FCC SAR Test Report Report No. : SA140331C06 Applicant : Quanta Computer Inc. Address : No. 188, Wen Hwa 2nd RD., Kuei Shan Hsiang, Tao Yuan Shien, Taiwan Product : 7"Tablet PC FCC ID : HFS-QMV7B Brand : Verizon Model No. : QMV7B Standards : FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1992 / IEEE 1528:2003 IEEE 1528a-2005 / KDB 865664 D01 v01r03 / KDB 248227 D01 v01r02 KDB 447498 D01 v05r02 / KDB 616217 D04 v01r01 / KDB 941225 D05 v02r03 Sample Received Date : Mar. 31, 2014 Date of Testing : Apr. 23, 2014 ~ May 20, 2014 **CERTIFICATION:** The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch – Lin Kou Laboratories**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. Prepared By : Evenne Liu / Specialist Evoline Liu / Specialist Approved By : Taf Testing Laboratory 2021 This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. Report Format Version 5.0.0 Page No. : 1 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # **Table of Contents** | ке | elease Control Record | | | | | |----|---|---|----|--|--| | 1. | Summary of Maximum SAR Value | | | | | | 2. | Description of Equipment Under Test | | | | | | 3. | | | | | | | | 3.1 | Definition of Specific Absorption Rate (SAR) | | | | | | 3.2 | SPEAG DASY System | | | | | | ·- | 3.2.1 Robot | | | | | | | 3.2.2 Probes | | | | | | | 3.2.3 Data Acquisition Electronics (DAE) | | | | | | | 3.2.4 Phantoms | | | | | | | 3.2.5 Device Holder | | | | | | | 3.2.6 System Validation Dipoles | | | | | | | 3.2.7 Tissue Simulating Liquids | | | | | | 3.3 | SAR System Verification | | | | | | 3.4 | SAR Measurement Procedure | | | | | | | 3.4.1 Area & Zoom Scan Procedure | 1 | | | | | | 3.4.2 Volume Scan Procedure | | | | | | | 3.4.3 Power Drift Monitoring | | | | | | | 3.4.4 Spatial Peak SAR Evaluation | | | | | | | 3.4.5 SAR Averaged Methods | 10 | | | | 4. | SAR | Measurement Evaluation | 1 | | | | | 4.1 | EUT Configuration and Setting | 1 | | | | | 4.2 | EUT Testing Position | 19 | | | | | 4.3 | Tissue Verification | 2 | | | | | 4.4 | System Validation | 2 | | | | | 4.5 | System Verification | 2 | | | | | 4.6 | Maximum Output Power | 2 | | | | | | 4.6.1 Maximum Conducted Power | | | | | | | 4.6.2 Measured Conducted Power Result | 2 | | | | | 4.7 | SAR Testing Results | | | | | | | 4.7.1 SAR Results for Body | | | | | | | 4.7.2 SAR Measurement Variability | | | | | | | 4.7.3 Simultaneous Multi-band Transmission Evaluation | | | | | 5. | | ration of Test Equipment | | | | | 6. | | urement Uncertainty | | | | | 7. | Information on the Testing Laboratories | | | | | Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of EUT and Setup Page No. : 2 of 32 # **Release Control Record** | Report No. | Reason for Change | Date Issued | |-------------|-------------------|--------------| | SA140331C06 | Initial release | May 21, 2014 | | | | | | | | | | | | | Report Format Version 5.0.0 Page No. : 3 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 1. Summary of Maximum SAR Value | Equipment
Class | Mode | Highest Reported
Body SAR _{1a}
(W/kg) | | |---------------------------------------|-----------|--|--| | РСВ | LTE 4 | 1.43 | | | РСВ | LTE 13 | 1.34 | | | DTS | 2.4G WLAN | 0.29 | | | DSS | Bluetooth | N/A | | | Highest Simultaneous Transmission SAR | | Body
(W/kg) | | | PCB+DTS | | 1.43 | | | PCB+DSS | | PCB+DSS 1.43 | | ### Note: 1. The SAR limit (Head & Body: SAR_{1g} 1.6 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992. Report Format Version 5.0.0 Page No. : 4 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 2. <u>Description of Equipment Under Test</u> | 7"Tablet PC | |--| | HFS-QMV7B | | Verizon | | QMV7B | | E3B | | MV7B_31D38_422 | | LTE Band 4: 1712.5 ~ 1752.5 (5M), 1715 ~ 1750 (10M), 1720 ~ 1745 (20M) | | LTE Band 13 : 782 (10M) | | WLAN : 2412 ~ 2462 | | Bluetooth : 2402 ~ 2480 | | LTE: QPSK, 16QAM | | 802.11b: DSSS | | 802.11g/n : OFDM | | Bluetooth : GFSK | | LTE Band 4 : 24.0 | | LTE Band 13 : 24.0 | | WLAN 2.4G : 15.0 | | Bluetooth: 9.5 | | Fixed Internal Antenna | | Identical Prototype | | | ### Note: 1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual. ### **List of Accessory:** | | Brand Name | McNair | |-----------------|--------------|-----------------| | Battery | Model Name | MLP3970125 | | Dallery | Power Rating | 3.7Vdc, 4000mAh | | | Туре | Li-ion | | LTE Module | Brand Name | USI | | LIE Wodule | Model Name | Messi-V | | BT/WiFi Module | Brand Name | MTK | | D I/WIFI MOdule | Model Name | MT6628QP | Report Format Version 5.0.0 Page No. : 5 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 3. SAR Measurement System ## 3.1 <u>Definition of Specific Absorption Rate (SAR)</u> SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. ## 3.2 SPEAG DASY System DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4/5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC. Report Format Version 5.0.0 Page No. : 6 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 Fig-3.1 DASY System Setup ### 3.2.1 Robot The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability ±0.035 mm) - · High reliability (industrial design) - · Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) Report Format Version 5.0.0 Page No. : 7 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 ### 3.2.2 Probes The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. | Model | EX3DV4 | | |---------------|--|------| |
Construction | Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | | | Frequency | 10 MHz to 6 GHz
Linearity: ± 0.2 dB | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 10 μW/g to 100 mW/g
Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | MH . | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | | Model | ES3DV3 | | |---------------|---|--| | Construction | Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | | | Frequency | 10 MHz to 4 GHz
Linearity: ± 0.2 dB | | | Directivity | ± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 5 μW/g to 100 mW/g
Linearity: ± 0.2 dB | | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm | | # 3.2.3 Data Acquisition Electronics (DAE) | Model | DAE3. DAE4 | - | |-------------------------|---|------------------| | Construction | Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop. | | | Measurement
Range | -100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV) | الموادية المحادث | | Input Offset
Voltage | < 5µV (with auto zero) | | | Input Bias Current | < 50 fA | | | Dimensions | 60 x 60 x 68 mm | | Report Format Version 5.0.0 Page No. : 8 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 3.2.4 Phantoms | Model | Twin SAM | | |--|---|--| | Construction | The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. | | | Material | Vinylester, glass fiber reinforced (VE-GF) | | | Shell Thickness $2 \pm 0.2 \text{ mm}$ (6 ± 0.2 mm at ear point) | | | | Dimensions | Length: 1000 mm
Width: 500 mm
Height: adjustable feet | | | Filling Volume | Filling Volume approx. 25 liters | | | Model | ELI | | |-----------------|---|--| | Construction | Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. | | | Material | Vinylester, glass fiber reinforced (VE-GF) | | | Shell Thickness | 2.0 ± 0.2 mm (bottom plate) | | | Dimensions | Major axis: 600 mm
Minor axis: 400 mm | | | Filling Volume | approx. 30 liters | | Report Format Version 5.0.0 Page No. : 9 of 32 Report No. : SA140331C06 Issued Date : May 21, 2014 ## 3.2.5 Device Holder | Model | Mounting Device | | |--------------|---|--| | Construction | In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). | | | Material | POM | | | Model | Laptop Extensions Kit | | |--------------|---|--| | Construction | Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. | | | Material | POM, Acrylic glass, Foam | | # 3.2.6 System Validation Dipoles | Model | D-Serial | | |------------------|--|--| | Construction | Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions. | | | Frequency | 750 MHz to 5800 MHz | | | Return Loss | > 20 dB | | | Power Capability | > 100 W (f < 1GHz), > 40 W (f > 1GHz) | | Report Format Version 5.0.0 Page No. : 10 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 ### 3.2.7 Tissue Simulating Liquids For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1. The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer. Report Format Version 5.0.0 Page No. : 11 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 **Table-3.1 Targets of Tissue Simulating Liquid** | Frequency | Target | Range of | Target | Range of | |-----------|-----------------|-------------|--------------|-------------| | (MHz) | Permittivity | ±5% | Conductivity | ±5% | | (=) | 1 or militarity | For Head | Conductivity | 2070 | | 750 | 41.9 | 39.8 ~ 44.0 | 0.89 | 0.85 ~ 0.93 | | 835 | 41.5 | 39.4 ~ 43.6 | 0.90 | 0.86 ~ 0.95 | | 900 | 41.5 | 39.4 ~ 43.6 | 0.97 | 0.92 ~ 1.02 | | 1450 | 40.5 | 38.5 ~ 42.5 | 1.20 | 1.14 ~ 1.26 | | 1640 | 40.3 | 38.3 ~ 42.3 | 1.29 | 1.23 ~ 1.35 | | 1750 | 40.1 | 38.1 ~ 42.1 | 1.37 | 1.30 ~ 1.44 | | 1800 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 1900 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 2000 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 2300 | 39.5 | 37.5 ~ 41.5 | 1.67 | 1.59 ~ 1.75 | | 2450 | 39.2 | 37.2 ~ 41.2 | 1.80 | 1.71 ~ 1.89 | | 2600 | 39.0 | 37.1 ~ 41.0 | 1.96 | 1.86 ~ 2.06 | | 3500 | 37.9 | 36.0 ~ 39.8 | 2.91 | 2.76 ~ 3.06 | | 5200 | 36.0 | 34.2 ~ 37.8 | 4.66 | 4.43 ~ 4.89 | | 5300 | 35.9 | 34.1 ~ 37.7 | 4.76 | 4.52 ~ 5.00 | | 5500 | 35.6 | 33.8 ~ 37.4 | 4.96 | 4.71 ~ 5.21 | | 5600 | 35.5 | 33.7 ~ 37.3 | 5.07 | 4.82 ~ 5.32 | | 5800 | 35.3 | 33.5 ~ 37.1 | 5.27 | 5.01 ~ 5.53 | | | | For Body | J.—. | | | 750 | 55.5 | 52.7 ~ 58.3 | 0.96 | 0.91 ~ 1.01 | | 835 | 55.2 | 52.4 ~ 58.0
