Project No.: ZHT-230608031E Page 1 of 28 # **FCC TEST REPORT** FCC ID: 2AWDBHCS021FRF Report Number...... ZHT-230608031E Date of Test.......Jun. 08, 2023 to Jul. 03, 2023 Total number of pages...... 28 Test Result: PASS Testing Laboratory.....: Guangdong Zhonghan Testing Technology Co., Ltd. Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Applicant's name: FUJIAN BALDR TECHNOLOGY CO., LTD Address 2F Jin Shan Ya Yuan, No. 36 Jin Rong North Road Fuzhou, China Manufacturer's name FUJIAN BALDR TECHNOLOGY CO., LTD Address: 2F Jin Shan Ya Yuan, No. 36 Jin Rong North Road Fuzhou, China Test specification: FCC CFR Title 47 Part 15 Subpart C Section 15.231 Standard....:: ANSI C63.10:2013 Test procedure....:: / Non-standard test method: N/A This device described above has been tested by ZHT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of ZHT, this document may be altered or revised by ZHT, personal only, and shall be noted in the revision of the document. Product name.....: Sensor, Pool thermometer Trademark: N/A Model/Type reference.....: HCS021FRF HCS014ARF, TCS024B, HCS528ARF, HCS015T2H, HCS530THO, HTV115FRF, ICS005FRF, ICS005ARF, TCS014B Ratings.....: Input: DC 1.5 V*3 AA by battery Project No.: ZHT-230608031E Page 2 of 28 Testing procedure and testing location: Testing Laboratory.....: Guangdong Zhonghan Testing Technology Co., Ltd. Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Leon Li Tested by (name + signature).....: Leon Li Baxt. Wu Reviewer (name + signature).....: Baret Wu Approved (name + signature)....: ### **Table of Contents** Page | 1. VERSION | 5 | |---|----| | 2. SUMMARY OF TEST RESULTS | 6 | | 2.1 TEST FACILITY | | | 2.2 MEASUREMENT UNCERTAINTY | 7 | | 3. GENERAL INFORMATION | 8 | | 3.1 GENERAL DESCRIPTION OF EUT | | | 3.2 DESCRIPTION OF TEST MODES | 9 | | 3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | g | | 3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) | g | | 3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS | 10 | | 4. EMC EMISSION TEST | 12 | | 4.1 CONDUCTED EMISSION MEASUREMENT | | | 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS | | | 4.1.2 TEST PROCEDURE | | | 4.1.4 TEST SETUP | 13 | | 4.1.5 EUT OPERATING CONDITIONS | | | 4.1.6 TEST RESULTS | | | 4.2 RADIATED EMISSION MEASUREMENT | | | 4.2.2 TEST PROCEDURE | | | 4.2.3 TEST SETUP | | | 4.2.4 EUT OPERATING CONDITIONS | | | | | | 5. BANDWIDTH TEST | | | 5.2 TEST PROCEDURE | | | 5.3 DEVIATION FROM STANDARD | | | 5.4 TEST SETUP
5.5 EUT OPERATION CONDITIONS | 22 | | 5.6 TEST RESULTS | | | 6. CALCULATION OF AVERAGE FACTOR | | | 7. DWELL TIME | 25 | | 7.1 APPLICABLE STANDARD | | | 7.2 TEST PROCEDURE | | | 7.3 DEVIATION FROM STANDARD | | Project No.: ZHT-230608031E Page 4 of 28 | | | Table | of Contents | | Page | |--------|------------|-------|-------------|-----|----------| | 7 47 | FEOT OFTUD | | | | 05 | | | FEST SETUP | | | | 25
25 | | | | | | | 26 | | | ENNA REQU | | | | 27 | | | T SETUP PH | | | | 28 | | | T CONSTRU | | | | | | 10. 20 | T CONCINC | | 7,1120 | 9.2 | Project No.: ZHT-230608031E Page 5 of 28 # 1. VERSION | Report No. | Version | Description | Approved | |----------------|---------|-------------------------|---------------| | ZHT-230608031E | Rev.01 | Initial issue of report | Jul. 03, 2023 | | | | | | | 15 | 110 | 15 | 110 | | (B) | (B) | L | (B) | (D) | | |-----|----------------|---|-----|----------------|--| Project No.: ZHT-230608031E Page 6 of 28 ## 2. SUMMARY OF TEST RESULTS Test procedures according to the technical standards: | FCC Part15 (15.231) , Subpart C | | | | | | |---------------------------------|---|----------|--------|--|--| | Standard
