.I.R.P.	Chart	Complies
Frequency Stability	22.355	1.5 ppm	N/A	N/A

Footnotes For N/A's:

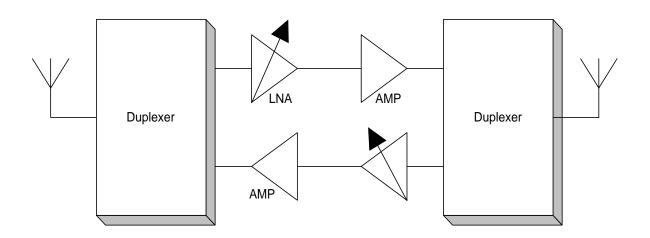

Test Conditions:

Temperature:23 °CHumidity:29%


Section 2. General Equipment Specification

Supply Voltage Input:		120 Vac, 60 Hz				
Frequency Range:	Downlink: CDMA:	869 - 894 MHz 869.73 - 893.28	MHz			
Frequency Range:	Uplink: CDMA:	824 – 849 MHz 824.73 – 848.28				
20 dB Bandwidth:	Uplink: Downlink	36.42 MHz 35.92 MHz				
Type of Modulation and Designator:				DMA DXW)	CDPD (F9W)	AMPS (F8W, F1D)
AGC Threshold:		Not Applicable				
Output Impedance:		50 ohm				
Gain:		60 dB Nominal				
Max Input Power:		30 dBm Nomina	al			
RF Output (Rated):	Single: Composite:	30 dBm Nomina 27 dBm per 2 C		ominal		
Frequency Translation:			F1-	·F1	F1-F2	N/A
Band Selection:			Soft	ware	Duplexer Change	Fullband Coverage

Description of Modifications For Class II Permissive Change


Modifications Made During Testing

Theory of Operation

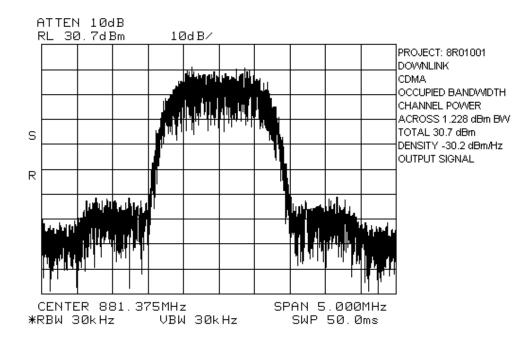
The Prism Plus is an RF booster that is used to extend cellular telephone and 800/900 MHz trunked / conversion coverage in weak signal areas a "dead spots". Prism Plus may be used to make coverage inside buildings more accessible to offices, police stations and emergency communications centers. Increasing cellular accessibility, the Prism Plus has a radius are of up to one mile.

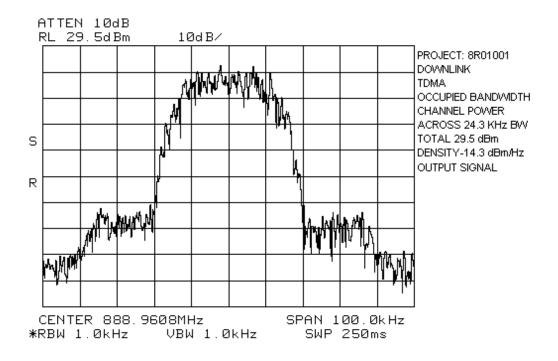
System Diagram

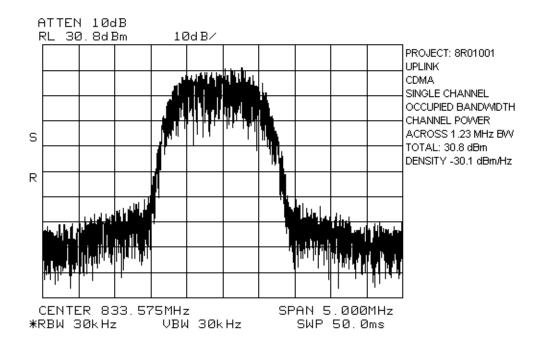
Section 3. RF Power Output

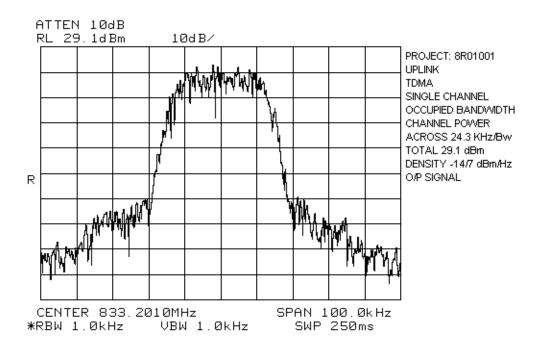
NAME OF TEST: RF Power Output

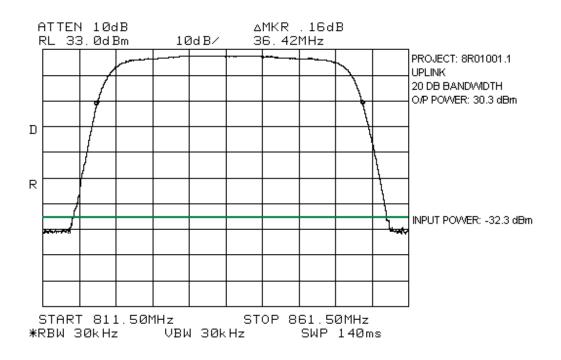
PARA. NO.: 2.985

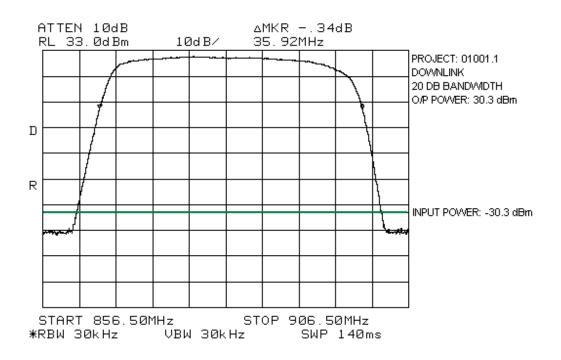

TESTED BY: Kevin Carr

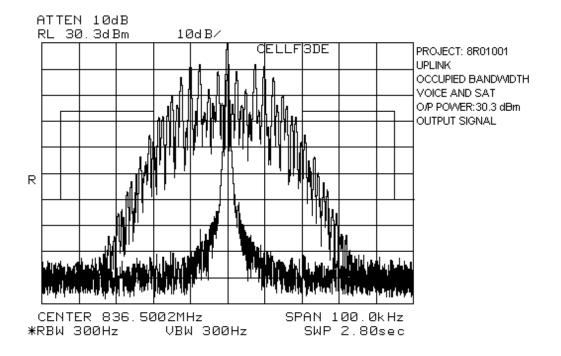

DATE: October 30, 1998

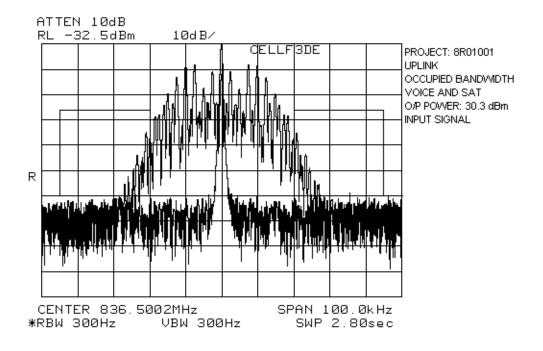

Test Results: Complies.