 0.97 | 0.92 ~ 1.02 | | 900 | 55.0 | 52.3 ~ 57.8 | 1.05 | 1.00 ~ 1.10 | | 1450 | 54.0 | 51.3 ~ 56.7 | 1.30 | 1.24 ~ 1.37 | | 1640 | 53.8 | 51.1 ~ 56.5 | 1.40 | 1.33 ~ 1.47 | | 1750 | 53.4 | 50.7 ~ 56.1 | 1.49 | 1.42 ~ 1.56 | | 1800 | 53.3 | 50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 1900 | 53.3 | 50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 2000 | 53.3 | 50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 2300 | 52.9 | 50.3 ~ 55.5 | 1.81 | 1.72 ~ 1.90 | | 2450 | 52.7 | 50.1 ~ 55.3 | 1.95 | 1.85 ~ 2.05 | | 2600 | 52.5 | 49.9 ~ 55.1 | 2.16 | 2.05 ~ 2.27 | | 3500 | 51.3 | 48.7 ~ 53.9 | 3.31 | 3.14 ~ 3.48 | | 5200 | 49.0 | 46.6 ~ 51.5 | 5.30 | 5.04 ~ 5.57 | | 5300 | 48.9 | 46.5 ~ 51.3 | 5.42 | 5.15 ~ 5.69 | | 5500 | 48.6 | 46.2 ~ 51.0 | 5.65 | 5.37 ~ 5.93 | | 5600 | 48.5 | 46.1 ~ 50.9 | 5.77 | 5.48 ~ 6.06 | | 5800 | 48.2 | 45.8 ~ 50.6 | 6.00 | 5.70 ~ 6.30 | Report Format Version 5.0.0 Page No. : 12 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 The following table gives the recipes for tissue simulating liquids. **Table-3.2 Recipes of Tissue Simulating Liquid** | Tissue
Type | Bactericide | DGBE | HEC | NaCl | Sucrose | Triton
X-100 | Water | Diethylene
Glycol
Mono-
hexylether | |----------------|-------------|------|-----|------|---------|-----------------|-------|---| | H750 | 0.2 | - | 0.2 | 1.5 | 56.0 | - | 42.1 | - | | H835 | 0.2 | - | 0.2 | 1.5 | 57.0 | - | 41.1 | - | | H900 | 0.2 | - | 0.2 | 1.4 | 58.0 | - | 40.2 | - | | H1450 | - | 43.3 | - | 0.6 | - | - | 56.1 | - | | H1640 | - | 45.8 | - | 0.5 | - | - | 53.7 | - | | H1750 | - | 47.0 | - | 0.4 | - | - | 52.6 | - | | H1800 | - | 44.5 | - | 0.3 | - | - | 55.2 | - | | H1900 | - | 44.5 | - | 0.2 | - | - | 55.3 | - | | H2000 | - | 44.5 | - | 0.1 | - | - | 55.4 | - | | H2300 | - | 44.9 | - | 0.1 | - | - | 55.0 | - | | H2450 | - | 45.0 | - | 0.1 | - | - | 54.9 | - | | H2600 | - | 45.1 | - | 0.1 | - | - | 54.8 | - | | H3500 | - | 8.0 | - | 0.2 | - | 20.0 | 71.8 | - | | H5G | - | | - | - | - | 17.2 | 65.5 | 17.3 | | B750 | 0.2 | - | 0.2 | 0.8 | 48.8 | - | 50.0 | - | | B835 | 0.2 | - | 0.2 | 0.9 | 48.5 | - | 50.2 | - | | B900 | 0.2 | - | 0.2 | 0.9 | 48.2 | - | 50.5 | - | | B1450 | - | 34.0 | - | 0.3 | - | - | 65.7 | - | | B1640 | - | 32.5 | - | 0.3 | - | - | 67.2 | - | | B1750 | - | 31.0 | - | 0.2 | - | - | 68.8 | - | | B1800 | - | 29.5 | - | 0.4 | - | - | 70.1 | - | | B1900 | - | 29.5 | - | 0.3 | - | - | 70.2 | - | | B2000 | - | 30.0 | - | 0.2 | - | - | 69.8 | - | | B2300 | - | 31.0 | - | 0.1 | - | - | 68.9 | - | | B2450 | - | 31.4 | - | 0.1 | - | - | 68.5 | - | | B2600 | - | 31.8 | - | 0.1 | - | - | 68.1 | - | | B3500 | - | 28.8 | - | 0.1 | - | - | 71.1 | - | | B5G | - | - | - | - | - | 10.7 | 78.6 | 10.7 | Report Format Version 5.0.0 Page No. : 13 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 ### 3.3 SAR System Verification The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below. The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %. Report Format Version 5.0.0 Page No. : 14 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 ### 3.4 SAR Measurement Procedure According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement The SAR measurement procedures for each of test conditions are as follows: - (a) Make EUT to transmit maximum output power - (b) Measure conducted output power through RF cable - (c) Place the EUT in the specific position of phantom - (d) Perform SAR testing steps on the DASY system - (e) Record the SAR value #### 3.4.1 Area & Zoom Scan Procedure First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below. | Items | <= 2 GHz | 2-3 GHz | 3-4 GHz | 4-5 GHz | 5-6 GHz | |-----------------------|----------|----------|----------|----------|----------| | Area Scan
(Δx, Δy) | <= 15 mm | <= 12 mm | <= 12 mm | <= 10 mm | <= 10 mm | | Zoom Scan
(Δx, Δy) | <= 8 mm | <= 5 mm | <= 5 mm | <= 4 mm | <= 4 mm | | Zoom Scan
(Δz) | <= 5 mm | <= 5 mm | <= 4 mm | <= 3 mm | <= 2 mm | | Zoom Scan
Volume | >= 30 mm | >= 30 mm | >= 28 mm | >= 25 mm | >= 22 mm | #### Note: When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied. ### 3.4.2 Volume Scan Procedure The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. Report Format Version 5.0.0 Page No. : 15 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 ### 3.4.3 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. ### 3.4.4 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g ### 3.4.5 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm. Report Format Version 5.0.0 Page No. : 16 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 4. SAR Measurement Evaluation ## 4.1 EUT Configuration and Setting This device supports WWAN, WLAN, Bluetooth capabilities. Because of the SAR issue, this device has designed with a proximity sensor which can trigger/not trigger power reduction for LTE B4 on EUT Rear Face and Top Side orientations for SAR compliance. Others RF capabilities (LTE
B13, WLAN and BT) have no power reduction. The power levels for all wireless technologies and the power reduction please refer to section 4.6.1 of this report. According to the procedures noticed in KDB 616217 D04, the proximity sensor triggering distance is 13 mm for EUT Rear Face, and 6 mm for Top Side. The separation distance of 6 mm determined by the smallest triggering distance on Top Side is used to assess the tilt angle influence and the sensor does not release during ±45 degree. Therefore, the smallest separation distance for tilt angle influence is 6 mm. The details can be found in technical document. The conservative triggering distances based on the separation distance for the sensor triggered / not triggered as EUT with power reduction at 0 mm, and EUT without power reduction at 13 mm for EUT Rear Face, and 5 mm for Top Side is used to test SAR. The power reduction is depends on the proximity sensor input. For a steady SAR test, the power reduction was enabled/disabled manually by engineering software during SAR testing. The EUT is a voice/data transmitter device that contains one WWAN transmitter (LTE only), and two WWAN antennas for receiving diversity. Confirming the LTE transmitter follows 3GPP standards, is category 3, FDD-LTE band 4 (BW 5/10/20 MHz), FDD-LTE band 13 (BW 10 MHz), supports QPSK / 16QAM modulations, and supports data transmission only. Tested per 3GPP 36.521 maximum transmit procedures for both QPSK / 16QAM. LTE Maximum Power Reduction in accordance with 3GPP 36.101: Power Reduction in accordance to 3GPP is active all times during LTE operation. | | | Channel Bandwidth / RB Configurations | | | | | | | | | | |------------|----------|---------------------------------------|-------|-----------|-----------------|--|--|--|--|--|--| | Modulation | BW 5 MHz | BW 5 MHz BW 10 MHz BW 15 MHz | | BW 20 MHz | Setting