Section | Test Item | Judgment | Remark | | | | 15.207 | Conducted Emission | N/A | | | | | 15.209,15.231b | Fundamental &Radiated Spurious Emission Measurement | PASS | | | | | 15.231c | Occupy Bandwidth | PASS | | | | | 15.231a | Dwell time | PASS | | | | | 15.203 | Antenna Requirement | PASS | | | | NOTE: (1)" N/A" denotes test is not applicable in this Test Report Project No.: ZHT-230608031E Page 7 of 28 #### 2.1 TEST FACILITY Guangdong Zhonghan Testing Technology Co., Ltd. Add.: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China FCC Registration Number:255941 **Designation Number: CN0325** IC Registered No.: 29832 CAB identifier: CN0143 The reported uncertainty of measurement $y \pm U$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 · providing a level of confidence of approximately 95 %。 | No. | Item | Uncertainty | |-----|----------------------------------|-------------| | 1 | Conducted Emission Test | ±1.38dB | | 2 | RF power conducted | ±0.16dB | | 3 | Spurious emissions conducted | ±0.21dB | | 4 | All emissions radiated(9k-30MHz) | ±4.68dB | | 5 | All emissions radiated(<1G) | ±4.68dB | | 6 | All emissions radiated(>1G) | ±4.89dB | | 7 | Temperature | ±0.5°C | | 8 | Humidity | ±2% | | 9 | Occupied Bandwidth | ±4.96dB | Page 8 of 28 ### 3. GENERAL INFORMATION # 3.1 GENERAL DESCRIPTION OF EUT | Equipment | Sensor, Pool thermometer | |----------------------|---| | Trade Name | N/A | | Model Name | HCS021FRF HCS014ARF, TCS024B, HCS528ARF, HCS015T2H, HCS530THO, HTV115FRF, ICS005FRF, ICS005ARF, TCS014B | | Model Difference | All the model are of the same circuit and RF module, and the only difference is the model name. The model HCS021FRF is the tested sample. | | Hardware version | V1.0 | | Software version | V1.0 | | Operation Frequency: | 433.15MHz | | Modulation Type: | ASK | | Antenna Type: | Spring Antenna | | Antenna Gain: | 2.15dBi | | Ratings | Input: DC 1.5 V*3 AA by battery | Project No.: ZHT-230608031E Page 9 of 28 #### 3.2 DESCRIPTION OF TEST MODES | For All Emission | | | | | |-------------------|--|--|--|--| | Final Test Mode | Description | | | | | Transmitting mode | Keep the EUT in continuously transmitting mode | | | | (1) Fully-charged battery is used during the test ### 3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED **RE Spurious emissions** E-1 **EUT** #### 3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | Item | Equipment | Mfr/Brand | Model/Type No. | Series No. | Note | |------|-----------|-----------|----------------|------------|------| | E-1 | Sensor | N/A | HCS021FRF | N/A | EUT | | | | 20 | 3.4 | | | | Item | Shielded Type | Ferrite Core | Length | Note | |------|---------------|--------------|--------|------| | | | | | | #### Note: - The support equipment was authorized by Declaration of Confirmation. (1) - (2)For detachable type I/O cable should be specified the length in cm in FLength a column. - "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core". (3) Project No.: ZHT-230608031E Page 10 of 28 # 3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS # Radiation Test equipment | Item | Equipment | Manufacturer | Model | Last Cal. | Next Cal. | |------|--|--------------|----------------------|---------------|---------------| | 1 | Receiver | R&S | ESCI | Mar 12, 2023 | Mar 11, 2024 | | 2 | Loop antenna | EMCI | LAP600 | Mar 12, 2023 | Mar 11, 2024 | | 3 | Amplifier | Schwarzbeck | BBV 9743 B | Mar 12, 2023 | Mar 11, 2024 | | 4 | Amplifier | Schwarzbeck | BBV 9718 B | Mar 12, 2023 | Mar 11, 2024 | | 5 | Bilog Antenna | Schwarzbeck | VULB9162 | Mar 17, 2023 | Mar 16, 2024 | | 6 | Horn Antenna | Schwarzbeck | BBHA9120D | Mar 17, 2023 | Mar 16, 2024 | | 7 | Horn Antenna | A.H.SYSTEMS | SAS574 | Mar 12, 2023 | Mar 11, 2024 | | 8 | Amplifier | AEROFLEX | 100KHz-40GHz | Mar 12, 2023 | Mar 11, 2024 | | 9 | Spectrum
Analyzer | R&S | FSV40 | Mar 12, 2023 | Mar 11, 2024 | | 10 | CDNE | Schwarzbeck | CDNE M2 +