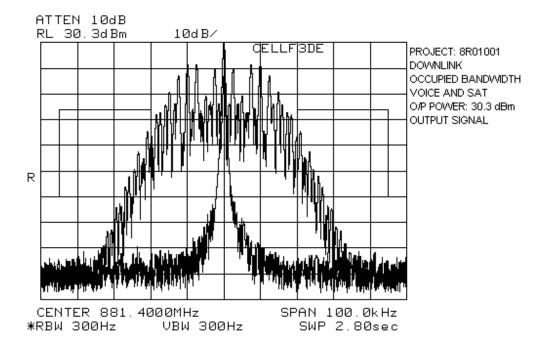

Measurement Data:

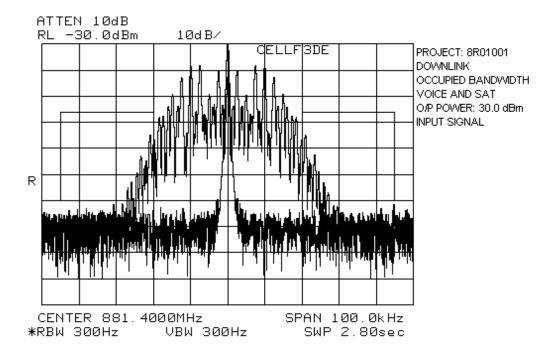

	Modulation Type	Per Channel Power Output (dBm)	Composite Power Output (dBm)
Uplink	AMPS	30.3	27.3 / 2 Channel
Downlink	AMPS	30.3	27.3 / 2 Channel
Uplink	CDMA	30.8	27.8 / 2 Channel
Downlink	CDMA	30.7	27.7 / 2 Channel
Uplink	TDMA	29.1	26.1 / 2 Channel
Downlink	TDMA	29.5	26.5 / 2 Channel



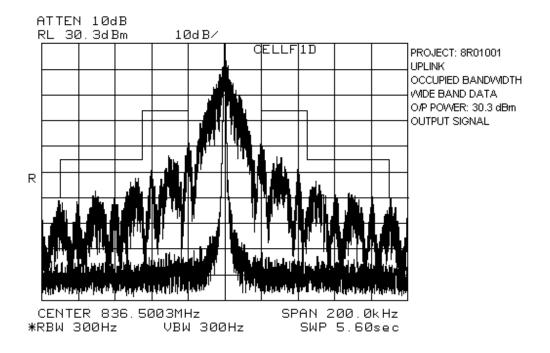

Section 4. Occupied Bandwidth

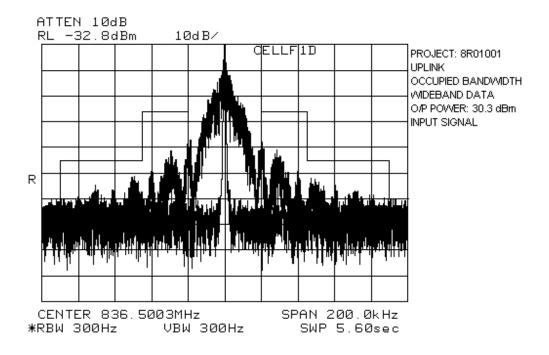

NAME OF TEST: Occupied Bandwidth (Voice + SAT)	PARA. NO.: 2.917(c)
TESTED BY: Kevin Carr	DATE: October 30, 1998

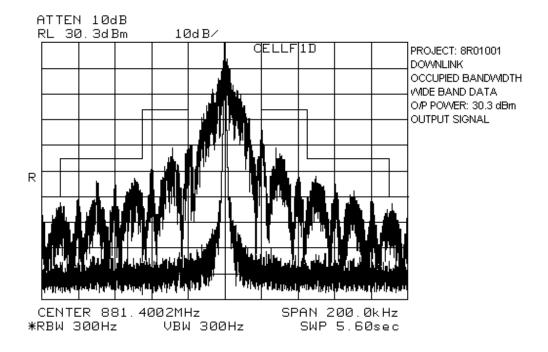

Test Results: Complies.

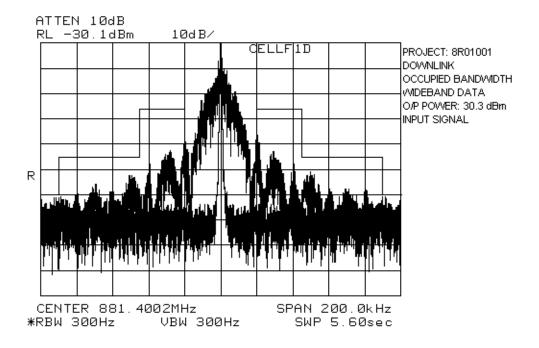

Test Data:

See attached graph(s).

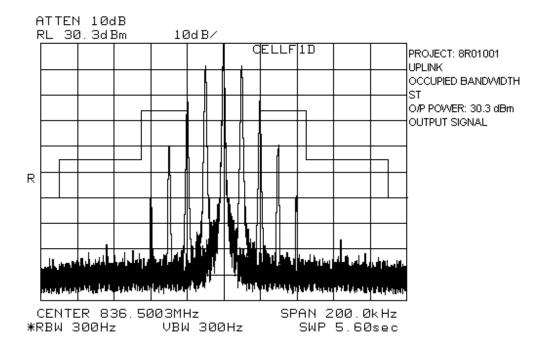


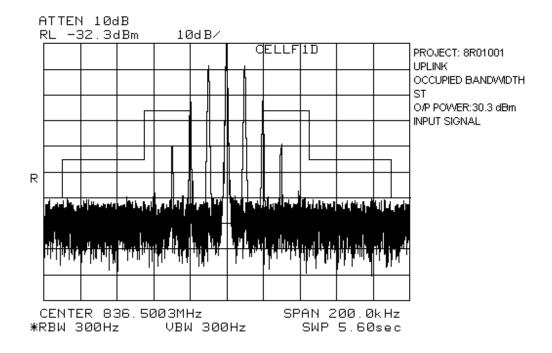

NAME OF TEST: Occupied Bandwidth (WB Data)	PARA. NO.: 2.917 (d)
TESTED BY: Kevin Carr	DATE: October 30, 1998

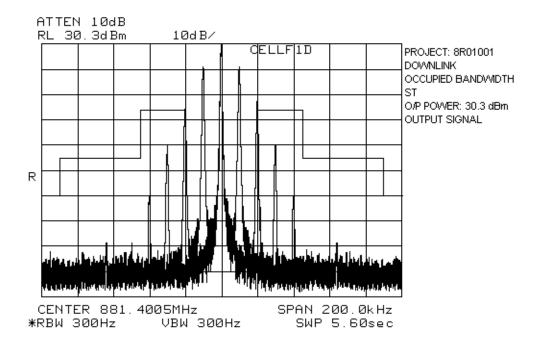

Test Results: Complies.

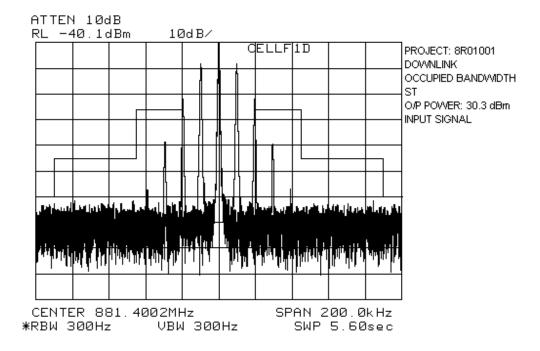

Test Data:

See attached graph(s).