(dB) | | | | | | | | QPSK | > 8 | > 12 | > 16 | > 18 | 1 | | | | | | | | 16QAM | <= 8 | <= 12 | <= 16 | <= 18 | 1 | | | | | | | | 16QAM | > 8 | > 12 | > 16 | > 18 | 2 | | | | | | | **Note:** MPR is according to the standard and implemented in the circuit (mandatory). In addition, the device is compliant with A-MPR requirements defined in 36.101 section 6.2.4 that may be required to meet 3GPP Adjacent Channel Leakage Ratio ("ACLR") requirements. A-MPR was disabled for all FCC compliance testing. Report Format Version 5.0.0 Page No. : 17 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 The simultaneous transmission possibilities are listed as below. | Simultaneous TX Combination | Configuration | |-----------------------------|-----------------------------| | 1 | LTE 4 (Data) + WLAN (Data) | | 2 | LTE 13 (Data) + WLAN (Data) | | 3 | LTE 4 (Data) + BT (Data) | | 4 | LTE 13 (Data) + BT (Data) | #### Note: The WLAN and BT cannot transmit simultaneously. For WWAN SAR testing, the EUT was linked and controlled by base station emulator (Anritsu MT8820C). Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing. For LTE, set the related parameters of operating band, channel bandwidth, uplink channel number, modulation type, and RB in base station simulator. When the EUT has registered and communicated to base station simulator, set the simulator to make EUT transmitting the maximum radiated power. The steps for system simulator (Anritsu MT8820C) setup are as below. - 1. Press the "Std" button to select "LTE 22.20S" function - 2. Choose the "Screen Select" item to "Fundamental Measurement" - 3. Enter the "Common" item - 4. Set the Operating Band - 5. Set the Channel Bandwidth - 6. Set the UL Channel & Frequency - 7. Set the Modulation - 8. Set the RB number and RB shift - 9. Press "Start Call" button when EUT register to the system simulator - 10. Set the TX-1 Max. Power to make the EUT transmit maximum output power For WLAN SAR testing, the EUT has installed WLAN engineering testing software which can provide continuous transmitting RF signal. According to KDB 248227 D01, WLAN SAR should tested at the lowest data rate, and testing at higher data rate is not required when the maximum average output power is less than 1/4 dB higher than those measured at the lowest data rate. Since the WLAN power at lowest data rate has highest output power, WLAN SAR for this device was performed at the lowest data rate. Report Format Version 5.0.0 Page No. : 18 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 4.2 EUT Testing Position According to KDB 616217 D04, SAR evaluation is required for back surface and edges of the devices. The back surface and edges of the tablet are tested with the tablet touching the phantom. Exposures from antennas through the front surface of the display section of a tablet are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary. When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required. Fig-4.1 Illustration for Tablet Setup Report Format Version 5.0.0 Page No. : 19 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following formula. 1. For the test separation distance <= 50 mm $$\frac{\text{Max.Tune up Power}_{(mW)}}{\text{Min.Test Separation Distance}_{(mm)}} \times \sqrt{f_{(GHz)}} \leq 3.0$$ When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. 2. For the test separation distance > 50 mm, and the frequency at 100 MHz to 1500 MHz $$\left[\text{(Threshold at 50 mm in Step 1)} + \text{(Test Separation Distance} - 50 \text{ mm)} \times \left(\frac{f_{\text{(MHz)}}}{150} \right) \right]_{\text{(mW)}}$$ 3. For the test separation distance > 50 mm, and the frequency at > 1500 MHz to 6 GHz $[(Threshold at 50 mm in Step 1) + (Test Separation Distance - 50 mm) \times 10]_{(mW)}$ | | Max. | Max. | | Rear Face | | | Top Side | | | Bottom Side | | | Left Side | | | Right Side | | |--------------|---------------------------|--------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------|----------------------------| | Mode | Tune-up
Power
(dBm) | Tune-up
Power
(mW) | Ant. to
Surface
(mm) | Calculated
Result | Require
SAR
Testing? | | LTE
4 | 24.0 | 251 | 5 | 66.5 | Yes | 5 | 66.5 | Yes | 182.1 | 1434
mW | No | 15.7 | 21.2 | Yes | 44.5 | 7.5 | Yes | | LTE
13 | 22.7 | 186 | 5 | 33.0 | Yes | 5 | 33 | Yes | 182.1 | 861
mW | No | 15.7 | 10.5 | Yes | 44.5 | 3.7 | Yes | | WLAN
2.4G | 15.0 | 32 | 5 | 10.0 | Yes | 168.5 | 1281
mW | No | 5 | 10 | Yes | 103.5 | 631
mW | No | 5 | 10 | Yes | | ВТ | 9.5 | 9 | 5 | 2.5 | No | 168.5 | 1280
mW | No | 5 | 2.8 | No | 103.5 | 630
mW | No | 5 | 2.8 | No | ## 4.3 Tissue Verification The measuring results for tissue simulating liquid are shown as below. | Test
Date | Tissue
Type | Frequency
(MHz) | Liquid
Temp.
(℃) | Measured
Conductivity
(σ) | Measured
Permittivity
(ε _r) | Target
Conductivity
(σ) | Target Permittivity (ϵ_r) | Conductivity Deviation (%) | Permittivity
Deviation
(%) | |---------------|----------------|--------------------|------------------------|---------------------------------|---|-------------------------------|------------------------------------|----------------------------|----------------------------------| | Apr. 24, 2014 | Body | 750 | 20.4 | 0.966 | 55.257 | 0.96 | 55.5 | 0.63 | -0.44 | | May 20, 2014 | Body | 750 | 20.8 | 0.962 | 55.238 | 0.96 | 55.5 | 0.21 | -0.47 | | May 09, 2014 | Body | 1750 | 20.5 | 1.499 | 52.347 | 1.49 | 53.4 | 0.60 | -1.97 | | Apr. 23, 2014 | Body | 2450 | 20.5 | 1.972 | 51.262 | 1.95 | 52.7 | 1.13 | -2.73 | | May 20, 2014 | Body | 2450 | 20.6 | 1.966 | 51.323 | 1.95 | 52.7 | 0.82 | -2.61 | ### Note: The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. Liquid temperature during the SAR testing must be within $\pm 2\%$. Report Format Version 5.0.0 Page No. : 20 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 4.4 System Validation The SAR measurement system was validated according to procedures in KDB 865664 D01 v01r01. The validation status in tabulated summary is as below. | Tool | Ducho | | | Measured | Measured | Va | lidation for C | w | Valida | tion for Modu | lation | |---------------|--------------|-----------|----------|------------------|--------------------------------|----------------------|--------------------|-------------------|--------------------|---------------|--------| | Test
Date | Probe
S/N | Calibrati | on Point | Conductivity (σ) | Permittivity (ε _r) | Sensitivity
Range | Probe
Linearity | Probe
Isotropy | Modulation
Type | Duty Factor | PAR | | Apr. 24, 2014 | 3590 |
Body | 750 | 0.966 | 55.257 | Pass | Pass | Pass | N/A | N/A | N/A | | May 20, 2014 | 3590 | Body | 750 | 0.962 | 55.238 | Pass | Pass | Pass | N/A | N/A | N/A | | May 09, 2014 | 3971 | Body | 1750 | 1.499 | 52.347 | Pass | Pass | Pass | N/A | N/A | N/A | | Apr. 23, 2014 | 3590 | Body | 2450 | 1.972 | 51.262 | Pass | Pass | Pass | OFDM | N/A | Pass | | May 20, 2014 | 3590 | Body | 2450 | 1.966 | 51.323 | Pass | Pass | Pass | OFDM | N/A | Pass | # 4.5 System Verification The measuring result for system verification is tabulated as below. | Test
Date | Mode | Frequency
(MHz) | 1W Target
SAR-1g
(W/kg) | Measured
SAR-1g
(W/kg) | Normalized
to 1W
SAR-1g
(W/kg) | Deviation
(%) | Dipole
S/N | Probe
S/N | DAE
S/N | |---------------|------|--------------------|-------------------------------|------------------------------|---|------------------|---------------|--------------|------------| | Apr. 24, 2014 | Body | 750 | 8.81 | 2.32 | 9.28 | 5.33 | 1013 | 3590 | 510 | | May 20, 2014 | Body | 750 | 8.81 | 2.25 | 9.00 | 2.16 | 1013 | 3590 | 510 | | May 09, 2014 | Body | 1750 | 36.9 | 9.31 | 37.24 | 0.92 | 1055 | 3971 | 1431 | | Apr. 23, 2014 | Body | 2450 | 50.0 | 13.1 | 52.40 | 4.80 | 716 | 3590 | 510 | | May 20, 2014 | Body | 2450 | 50.0 | 12.9 | 51.60 | 3.20 | 716 | 3590 | 510 | ### Note: Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report. ## 4.6 Maximum Output Power ### 4.6.1 Maximum Conducted Power The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below. | Mode | LTE 4 (without Power Reduction) | LTE 4 (with Power Reduction) | Power Reduction (dBm) | |--------------|---------------------------------|------------------------------|-----------------------| | QPSK / 16QAM | 24.0 | 15.8 | 8.2 | | Mode | LTE 13 | |--------------|--------| | QPSK / 16QAM | 24.0 | | Mode | 2.4G WLAN | |--------------|-----------| | 802.11b | 15.0 | | 802.11g | 14.5 | | 802.11n HT20 | 11.5 | | 802.11n HT40 | 10.5 | Report Format Version 5.0.0 Page No. : 21 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 | Mode | Bluetooth | |------|-----------| | All | 9.5 | ## 4.6.2 Measured Conducted Power Result The measuring conducted average power (Unit: dBm) is shown as below. | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|----------------------------------|----------------------------------|-----------------------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
19975
1712.5
MHz | Mid CH
20175
1732.5
MHz | High CH
20375
1752.5
MHz | 3GPP
MPR
(dB) | Low CH
19975
1712.5
MHz | Mid CH
20175
1732.5
MHz | High CH
20375
1752.5
MHz | 3GPP
MPR