CDNE M3 | Aug. 09, 2022 | Aug. 08, 2023 | | 11 | 966 Anechoic
Chamber | EMToni | 9m6m6m | Nov. 25, 2021 | Nov. 24, 2024 | | 12 | Spectrum
Analyzer | KEYSIGHT | N9020A | Mar 12, 2023 | Mar 11, 2024 | | 13 | WIDBAND
RADIO
COMMUNICATI
ON TESTER | R&S | CMW500 | Mar 12, 2023 | Mar 11, 2024 | | 14 | Single
Generator | Agilent | N5182A | Mar 12, 2023 | Mar 11, 2024 | | 15 | Power Sensor | MWRFtest | MW100-RFCB | Mar 12, 2023 | Mar 11, 2024 | | 16 | Audio analyzer | R&S | UPL | Mar 12, 2023 | Mar 11, 2024 | | 17 | Single
Generator | R&S | SMB100A | Mar 12, 2023 | Mar 11, 2024 | | 18 | Power Amplifier
Shielding Room | EMToni | 2m3m3m | Nov. 25, 2021 | Nov. 24, 2024 | Project No.: ZHT-230608031E Page 11 of 28 # **Conduction Test equipment** | | 41.71 | | | | |------------------------------|--------------|------------|---------------|---------------| | Equipment | Manufacturer | Model | Last Cal. | Next Cal. | | Receiver | R&S | ESCI | Mar 12, 2023 | Mar 11, 2024 | | LISN | R&S | ENV216 | Mar 12, 2023 | Mar 11, 2024 | | ISN CAT 6 | Schwarzbeck | NTFM 8158 | Mar 12, 2023 | Mar 11, 2024 | | ISN CAT 5 | Schwarzbeck | CAT5 8158 | Mar 12, 2023 | Mar 11, 2024 | | Capacitive Voltage
Probe | Schwarzbeck | CVP 9222 C | Mar 12, 2023 | Mar 11, 2024 | | Current
Transformer Clamp | Schwarzbeck | SW 9605 | Mar 12, 2023 | Mar 11, 2024 | | CE Shielding
Room | EMToni | 9m4m3m | Nov. 25, 2021 | Nov. 24, 2024 | Page 12 of 28 #### 4. EMC EMISSION TEST # 4.1 CONDUCTED EMISSION MEASUREMENT | Test Requirement: | FCC Part15 C Section 15.207 | |-----------------------|--------------------------------------| | Test Method: | ANSI C63.10:2013 | | Test Frequency Range: | 150KHz to 30MHz | | Receiver setup: | RBW=9KHz, VBW=30KHz, Sweep time=auto | #### 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz) | requeries runge reeru iz eeim iz) | | | | | | |-----------------------------------|------------|-----------|-----------|--|--| | FREQUNCY (MHz) | Limit (| Standard | | | | | FREQUINCT (IVIIIZ) | Quasi-peak | Average | Stariuaru | | | | 0.15 -0.5 | 66 - 56 * | 56 - 46 * | FCC | | | | 0.50 -5.0 | 56.00 | 46.00 | FCC | | | | 5.0 -30.0 | 60.00 | 50.00 | FCC | | | #### Note: - (1) The tighter limit applies at the band edges. - (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range. The following table is the setting of the receiver | Receiver Parameters | Setting | |---------------------|----------| | Attenuation | 10 dB | | Start Frequency | 0.15 MHz | | Stop Frequency | 30 MHz | | IF Bandwidth | 9 kHz | Page 13 of 28 #### 4.1.2 TEST PROCEDURE - a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument. - b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long. - c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m. - d. LISN at least 80 cm from nearest part of EUT chassis. - e. For the actual test configuration, please refer to the related Item -EUT Test Photos. #### 4.1.3 DEVIATION FROM TEST STANDARD No deviation #### 4.1.4 TEST SETUP #### 4.1.5 EUT OPERATING CONDITIONS The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data. #### 4.1.6 TEST RESULTS The EUT is powered by the Dry battery power supply, the test item is not applicable. Project No.: ZHT-230608031E Page 14 of 28 #### 4.2 RADIATED EMISSION MEASUREMENT | Test Requirement: | FCC Part15 C Section 15.209 | | | | | |-----------------------|-----------------------------|------------|--------|--------|------------| | Test Method: | ANSI C63.10:2013 | | | | | | Test Frequency Range: | 9kHz to 25GHz | | | | | | Test site: | Measurement Dista | nce: 3m | 1 | | 15 | | Receiver setup: | Frequency | Detector | RBW | VBW | Value | | | 9KHz-150KHz | Quasi-peak | 200Hz | 600Hz | Quasi-peak | | | 150KHz-30MHz | Quasi-peak | 9KHz | 30KHz | Quasi-peak | | | 30MHz-1GHz | Quasi-peak | 100KHz | 300KHz | Quasi-peak | | | Above 10Uz | Peak | 1MHz | 3MHz | Peak | | | Above 1GHz | Peak | 1MHz | 10Hz | Average | #### 4.2.1 RADIATED EMISSION LIMITS 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.231(b) limit in the table below has to be followed. | Frequencies(MHz) | Field Strength(micorvolts/meter) | Measurement Distance(meters) | | | |------------------|----------------------------------|------------------------------|--|--| | 0.009~0.490 | 2400/F(KHz) | 300 | | | | 0.490~1.705 | 24000/F(KHz) | 30 | | | | 1.705~30.0 30 | | 30 | | | | 30~88 | 100 | 3 | | | | 88~216 | 150 | 3 | | | | 216~960 | 200 | 3 | | | | Above 960 | 500 | 3 | | | #### LIMITS OF RADIATED EMISSION MEASUREMENT | | Limit (dBuV/m) (at 3M) | | | |-----------------|------------------------|---------|--| | FREQUENCY (MHz) | PEAK | AVERAGE | | | Above 1000 | 74 | 54 | | #### Notes: - (1) The limit for radiated test was performed according to FCC PART 15C. - (2) The tighter limit applies at the band edges. - (3) Emission level (dBuV/m)=20log Emission level (uV/m). Page 15 of 28 #### FUNDAMENTAL AND HARMONICS EMISSION LIMITS | Fundamental
Frequency
(MHz) | Field Strength of
Fundamental
(microvolts/meter) | Field Strength of
Spurious Emissions
(microvolts/meter) | |-----------------------------------|--|---| | 40.66 - 40.70 | 2.250 | 225 | | 70 - 130 | 1,250 | 125 | | 130 - 174 | 1,250 to 3,750 ** | 125 to 375 ** | | 174 - 260 | 3,750 | 375 | | 260 - 470 | 3,750 to 12,500 ** | 375 to 1,250 ** | | Above 470 | 12,500 | 1,250 | ^{**} linear interpolations [Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.] #### FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators) | Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz) | Range (MHz) | |---|---| | Below 1.705 | 30 | | 1.705 – 108 | 1000 | | 108 – 500 | 2000 | | 500 – 1000 | 5000 | | Above 1000 | 5 th harmonic of the highest frequency or 40 GHz, whichever is lower | | Spectrum Parameter | Setting | |--------------------|--| | Attenuation | Auto | | Start Frequency | 1000 MHz | | Stop Frequency | 10th carrier harmonic | | RBW / VBW setting | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average | | Receiver Parameter | Setting | | |------------------------|----------------------------------|--| | Attenuation | Auto | | | Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP | | | Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP | | | Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP | | #### 4.2.2 TEST PROCEDURE - a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used. - b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation. - The height of the equipment or of the substitution antenna shall be 0.8 m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. - e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. - f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case was X axis and the emissions were reported #### 4.2.3 TEST SETUP #### (A) Radiated Emission Test-Up Frequency Below 30MHz (B) Radiated Emission Test-Up Frequency 30MHz~1GHz Project No.: ZHT-230608031E Page 17 of 28 (C) Radiated Emission Test-Up Frequency Above 1GHz #### 4.2.4 EUT OPERATING CONDITIONS The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing. #### 4.2.5 TEST RESULTS Radiated Spurious Emission (Below 9KHz - 30MHz) #### NOTE: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor. # Radiated Spurious Emission (Between 30MHz - 1GHz) | Temperature : | 25.3 ℃ | Relative Humidity: | 54% | |----------------|---------|--------------------|------------| | Pressure : | 101 kPa | Polarization : | Horizontal | | Test Voltage : | DC 4.5V | 3.31 | a si | | Test Mode : | TX Mode | 110 | 5:0 | | No. | Frequency
(MHz) | Reading (dBuV) | Factor