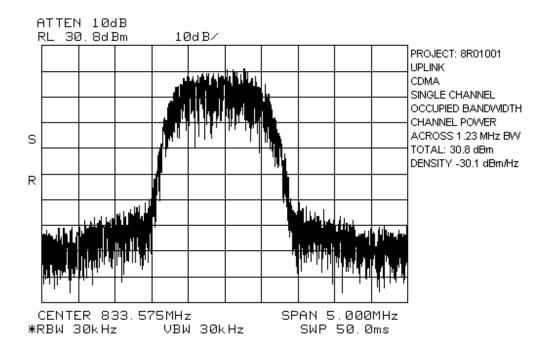


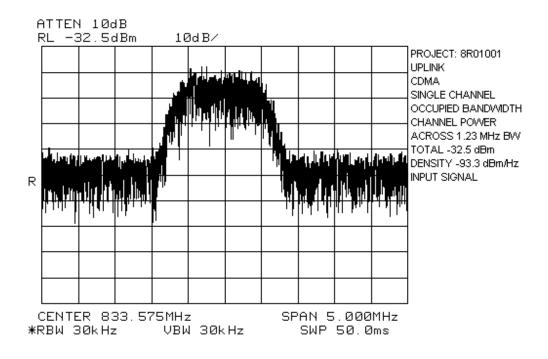

NAME OF TEST: Occupied H	Bandwidth (ST)	PARA. NO.: 2.917(d)
TESTED BY: Kevin Carr		DATE: October 30, 1998
Toat Dogultas		

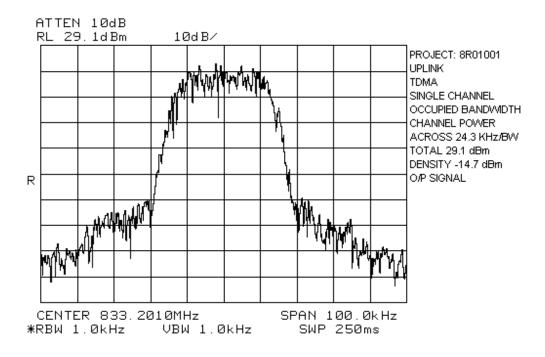

Test Results: Complies.

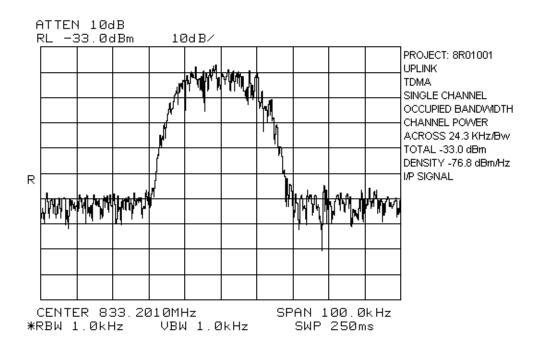

Test Data:

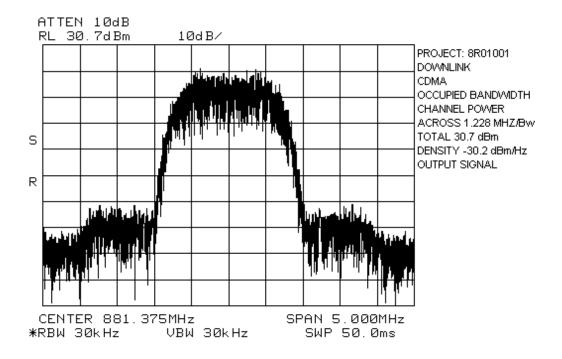
See attached graph(s).

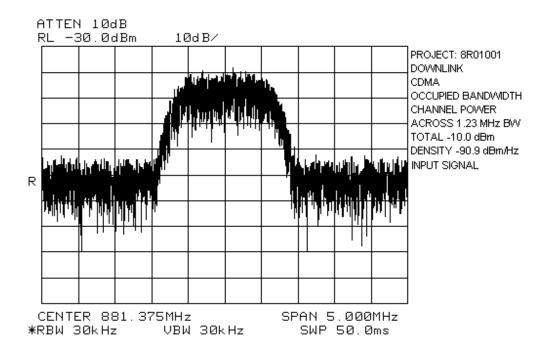


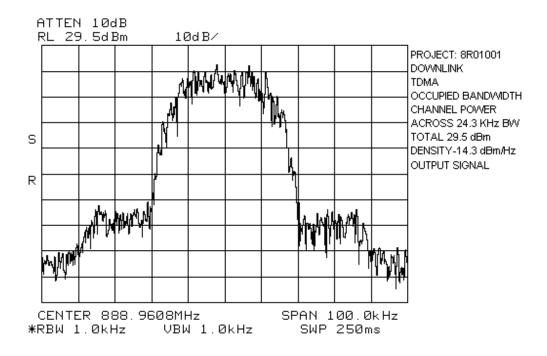

NAME OF TEST: Occupied Bandwidth (Digital Mod.)	PARA. NO.: 2.917(e)
TESTED BY: Kevin Carr	DATE: October 29, 1998

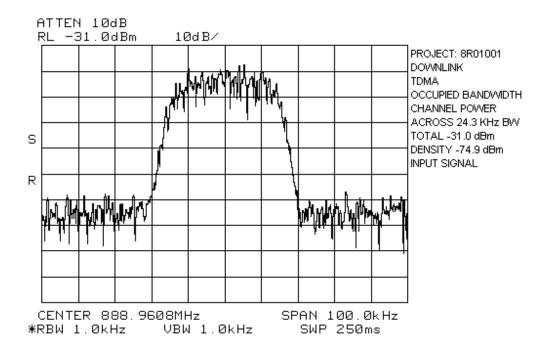

Test Results: Complies.


Test Data:


See attached graph(s).

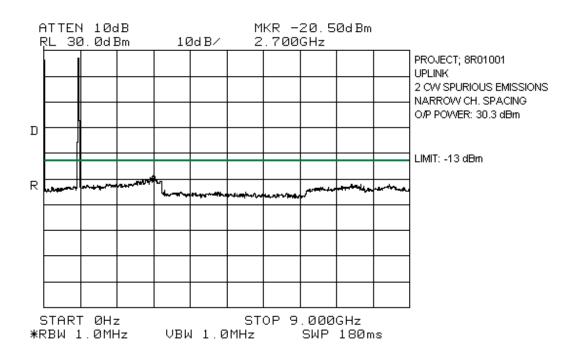


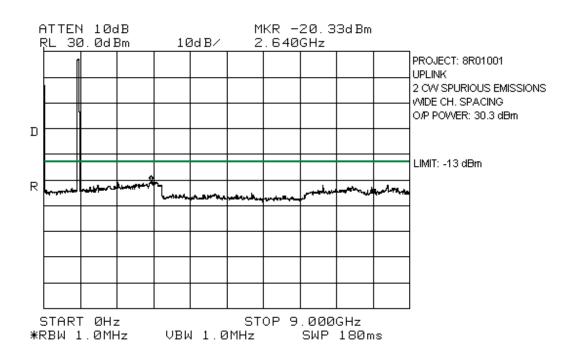


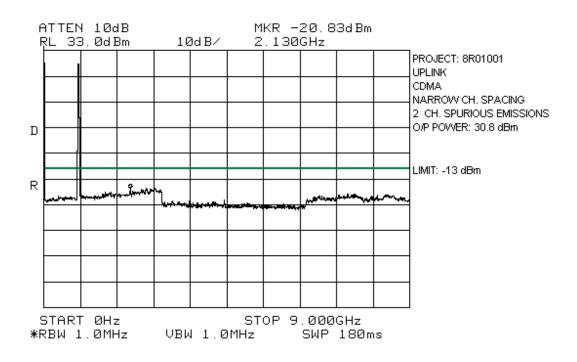


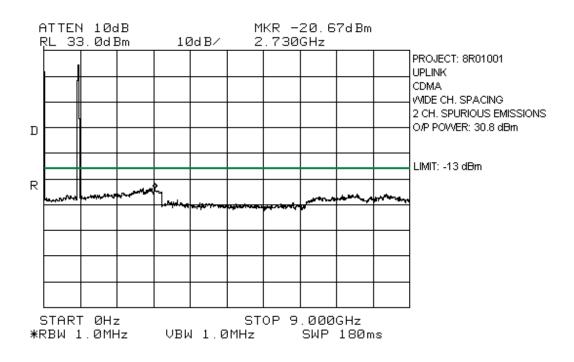
Section 5. Spurious Emissions at Antenna Terminals