(dB) | | | | E | UT without | Power Re | duction (P- | Sensor NO | T Triggered | l) | | | | | 1 | 0 | 23.10 | 23.61 | 23.37 | 0 | 22.20 | 22.71 | 22.47 | 1 | | | 1 | 12 | 23.77 | 23.76 | 23.28 | 0 | 22.87 | 22.86 | 22.38 | 1 | | | 1 | 24 | 23.02 | 23.53 | 23.03 | 0 | 22.12 | 22.63 | 22.13 | 1 | | 4 / 5M | 12 | 0 | 23.01 | 23.51 | 23.31 | 1 | 22.11 | 22.61 | 22.41 | 2 | | | 12 | 6 | 22.82 | 23.60 | 23.22 | 1 | 21.92 | 22.70 | 22.32 | 2 | | | 12 | 13 | 22.24 | 23.37 | 23.35 | 1 | 21.34 | 22.47 | 22.45 | 2 | | | 25 | 0 | 22.23 | 22.89 | 22.63 | 1 | 21.33 | 21.99 | 21.73 | 2 | | | | | EUT wit | h Power Re | eduction (P | -Sensor Tri | iggered) | | | | | | 1 | 0 | 15.13 | 15.72 | 14.81 | 0 | 14.11 | 14.68 | 14.69 | 1 | | | 1 | 12 | 15.72 | 15.06 | 14.99 | 0 | 14.41 | 14.04 | 14.25 | 1 | | | 1 | 24 | 15.55 | 15.23 | 15.71 | 0 | 14.35 | 14.21 | 14.54 | 1 | | 4 / 5M | 12 | 0 | 14.16 | 14.65 | 14.76 | 1 | 13.14 | 13.63 | 13.74 | 2 | | | 12 | 6 | 14.79 | 14.09 | 14.19 | 1 | 13.77 | 13.07 | 13.17 | 2 | | | 12 | 13 | 14.46 | 14.60 | 14.34 | 1 | 13.44 | 13.58 | 13.32 | 2 | | | 25 | 0 | 14.18 | 14.32 | 14.75 | 1 | 13.16 | 13.30 | 13.79 | 2 | | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|----------------------------------|----------------------------------|-----------------------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
20000
1715.0
MHz | Mid CH
20175
1732.5
MHz | High CH
20350
1750.0
MHz | 3GPP
MPR
(dB) | Low CH
20000
1715.0
MHz | Mid CH
20175
1732.5
MHz | High CH
20350
1750.0
MHz | 3GPP
MPR
(dB) | | | | E | UT without | Power Re | duction (P- | Sensor NO | T Triggered | l) | | | | | 1 | 0 | 23.38 | 23.89 | 23.65 | 0 | 22.30 | 22.81 | 22.57 | 1 | | | 1 | 24 | 23.05 | 23.85 | 23.56 | 0 | 22.95 | 22.96 | 22.48 | 1 | | | 1 | 49 | 23.30 | 23.81 | 23.31 | 0 | 22.22 | 22.73 | 22.23 | 1 | | 4 / 10M | 25 | 0 | 22.29 | 22.79 | 22.59 | 1 | 22.21 | 22.71 | 22.51 | 2 | | | 25 | 12 | 22.10 | 22.88 | 22.50 | 1 | 22.02 | 22.80 | 22.42 | 2 | | | 25 | 25 | 22.52 | 22.65 | 22.63 | 1 | 21.44 | 22.57 | 22.55 | 2 | | | 50 | 0 | 22.51 | 22.17 | 22.91 | 1 | 22.43 | 22.09 | 22.83 | 2 | | | | | EUT wit | h Power Re | eduction (P | -Sensor Tri | iggered) | | | | | | 1 | 0 | 15.14 | 15.70 | 15.72 | 0 | 14.12 | 14.71 | 14.33 | 1 | | | 1 | 24 | 15.44 | 15.07 | 15.00 | 0 | 14.42 | 14.05 | 14.63 | 1 | | | 1 | 49 | 15.38 | 15.24 | 15.74 | 0 | 14.36 | 14.22 | 14.72 | 1 | | 4 / 10M | 25 | 0 | 14.17 | 14.66 | 14.77 | 1 | 13.15 | 13.64 | 13.75 | 2 | | | 25 | 12 | 14.80 | 14.10 | 14.20 | 1 | 13.78 | 13.08 | 13.18 | 2 | | | 25 | 25 | 14.47 | 14.61 | 14.35 | 1 | 13.45 | 13.59 | 13.33 | 2 | | | 50 | 0 | 14.19 | 14.33 | 14.62 | 1 | 13.17 | 13.31 | 13.80 | 2 | Report Format Version 5.0.0 Page No. : 22 of 32 Report No. : SA140331C06 Issued Date : May 21, 2014 # FCC SAR Test Report | | | | | QPSK | | | | 16QAM | | | |--------------|------------|--------------|----------------------------------|----------------------------------|-----------------------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------| | Band /
BW | RB
Size | RB
Offset | Low CH
20050
1720.0
MHz | Mid CH
20175
1732.5
MHz | High CH
20300
1745.0
MHz | 3GPP
MPR
(dB) | Low CH
20050
1720.0
MHz | Mid CH
20175
1732.5
MHz | High CH
20300
1745.0
MHz | 3GPP
MPR
(dB) | | | | E | UT withou | t Power Re | duction (P- | Sensor NO | T Triggered | l) | | | | | 1 | 0 | 23.47 | 23.55 | 23.74 | 0 | 22.39 | 22.99 | 22.66 | 1 | | | 1 | 50 | 23.14 | 23.98 | 23.65 | 0 | 22.06 | 22.05 | 22.57 | 1 | | | 1 | 99 | 23.39 | 23.90 | 23.40 | 0 | 22.31 | 22.82 | 22.32 | 1 | | 4 / 20M | 50 | 0 | 22.38 | 22.88 | 22.68 | 1 | 22.30 | 22.80 | 22.60 | 2 | | | 50 | 25 | 22.61 | 22.97 | 22.72 | 1 | 22.11 | 22.89 | 22.51 | 2 | | | 50 | 50 | 22.19 | 22.74 | 22.59 | 1 | 21.53 | 22.66 | 22.64 | 2 | | | 100 | 0 | 22.60 | 22.26 | 22.05 | 1 | 21.52 | 21.18 | 21.92 | 2 | | | | | EUT wit | h Power Re | eduction (P | -Sensor Tri | iggered) | | | | | | 1 | 0 | 15.17 | 15.76 | 15.78 | 0 | 13.81 | 14.11 | 14.21 | 1 | | | 1 | 50 | 15.47 | 15.10 | 15.03 | 0 | 14.45 | 14.08 | 14.01 | 1 | | | 1 | 99 | 15.41 | 15.27 | 15.77 | 0 | 14.39 | 14.25 | 14.75 | 1 | | 4 / 20M | 50 | 0 | 14.20 | 14.69 | 14.80 | 1 | 13.18 | 13.67 | 13.78 | 2 | | | 50 | 25 | 14.63 | 14.13 | 14.23 | 1 | 13.15 | 13.74 | 13.76 | 2 | | | 50 | 50 | 14.50 | 14.64 | 14.38 | 1 | 13.48 | 13.62 | 13.36 | 2 | | | 100 | 0 | 14.22 | 14.36 | 14.78 | 1 | 13.20 | 13.34 | 13.79 | 2 | | Band /
BW | RB
Size | RB
Offset | QPSK
Mid CH
23230
782.0
MHz | 3GPP
MPR
(dB) | 16QAM
Mid CH
23230
782.0
MHz | 3GPP
MPR
(dB) | |--------------|------------|--------------|---|---------------------|--|---------------------| | | 1 | 0 | 22.49 | 0 | 21.45 | 1 | | | 1 | 24 | 22.62 | 0 | 21.58 | 1 | | | 1 | 49 | 22.13 | 0 | 21.09 | 1 | | 13 / 10M | 25 | 0 | 21.14 | 1 | 21.10 | 2 | | | 25 | 12 | 21.30 | 1 | 21.26 | 2 | | | 25 | 25 | 21.33 | 1 | 21.29 | 2 | | | 50 | 0 | 21.47 | 1 | 21.43 | 2 | ### <WLAN 2.4G> | Mode | | 802.11b | | |---------------------------|----------|----------------|-----------| | Channel / Frequency (MHz) | 1 (2412) | 6 (2437) | 11 (2462) | | Average Power | 14.86 | 14.95 | 14.92 | | Mode | | 802.11g | | | Channel / Frequency (MHz) | 1 (2412) | 6 (2437) | 11 (2462) | | Average Power | 14.06 | 14.38 | 13.56 | | Mode | | 802.11n (HT20) | | | Channel / Frequency (MHz) | 1 (2412) | 6 (2437) | 11 (2462) | | Average Power | 11.39 | 11.45 | 11.14 | | Mode | | 802.11n (HT40) | | | Channel / Frequency (MHz) | 3 (2422) | 6 (2437) | 9 (2452) | | Average Power | 10.02 | 9.98 | 10.01 | ## <Bluetooth> | Mode | | Bluetooth | | | | | | | | | |---------------------------|----------|-----------|-----------|--|--|--|--|--|--|--| | Channel / Frequency (MHz) | 0 (2402) | 39 (2441) | 78 (2480) | | | | | | | | | Average Power | 9.20 | 6.06 | 3.29 | | | | | | | | Report Format Version 5.0.0 Page No. : 23 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 4.7 SAR Testing Results ### 4.7.1 SAR Results for Body | Plot
No. | Band | Mode | Test
Position | Separation
Distance
(mm) | Ch. | Power
Reduction | RB# | RB
Offset | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Scaling
Factor | Power
Drift
(dB) | Measured
SAR-1g
(W/kg) | Scaled
SAR-1g
(W/kg) | |-------------|-------|---------|------------------
--------------------------------|-------|--------------------|-----|--------------|-----------------------------------|---|-------------------|------------------------|------------------------------|----------------------------| | | LTE 4 | QPSK20M | Rear Face | 0 | 20300 | w/ | 1 | 0 | 15.8 | 15.78 | 1.00 | 0.06 | 0.304 | 0.31 | | | LTE 4 | QPSK20M | Rear Face | 13 | 20175 | w/o | 1 | 50 | 24.0 | 23.98 | 1.00 | -0.05 | 0.79 | 0.79 | | | LTE 4 | QPSK20M | Left Side | 0 | 20175 | w/o | 1 | 50 | 24.0 | 23.98 | 1.00 | 0.15 | 0.219 | 0.22 | | | LTE 4 | QPSK20M | Right Side | 0 | 20175 | w/o | 1 | 50 | 24.0 | 23.98 | 1.00 | 0.12 | 0.371 | 0.37 | | | LTE 4 | QPSK20M | Top Side | 0 | 20300 | w/ | 1 | 0 | 15.8 | 15.78 | 1.00 | 0.04 | 0.23 | 0.23 | | 01 | LTE 4 | QPSK20M | Top Side | 5 | 20175 | w/o | 1 | 50 | 24.0 | 23.98 | 1.00 | 0.08 | 1.42 | <mark>1.43</mark> | | | LTE 4 | QPSK20M | Top Side | 5 | 20050 | w/o | 1 | 0 | 24.0 | 23.47 | 1.13 | -0.13 | 1.03 | 1.16 | | | LTE 4 | QPSK20M | Top Side | 5 | 20300 | w/o | 1 | 0 | 24.0 | 23.74 | 1.06 | -0.01 | 0.807 | 0.86 | | | LTE 4 | QPSK20M | Rear Face | 0 | 20300 | w/ | 50 | 0 | 14.8 | 14.80 | 1.00 | 0.01 | 0.254 | 0.25 | | | LTE 4 | QPSK20M | Rear Face | 13 | 20175 | w/o | 50 | 25 | 23.0 | 22.97 | 1.01 | 0.14 | 0.73 | 0.73 | | | LTE 4 | QPSK20M | Left Side | 0 | 20175 | w/o | 50 | 25 | 23.0 | 22.97 | 1.01 | 0.13 | 0.227 | 0.23 | | | LTE 4 | QPSK20M | Right Side | 0 | 20175 | w/o | 50 | 25 | 23.0 | 22.97 | 1.01 | -0.06 | 0.418 | 0.42 | | | LTE 4 | QPSK20M | Top Side | 0 | 20300 | w/ | 50 | 0 | 14.8 | 14.80 | 1.00 | 0.01 | 0.209 | 0.21 | | | LTE 4 | QPSK20M | Top Side | 5 | 20175 | w/o | 50 | 25 | 23.0 | 22.97 | 1.01 | -0.04 | 0.999 | 1.01 | | | LTE 4 | QPSK20M | Top Side | 5 | 20050 | w/o | 50 | 25 | 23.0 | 22.61 | 1.09 | -0.02 | 0.977 | 1.07 | | | LTE 4 | QPSK20M | Top Side | 5 | 20300 | w/o | 50 | 25 | 23.0 | 22.72 | 1.07 | 0.01 | 0.999 | 1.07 | | | LTE 4 | QPSK20M | Top Side | 5 | 20050 | w/o | 100 | 0 | 23.0 | 22.60 | 1.10 | 0.03 | 0.969 | 1.06 | | | LTE 4 | QPSK20M | Top Side | 5 | 20175 | w/o | 1 | 50 | 24.0 | 23.98 | 1.00 | 0.01 | 1.41 | 1.42 | #### Note: - 1. According to KDB 941225, LTE SAR testing for remaining RB offset configurations and required test channels is not required when the reported SAR of highest power 1RB configuration is less than 0.8 W/kg. - 2. According to KDB 941225, LTE SAR testing for remaining RB offset configurations and required test channels is not required when the reported SAR of highest power 50% RB configuration is less than 0.8 W/kg. - 3. According to KDB 941225, LTE SAR testing for 100% RB is not required when the maximum power of 100% RB is less than the maximum power of 1RB and 50% RB, and the highest reported SAR for 1RB and 50% RB is less than 0.8 W/kg. - 4. According to KDB 941225, LTE SAR testing for 16QAM is not required when the maximum power of 16QAM is less 1/2 dB higher than QPSK, and the highest reported SAR of QPSK is less than 1.45 W/kg. - According to KDB 941225, LTE SAR testing for smaller channel bandwidth is not required when the maximum power of smaller channel bandwidth is less 1/2 dB higher than largest channel bandwidth, and the highest reported SAR of largest channel bandwidth is less than 1.45 W/kg. Report Format Version 5.0.0 Page No. : 24 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 ## **FCC SAR Test Report** | Plot