(dB/m) | Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | |-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------| | 1 | 41.2764 | 23.25 | -9.08 | 14.17 | 40.00 | -25.83 | QP | | 2 | 45.2165 | 22.55 | -8.78 | 13.77 | 40.00 | -26.23 | QP | | 3 | 51.4806 | 24.22 | -8.55 | 15.67 | 40.00 | -24.33 | QP | | 4 | 55.8046 | 25.55 | -8.88 | 16.67 | 40.00 | -23.33 | QP | | 5 * | 433.1500 | 83.84 | -5.24 | 78.60 | 46.00 | 32.60 | peak | | 6 X | 869.1300 | 48.01 | 2.16 | 50.17 | 46.00 | 4.17 | peak | #### Remarks: 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor 2. The emission levels of other frequencies are very lower than the limit and not show in test report. Project No.: ZHT-230608031E Page 19 of 28 | Temperature : | 25.3 ℃ | Relative Humidity: | 54% | |----------------|---------|--------------------|----------| | Pressure : | 101 kPa | Polarization : | Vertical | | Test Voltage : | DC 4.5V | | | | Test Mode : | TX Mode | | | | No. | Frequency
(MHz) | Reading (dBuV) | Factor (dB/m) | Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | |-----|--------------------|----------------|---------------|-------------------|-------------------|----------------|----------| | 1 | 42.6000 | 23.00 | -8.97 | 14.03 | 40.00 | -25.97 | QP | | 2 | 47.9940 | 23.70 | -8.58 | 15.12 | 40.00 | -24.88 | QP | | 3 | 54.4515 | 24.17 | -8.79 | 15.38 | 40.00 | -24.62 | QP | | 4 | 59.4405 | 22.77 | -9.18 | 13.59 | 40.00 | -26.41 | QP | | 5 * | 433.1500 | 83.66 | -5.24 | 78.42 | 46.00 | 32.42 | peak | | 6 | 869.1300 | 35.93 | 2.16 | 38.09 | 46.00 | -7.91 | peak | #### Remarks: - 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor - 2.The emission levels of other frequencies are very lower than the limit and not show in test report. Project No.: ZHT-230608031E Page 20 of 28 # For average Emission | Frequency
MHz | Peak Level dBuV/m | Duty
cycle
factor | AverageLevel
dBuV/m | Limit
AV | Margin | Polarization | |------------------|-------------------|-------------------------|------------------------|-------------|--------|--------------| | 433.15 | 78.60 | 0 | 78.60 | 80.8 | -2.20 | Horizontal | | 869.13 | 50.17 | 0 | 50.17 | 60.8 | -10.63 | Horizontal | Notes: 1. Average emission Level = Peak Level + Duty cycle factor 2.Duty cycle level please see clause 6. | | | | | | | THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT TW | |------------------|--------|--------|---------------|-------|--------|--| | Eroguenev | Peak | Duty | Averagel evel | | | | | Frequency
MHz | Level | cycle | dBuV/m | Limit | Margin | Polarization | | | dBuV/m | factor | | AV | | | | 433.15 | 78.42 | 0 | 78.42 | 80.8 | -2.38 | Vertical | | 869.13 | 38.09 | 0 | 38.09 | 60.8 | -22.71 | Vertical | Notes: 1. Average emission Level = Peak Level + Duty cycle factor 2. Duty cycle level please see clause 6. Project No.: ZHT-230608031E Page 21 of 28 # Radiated Spurious Emission (1GHz to 10th harmonics) | | | | | 377 | | | 4 5 50 | | |-----------|--------|--------|---------|------|------|--------|--------|--------------| | Eroguenov | Peak | Duty | Average | Lii | mit | Margii | n dB | | | Frequency | Level | cycle | Level | DIC | A) (| DIC | A) / | Polarization | | MHz | dBuV/m | factor | dBuV/m | PK | AV | PK | AV | | | 868.13 | 52.88 | 0 | 52.88 | 74.0 | 54.0 | -21.12 | -1.12 | Vertical | | 1302.20 | 52.49 | 0 | 52.49 | 80.8 | 60.8 | -28.31 | -8.31 | Vertical | | 1736.26 | 50.73 | 0 | 50.73 | 80.8 | 60.8 | -30.07 | -10.07 | Vertical | | 2170.33 | 51.12 | 0 | 51.12 | 80.8 | 60.8 | -29.68 | -9.68 | Vertical | | 2604.39 | 50.54 | 0 | 50.54 | 80.8 | 60.8 | -30.26 | -10.26 | Vertical | | 3038.46 | 48.11 | 0 | 48.11 | 74.0 | 54.0 | -25.89 | -5.89 | Vertical | | 868.13 | 47.52 | 0 | 47.52 | 74.0 | 54.0 | -26.48 | -6.48 | Horizontal | | 1302.20 | 48.15 | 0 | 48.15 | 80.8 | 60.8 | -32.65 | -12.65 | Horizontal | | 1736.26 | 50.20 | 0 | 50.20 | 80.8 | 60.8 | -30.6 | -10.6 | Horizontal | | 2170.33 | 50.07 | 0 | 50.07 | 80.8 | 60.8 | -30.73 | -10.73 | Horizontal | | 2604.39 | 48.34 | 0 | 48.34 | 80.8 | 60.8 | -32.46 | -12.46 | Horizontal | | 3038.46 | 48.71 | 0 | 48.71 | 74.0 | 54.0 | -25.29 | -5.29 | Horizontal | Notes: 1.Average emission Level = Peak Level + Duty cycle factor 2.Duty cycle level please see clause 6. Project No.: ZHT-230608031E Page 22 of 28 #### **5. BANDWIDTH TEST** #### 5.1 APPLIED PROCEDURES / LIMIT #### According to FCC 15.231(c) requirement: The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating between 70 MHz to 900 MHz. Those devices operating above 900 MHz, the emission spurious shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier. B.W (20dBc) Limit = 0.25% * f(MHz) = 0.25% * 433.15MHz = 1.0829MHz | / // // | / - // | |--------------------|---| | Spectrum Parameter | Setting | | Attenuation | Auto | | Span Frequency | > Measurement Bandwidth or Channel Separation | | RB | 100KHz | | VB | ≥RBW | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | #### 5.2 TEST PROCEDURE - a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below, - b. Spectrum Setting: RBW= 100KHz, VBW≥ RBW, Sweep time = Auto. #### 5.3 DEVIATION FROM STANDARD No deviation. #### 5.4 TEST SETUP #### 5.5 EUT OPERATION CONDITIONS The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing. Project No.: ZHT-230608031E Page 23 of 28 ### 5.6 TEST RESULTS | Temperature : | 25.1 ℃ | Relative Humidity : | 55% | |---------------|---------|---------------------|---------| | Pressure : | 101kPa | Test Voltage : | DC 4.5V | | Test Mode : | TX Mode | 1.0 | 32 | | Fraguanay | 20dB Bandwidth | 0dB Bandwidth Limit | | |-----------|----------------|---------------------|--------| | Frequency | (kHz) | (MHz) | Result | | 433.15MHz | 376.5 | 1.0829 | PASS | Page 24 of 28 #### 6. CALCULATION OF AVERAGE FACTOR The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector. The duty cycle is measured in 100 ms or the repetition cycle period, whichever is a shorter time frame. The duty cycle is measured by placing the spectrum analyzer to set zero span at 1MHz resolution bandwidth. Averaging factor in dB =20log (duty cycle) Duty Cycle = 100%=1 Therefore, the averaging factor is found by 20log1= 0dB Test plot as follows: Note: aperiodic. #### Cycle Project No.: ZHT-230608031E Page 25 of 28 #### 7. DWELL TIME #### 7.1 APPLICABLE STANDARD According to FCC 15.231(a) requirement: A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. #### 7.2 TEST PROCEDURE Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 1. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range. - 2.Set RBW to 1MHz and VBW of spectrum analyzer to 3MHz with a convenient frequency span including 100 kHz bandwidth from band edge. - 3. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency. - 4. Repeat above procedures until all measured frequencies were complete. #### 7.3 DEVIATION FROM STANDARD No deviation. 7.4 TEST SETUP SPECTRUM EUT ANALYZER #### 7.5 EUT OPERATION CONDITIONS The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing. # 7.6 TEST RESULTS | Dwell time (second) | Limit (second) | Result | |---------------------|----------------|--------| | 0.140s | <5s | Pass | #### Test plot as follows: Project No.: ZHT-230608031E Page 27 of 28 #### 8. ANTENNA REQUIREMENT FCC Part15 C Section 15.203 Standard requirement: 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. **EUT Antenna:** The antenna is Spring Antenna, the best case gain of the antennas are 2.15dBi, reference to the appendix II for details Project No.: ZHT-230608031E Page 28 of 28 # 9. TEST SETUP PHOTO Reference to the appendix I for details. ### 10. EUT CONSTRUCTIONAL DETAILS Reference to the appendix II for details. # *** ** END OF REPORT ****