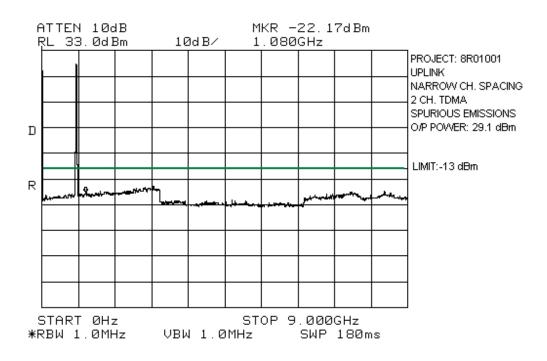
NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA. NO.: 2.917(e)

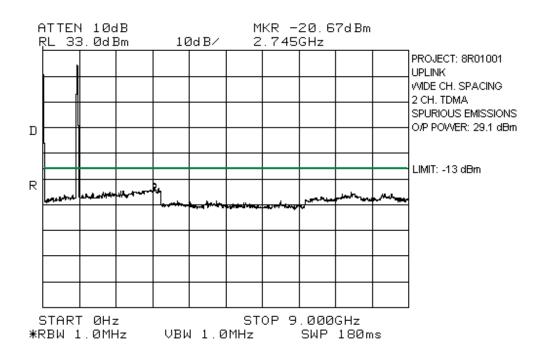

TESTED BY: Kevin Carr

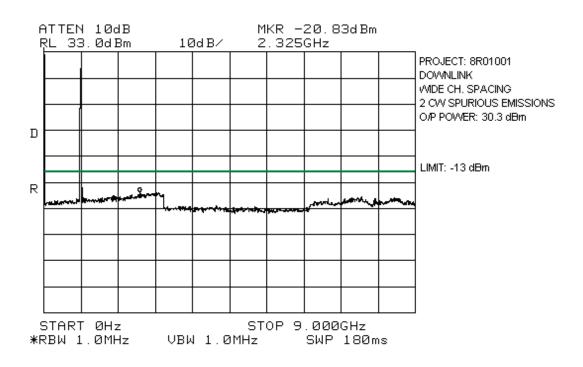

DATE: October 29, 1998

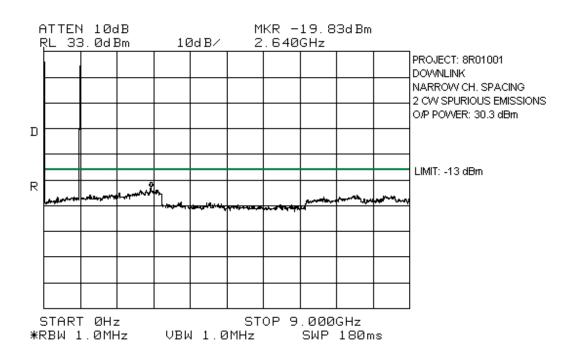

Test Results: Complies.

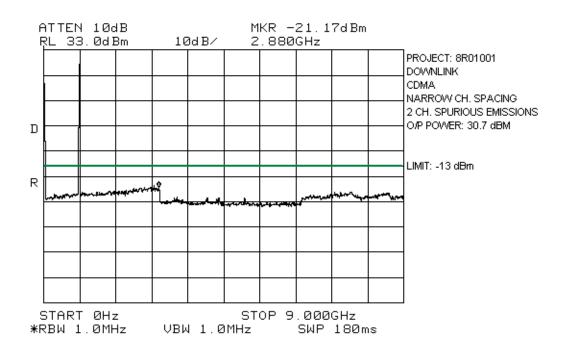

Test Data:

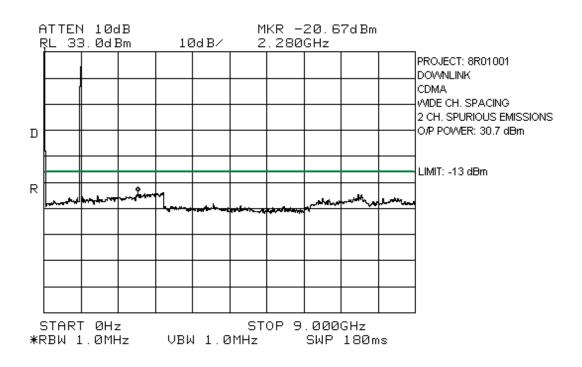

NAME OF TEST	WORST-CASE SPURIOUS LEVEL(dBm)
0 to 10 GHz spurious (Uplink)	-20.17
0 to 10 GHz spurious (Downlink)	-19.83
2 - signal intermodulation (Uplink)	-13.0
2 - signal intermodulation (Downlink)	-13.0
Lower band edge spurious (Uplink)	-18.30
Lower band edge spurious (Downlink)	-14.50
Upper band edge spurious (Uplink)	-13.17
Upper band edge spurious (Downlink)	-13.50