No. | Band | Mode | Test
Position | Separation
Distance
(mm) | Ch. | RB# | RB
Offset | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Scaling
Factor | Power
Drift
(dB) | Measured
SAR-1g
(W/kg) | Scaled
SAR-1g
(W/kg) | |-------------|--------|---------|------------------|--------------------------------|-------|-----|--------------|-----------------------------------|---|-------------------|------------------------|------------------------------|----------------------------| | 02 | LTE 13 | QPSK10M | Rear Face | 0 | 23230 | 1 | 24 | 24.0 | 22.62 | 1.37 | -0.18 | 0.975 | 1.34 | | | LTE 13 | QPSK10M | Left Side | 0 | 23230 | 1 | 24 | 24.0 | 22.62 | 1.37 | 0.16 | 0.611 | 0.84 | | | LTE 13 | QPSK10M | Right Side | 0 | 23230 | 1 | 24 | 24.0 | 22.62 | 1.37 | -0.06 | 0.167 | 0.23 | | | LTE 13 | QPSK10M | Top Side | 0 | 23230 | 1 | 24 | 24.0 | 22.62 | 1.37 | 0.05 | 0.73 | 1.00 | | | LTE 13 | QPSK10M | Rear Face | 0 | 23230 | 1 | 0 | 24.0 | 22.49 | 1.42 | -0.08 | 0.913 | 1.29 | | | LTE 13 | QPSK10M | Rear Face | 0 | 23230 | 1 | 49 | 24.0 | 22.13 | 1.54 | -0.12 | 0.872 | 1.34 | | | LTE 13 | QPSK10M | Left Side | 0 | 23230 | 1 | 0 | 24.0 | 22.49 | 1.42 | 0.08 | 0.566 | 0.80 | | | LTE 13 | QPSK10M | Left Side | 0 | 23230 | 1 | 49 | 24.0 | 22.13 | 1.54 | -0.15 | 0.545 | 0.84 | | | LTE 13 | QPSK10M | Top Side | 0 | 23230 | 1 | 0 | 24.0 | 22.49 | 1.42 | -0.04 | 0.669 | 0.95 | | | LTE 13 | QPSK10M | Top Side | 0 | 23230 | 1 | 49 | 24.0 | 22.13 | 1.54 | 0.06 | 0.642 | 0.99 | | | LTE 13 | QPSK10M | Rear Face | 0 | 23230 | 25 | 25 | 23.0 | 21.33 | 1.47 | -0.03 | 0.559 | 0.82 | | | LTE 13 | QPSK10M | Left Side | 0 | 23230 | 25 | 25 | 23.0 | 21.33 | 1.47 | -0.07 | 0.538 | 0.79 | | | LTE 13 | QPSK10M | Right Side | 0 | 23230 | 25 | 25 | 23.0 | 21.33 | 1.47 | 0.03 | 0.175 | 0.26 | | | LTE 13 | QPSK10M | Top Side | 0 | 23230 | 25 | 25 | 23.0 | 21.33 | 1.47 | 0.07 | 0.691 | 1.01 | | | LTE 13 | QPSK10M | Rear Face | 0 | 23230 | 25 | 0 | 23.0 | 21.14 | 1.53 | -0.08 | 0.509 | 0.78 | | | LTE 13 | QPSK10M | Rear Face | 0 | 23230 | 25 | 12 | 23.0 | 21.30 | 1.48 | -0.06 | 0.498 | 0.74 | | | LTE 13 | QPSK10M | Top Side | 0 | 23230 | 25 | 0 | 23.0 | 21.14 | 1.53 | 0.10 | 0.622 | 0.95 | | | LTE 13 | QPSK10M | Top Side | 0 | 23230 | 25 | 12 | 23.0 | 21.30 | 1.48 | -0.05 | 0.605 | 0.90 | | | LTE 13 | QPSK10M | Rear Face | 0 | 23230 | 50 | 0 | 23.0 | 21.47 | 1.42 | 0.09 | 0.876 | 1.25 | | | LTE 13 | QPSK10M | Rear Face | 0 | 23230 | 1 | 24 | 24.0 | 22.62 | 1.37 | -0.12 | 0.941 | 1.29 | ### Note: - 1. According to KDB 941225, LTE SAR testing for remaining RB offset configurations and required test channels is not required when the reported SAR of highest power 1RB configuration is less than 0.8 W/kg. - 2. According to KDB 941225, LTE SAR testing for remaining RB offset configurations and required test channels is not required when the reported SAR of highest power 50% RB configuration is less than 0.8 W/kg. - 3. According to KDB 941225, LTE SAR testing for 100% RB is not required when the maximum power of 100% RB is less than the maximum power of 1RB and 50% RB, and the highest reported SAR for 1RB and 50% RB is less than 0.8 W/kg. - 4. According to KDB 941225, LTE SAR testing for 16QAM is not required when the maximum power of 16QAM is less 1/2 dB higher than QPSK, and the highest reported SAR of QPSK is less than 1.45 W/kg. - According to KDB 941225, LTE SAR testing for smaller channel bandwidth is not required when the maximum power of smaller channel bandwidth is less 1/2 dB higher than largest channel bandwidth, and the highest reported SAR of largest channel bandwidth is less than 1.45 W/kg. | Plot
No. | Band | Test
Position | Separation
Distance
(mm) | Ch. | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Scaling
Factor | Power
Drift
(dB) | Measured
SAR-1g
(W/kg) | Scaled
SAR-1g
(W/kg) | |-------------|-----------|------------------|--------------------------------|-----|-----------------------------------|---|-------------------|------------------------|------------------------------|----------------------------| | 03 | 802.11b | Rear Face | 0 | 6 | 15.0 | 14.95 | 1.01 | 0.00 | 0.29 | <mark>0.29</mark> | | | 802.11b | Right Side | 0 | 6 | 15.0 | 14.95 | 1.01 | 0.13 | 0.069 | 0.07 | | | 802.11b | Top Side | 0 | 6 | 15.0 | 14.95 | 1.01 | 0.00 | 0.000 | 0.00 | | | 802.11b | Bottom Side | 0 | 6 | 15.0 | 14.95 | 1.01 | 0.15 | 0.071 | 0.07 | | | Bluetooth | Rear Face | 0 | 0 | 9.5 | 9.20 | 1.07 | 0.00 | 0.000 | 0.00 | | | Bluetooth | Top Side | 0 | 0 | 9.5 | 9.20 | 1.07 | 0.00 | 0.000 | 0.00 | #### Note: - 1. According to KDB 248227, when the extrapolated maximum peak SAR for the maximum output power channel is <= 1.6 W/kg and the 1g averaged SAR is <= 0.8 W/kg, WLAN SAR testing for other channels is not required. - $2. \ \ SAR \ testing \ for \ 802.11g/n \ is \ not \ required \ when \ its \ maximum \ power \ is \ less \ than \ 1/4 \ dB \ higher \ than \ 802.11b.$ Report Format Version 5.0.0 Page No. : 25 of 32 Report No. : SA140331C06 Issued Date : May 21, 2014 ### 4.7.2 SAR Measurement Variability According to KDB 865664 D01 v01r01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. ### SAR repeated measurement
procedure: - 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required. - 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once. - 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement. - 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement. | Band | Mode | Test
Position | Ch. | Original
Measured
SAR-1g
(W/kg) | 1st
Repeated
SAR-1g
(W/kg) | L/S
Ratio | 2nd
Repeated
SAR-1g
(W/kg) | L/S
Ratio | 3rd
Repeated
SAR-1g
(W/kg) | L/S
Ratio | |--------|---------|------------------|-------|--|-------------------------------------|--------------|-------------------------------------|--------------|-------------------------------------|--------------| | LTE 4 | QPSK20M | Top Side | 20175 | 1.42 | 1.41 | 1.01 | N/A | N/A | N/A | N/A | | LTE 13 | QPSK10M | Rear Face | 23230 | 0.975 | 0.941 | 1.04 | N/A | N/A | N/A | N/A | Report Format Version 5.0.0 Page No. : 26 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 ### 4.7.3 Simultaneous Multi-band Transmission Evaluation ### <Estimated SAR Calculation> According to KDB 447498 D01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR was estimated according to following formula to result in substantially conservative SAR values of <= 0.4 W/kg to determine simultaneous transmission SAR test exclusion. $$\text{Estimated SAR} = \frac{\text{Max. Tune up Power}_{(mW)}}{\text{Min. Test Separation Distance}_{(mm)}} \times \frac{\sqrt{f_{(GHz)}}}{7.5}$$ If the minimum test separation distance is < 5 mm, a distance of 5 mm is used for estimated SAR calculation. When the test separation distance is > 50 mm, the 0.4 W/kg is used for SAR-1g. | Mode / Band | Frequency
(GHz) | Max. Tune-up
Power
(dBm) | Test
Position | Separation
Distance
(mm) | Estimated
SAR
(W/kg) | |-------------|--------------------|--------------------------------|------------------|--------------------------------|----------------------------| | LTE 4 | 1752.5 | 24.0 | Body | 0 | 0.40 | | LTE 13 | 782 | 24.0 | Body | 0 | 0.40 | | WLAN (DTS) | 2462 | 15.0 | Body | 0 | 0.40 | | BT (DSS) | 2.48 | 9.5 | Body | 0 | 0.37 | #### Note: - 1. The separation distance is determined from the outer housing of the EUT to the user. - 2. When standalone SAR testing is not required, an estimated SAR can be applied to determine simultaneous transmission SAR test exclusion. Report Format Version 5.0.0 Page No. : 27 of 32 Report No. : SA140331C06 Issued Date : May 21, 2014 ## <SAR Summation Analysis> Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR. | No. | Conditions
(SAR1 + SAR2) | Exposure
Condition | Test
Position | Max.
SAR1 | Max.
SAR2 | SAR
Summation | SPLSR
Analysis | |-----|-----------------------------|-----------------------------|------------------|--------------|--------------|------------------------------|------------------------------| | | | Rear Face | 0.79 | 0.29 | 1.08 | Σ SAR < 1.6,
Not required | | | | LTE 4 | Body | Top Side | 1.43 | 0.00 | 1.43 | Σ SAR < 1.6,
Not required | | 1 | | | Bottom Side | 0.40 | 0.07 | 0.47 | Σ SAR < 1.6,
Not required | | | WLAN (DTS) | | Left Side | 0.23 | 0.40 | 0.63 | Σ SAR < 1.6,
Not required | | | | | Right Side | 0.42 | 0.07 | 0.49 | Σ SAR < 1.6,
Not required | | | | | Rear Face | 1.34 | 0.29 | 1.63 | Analyzed
as below | | | | Body | Top Side | 1.01 | 0.00 | 1.01 | Σ SAR < 1.6,
Not required | | 2 | LTE 13
+ | | Bottom Side | 0.40 | 0.07 | 0.47 | Σ SAR < 1.6,
Not required | | | WLAN (DTS) | | Left Side | 0.84 | 0.40 | 1.24 | Σ SAR < 1.6,
Not required | | | | | Right Side | 0.26 | 0.07 | 0.33 | Σ SAR < 1.6,
Not required | | | | LTE 4
+ Body
BT (DSS) | Rear Face | 0.79 | 0.00 | 0.79 | Σ SAR < 1.6,
Not required | | | 4 | | Top Side | 1.43 | 0.00 | 1.43 | Σ SAR < 1.6,
Not required | | 3 | | | Bottom Side | 0.40 | 0.37 | 0.77 | Σ SAR < 1.6,
Not required | | | BT (DSS) | | Left Side | 0.23 | 0.37 | 0.60 | Σ SAR < 1.6,
Not required | | | | | Right Side | 0.42 | 0.37 | 0.79 | Σ SAR < 1.6,
Not required | | | | | Rear Face | 1.34 | 0.00 | 1.34 | Σ SAR < 1.6,
Not required | | | 175.40 | | Top Side | 1.01 | 0.00 | 1.01 | Σ SAR < 1.6,
Not required | | 4 | LTE 13
4 +
BT (DSS) | Body Bot | Bottom Side | 0.40 | 0.37 | 0.77 | Σ SAR < 1.6,
Not required | | | | | Left Side | 0.84 | 0.37 | 1.21 | Σ SAR < 1.6,
Not required | | | | | Right Side | 0.26 | 0.37 | 0.63 | Σ SAR < 1.6,
Not required | Report Format Version 5.0.0 Page No. : 28 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 ### <SAR to Peak Location Separation Ratio Analysis> The simultaneous transmitting antennas in each operating mode and exposure condition combination are considered one pair at a time to determine the SPLSR. When SAR is measured for both antennas in the pair, the peak location separation distance is computed by the following formula. Peak Location Separation Distance = $$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$ Where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the area or zoom scans. When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna. Due to curvatures on the SAM phantom, when SAR is estimated for one of the antennas in an antenna pair, the measured peak SAR location will be translated onto the test device to determine the peak location separation for the antenna pair. The SPLSR is determined by the following formula. $$SPLSR = \frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$$ Where SAR_1 and SAR_2 are the highest reported or estimated SAR for each antenna in the pair, and R_i is the separation distance between the peak SAR locations for the antenna pair in mm. When the SPLSR is <= 0.04, the simultaneous transmission SAR is not required. Otherwise, the enlarged zoom scan and volume scan post-processing procedures will be performed. | | | | | Coordinates | | | Peak | | | |--------------------|------------------|------------------------|------|-------------|-------|--|-------|--|---------------| | Conditions ' | Test
Position | SAR
Value
(W/kg) | x | у | z | Location
Separatio
n Distance
(R _i , mm) | SPLSR | Simultaneous
Transmission
SAR Test | | | LTE B13
Ch23230 | Dodu | Rear Face | 1.34 | 0.10 | 9.15 | 0.36 | 404.0 | 0.011 | SPLSR < 0.04, | | 802.11b
Ch6 | Body | Rear Face | 0.29 | -4.64 | -8.40 | 0.02 | 181.8 | 0.011 | Not required | | 802.11b | | | | | | | | | | Test Engineer: Enzo Chang, and Ulysses Liu Report Format Version 5.0.0 Page No. : 29 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 5. Calibration of Test Equipment | Equipment | Manufacturer | Model | SN | Cal. Date | Cal. Interval | |------------------------------|--------------|-------------|------------|---------------|---------------| | System Validation Dipole | SPEAG | D750V3 | 1013 | Apr. 25, 2013 | 2 Years | | System Validation Dipole | SPEAG | D1750V2 | 1055 | Aug. 27, 2013 | 2 Years | | System Validation Dipole | SPEAG | D2450V2 716 | | Jul. 31, 2013 | 2 Years | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 3590 | Mar. 04, 2014 | 1 Year | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 3971 | Mar. 31, 2014 | 1 Year | | Data Acquisition Electronics | SPEAG | DAE3 | 510 | Sep. 25, 2013 | 1 Year | | Data Acquisition Electronics | SPEAG | DAE4 | 1431 | Mar. 24, 2014 | 1 Year | | Radio Communication Analyzer | Anritsu | MT8802C | 6201010285 | Aug. 06, 2013 | 1 Year | | ENA Series Network Analyzer | Agilent | E5071C | MY46214281 | Jun. 10, 2013 | 1 Year | | EXA Spectrum Analyzer | Agilent | N9010A | MY52100136 | Jun. 26, 2013 | 1 Year | | MXG Analong Signal Generator | Agilent | N5181A | MY50143868 | Jun. 06, 2013 | 1 Year | | Power Meter | Anritsu | ML2495A | 1218009 | Jun. 11, 2013 | 1 Year | | Power Sensor | Anritsu | MA2411B | 1207252 | Jun. 11, 2013 | 1 Year | | Thermometer | YFE | YF-160A | 110600361 | Feb. 27, 2014 | 1 Year | Report Format Version 5.0.0 Page No. : 30 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 6. Measurement Uncertainty | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Standard
Uncertainty
(1g) | Vi | | |------------------------------|------------------------------|-----------------------------|---------|------------|---------------------------------|----------|--| | Measurement System | | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | ± 1.9 % | ∞ | | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | ± 3.9 % | ∞ | | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | | Linearity | 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | | Readout
Electronics | 0.6 | Normal | 1 | 1 | ± 0.6 % | ∞ | | | Response Time | 0.0 | Rectangular | √3 | 1 | ± 0.0 % | ∞ | | | Integration Time | 1.7 | Rectangular | √3 | 1 | ± 1.0 % | ∞ | | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | | Probe Positioner | 0.5 | Rectangular | √3 | 1 | ± 0.3 % | ∞ | | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | | Max. SAR Eval. | 2.3 | Rectangular | √3 | 1 | ± 1.3 % | ∞ | | | Test Sample Related | | | | | | | | | Device Positioning | 3.9 | Normal | 1 | 1 | ± 3.9 % | 31 | | | Device Holder | 2.7 | Normal | 1 | 1 | ± 2.7 % | 19 | | | Power Drift | 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | ± 1.8 % | ∞ | | | Liquid Conductivity (Meas.) | 5.0 | Normal | 1 | 0.64 | ± 3.2 % | 29 | | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | ± 1.7 % | ∞ | | | Liquid Permittivity (Meas.) | 5.0 | Normal | 1 | 0.6 | ± 3.0 % | 29 | | | Combined Standard Uncertain | ± 11.7 % | | | | | | | | Expanded Uncertainty (K=2) | Expanded Uncertainty (K=2) | | | | | | | Uncertainty budget for frequency range 300 MHz to 3 GHz Report Format Version 5.0.0 Page No. : 31 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # 7. Information on the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: ### Taiwan HwaYa EMC/RF/Safety/Telecom Lab: Add: No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil., Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-318-3232 Fax: 886-3-327-0892 #### Taiwan LinKo EMC/RF Lab: Add: No. 47, 14th Ling, Chia Pau Vil., Linkou Dist., New Taipei City 244, Taiwan, R.O.C. Tel: 886-2-2605-2180 Fax: 886-2-2605-1924 ### Taiwan HsinChu EMC/RF Lab: Add: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Vil., Chiung Lin Township, Hsinchu County 307, Taiwan, R.O.C. Tel: 886-3-593-5343 Fax: 886-3-593-5342 Email: service.adt@tw.bureauveritas.com Web Site: www.adt.com.tw The road map of all our labs can be found in our web site also. ---END--- Report Format Version 5.0.0 Page No. : 32 of 32 Report No.: SA140331C06 Issued Date : May 21, 2014 # Appendix A. SAR Plots of System Verification The plots for system verification with largest deviation for each SAR system combination are shown as follows. Report Format Version 5.0.0 Issued Date : May 21, 2014 Report No.: SA140331C06 ## **System Check_B750_140424** ## **DUT: Dipole 750 MHz; Type: D750V3; SN: 1013** Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: B750_0424 Medium parameters used: f = 750 MHz; $\sigma = 0.966$ S/m; $\varepsilon_r = 55.257$; $\rho = 1000$ Date: 2014/04/24 kg/m³ Ambient Temperature: 21.4°C; Liquid Temperature: 20.4°C ## DASY5 Configuration: - Probe: EX3DV4 SN3590; ConvF(10.39, 10.39, 10.39); Calibrated: 2014/03/04; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE3 Sn510; Calibrated: 2013/09/25 - Phantom: ELI v4.0 Left; Type: QDOVA001BB; Serial: TP:1039 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.85 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.210 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 3.37 W/kg SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.56 W/kgMaximum value of SAR (measured) = 2.90 W/kg # System Check_B1750_140509 ## **DUT: Dipole 1750 MHz; Type: D1750V2; SN: 1055** Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: B1750_0509 Medium parameters used: f = 1750 MHz; $\sigma = 1.499$ S/m; $\varepsilon_r = 52.347$; $\rho = 1.499$ Medium: $\varepsilon_r = 52.347$; Date: 2014/05/09 1000 kg/m^3 Ambient Temperature : 21.5 °C; Liquid Temperature : 20.5 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3971; ConvF(7.93, 7.93, 7.93); Calibrated: 2014/03/31; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1431; Calibrated: 2014/03/24 - Phantom: SAM Phantom Front; Type: SAM V5.0; Serial: TP 1822 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.0 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 92.306 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 9.31 W/kg; SAR(10 g) = 5 W/kg Maximum value of SAR (measured) = 13.0 W/kg Test Laboratory: Bureau Veritas ADT SAR/HAC Testing Lab # **System Check_B2450_140423** ## **DUT: Dipole 2450 MHz; Type: D2450V2; SN: 716** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: B2450_0423 Medium parameters used: f = 2450 MHz; $\sigma = 1.972$ S/m; $\epsilon_r = 51.262$; $\rho = 1.972$ S/m; $\epsilon_r = 51.262$; Date: 2014/04/23 1000 kg/m^3 Ambient Temperature: 21.4 °C; Liquid Temperature: 20.5 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3590; ConvF(7.72, 7.72, 7.72); Calibrated: 2014/03/04; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE3 Sn510; Calibrated: 2013/09/25 - Phantom: ELI 4.0; Type: QDOVA001BA; Serial: TP:1206 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.3 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.2 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.97 W/kgMaximum value of SAR (measured) = 20.5 W/kg # Appendix B. SAR Plots of SAR Measurement The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows. Report Format Version 5.0.0 Issued Date : May 21, 2014 Report No. : SA140331C06 # P01 LTE 4_QPSK_20M_Top Side_5mm_Ch20175_w/o Pw Reduction_1RB_OS50 Date: 2014/05/09 #### **DUT: 140331C06** Communication System: LTE; Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: B1750_0509 Medium parameters used: f = 1732.5 MHz; σ = 1.479 S/m; ϵ_r = 52.449; ρ = 1000 kg/m^3 Ambient Temperature: 21.5 °C; Liquid Temperature: 20.