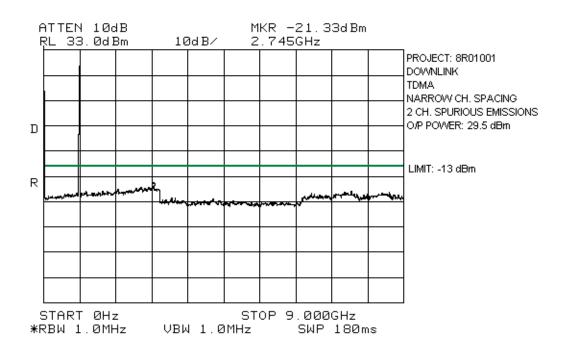


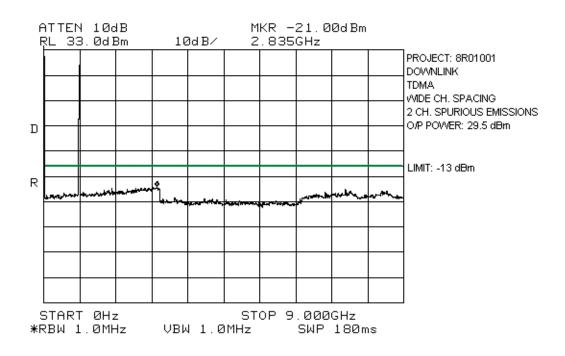


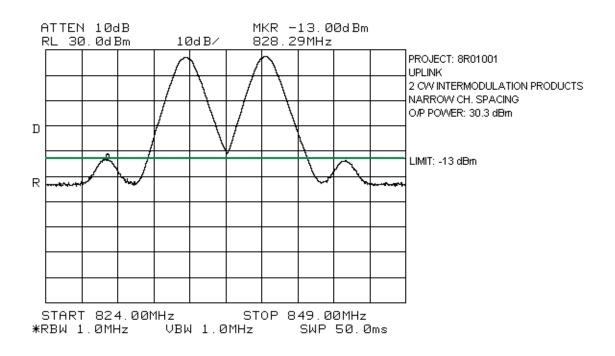


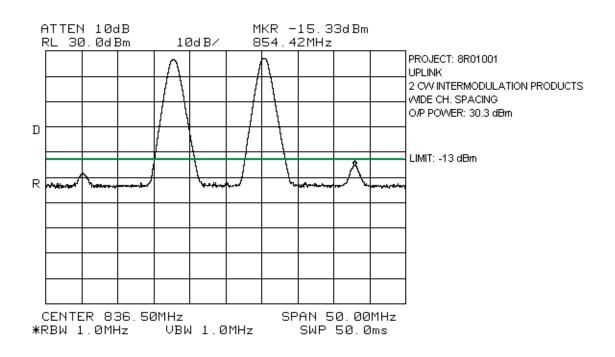


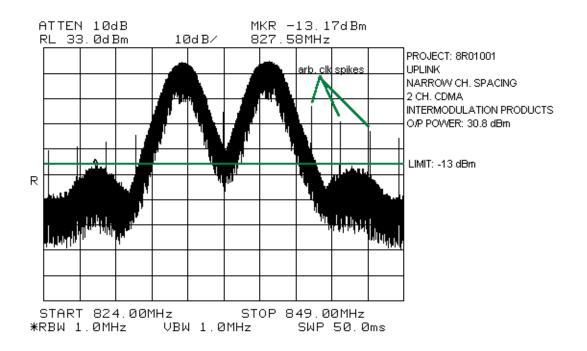


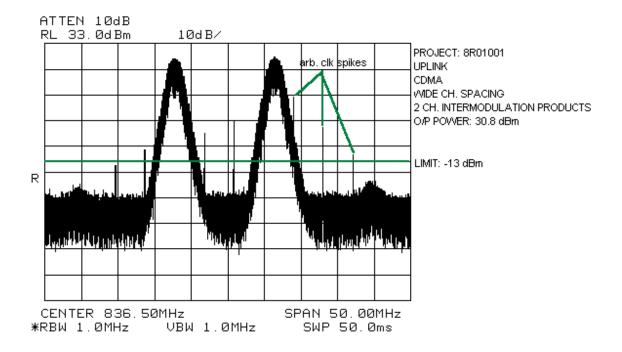


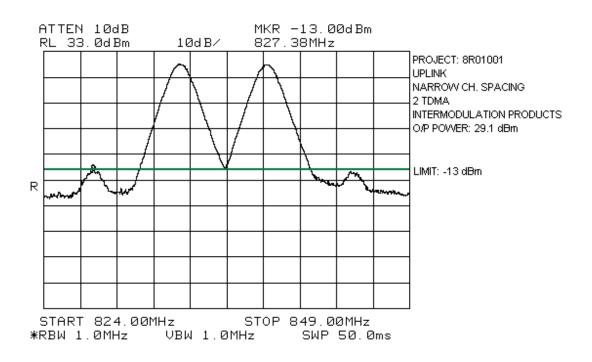


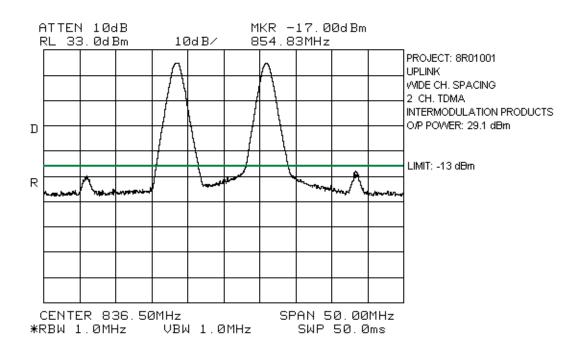


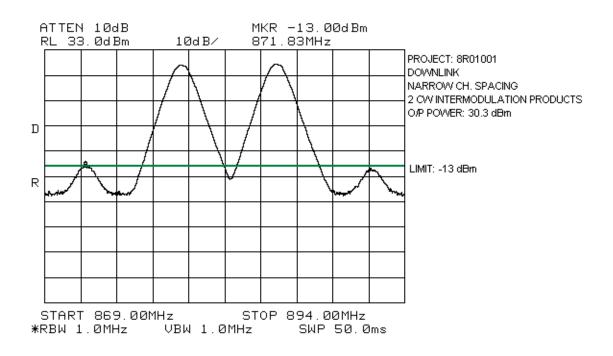


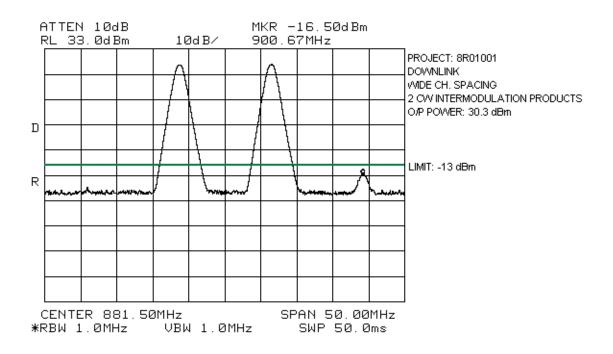


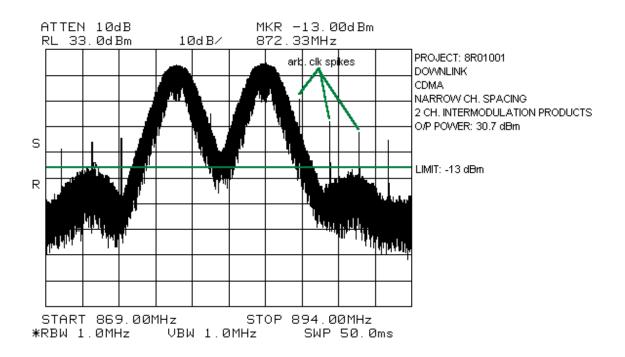


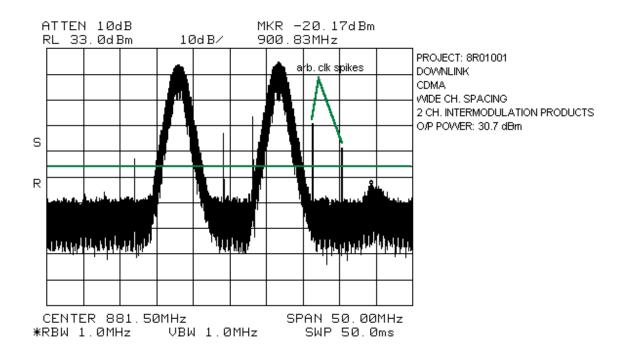


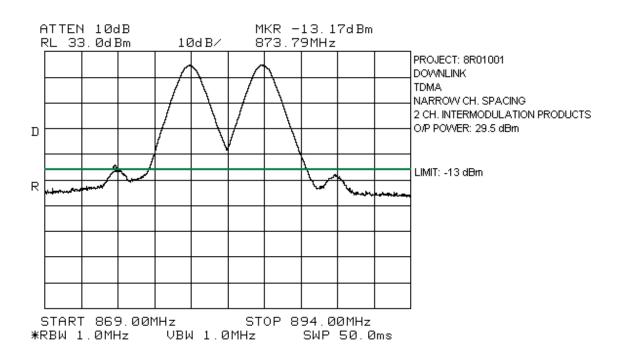


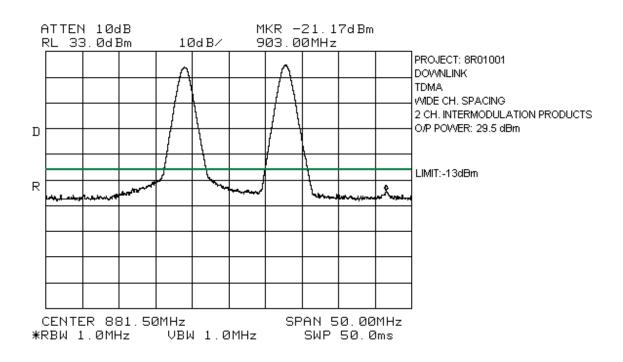


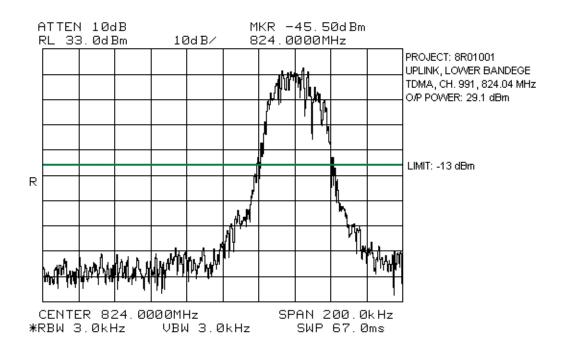


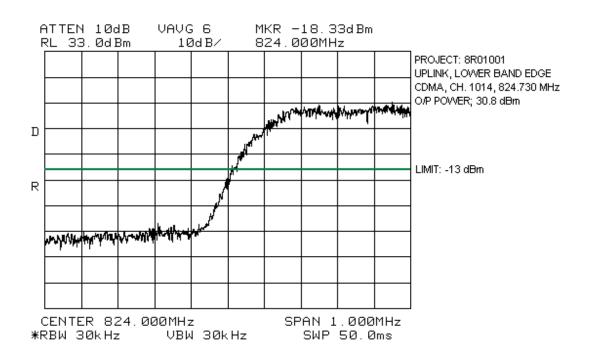


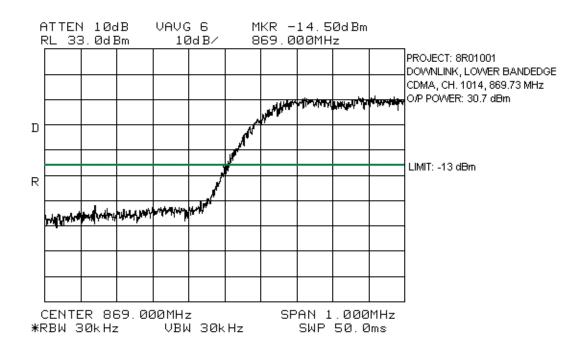


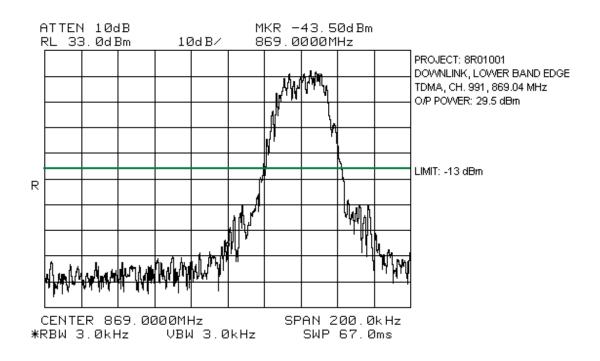


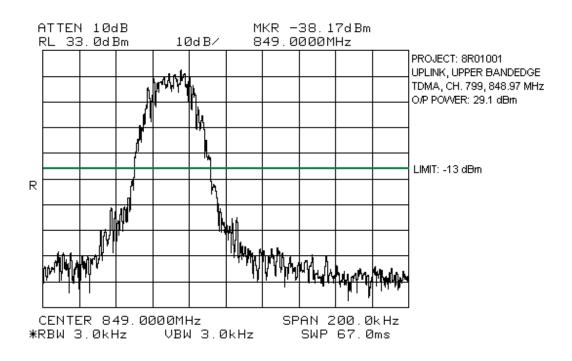


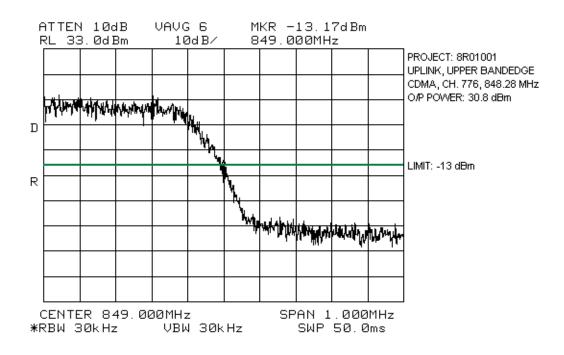


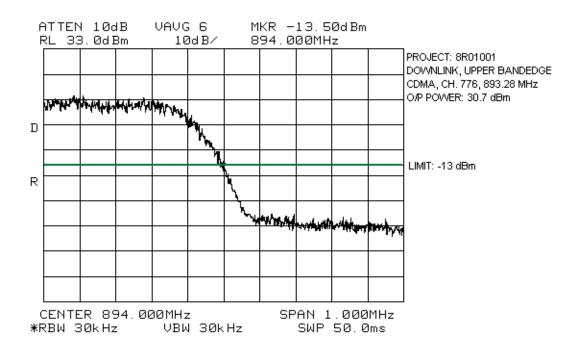












Section 6. Field Strength of Spurious

NAME OF TEST: Spurious Emissions @ Antenna TerminalsPARA. NO.: 2.917(e)TESTED BY: Kevin CarrDATE: November 2, 1998

Test Results:Complies.The maximum field strength is 2.6 dBµV/m @ 3m.

Test Data:

See attached tables.

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS PROJECT NO.: 8R01001

EQUIPMENT: "Prism Plus Indoor" Repeater FCC ID: BCR-DBE60-ABE

Test Distance (meters) : 3		Range: B Tower		Receiver: ESVP		RBW(1 MHz): 120		Detector: PEAK			
Freq. (MHz)	Ant. *	Pol. (V/H)	Ant. HGT. (m)	Table (deg.)	RCVD Signal (dBµV/m)	Ant. Factor (dB)**	Amp. Gain (dB)***	Dist. Corr. (dB)	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1672.0	Hrn2	V			45.0	31.6	-44.7		31.9	82.3	50.4
1672.0	Hrn2	Н			45.1	31.6	-44.7		32.0	82.3	50.3
2508.0	Hrn2	V			45.1	38.0	-46.4		36.7	82.3	45.6
2508.0	Hrn2	Н			45.5	38.0	-46.4		37.1	82.3	45.2
3344.0	Hrn2	V			42.7	41.5	-45.3		38.9	82.3	43.4
3344.0	Hrn2	Н			44.0	41.5	-45.3		40.2	82.3	42.1
4180.0	Hrn2	V			41.2	49.5	-45.2		45.5	82.3	36.8
4180.0	Hrn2	Н			41.0	49.5	-45.2		45.3	82.3	37.0
5016.0	Hrn2	V			39.8	46.9	-46.0		40.7	82.3	41.6
5016.0	Hrn2	Н			40.8	46.9	-46.0		41.7	82.3	40.6
5852.0	Hrn2	V			37.9	52.4	-45.3		45.0	82.3	37.3
5852.0	Hrn2	Н			37.4	52.4	-45.3		44.5	82.3	37.8
6688.0	Hrn2	V			37.2	55.5	-46.1		46.6	82.3	35.7
6688.0	Hrn2	Н			37.6	55.5	-46.1		47.0	82.3	35.3
7524.0	Hrn2	V			35.0	61.8	-45.6		51.2	82.3	31.1
7524.0	Hrn2	Н			35.1	61.8	-45.6		51.3	82.3	31.0
8360.0	Hrn2	V			45.3	68.0	-44.0		69.3	82.3	13.0
8360.0	Hrn2	Н			45.4	68.0	-44.0		69.4	82.3	12.9

Test Data - Radiated Emissions - Uplink

Notes:

The spectrum was search up to the 10^{th} harmonic of the fundamental frequency.

B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

* Includes cable loss when amplifier is not used.

** Includes cable loss.

() Denotes failing emission level.

FCC PART 22, SUBPART H CELLULAR BAND REPEATERS PROJECT NO.: 8R01001

EQUIPMENT: "Prism Plus Indoor" Repeater FCC ID: BCR-DBE60-ABE

Test Distance (meters) : 3		Range: B Tower		Receiver: ESVP		RBW(1 MHz): 120		Detector: PEAK			
(MHz)	s): 5 Ant. *	Pol. (V/H)	Ant. HGT. (m)	Table (deg.)	RCVD Signal (dBµV/m)	Ant. Factor (dB)**	Amp. Gain (dB)***	Dist. Corr. (dB)	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1760.0	Hrn2	V			34.5	32.1			66.6	82.3	15.7
1760.0	Hrn2	Н			35.5	32.1			67.6	82.3	14.7
2640.0	Hrn2	V			35.8	38.6			74.4	82.3	7.9
2640.0	Hrn2	Н			37.3	38.6			75.9	82.3	6.4
3520.0	Hrn2	V			31.5	42.6			74.1	82.3	8.2
3520.0	Hrn2	Н			32.0	42.6			74.6	82.3	7.7
4400.0	Hrn2	V			30.7	48.0			78.7	82.3	3.6
4400.0	Hrn2	Н			31.7	48.0			79.7	82.3	2.6
5280.0	Hrn2	V			38.3	48.6	-45.8		41.1	82.3	41.2
5280.0	Hrn2	Н			39.2	48.6	-45.8		42.0	82.3	40.3
6160.0	Hrn2	V			35.7	52.5	-45.1		43.1	82.3	39.2
6160.0	Hrn2	Н			36.2	52.5	-45.1		43.6	82.3	38.7
7040.0	Hrn2	V			35.2	58.8	-46.1		47.9	82.3	34.4
7040.0	Hrn2	Н			34.5	58.8	-46.1		47.2	82.3	35.1
7920.0	Hrn2	V			33.2	65.8	-45.6		53.4	82.3	28.9
7920.0	Hrn2	Н			33.3	65.8	-45.6		53.5	82.3	28.8
8800.0	Hrn2	V			33.3	73.9	-43.1		64.1	82.3	18.2
8800.0	Hrn2	Н			33.4	73.9	-43.1		64.2	82.3	18.1
Notes:											

Test Data - Radiated Emissions - Downlink

Notes:

The spectrum was search up to the 10^{th} harmonic of the fundamental frequency.

B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

* Includes cable loss when amplifier is not used.

** Includes cable loss.

() Denotes failing emission level.

Photographs of Test Setup

FRONT VIEW

REAR VIEW

Section 7. Frequency Stability

NAME OF TEST: Frequenc	PARA. NO.: 22.355	
TESTED BY:		DATE:
Test Results:	Complies/Does Not Comply.	BLE
Measurement Data:	Standard Test Frequency:	MHz Vdc
	NOT Ar .	

CAL	EQUIPMENT	MANUFACTURER	MODEL	SERIAL	LAST	NEXT	
CYCLE					CAL.	CAL.	
1 Year	Spectrum Analyzer	Hewlett Packard	8565E	FA000981	May 20/98	May 20/99	
1 Year	Radio Test Set	Rohde & Schwarz	CMS 52	840.0009.52	July 23/98	July 23/99	
	Power Supply	Astron	VS-50M	8405071	NCR	NCR	
1 Year	Attenuator	Narda	765-20	9510	July 24/98	July 24/99	
1 Year	Attenuator	Narda	768-10	9704	July 24/98	July 24/99	
1 Year	RF Millivoltmeter	Rohde & Schwarz	URV5	FA000420	July 23/98	July 23/99	
1 Year	Insertion Unit	Rohde & Schwarz	URV5-Z4	FA000905	July 23/98	July 23/99	
1 Year	Receiver	Rohde & Schwarz	ESVS-30	843710/002	Oct. 27/98	Oct. 27/99	
2 Year	Horn Antenna	EMCO #2	3115	4336	Oct. 30/97	Oct. 30/99	
1 Year	Log Periodic Antenna	EMCO	LPA-25	1141	July 27/98	July 27/99	
	50 Ω Termination	Wiltron	26N50	605248	N/A	N/A	
	50 ohm Combiner Pad	Mini Circuits	ZA3PD-4	9740	Dec. 12/97	Dec. 12/98	
1 Year	Signal Generator	Rohde & Schwarz	SM1Q03	1084-8004-03	July 23/98	July 23/99	
1 Year	Arbitrary Waveform Gen.	Sony/Tektronix	AWG2021	J310495	NCR	NCR	
3 Year	RF Generator	Rohde & Schwarz	SME3	DE14439	June 29/96	June 29/99	

Section 8. Test Equipment List

NA: Not Applicable NCR: No Cal Required

ANNEX A

TEST METHODOLOGIES

NAME OF TEST: RF Power Output PARA. NO.: 2.985

Minimum Standard: Para. No. 2

Para. No. 22.913(a). The maximum effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 watts.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter. Power output is measured with the maximum rated input level.

Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation GP/4 π R² = E²/120 π and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

NAME OF TEST: Occupied Bandwidth (Voice & SAT) PARA. NO.: 2.989

- Minimum Standard:22.917(c) The mean power of any emission removed from the
carrier frequency by a displacement frequency (fd in kHz) must be
attenuated below the mean power of the unmodulated carrier (P) as
follows:
- (i) On any frequency removed from the carrier frequency by more than 12 kHz but not more than 20 kHz:

at least 117 log ($f_d/12$)

(ii) On any frequency removed from the carrier frequency by more than 20 kHz, up to the first multiple of the carrier frequency:

at least 100 log ($f_d/11$) dB or 43 + 10 log (P) dB, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings:

RBW: 300 Hz VBW: ≥ RBW Span: 100 kHz Sweep: Auto Mask: CELLF3E

Input Signal Characteristics (F3E/F3D):

RF level: Maximum recommended by manufacturer AF1 frequency: 6 kHz AF1 level: sufficient to produce 2 kHz deviation AF2 frequency: 2.5 kHz AF2 level: sufficient to produce 12 kHz deviation.

NAME OF TEST: Occupied Bandwidth (WB Data) PARA. NO.: 2.989

- Minimum Standard:22.917(c) The mean power of any emission removed from the
carrier frequency by a displacement frequency (f_d in kHz) must be
attenuated below the mean power of the unmodulated carrier (P) as
follows:
- (1) On any frequency removed from the carrier frequency by more than 20 kHz but not more than 45 kHz:

at least 26 dB

(2) On any frequency removed from the carrier frequency by more than 45 kHz but not more than 90 kHz:

at least 45 dB

(3) On any frequency removed from the carrier frequency by more than 90 kHz, up to the first multiple of the carrier frequency:

at least 60 dB or $43 + 10 \log (P) dB$, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings: RBW: 300 Hz VBW: ≥ RBW Span: 200 kHz Sweep: Auto Mask: CELLF1D

Input Signal Characteristics: RF level: Maximum recommended by manufacturer AF1 frequency: 10 kHz, random bit sequence AF1 level: sufficient to produce 8 kHz deviation

NAME OF TEST: Occupied Bandwidth (ST) PARA. NO.: 2.989

- Minimum Standard:22.917(c) The mean power of any emission removed from the
carrier frequency by a displacement frequency (f_d in kHz) must be
attenuated below the mean power of the unmodulated carrier (P) as
follows:
- (1) On any frequency removed from the carrier frequency by more than 20 kHz but not more than 45 kHz:

at least 26 dB

(2) On any frequency removed from the carrier frequency by more than 45 kHz but not more than 90 kHz:

at least 45 dB

(3) On any frequency removed from the carrier frequency by more than 90 kHz, up to the first multiple of the carrier frequency:

at least 60 dB or $43 + 10 \log (P) dB$, whichever is the lesser attenuation.

Method Of Measurement:

Spectrum Analyzer Settings: RBW: 300 Hz VBW: ≥ RBW Span: 200 kHz Sweep: Auto Mask: CELLF1D

Input Signal Characteristics: RF level: Maximum recommended by manufacturer AF1 frequency: 10 kHz tone AF1 level: sufficient to produce 8 kHz deviation

NAME OF TEST: Occupied Bandwidth (Digital Modulation) PARA. NO.: 2.989

Minimum Standard: Not defined by FCC. Input vs. Output.

Method Of Measurement:

Spectrum Analyzer Settings: RBW: CDMA (30 kHz), GSM (30 kHz), NADC (1 kHz) and CDPD (1 kHz) VBW: \geq RBW Span: As required Sweep: Auto Mask:

Input Signal Characteristics: RF level: Maximum recommended by manufacturer

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 2.991

Minimum Standard: Para. No. 22.917(e). The mean power of emissions must be attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least 43 + 10 log P. This is equivalent to -13 dBm absolute power.

Method Of Measurement:

<u>Spectrum Analyzer Settings:</u> RBW: 30 kHz (AMPS). As required for digital modulations. VBW: ≥ RBW Start Frequency: 0 MHz Stop Frequency: 10 GHz Sweep: Auto

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.993

Minimum Standard: Para. No. 22.917(e). The mean power of emissions must be attenuated below the mean power of the unmodulated carrier on any frequency twice or more than twice the fundamental emission by at least 43 + 10 log P. This is equivalent to -13 dBm absolute power.

Calculation Of Field Strength Limit:

An example of attenuation requirement of 43 + 10 Log P is equivalent to $-13 \text{ dBm} (5 \times 10^{-5} \text{ Watts})$ at the antenna terminal. We determine the field strength limit by using the plane wave relation.

 $GP/4\pi R^2 = E^2/120\pi$

For emissions ≤ 1 GHz:

G = 1.64 (Dipole Gain) $P = 10^{-5}$ Watts (Maximum spurious output power) R = 3m (Measurement Distance)

$$E = \frac{\sqrt{30GP}}{R}$$

$$E = \frac{\sqrt{30 \times 1.64 \times 5 \times 10^{-5}}}{3} = 0.016533 \text{ V} / \text{m} = 84.4 \text{ dB}\mu\text{V} / \text{m}$$

For emissions > 1 GHz:

G = 1 (Isotropic Gain) $P = 1 \ge 10^{-5}$ Watts (Maximum spurious output power) R = 3m (Measurement Distance)

 $E = 84.4 - 20 Log \sqrt{1.64} = 82.3 dB \mu V / m@3m$ The spectrum is searched to 10 GHz.

NAME OF TEST: Frequency Stability PARA. NO.: 2.995

Minimum Standard:

Para. No. 22.355. The transmitter carrier frequency shall remain within the tolerances given in Table C-1.

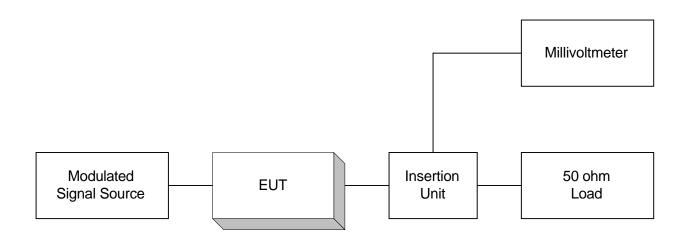
Freq. Range (MHz)	Base, fixed	Mobile > 3 W	Mobile ≤ 3 W				
821 to 896	1.5	2.5	2.5				

Table C-1

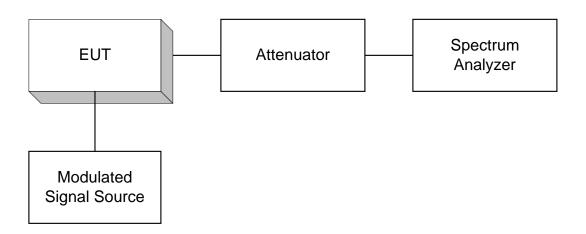
Method Of Measurement:

Frequency Stability With Voltage Variation:

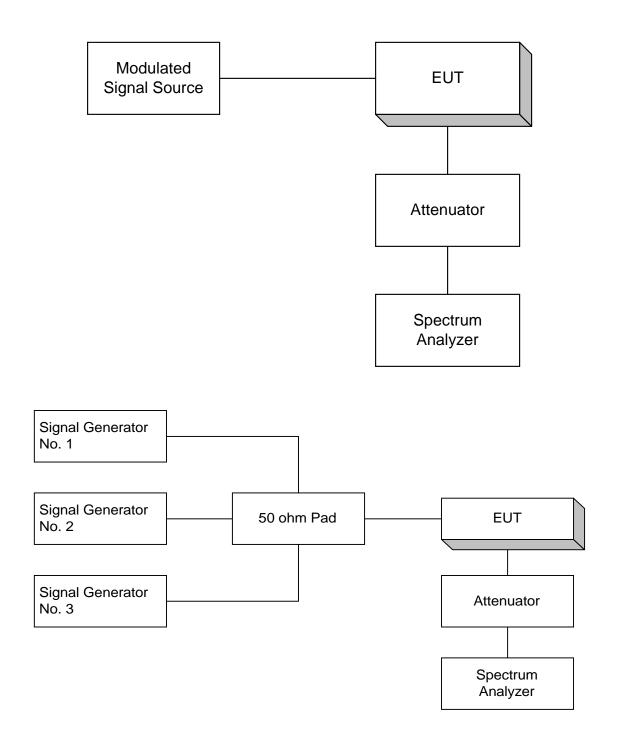
The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10 MHz ref, in of the signal generator. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.


Frequency Stability With Temperature Variation:

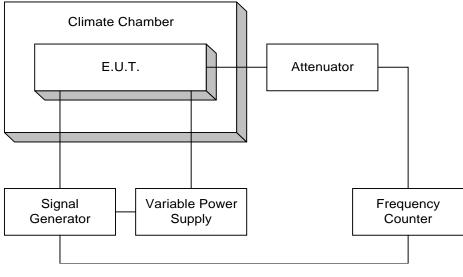
The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.


ANNEX B

TEST DIAGRAMS


Para. No. 2.985 - R.F. Power Output

Para. No. 2.989 - Occupied Bandwidth


Para. No. 2.991 Spurious Emissions at Antenna Terminals

Para. No. 2.993 - Field Strength of Spurious Radiation

Para. No. 2.995 - Frequency Stability