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3971; ConvF(7.93, 7.93, 7.93); Calibrated: 2014/03/31; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1431; Calibrated: 2014/03/24 - Phantom: SAM Phantom Front; Type: SAM V5.0; Serial: TP 1822 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) - Area Scan (101x101x1): Interpolated grid: dx=0.400 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.89 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.486 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 2.29 W/kg SAR(1 g) = 1.42 W/kg; SAR(10 g) = 0.874 W/kg Maximum value of SAR (measured) = 1.88 W/kg # P02 LTE 13_QPSK_10M_Rear Face_0cm_Ch23230_1RB_OS24 #### **DUT: 140331C06** Communication System: LTE; Frequency: 782.5 MHz; Duty Cycle: 1:1 Medium: B750_0424 Medium parameters used: f = 782.5 MHz; σ = 0.992 S/m; $ε_r = 54.93$; ρ = 1000 Date: 2014/04/24 kg/m^3 Ambient Temperature: 21.4°C; Liquid Temperature: 20.4°C #### DASY5 Configuration: - Probe: EX3DV4 SN3590; ConvF(10.39, 10.39, 10.39); Calibrated: 2014/03/04; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE3 Sn510; Calibrated: 2013/09/25 - Phantom: ELI v4.0 Left; Type: QDOVA001BB; Serial: TP:1039 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) - Area Scan (101x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.65 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.661 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 2.04 W/kg SAR(1 g) = 0.975 W/kg; SAR(10 g) = 0.503 W/kg Maximum value of SAR (measured) = 1.55 W/kg # P03 802.11b_Rear Face_0cm_Ch6 #### **DUT: 140331C06** Communication System: WLAN 2.4G; Frequency: 2437 MHz; Duty Cycle: 1:1.53 Medium: B2450_0423 Medium parameters used: f = 2437 MHz; $\sigma = 1.951$ S/m; $\varepsilon_r = 51.273$; $\rho =$ Date: 2014/04/23 1000 kg/m^3 Ambient Temperature: 21.4 °C; Liquid Temperature: 20.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3590; ConvF(7.72, 7.72, 7.72); Calibrated: 2014/03/04; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE3 Sn510; Calibrated: 2013/09/25 - Phantom: ELI 4.0; Type: QDOVA001BA; Serial: TP:1206 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) - Area Scan (141x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.507 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.823 W/kg SAR(1 g) = 0.290 W/kg; SAR(10 g) = 0.143 W/kg Maximum value of SAR (measured) = 0.538 W/kg # Appendix C. Calibration Certificate for Probe and Dipole The SPEAG calibration certificates are shown as follows. Report Format Version 5.0.0 Issued Date : May 21, 2014 Report No. : SA140331C06 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by
the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Accreditation No.: SCS 108 S C Certificate No: D750V3-1013_Apr13 # **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1013 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: April 25, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 909 | 11-Sep-12 (No. DAE4-909_Sep12) | Sep-13 | | Canandani Standarda | | Cheek Date (in house) | Cabadidad Obsali | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | | | | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | V2- | | | | | | | Approved by: | Katja Pokovic | Technical Manager | Le Re | | | | | | | | | | | Issued: April 26, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1013_Apr13 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1013_Apr13 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.6 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | To to to writing parameters and save and the save appears | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.0 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | - | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.66 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.45 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.66 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.1 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.25 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.81 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.48 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.82 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1013_Apr13 Page 3 of 8 #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.5 Ω - 0.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.3 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.8 Ω - 2.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.3 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.036 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 22, 2010 | Certificate No: D750V3-1013_Apr13 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 25.04.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1013 Communication System: UID 0 - CW, Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.28, 6.28, 6.28); Calibrated: 28.12,2012; • Sensor-Surface: 3mm
(Mechanical Surface Detection) • Electronics: DAE4 Sn909; Calibrated: 11.09.2012 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.217 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.44 W/kg SAR(1 g) = 2.23 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.60 W/kg 0 dB = 2.60 W/kg = 4.15 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 25.04.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1013 Communication System: UID 0 - CW Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 54.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.11, 6.11, 6.11); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn909; Calibrated: 11.09.2012 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.330 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.32 W/kg SAR(1 g) = 2.25 W/kg; SAR(10 g) = 1.48 W/kg Maximum value of SAR (measured) = 2.62 W/kg 0 dB = 2.62 W/kg = 4.18 dBW/kg Certificate No: D750V3-1013_Apr13 Page 7 of 8 # Impedance Measurement Plot for Body TSL Certificate No: D750V3-1013_Apr13 # **Annual Confirmation of SAR Reference Dipole** **Model:** D750V3 **S/N:** 1013 **Measured Date:** Apr. 24, 2014 | Frequency
(MHz) | Туре | Item | Previous
Measurement | Annual
Check | Deviation | Accepted Tolerance | Note | |--------------------|----------------------------|------------------------|-------------------------|-----------------|-----------|--------------------|------| | | | Return
Loss | -29.272 | -30.125 | 2.9 % | ±20 % | PASS | | 750 | Head
TSL | Real
Impedance | 53.498 | 52.443 | -1.055 | ±5 Ω | PASS | | | | Imaginary
Impedance | -0.66211 | -1.9648 | -1.30269 | ±5 Ω | PASS | | | | Return
Loss | -30.343 | -29.365 | -3.2 % | ±20 % | PASS | | 750 | Body Real
TSL Impedance | 48.809 | 48.898 | 0.089 | ±5 Ω | PASS | | | | | Imaginary
Impedance | -2.7578 | -3.4515 | -0.6937 | ±5 Ω | PASS | 750 MHz, Head TSL 750 MHz, Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Accreditation No.: SCS 108 S C S Certificate No: **D1750V2-1055_Aug13** # **CALIBRATION CERTIFICATE** Object D1750V2 - SN: 1055 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: Primary Standards August 27, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Deran El-Daneey | | Approved by: | Katja Pokovic | Technical Manager | aluc | | | | | 100 | Cal Data (Cartificate No.) Issued: August 27, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1055_Aug13 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.32 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.4 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.4 ± 6 % | 1.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | (2222 | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.30 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 36.9 W/kg ± 17.0 %
(k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.01 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.9 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1055_Aug13 Page 3 of 8 #### **Appendix** ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.7 Ω + 2.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 32.0 dB | | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.7 Ω + 2.0 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 27.9 dB | | | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.223 ns | |----------------------------------|-----------| | | 1,123 113 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 19, 2010 | Certificate No: D1750V2-1055_Aug13 # **DASY5 Validation Report for Head TSL** Date: 27.08.2013 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1055 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.32$ S/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### **DASY52 Configuration:** • Probe: ES3DV3 - SN3205; ConvF(5.18, 5.18, 5.18); Calibrated: 28.12.2012; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 25.04.2013 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.937 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 8.96 W/kg; SAR(10 g) = 4.79 W/kg Maximum value of SAR (measured) = 10.9 W/kg 0 dB = 10.9 W/kg = 10.37 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 27.08.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1055 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.49$ S/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.83, 4.83, 4.83); Calibrated: 28.12.2012; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.937 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 9.3 W/kg; SAR(10 g) = 5.01 W/kg Maximum value of SAR (measured) = 11.6 W/kg 0 dB = 11.6 W/kg = 10.64 dBW/kg Certificate No: D1750V2-1055_Aug13 Page 7 of 8 # Impedance Measurement Plot for Body TSL # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Accreditation No.: SCS 108 S C S Certificate No: D2450V2-716_Jul13 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 716 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 31, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Wrom El Doore | | Approved by: | Katja Pokovic | Technical Manager | 2011 | Issued: July 31, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-716_Jul13 Page 1 of 8 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-716_Jul13 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The
following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.21 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.5 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.93 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.4 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-716_Jul13 Page 3 of 8 #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.5 Ω + 1.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.8 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.8 Ω + 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.3 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.142 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 10, 2002 | Certificate No: D2450V2-716_Jul13 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 31.07.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 716 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ S/m}$; $\varepsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 25.04.2013 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.443 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.21 W/kg Maximum value of SAR (measured) = 17.2 W/kg 0 dB = 17.2 W/kg = 12.36 dBW/kg Certificate No: D2450V2-716_Jul13 # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 31.07.2013 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 716 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ S/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### **DASY52** Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.443 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.93 W/kg Maximum value of SAR (measured) = 16.9 W/kg 0 dB = 16.9 W/kg = 12.28 dBW/kg # Impedance Measurement Plot for Body TSL ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V.ADT** (Auden) Certificate No: EX3-3590_Mar14 Accreditation No.: SCS 108 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3590 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: March 4, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------------------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No. 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735) | Apr-14 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738) | Apr-14 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 13-Dec-13 (No. DAE4-660_D | | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Calibrated by: Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 4, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005 #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22
waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3590_Mar14 Page 2 of 11 EX3DV4 - SN:3590 March 4, 2014 # Probe EX3DV4 SN:3590 Manufactured: March 23, 2009 Calibrated: Certificate No: EX3-3590_Mar14 March 4, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) EX3DV4- SN:3590 March 4, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3590 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.50 | 0.47 | 0.50 | ± 10.1 % | | DCP (mV) ^B | 94.6 | 96.4 | 95.9 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | Α | В | С | D | VR | Unc ^E | |-----|---------------------------|---|-----|-------|-----|------|-------|------------------| | | | | dB | dB√μV | | dB | mV | (k=2) | | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 146.4 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 168.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 160.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3590 March 4, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3590 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.89 | 10.89 | 10.89 | 0.25 | 1.15 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.52 | 10.52 | 10.52 | 0.62 | 0.67 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.53 | 10.53 | 10.53 | 0.61 | 0.63 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.12 | 9.12 | 9.12 | 0.80 | 0.50 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.96 | 8.96 | 8.96 | 0.76 | 0.55 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.92 | 8.92 | 8.92 | 0.80 | 0.56 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.70 | 8.70 | 8.70 | 0.43 | 0.74 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.61 | 8.61 | 8.61 | 0.39 | 0.79 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.30 | 8.30 | 8.30 | 0.35 | 0.82 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.95 | 7.95 | 7.95 | 0.53 | 0.68 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.76 | 7.76 | 7.76 | 0.49 | 0.73 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.88 | 7.88 | 7.88 | 0.88 | 0.57 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.57 | 5.57 | 5.57 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.33 | 5.33 | 5.33 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 5.06 | 5.06 | 5.06 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.94 | 4.94 | 4.94 | 0.35 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.89 | 4.89 | 4.89 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:3590 March 4, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3590 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.39 | 10.39 | 10.39 | 0.43 | 0.81 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.31 | 10.31 | 10.31 | 0.77 | 0.60 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.13 | 10.13 | 10.13 | 0.77 | 0.60 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.83 | 8.83 | 8.83 | 0.34 | 0.94 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 9.04 | 9.04 | 9.04 | 0.40 | 0.88 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.35 | 8.35 | 8.35 | 0.52 | 0.76 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.11 | 8.11 | 8.11 | 0.37 | 0.86 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 8.24 | 8.24 | 8.24 | 0.36 | 0.85 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.96 | 7.96 | 7.96 | 0.59 | 0.65 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.72 | 7.72 | 7.72 | 0.80 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.49 | 7.49 | 7.49 | 0.80 | 0.50 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 7.51 | 7.51 | 7.51 | 0.68 | 0.74 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 5.16 | 5.16 | 5.16 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.92 | 4.92 | 4.92 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.64 | 4.64 | 4.64 | 0.40 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.62 | 4.62 | 4.62 | 0.35 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.74 | 4.74 | 4.74 | 0.45 | 1.90 | ± 13.1 % | ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Gain Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. March 4, 2014 EX3DV4-SN:3590 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3590_Mar14 EX3DV4- SN:3590 March 4, 2014 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) March 4, 2014 EX3DV4-SN:3590 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3590 March 4, 2014 ## **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid**
Error (ϕ, ϑ) , f = 900 MHz March 4, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3590 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -142.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Certificate No: EX3-3971 Mar14 Accreditation No.: SCS 108 S C S ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3971 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: March 31, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No. 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735) | Apr-14 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738) | Apr-14 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Calibrated by: Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 1, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3971_Mar14 Page 2 of 11 EX3DV4 - SN:3971 March 31, 2014 # Probe EX3DV4 SN:3971 Manufactured: December 30, 2013 Calibrated: March 31, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) EX3DV4-SN:3971 March 31, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3971 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.41 | 0.53 | 0.50 | ± 10.1 % | | DCP (mV) ^B | 99.1 | 98.1 | 98.6 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | Α | В | С | D | VR | Unc [⊨] | |-----|---------------------------|---|-----|-------|-----|------|-------|------------------| | | | | dB | dB√μV | | dB | mV | (k=2) | | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 140.6 | ±3.3 % | | | | Y | 0.0 | 0.0 | 1.0 | | 143.4 | | | 9 | | Z | 0.0 | 0.0 | 1.0 | | 149.6 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:3971 March 31, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3971 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.30 | 10.30 | 10.30 | 0.37 | 0.95 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.00 | 10.00 | 10.00 | 0.45 | 0.79 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.66 | 9.66 | 9.66 | 0.23 | 1.21 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.82 | 9.82 | 9.82 | 0.34 | 0.93 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.84 | 8.84 | 8.84 | 0.27 | 1.12 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.44 | 8.44 | 8.44 | 0.80 | 0.50 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.40 | 8.40 | 8.40 | 0.32 | 0.91 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.21 | 8.21 | 8.21 | 0.56 | 0.71 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.19 | 8.19 | 8.19 | 0.31 | 0.91 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.19 | 8.19 | 8.19 | 0.55 | 0.66 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.77 | 7.77 | 7.77 | 0.61 | 0.64 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.43 | 7.43 | 7.43 | 0.39 | 0.83 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.15 | 7.15 | 7.15 | 0.37 | 0.87 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.87 | 6.87 | 6.87 | 0.50 | 0.93 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.22 | 5.22 | 5.22 | 0.30 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.81 | 4.81 | 4.81 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 |
4.96 | 4.93 | 4.93 | 4.93 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.55 | 4.55 | 4.55 | 0.50 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.53 | 4.53 | 4.53 | 0.50 | 1.80 | ± 13.1 % | ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: EX3-3971_Mar14 F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is a larger than half the probe always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3971 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.91 | 9.91 | 9.91 | 0.49 | 0.81 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.74 | 9.74 | 9.74 | 0.56 | 0.73 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.53 | 9.53 | 9.53 | 0.67 | 0.67 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.25 | 8.25 | 8.25 | 0.26 | 1.20 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 8.36 | 8.36 | 8.36 | 0.30 | 1.01 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.93 | 7.93 | 7.93 | 0.45 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.68 | 7.68 | 7.68 | 0.37 | 0.90 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.80 | 7.80 | 7.80 | 0.37 | 0.89 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.51 | 7.51 | 7.51 | 0.68 | 0.65 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.29 | 7.29 | 7.29 | 0.80 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.99 | 6.99 | 6.99 | 0.80 | 0.50 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.66 | 6.66 | 6.66 | 0.27 | 1.34 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.59 | 4.59 | 4.59 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.19 | 4.19 | 4.19 | 0.50 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.14 | 4.14 | 4.14 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.87 | 3.87 | 3.87 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.12 | 4.12 | 4.12 | 0.50 | 1.90 | ± 13.1 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4-- SN:3971 March 31, 2014 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ ψ , ψ f=1800 MHz,R22 Tot Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4-SN:3971 March 31, 2014 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4-SN:3971 ## **Conversion Factor Assessment** **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz -1.0 -0.8 -0.6 -0.4 -0.2 0.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) 0.2 0.4 0.6 8.0 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3971 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -105.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm |