

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

FCC REPORT

Report Reference No.....: TRE1706011201 R/C......: 39530

FCC ID.....: ZSW-30-045

Applicant's name.....: b mobile HK Limited

Address...... Flat 18; 14/F Block 1; Golden Industrial Building;16-26 KwaiTak

Street; Kwai Chung; New Territories; Hong Kong.

Manufacturer..... b mobile HK Limited

Street; Kwai Chung; New Territories; Hong Kong.

Test item description: Mobile Phone

Trade Mark Bmobile

Model/Type reference..... AX1070

Listed Model(s) -

Standard: FCC Part 22: PUBLIC MOBILE SERVICES

FCC Part 24:PERSONAL COMMUNICATIONS SERVICES

Candy Liu,

Date of receipt of test sample............ Jun.13, 2017

Date of testing...... Jun,14, 2017- Jun.30, 2017

Result...... Pass

Compiled by

(position+printedname+signature)...: File administrators Candy Liu

Supervised by

(position+printedname+signature)....: Project Engineer Lion Cai

Approved by

(position+printedname+signature)....: Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No.: TRE1706011201 Page: 2 of 60 Issued: 2017-07-01

Contents

<u>1.</u>	IEST STANDARDS AND REPORT VERSION	3
1.1.	Applicable Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
		_
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
		_
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Equipments Used during the Test	8
4.4.	Environmental conditions	9
4.5.	Statement of the measurement uncertainty	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Conducted Output Bower	40
5.1. 5.2.	Conducted Output Power	10
5.2. 5.3.	99% & -26 dB Occupied Bandwidth Conducted Spurious Emissions	12 22
5.3. 5.4.	Band Edge	27 27
5.4. 5.5.	ERP and EIRP	37
5.5. 5.6.	Radiated Spurious Emission	40
5.0. 5.7.	Frequency stability V.S. Temperature measurement	46
5.7. 5.8.	Frequency stability V.S. Voltagemeasurement	48
5.6. 5.9.	Peak-Average Ratio	50
J.J.	i ean-Average Natio	50
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	53
7	EVTEDNAL AND INTERNAL PHOTOS OF THE FILT	E 4

Report No.: TRE1706011201 Page: 3 of 60 Issued: 2017-07-01

1. Test standards and Report version

1.1. Applicable Standards

The tests were performed according to following standards:

FCC Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24: PUBLIC MOBILE SERVICES

<u>TIA/EIA 603 D June 2010:</u>Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REGULATIONS

<u>971168 D01 Power Meas License Digital Systems v02r02:</u>provides a methodology for fully characterizing the fundamental power of wideband (> 1 MHz) digitally modulated RF signals acceptable to the FCC for demonstrating compliance for licensed transmitters.

1.2. Report version

Version No.	Date of issue	Description
00	Jul.01, 2017	Original

Report No.: TRE1706011201 Page: 4 of 60 Issued: 2017-07-01

2. Test Description

Test Item	Section in CFR 47	Result
	Part 2.1046	
RF Output Power	Part 22.913(a)	Pass
	Part 24.232(c)	
	Part 2.1049	
99% & -26 dB Occupied Bandwidth	Part 22.917(b)	Pass
	Part 24.238(b)	
	Part 2.1051	
Conducted Spurious Emissions	Part 22.917	Pass
2F Output Power 9% & -26 dB Occupied Bandwidth Conducted Spurious Emissions Eand Edge ERP and EIRP Radiated Spurious Emissions Frequency stability vs. temperature	Part 24.238	
	Part 2.1051	
Band Edge	Part 22.917	Pass
	Part 24.238	
EDD and EIDD	Part 22.913(a)	Pass
F Output Power 2% & -26 dB Occupied Bandwidth 2nducted Spurious Emissions and Edge RP and EIRP adiated Spurious Emissions requency stability vs. temperature requency stability vs. voltage	Part 24.232(b)	Pass
	Part 2.1053	
Radiated Spurious Emissions	Part 22.917	Pass
	Part 24.238	
	Part 2.1055(a)(1)(b)	
Frequency stability vs. temperature	Part 22.255	Pass
	Part 24.235	
	Part 2.1055(d)(1)(2)	
Frequency stability vs. voltage	Part 22.255	Pass
	Part 24.235	
Peak-Average Ratio	Part 24.232	Pass

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1706011201 Page: 5 of 60 Issued: 2017-07-01

3. **SUMMARY**

3.1. Client Information

Applicant:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 KwaiTak Street; Kwai Chung; New Territories; Hong Kong.
Manufacturer:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 KwaiTak Street; Kwai Chung; New Territories; Hong Kong.

3.2. Product Description

Name of EUT:	Mobile Phone	
Trade Mark:	Bmobile	
Model No.:	AX1070	
Listed Model(s):	-	
IMEI:	123456789012341	
Power supply:	DC 3.8V From internal battery	
Adapter information:	Input:100-240Va.c., 50-60Hz, 0.2A Output: 5Vd.c.,1A	
2G:		
Support Network:	GSM, GPRS, EGPRS	
Support Band:	GSM850, PCS1900	
Modulation:	GSM/GPRS/EGPRS: GMSK	
Transmit Frequency:	GSM850: 824.20MHz-848.80MHz PCS1900: 1850.20MHz-1909.80MHz	
Receive Frequency:	GSM850: 869.20MHz-893.80MHz PCS1900: 1930.20MHz-1989.80MHz	
GPRS Class:	12	
EGPRS Class:	12	
Antenna type:	Integral Antenna	
Antenna gain:	GSM850:-0.6dBi PCS1900:-0.5dBi	
Hardware version:	V01	
Software version:	Bmobile_AX1070_TEM_V001	
3G:		
Operation Band:	FDD Band II and FDD Band V	
Power Class:	Power Class 3	
Modilation Type:	QPSK/16QAM/64QAM/HSUPA/HSDPA	
DC-HSUPA Release Version:	Not Supported	
Antenna type:	Integral Antenna	
Antenna gain:	Band II: -0.5dBi, Band V: -0.6dBi	

Report No.: TRE1706011201 Page: 6 of 60 Issued: 2017-07-01

3.3. Operation state

> Test frequency list

GSM850		PCS1900		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
128	824.20	512	1850.20	
190	836.60	661	1880.00	
251	848.80	810	1909.80	

FDD Band II		FDD Band V		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
9262	1852.4	4132	826.40	
9400	1880.0	4183	836.60	
9538	1907.6	4233	846.60	

Test mode

For RF test items

The EUT has been tested under typical operating condition. The Applicant providessoftware to control the EUT for staying in continous transmitting and receiving mode for testing.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

	Length (m):	/
	Shield:	/
	Detachable :	/
	Manufacturer:	/
	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1706011201 Page: 7 of 60 Issued: 2017-07-01

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until March 31, 2017.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377B

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec. 03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1706011201 Page: 8 of 60 Issued: 2017-07-01

4.3. Equipments Used during the Test

Output Power(Conducted) &Occupied Bandwidth&Emission Bandwidth&Band Edge					
Compliance&Conducted Spurious Emission					
No.	Equipment	Manufacturer	Model No.	SerialNo.	Last Cal.
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2016/11/13
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2016/11/13
3	Splitter	Mini-Circuit	ZAPD-4	400059	2016/11/13

Frequency Stability					
No.	Equipment	Manufacturer	Model No.	SerialNo.	Last Cal.
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2016/11/13
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2016/11/13
3	Climate Chamber	ESPEC	EL-10KA	05107008	2016/11/13
4	Splitter	Mini-Circuit	ZAPD-4	400059	2016/11/13

No.	Equipment	d Spurious Emission Manufacturer	Model No.	SerialNo.	Last Cal.
INO.	UNIVERSAL RADIO	Manuacturer	Model No.	Serialivo.	Lasi Gai.
1	COMMUNICATION	Rohde&Schwarz	CMU200	112012	2016/11/13
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2016/11/13
3	HORNANTENNA	ShwarzBeck	9120D	1012	2016/11/13
4	HORNANTENNA	ShwarzBeck	9120D	1011	2016/11/13
5	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
6	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2016/11/13
7	TURNTABLE	MATURO	TT2.0		N/A
8	ANTENNA MAST	MATURO	TAM-4.0-P		N/A
9	EMI Test Software	Audix	E3	N/A	N/A
10	EMI Test Receiver	Rohde&Schwarz	ESIB 26	100009	2016/11/13
11	RF Test Panel	Rohde&Schwarz	TS / RSP	335015/0017	2016/11/13
12	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13
13	Splitter	Mini-Circuit	ZAPD-4	400059	2016/11/13
14	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13
15	Horn Antenna	SCHWARZBECK	BBHA9170	25842	2016/11/13
16	Preamplifier	ShwarzBeck	BBV 9718	BBV 9718	2016/11/13
17	Broadband Preamplifier	ShwarzBeck	BBV743	9743-0079	2016/11/13
18	Signal Generator	Rohde&Schwarz	SMF100A	101932	2016/11/13
19	Amplifer	Compliance Direction systems	PAP1-4060	120	2016/11/13
20	TURNTABLE	ETS	2088	2149	2016/11/13
21	ANTENNA MAST	ETS	2075	2346	2016/11/13
22	HORNANTENNA	Rohde&Schwarz	HF906	100068	2016/11/13
23	HORNANTENNA	Rohde&Schwarz	HF906	100039	2016/11/13

The calibration interval was one year.

Report No.: TRE1706011201 Page: 9 of 60 Issued: 2017-07-01

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature/Tnor:	15~35°C
lative Humidity	30~60 %
Air Pressure	950-1050 hPa

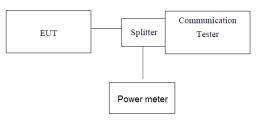
4.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	MeasurementUncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.


Report No.: TRE1706011201 Page: 10 of 60 Issued: 2017-07-01

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Output Power

LIMIT N/A

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

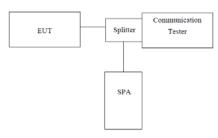
- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum burst average power.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: TRE1706011201 Page: 11 of 60 Issued: 2017-07-01


EUT Mode	Channel	Frequency (MHz)	Power (dBm)
	128	824.20	32.34
GSM 850 (GMSK)	190	836.60	32.37
(GMOR)	251	848.80	32.35
	128	824.20	32.54
GPRS850 (GMSK,1Slot)	190	836.60	32.50
	251	848.80	32.47
F000000	128	824.20	32.55
EGPRS850	190	836.60	32.48
(GMSK,1Slot)	251	848.80	32.46
	512	1850.20	29.82
PCS1900 (GMSK)	661	1880.00	29.97
	810	1909.80	30.05
	512	1850.20	29.81
GPRS1900 (GMSK,1Slot)	661	1880.00	29.98
(Giviore, rolot)	810	1909.80	30.04
E05504000	512	1850.20	29.86
EGPRS1900 (GMSK,1Slot)	661	1880.00	30.03
(GIVION, 10101)	810	1909.80	30.09
	9262	1852.40	22.15
WCDMA Band II	9400	1880.00	22.68
	9538	1907.60	22.31
	4132	826.40	22.73
WCDMA Band V	4183	836.60	22.67
	4233	846.60	22.56

Report No.: TRE1706011201 Page: 12 of 60 Issued: 2017-07-01

5.2. 99% & -26 dB Occupied Bandwidth

LIMIT N/A

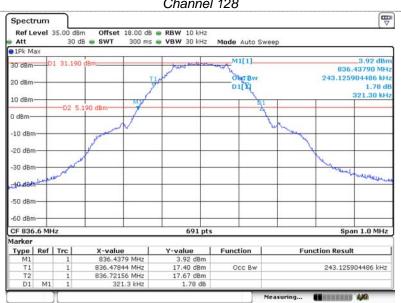
TEST CONFIGURATION

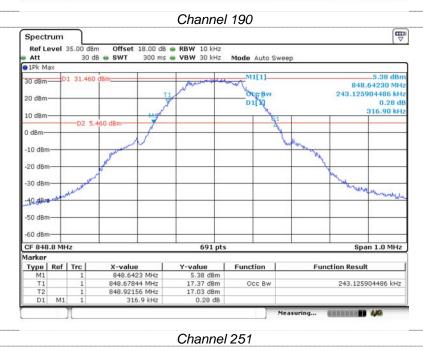
Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBWwas set to about 1% of emission BW, VBW= 3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth isthe delta frequency between the two points where the display line intersects the signal trace.

TEST MODE:


Please refer to the clause 3.3


TEST RESULTS

 Report No.: TRE1706011201 Page: 13 of 60 Issued: 2017-07-01

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
	128	824.20	244.57	315.50
GSM 850 (GMSK)	190	836.60	243.12	321.30
(GMSK)	251	848.80	243.12	316.90
	128	824.20	244.57	318.40
GPRS850 (GMSK,1Slot)	190	836.60	244.57	318.40
(OMOR, Folot)	251	848.80	243.12	319.80
E0000000	128	824.20	246.02	315.50
EGPRS850 (GMSK,1Slot)	190	836.60	246.02	316.90
(01/1017, 10101)	251	848.80	244.57	322.70
	512	1850.20	244.57	316.90
PCS1900 (GMSK)	661	1880.00	243.12	319.80
	810	1909.80	244.57	321.30
	512	1850.20	246.02	318.40
GPRS1900 (GMSK,1Slot)	661	1880.00	243.12	312.60
(6111617, 16161)	810	1909.80	243.12	318.40
	512	1850.20	244.57	318.40
EGPRS1900 (GMSK,1Slot)	661	1880.00	243.12	314.00
(3.11.31.4, 1.31.31.4)	810	1909.80	244.57	324.20
	9262	1852.40	4145.85	4680.00
WCDMA Band II	9400	1880.00	4145.85	4677.00
	9538	1907.60	4145.85	4681.00
	4132	826.40	4155.84	4696.00
WCDMA Band V	4183	836.60	4155.84	4682.00
	4233	846.60	4135.86	4679.00

Report No.: TRE1706011201 Page: 14 of 60 Issued: 2017-07-01 GSM850 For GMSK Moudlation Spectrum Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Ref Level 35.00 dBm 30 dB . SWT Mode Auto Swee Att 30 dBm-824.04370 MHz 244.573082489 kHz 20 dBn DIE -0.82 dt 315.50 kHz 0 dBm Merende CF 824.2 MHz 691 pts Span 1.0 MHz Marker Y-value 6.06 dBm 16.10 dBm 16.89 dBm -0.82 dB X-value 824.0437 MHz 824.07844 MHz 824.32301 MHz 315.5 kHz Type | Ref | Trc Function **Function Result** 244.573082489 kHz ## ****** 430 Channel 128 Spectrum

Report No.: TRE1706011201 Page: 15 of 60 Issued: 2017-07-01 GPRS850 For GMSK Moudlation Spectrum Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Ref Level 35.00 dBm 30 dB . SWT Mode Auto Swee Att 824.04230 MHz 244.573082489 kHz OCC BW 20 dBr -0.03 dt 318.40 kHz 0 dBm CF 824.2 MHz 691 pts Span 1.0 MHz Marker Y-value 4.20 dBm 14.22 dBm 15.33 dBm -0.03 dB X-value 824.0423 MHz 824.07699 MHz 824.32156 MHz 318.4 kHz Type | Ref | Trc Function **Function Result** 244.573082489 kHz Channel 128 Spectrum Ref Level 35.00 dBm Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Att 30 dB . SWT 1Pk Max 3.14 dBm 836.44080 MHz 244.573082489 kHz M1[1] 01 29.490 20 dBm -0.11 dE 318.40 kHz -10 dB -20 dBr -30 dB -40 dBmc -50 dBr -60 dBm CF 836.6 MHz 691 pts Span 1.0 MHz Type | Ref | Trc | X-value 836.4408 MHz 836.47844 MHz 836.72301 MHz Y-value 3.14 dBm 14.72 dBm 15.20 dBm Function **Function Result** 244.573082489 kHz Occ Bw 318.4 kHz -0.11 dB Channel 190 Spectrum Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Ref Level 35.00 dBm 30 d8 👄 SWT Mode Auto Sweep 1Pk Max M1[1] 3.39 dBn 848.63790 MH 243.125904486 kH 0.45 d 319.80 kHz 10 dBm -D2 3. -10 dB -30 dBr 40 dBmat -50 dBn

691 pts

Channel 251

Occ Bw

Y-value 3.39 dBm 15.56 dBm 14.16 dBm

X-value 848.6379 MHz 848.67844 MHz 848.92156 MHz 319.8 kHz

CF 848.8 MHz

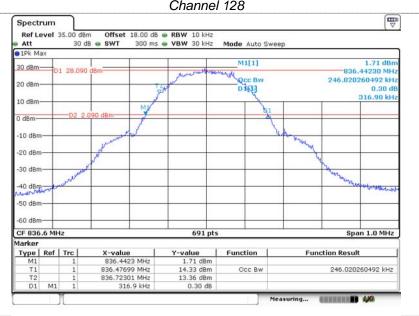
 Type
 Ref
 Trc

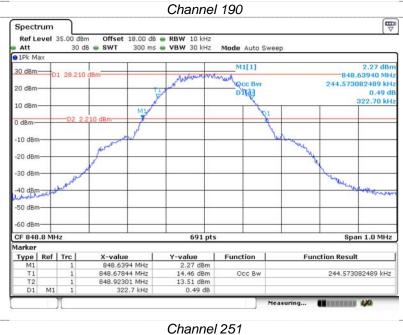
 M1
 1

 T1
 1

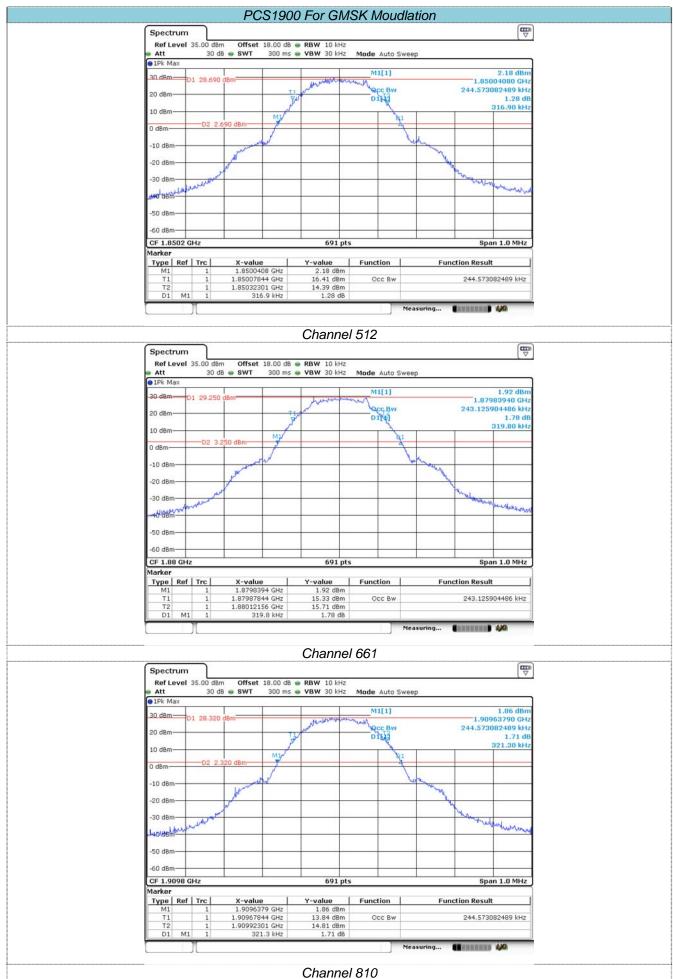
 T2
 1

M1


Marker


Span 1.0 MHz

243.125904486 kHz


Function Result

Report No.: TRE1706011201 Page: 16 of 60 Issued: 2017-07-01 EGPRS850 For GMSK Moudlation Spectrum Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Ref Level 35.00 dBm 30 dB . SWT Mode Auto Swee Att 2.82 dB 30 dBm D1 28.310 824.04230 MHz 246.020260492 kHz Occ Bw 20 dBr 0.81 dt 0 dBm -50 dBr CF 824.2 MHz 691 pts Span 1.0 MHz Marker Y-value 2.82 dBm 13.94 dBm 13.68 dBm 0.81 dB X-value 824.0423 MHz 824.07699 MHz 824.32301 MHz 315.5 kHz Type | Ref | Trc Function **Function Result** 246.020260492 kHz # 100 House 440 Channel 128 Spectrum Ref Level 35.00 dBm Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Att 30 dB . SWT 1Pk Max 1.71 dBm 836.44230 MHz 246.020260492 kHz M1[1] 30 dBm-20 dBm 316.90 kHz -10 dB -20 dBr -30 dBr

Report No.: TRE1706011201 Page: 17 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 18 of 60 Issued: 2017-07-01 GPRS1900 For GMSK Moudlation Spectrum Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Ref Level 35.00 dBm 30 dB . SWT Mode Auto Swee Att 0.86 dB O MIN Occ BW 1.85003940 GHz 246.020260492 kHz 20 dBr 318.40 kHz myere CF 1.8502 GHz 691 pts Span 1.0 MHz Marker Y-value 0.86 dBm 13.00 dBm 12.77 dBm 2.36 dB X-value 1.8500394 GHz 1.85007699 GHz 1.85032301 GHz 318.4 kHz Type | Ref | Trc Function **Function Result** 246.020260492 kHz Channel 512 Spectrum Ref Level 35.00 dBm Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Att 30 dB . SWT 1Pk Max 2.07 dBm 1.87984520 GHz 243.125904486 kHz M1[1] 30 dBm-Occ Bw 20 dBm 0.47 dt 312.60 kHz -10 dB -20 dB hum -50 dBr CF 1.88 GHz 691 pts Span 1.0 MHz Type | Ref | Trc X-value 1.8798452 GHz 1.87987988 GHz 1.88012301 GHz Y-value 2.07 dBm 14.25 dBm 13.70 dBm Function **Function Result** 243.125904486 kHz Occ Bw Channel 661 Spectrum Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Ref Level 35.00 dBm 30 d8 👄 SWT 1Pk Max M1[1] 30 dBm 243.125904486 kHz 318.40 kHz 10 dBn -10 dB -30 dBr -50 dBr

691 pts

Channel 810

Occ Bw

Y-value 1.78 dBm 12.95 dBm 14.73 dBm -0.53 dB

X-value 1.9096408 GHz 1.90967844 GHz 1.90992156 GHz 318.4 kHz

CF 1.9098 GHz

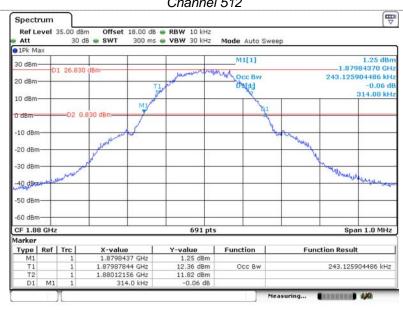
 Type
 Ref
 Trc

 M1
 1

 T1
 1

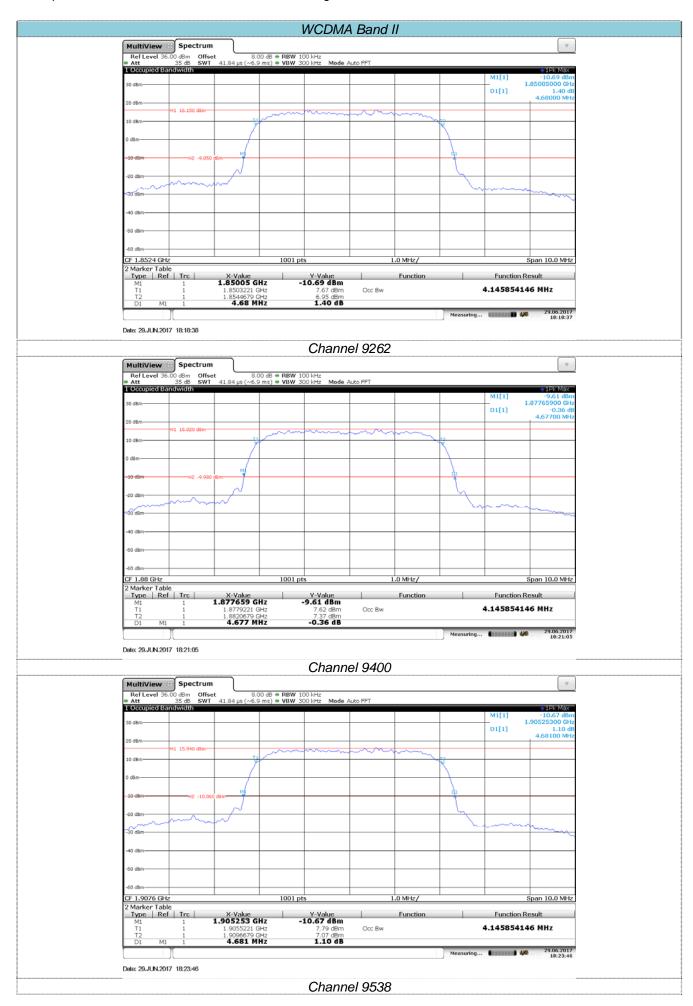
 T2
 1

M1

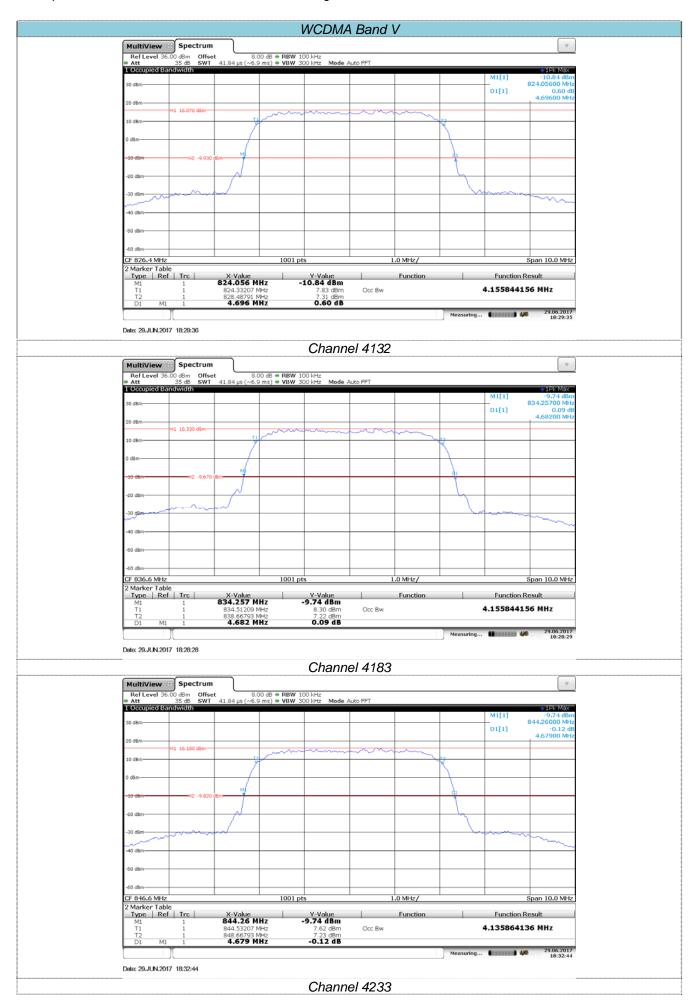

Marker


Span 1.0 MHz

243.125904486 kHz


Function Result

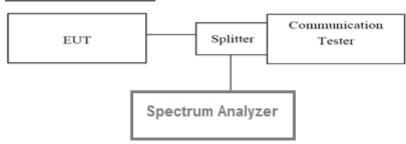
Report No.: TRE1706011201 Page: 19 of 60 Issued: 2017-07-01 EGPRS1900 For GMSK Moudlation Spectrum Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Ref Level 35.00 dBm 30 dB . SWT Mode Auto Swee Att -0.16 dB 30 dBm 1.85003940 GHz 244.573082489 kHz D1 26.770 DM13 20 dBr 2.88 dt 318.40 kHz D2 0.7 CF 1.8502 GHz 691 pts Span 1.0 MHz Marker Y-value -0.16 dBm 13.38 dBm 12.47 dBm 2.88 dB X-value 1.8500394 GHz 1.85007844 GHz 1.85032301 GHz 318.4 kHz Type | Ref | Trc Function **Function Result** 244.573082489 kHz #HITTHIN 430 Channel 512 Spectrum Ref Level 35.00 dBm Offset 18.00 dB • RBW 10 kHz SWT 300 ms • VBW 30 kHz Att 30 dB . SWT 1Pk Max M1[1] 30 dBm Occ Bw D1 26.830 243.125904486 kHz 20 dBm -n.n6 dr 314.00 kHz D2 0.830 d8 -10 dB



Report No.: TRE1706011201 Page: 20 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 21 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 22 of 60 Issued: 2017-07-01


5.3. Conducted Spurious Emissions

LIMIT

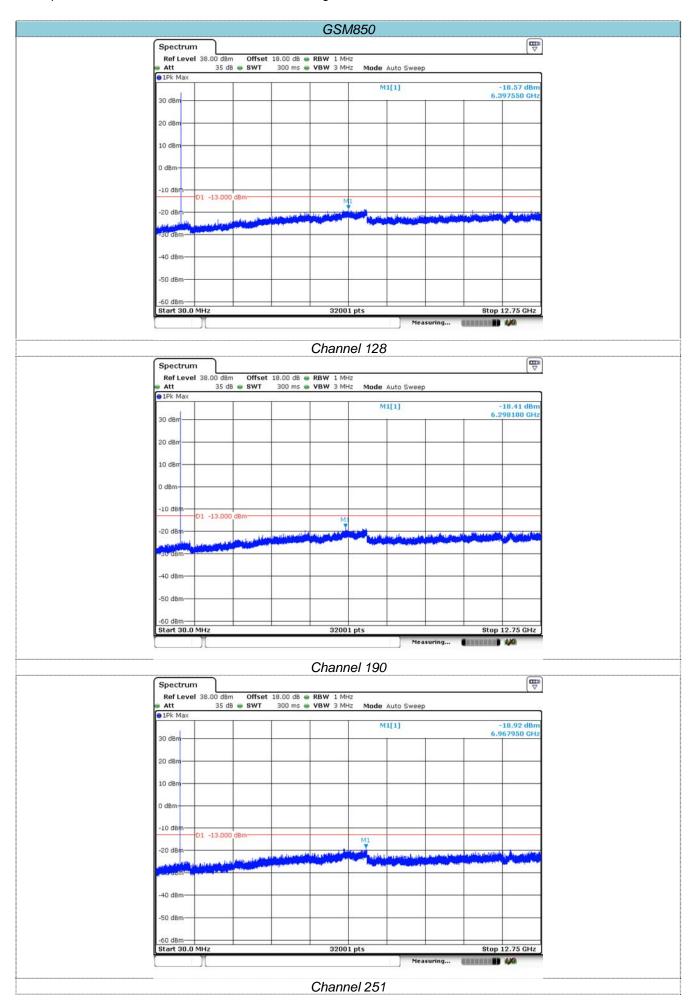
Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

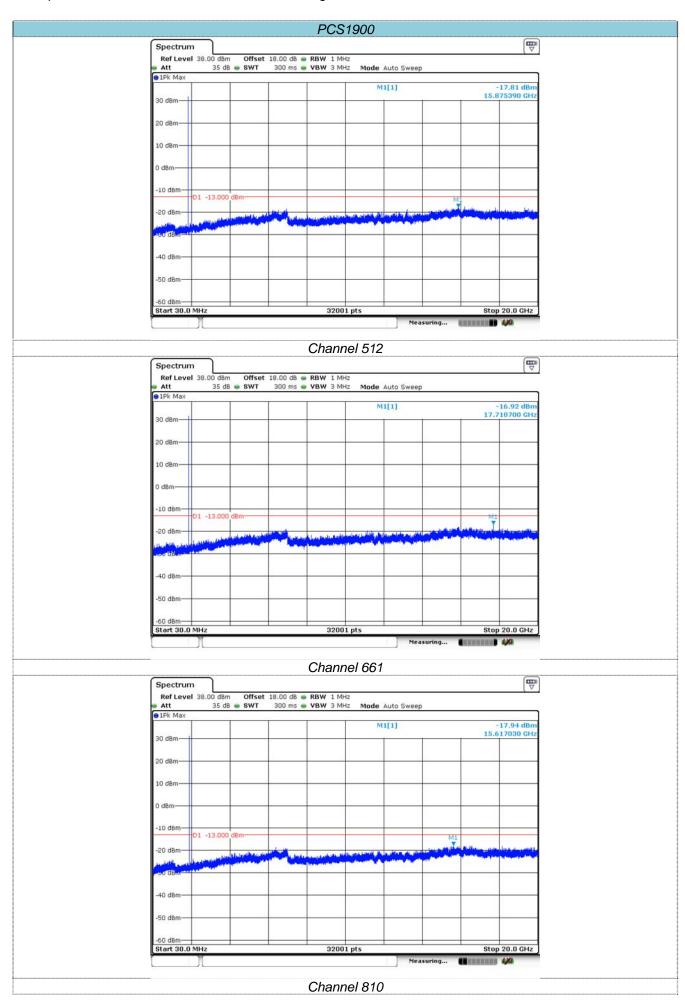
TEST CONFIGURATION

TEST PROCEDURE

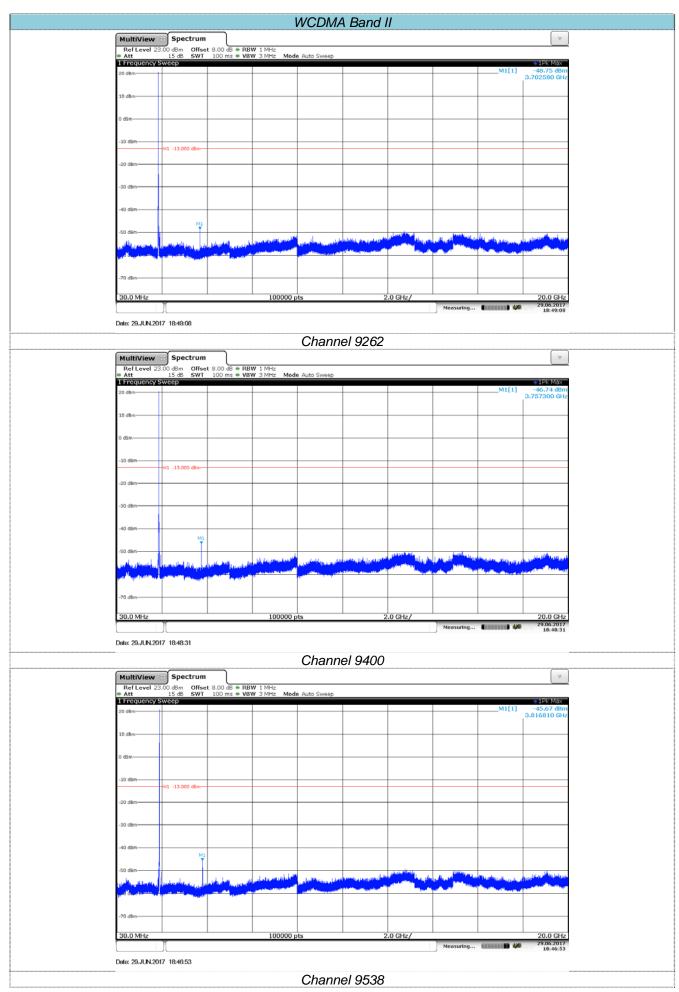
- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficientscans were taken to show the out of band Emissions if any up to 10th harmonic.
- 3. For the out of band: Set the RBW= 1MHz, VBW = 3MHz, Start=30MHz, Stop= 10th harmonic.

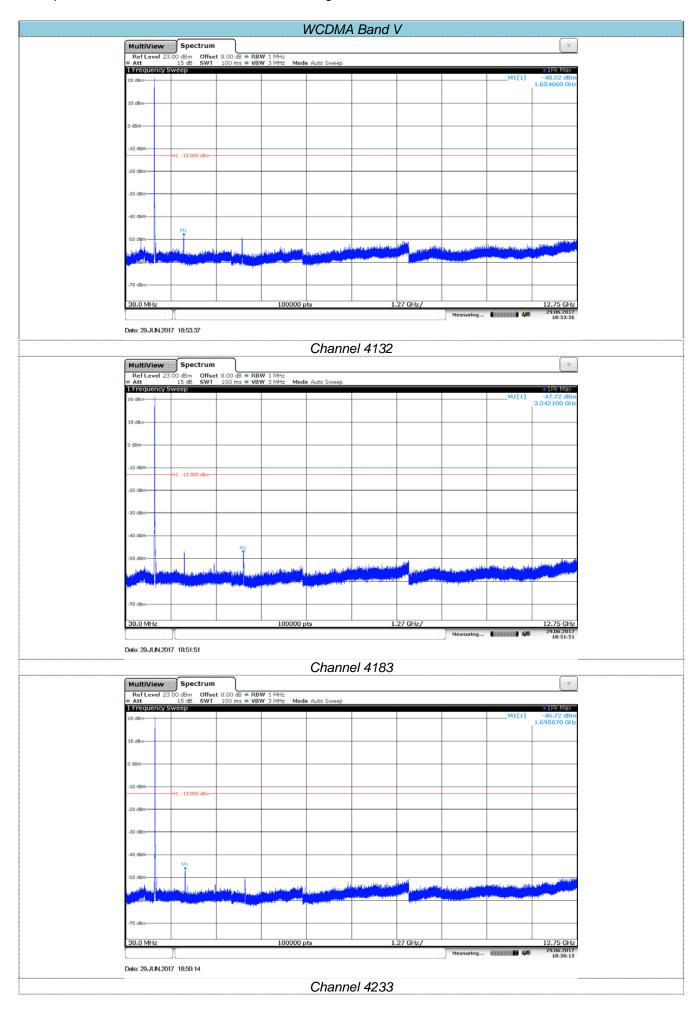

TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

Note: Worst case at GSM850/PCS1900/WCDMA B2/B5

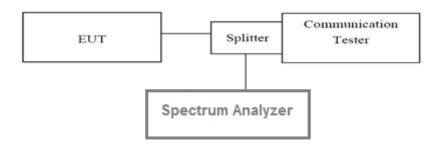

Report No.: TRE1706011201 Page: 23 of 60 Issued: 2017-07-01


Report No.: TRE1706011201 Page: 24 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 25 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 26 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 27 of 60 Issued: 2017-07-01


5.4. Band Edge

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. For the bandedge: 2G:Set the RBW=3KHz, VBW = 10KHz, Sweep time= Auto

3G: Set the RBW=100KHz, VBW = 300KHz, Sweep time= Auto

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

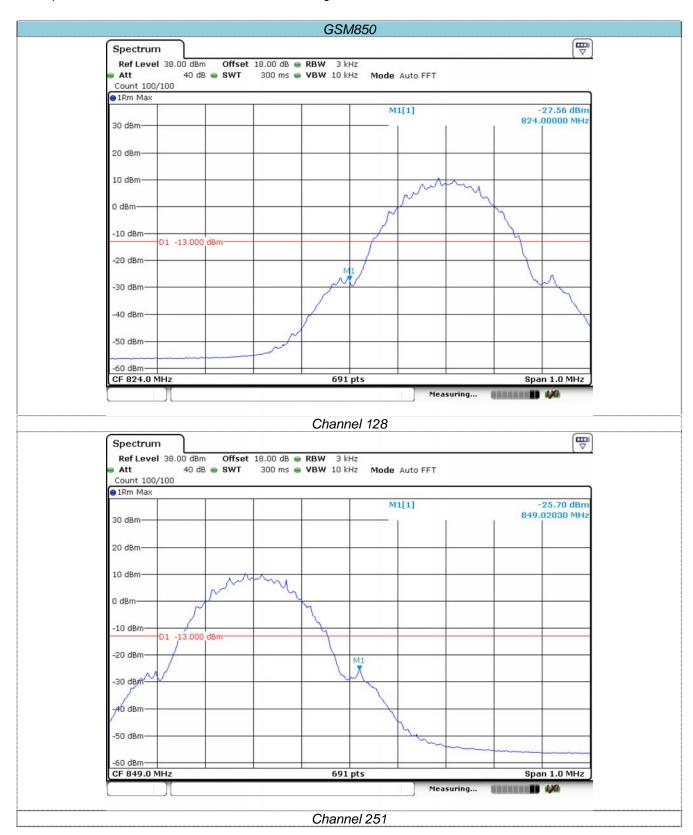
 Report No.: TRE1706011201 Page: 28 of 60 Issued: 2017-07-01

GSM850						
Channel	Frequency	Measureme	nt Results	Limit	Verdict	
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict	
128	824.2	824	-27.56	-13.00	Pass	
251	848.8	849	-25.70	-13.00	Pass	

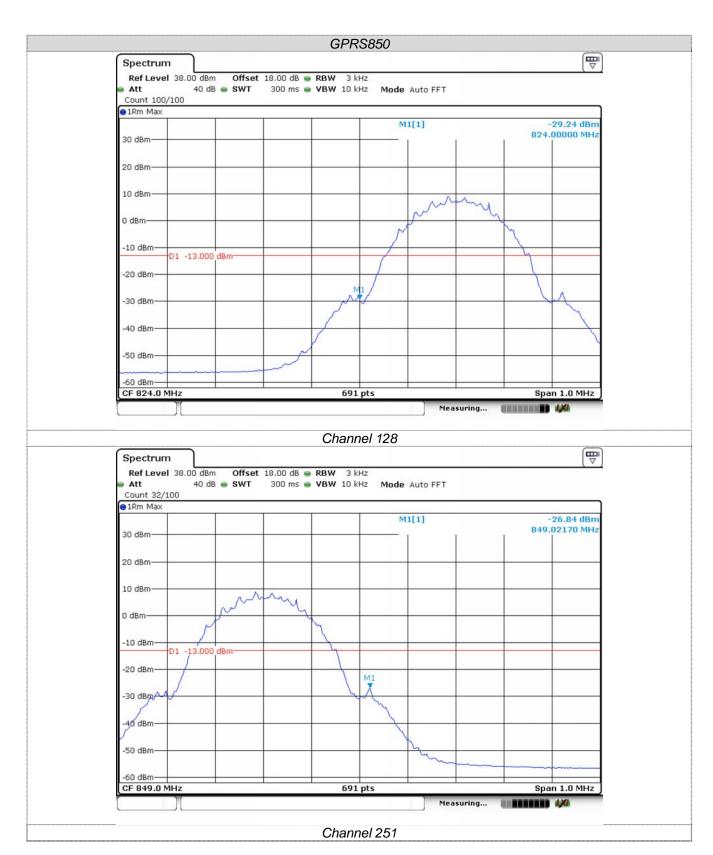
GPRS850						
Channel	Channel Frequency Measurement Results Limit Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict	
128	824.2	824	-29.24	-13.00	Pass	
251	848.8	849	-26.84	-13.00	Pass	

EGPRS850					
Channel Frequency Measurement Results Limit Vordict					Verdict
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict
128	824.2	824	-30.60	-13.00	Pass
251	848.8	849	-28.33	-13.00	Pass

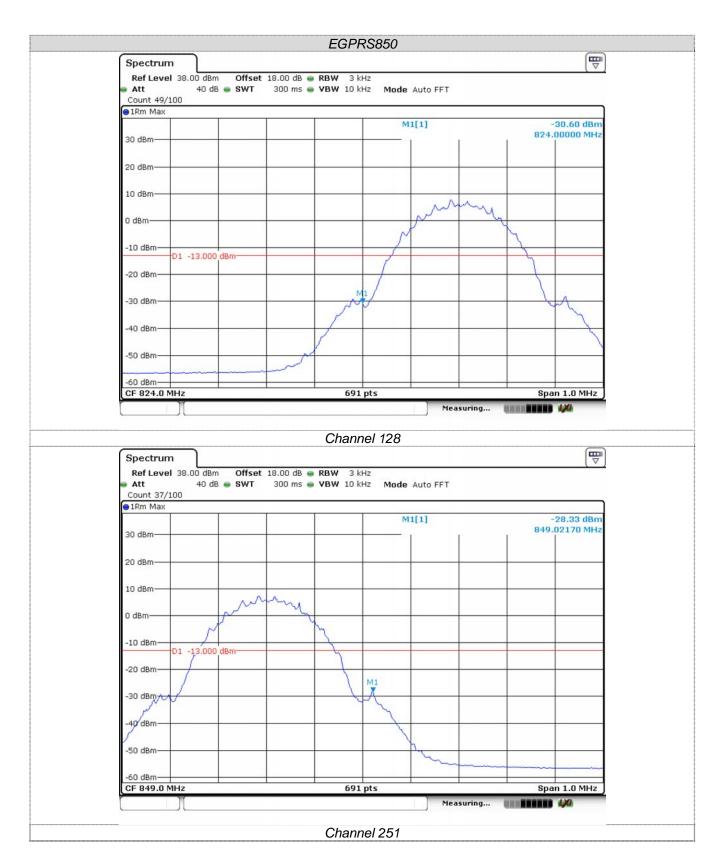
PCS1900						
Channel	Channel Frequency Measurement Results				Verdict	
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict	
512	1850.2	1850	-28.06	-13.00	Pass	
810	1909.8	1910	-27.57	-13.00	Pass	


GPRS1900					
Channel	Frequency	Measureme	nt Results	Limit	Verdict
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict
512	1850.2	1850	-29.71	-13.00	Pass
810	1909.8	1910	-28.98	-13.00	Pass

EGPRS1900					
Channel Frequency Measurement Results				Limit	Verdict
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict
512	1850.2	1850	-30.97	-13.00	Pass
810	1909.8	1910	-30.44	-13.00	Pass


WCDMA Band II						
Channel	Channel Frequency Measurement Results Limit Verdict					
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict	
9262	1852.4	1850	-24.41	-13.00	Pass	
9538	1907.6	1910	-25.69	-13.00	Pass	

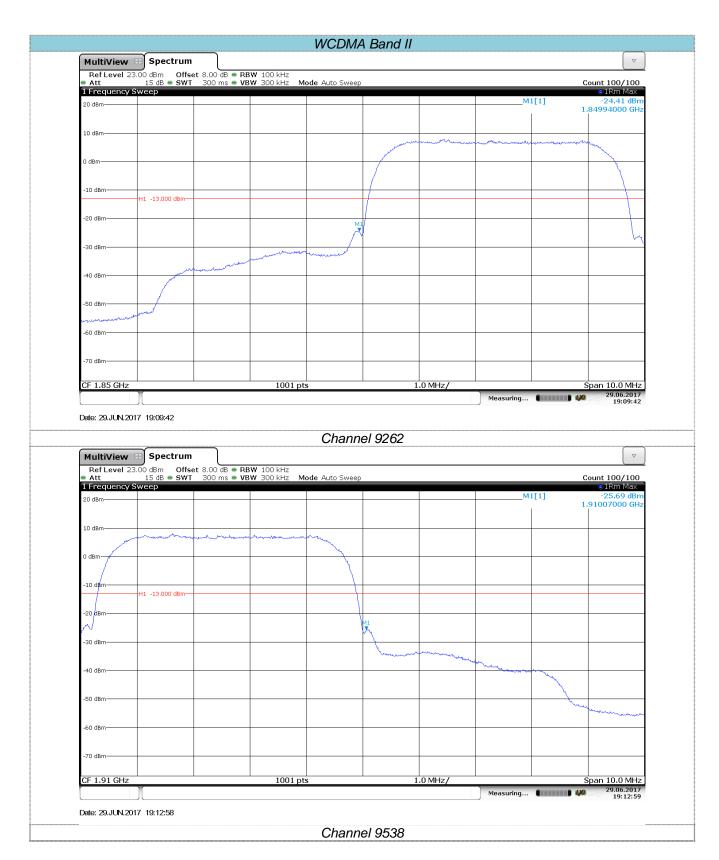
WCDMA Band V						
Channel Frequency Measurement Results Limit					Verdict	
Number	(MHz)	Frequency(MHz) Values(dBm)		(dBm)	verdict	
4132	826.4	824	-26.01	-13.00	Pass	
4233	846.6	849	-25.78	-13.00	Pass	

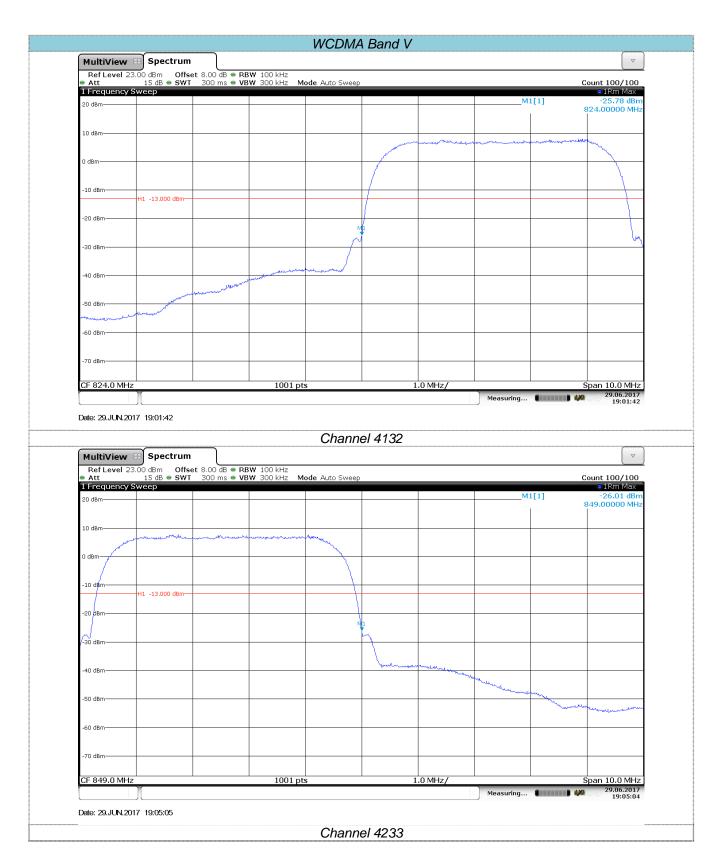

Report No.: TRE1706011201 Page: 29 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 30 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 31 of 60 Issued: 2017-07-01

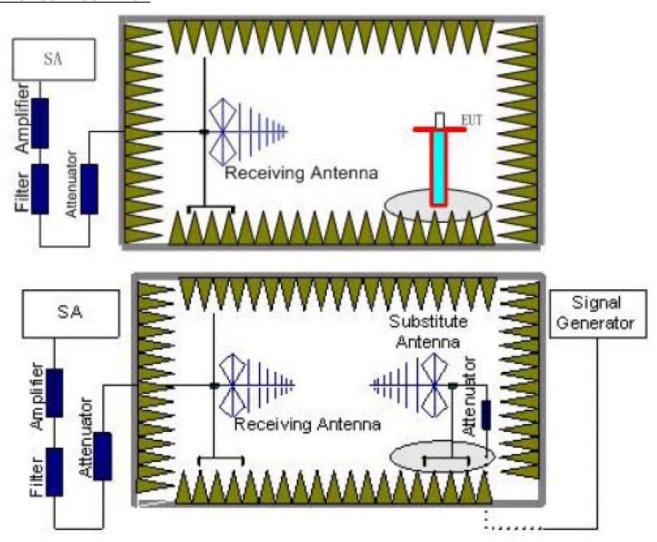
Report No.: TRE1706011201 Page: 32 of 60 Issued: 2017-07-01


Report No.: TRE1706011201 Page: 33 of 60 Issued: 2017-07-01


Report No.: TRE1706011201 Page: 34 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 35 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 36 of 60 Issued: 2017-07-01


Report No.: TRE1706011201 Page: 37 of 60 Issued: 2017-07-01

5.5. ERP and EIRP

LIMIT

GSM850/WCDMA Band V: 7W ERP PCS1900/WCDMA Band II: 2W EIRP

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz,, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the

Report No.: TRE1706011201 Page: 38 of 60 Issued: 2017-07-01

frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

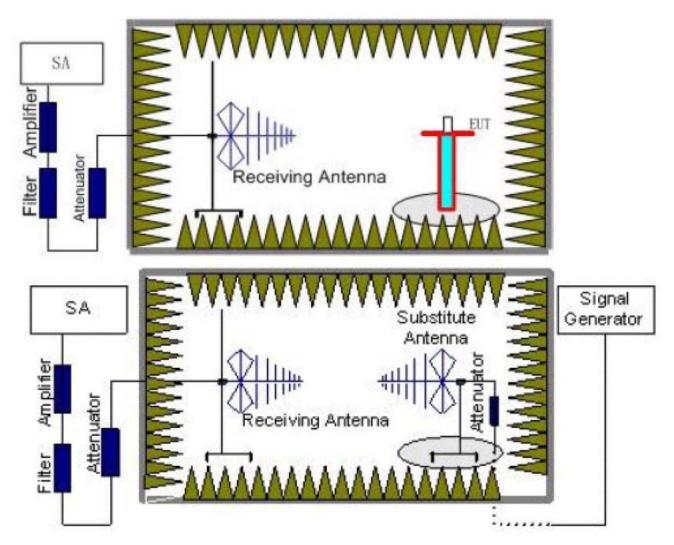
Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	128	V	31.45		
	120	Н	28.58		
GSM850	190	V	31.65	38.45	Pass
GSIVIOSO	190	Н	28.74	36.43	F 455
	251	V	31.52		
	231	Н	28.64		
	128	V	31.66		Pass
	120	Н	28.43	38.45	
GPRS850	190	V	31.57		
G1 113030		Н	28.47		1 433
	251	V	31.66		
	201	Н	28.43		
	128	V	31.22		
	120	Н	28.41		
EGPRS850	190	V	31.65	38.45	Pass
20110000	190	Н	28.33	30.43	1 433
	251	V	31.43		
	201	Н	28.74		

Report No.: TRE1706011201 Page: 39 of 60 Issued: 2017-07-01

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	512	V	28.43		
	312	Н	25.35		
PCS1900	661	V	28.36	33.00	Pass
1 001900	001	Н	25.47	33.00	1 833
	810	V	28.44		
	010	Н	25.63		
	512	V	28.46		
	012	Н	25.33	33.00	
GPRS1900	661	V	28.74		Pass
OI 1(31900		Н	25.37		1 833
	810	V	28.54		
	010	Н	25.66		
	512	V	28.64		
	012	Н	25.37		
EGPRS1900	661	V	28.46	33.00	Pass
2011(01900	001	Н	25.37	33.00	1 033
	810	V	28.36		
	010	Н	25.47		

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	9262	V	21.44	33.00	Pass
		Н	17.85		
WCDMA Band II	9400	V	21.64		
WCDIMA Band II	9400	Н	17.85	33.00	
	9538	V	21.47		
		Н	18.06		

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	4132	V	20.88	38.45	Pass
		Н	16.88		
WCDMA Band V	4183 4233	V	20.52		
WCDIVIA Bariu V		Н	16.43		
		V	20.52		
		Н	16.87		


Report No.: TRE1706011201 Page: 40 of 60 Issued: 2017-07-01

5.6. Radiated Spurious Emission

LIMIT

-13dBm

TEST CONFIGURATION

TEST RESULTS

- 1. EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the

Report No.: TRE1706011201 Page: 41 of 60 Issued: 2017-07-01

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga

7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

Please refer to the clause 3.3

TEST RESULTS

Note: Worst case at GSM850/PCS1900/WCDMA B2/B5

Report No.: TRE1706011201 Page: 42 of 60 Issued: 2017-07-01

		GSI	M850		
Channel	Frequency	Spurious	Emission	Limit (dDm)	Result
Charmer	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	34.65	Vertical	-59.35		
	182.21	V	-62.13		
	1747.34	V	-43.38	40.00	Dana
	2094.61	V	-52.53	-13.00	Pass
	3507.14 V	V	-55.22		
400	7477.04	V	-47.04		
128	182.21	Horizontal	-59.64		
	259.91	Н	-52.53		
	1747.34	Н	-43.38	40.00	D
	2094.61	Н	-52.53	-13.00	Pass
	3831.54	Н	-51.87		
	4119.70	Н	-50.51		
	259.91	Vertical	-62.14		
	442.01	V	-68.74		
	1672.22	V	-46.68	40.00	D
	2060.37	V	-52.22	-13.00	Pass
	4119.70	V	-53.66		
400	7035.20	V	-48.37		
190	58.31	Horizontal	-63.87		Dese
	156.09	Н	-67.39		
	1674.06	Н	-46.85	40.00	
	2060.37	Н	-52.99	-13.00	Pass
	4119.70	Н	-52.94		
	7820.86	Н	-47.06		
	58.11	Vertical	-63.41		
	259.91	V	-58.23		
	1698.14	V	-42.81	40.00	Dana
	2220.19	V	-52.44	-13.00	Pass
	4586.42	V	-54.68		
254	9567.58	V	-45.51		
251	80.87	Horizontal	-74.56		
	182.21	Н	-62.90		
	1236.19	Н	-56.43	40.00	Daga
	1698.14	Н	-43.28	-13.00	Pass
	3754.53	Н	-55.51		
	9595.37	Н	-45.27		

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. The emission levels of not record in the report are very lower than the limit and not show in test report.

Report No.: TRE1706011201 Page: 43 of 60 Issued: 2017-07-01

		PCS	S1900		
Channel	Frequency	Spurious I	Emission	Limit (dBm)	Result
Charmer	(MHz)	Polarization	Level (dBm)	Limit (dbm)	Result
	92.11	Vertical	-74.61		
	442.01	V	-73.59		
	1435.40	V	-54.58	-13.00	Pass
	2497.14	V	-47.89	-13.00	Fa55
	2497.14 4119.70	V	-49.13		
512	5554.08	V	-45.45		
312	91.79	Horizontal	-74.92		
	259.91	Н	-66.91		
	1480.24	Н	-55.02	12.00	Door
	2497.14	Н	-47.89	-13.00	Pass
	3700.48	Н	-50.79		
	5554.08	Н	-49.20		
	182.21	Vertical	-61.93	-13.00	
	259.91	V	-68.10		
	1481.87	V	-54.01		Dana
	2575.14	V	-47.47		Pass
	3738.23	V	-48.32		
004	4119.70	V	-50.22		
661	80.59	Horizontal	-73.65		
	259.91	Н	-62.10		
	1364.66	Н	-55.25	40.00	Pass
	2802.46	Н	-49.05	-13.00	Pass
	3759.98	Н	-51.25		
	7866.36	Н	-47.19		
	58.11	Vertical	-64.06		
	259.91	V	-57.98		
	1745.42	V	-49.00	-13.00	Door
	2340.41	V	-49.34	-13.00	Pass
	3820.45	V	-51.22		
910	7935.11	V	-46.86		
810	103.81	Horizontal	-70.51		
	182.21	Н	-62.92		
	1321.87	Н	-54.13	12.00	Door
	2195.93	Н	-51.58	-13.00	Pass
	3820.45	Н	-52.58		
	4119.70	Н	-48.93		

- The emission behaviour belongs to narrowband spurious emission.

 The emission levels of not record in the report are very lower than the limit and not show in test report. 2.

Report No.: TRE1706011201 Page: 44 of 60 Issued: 2017-07-01

		WCDM	A Band II		
Channel	Frequency	Spurious I	Emission	Limit (dDm)	Result
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	58.31	Vertical	-61.45		
	266.39	V	-58.48		
	1410.39	V	-54.27	-13.00	Pass
	1933.18	V	-44.72	-13.00	Fa55
	3700.48	V	-51.16		
9262	5562.15	V	-40.39		
9262	103.81	Horizontal	-72.45		
	200.36	Н	-67.45		
	1382.77	Н	-56.12	42.00	Dana
	2519.18	Н	-49.54	-13.00	Pass
	4113.73	Н	-50.19		
	5562.15	Н	-38.59		
	58.31	Vertical	-64.32		
	266.39	V	-55.21		
	1764.70	V	-48.65	40.00	D
	2580.81	V	-47.33	-13.00	Pass
	3759.98	V	-52.20		
0.400	7520.54	V	-44.13		
9400	58.11	Horizontal	-71.01		Pass
	245.69	Н	-63.63		
	1753.11	Н	-40.38	40.00	
	2395.03	Н	-50.12	-13.00	
	4113.73	Н	-48.74		
	5643.40	Н	-42.28		
	36.27	Vertical	-62.44		
	266.39	V	-62.85		
	1449.66	V	-54.64	42.00	Door
	2580.81	V	-47.66	-13.00	Pass
	4346.80	V	-54.14		
0520	5717.54	V	-42.31		
9538	58.31	Horizontal	-68.82		
	266.39	Н	-58.84		
	1764.70	Н	-50.66	12.00	Door
	1987.01	Н	-46.15	-13.00	Pass
	4113.73	Н	-51.67		
	5717.54	Н	-38.93		

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. The emission levels of not record in the report are very lower than the limit and not show in test report.

Report No.: TRE1706011201 Page: 45 of 60 2017-07-01 Issued:

		WCDM	A Band V		
Channel	Frequency	Spurious	Emission	Limit (dDm)	Dooult
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	58.11	Vertical	-63.77		
	200.36	V	-62.22		
	1653.95	V	-52.40	40.00	D
	1747.34	V	-38.71	-13.00	Pass
	3309.48	V	-39.47		
4400	7487.89	V	-48.18		
4132	58.11	Horizontal	-69.47		
	266.39	Н	-61.50		
	1655.77	Н	-48.85	40.00	D
	2150.57	Н	-51.48	-13.00	Pass
	3299.90	Н	-46.05		
	8544.26	Н	-46.08		
	184.14	Vertical	-64.22		Dage
	414.90	V	-71.02	42.00	
	1260.88	V	-54.32		
	1690.69	V	-47.07	-13.00	Pass
	3338.41	V	-40.86		
4400	7832.21	V	-47.49		
4183	184.14	Horizontal	-70.35		
	245.69	Н	-67.67		
	1690.69	Н	-43.83	40.00	Pass
	2299.63	Н	-52.04	-13.00	
	3338.41	Н	-44.89		
	9160.24	Н	-45.51		
	169.24	Vertical	-79.55		
	365.56	V	-68.29		_
	1259.49	V	-54.99	42.00	
	1692.55	V	-44.57	-13.00	Pass
	3382.26	V	-35.73		
4000	7877.78	V	-47.22		
4233	81.73	Horizontal	-81.12		
	245.69	Н	-63.08		
	1690.69	Н	-41.25	40.00	D
	1764.70	Н	-27.98	-13.00	Pass
	3377.36	Н	-44.92		
	8240.03	Н	-46.48		

- 1.
- The emission behaviour belongs to narrowband spurious emission.

 The emission levels of not record in the report are very lower than the limit and not show in test report. 2.


Report No.: TRE1706011201 Page: 46 of 60 Issued: 2017-07-01

5.7. Frequency stability V.S. Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°Coperating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to −30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3

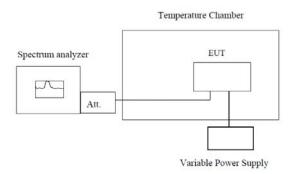
TEST RESULTS

Note: Worst case at GSM850/PCS1900/WCDMA B2/B5 mid channel

Report No.: TRE1706011201 Page: 47 of 60 Issued: 2017-07-01

Ref	erence Frequency: G	SM850 Middle cha	annel=190 chann	el=836.6MHz	
Power supplied	Temperature (°C)	Frequer	cy error	Limit (ppm)	Result
(Vdc)	remperature (C)	Hz	ppm	Limit (ppm)	Result
	-30	20	0.024		
	-20	18	0.022		
	-10	21	0.025		
	0	20	0.024		
3.70	10	19	0.023	2.50	Pass
	20	19	0.024		
	30	20	0.024		
	40	21	0.026		
	50	21	0.025]	
Ref	erence Frequency: Po	CS1900 Middle ch	annel=661 chanr	nel=1880MHz	
Power supplied	Temperature (°C)	Frequency error		Limit (ppm)	Result
(Vdc)	remperature (C)	Hz	ppm	Limit (ppm)	Result
	-30	24	0.013		
	-20	23	0.012		
	-10	25	0.013		
	0	23	0.013		
3.70	10	23	0.013	2.50	Pass
	20	22	0.012]	
	30	23	0.012	1	
	40	24	0.013		
	50	26	0.014		

Referer	nce Frequency: WCDN	MA Band II Middle	channel=9400 c	hannel=1880MHz	<u></u>
Power supplied	Temperature (°C)	Frequency error		Limit (ppm)	Result
(Vdc)	remperature (C)	Hz	ppm	Limit (ppm)	Kesuit
	-30	15	0.008		
	-20	16	0.009		
	-10	14	0.008		
	0	16	0.009		
3.70	10	15	0.008	2.50	Pass
	20	16	0.009		
	30	14	0.008		
	40	14	0.008		
	50	15	0.008		
Referer	nce Frequency: WCDN	//A Band VMiddle	channel=4183 ch	nannel=836.6MH	<u>z</u>
Power supplied	Tomporeture (°C)	Frequency error		Limit (nnm)	Result
(Vdc)	Temperature (°C)	Hz	ppm	Limit (ppm)	Result
	-30	26	0.032		
	-20	26	0.032		
	-10	27	0.033		
	0	28	0.034		
3.70	10	27	0.033	2.50	Pass
	20	25	0.030		
	30	25	0.031	1	
	40	27	0.033]	
	50	27	0.033]	


Report No.: TRE1706011201 Page: 48 of 60 Issued: 2017-07-01

5.8. Frequency stability V.S. Voltagemeasurement

LIMIT

2.5ppm

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. Set chamber temperature to 25°C. Use a variable DC power source topower the EUT and set the voltage to rated voltage.
- 2. Set the spectrum analyzer RBW lowenough to obtain the desired frequency resolution and recorded the frequency.
- 3. Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, recordthe maximum frequency change.

TEST MODE:

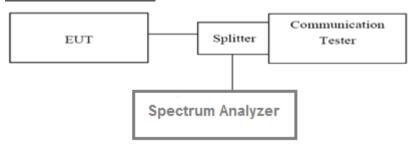
Please refer to the clause 3.3

TEST RESULTS

Note: Worst case at GSM850/PCS1900/WCDMA B2/B5 mid channel

Report No.: TRE1706011201 Page: 49 of 60 Issued: 2017-07-01

Referenc	e Frequency: GSM85	0 (GSM link) Midd	lle channel=190	channel=836.6MH	Ηz
Tomporatura (°C)	Power supplied	Frequer	ncy error	Limit (nnm)	Danult
Temperature (°C)	(Vdc)	Hz	ppm	Limit (ppm)	Result
	4.20	14	0.017		
25	3.70	15	0.018	2.50	Pass
	3.50	16	0.020		
Referenc	e Frequency: PCS190	00 (GSM link) Mid	dle channel=661	channel=1880Ml	l z
Temperature (°C)	Power supplied	Frequer	cy error	Limit (ppm)	Result
remperature (C)	(Vdc)	Hz	ppm	Еппи (ррпп)	Nesuit
	4.20	19	0.010		Pass
25	3.70	20	0.011	2.50	
	3.50	20	0.011		
Referen	ce Frequency: WCDN	MA Band II Middle	channel=9400	channel=1880MHz	7
Temperature (°C)	Power supplied	Frequer	ncy error	Limit (ppm)	
remperature (C)	(Vdc)	Hz	ppm	Result	
	4.20	25	0.013		
25	3.70	26	0.014	2.50	Pass
	3.50	26	0.014		
Referen	ce Frequency: WCDN	MA Band VMiddle	channel=4183 c	hannel=836.6MHz	<u>z</u>
Temperature (°C)	Power supplied	Frequency error		Limit (ppm)	Result
remperature (°C)	(Vdc)	Hz	ppm	Limit (ppin)	Nesult
	4.20	27	0.032		
25	3.70	27	0.033	2.50	Pass
	3.50	28	0.034		


Report No.: TRE1706011201 Page: 50 of 60 Issued: 2017-07-01

5.9. Peak-Average Ratio

LIMIT

13dB

TEST CONFIGURATION

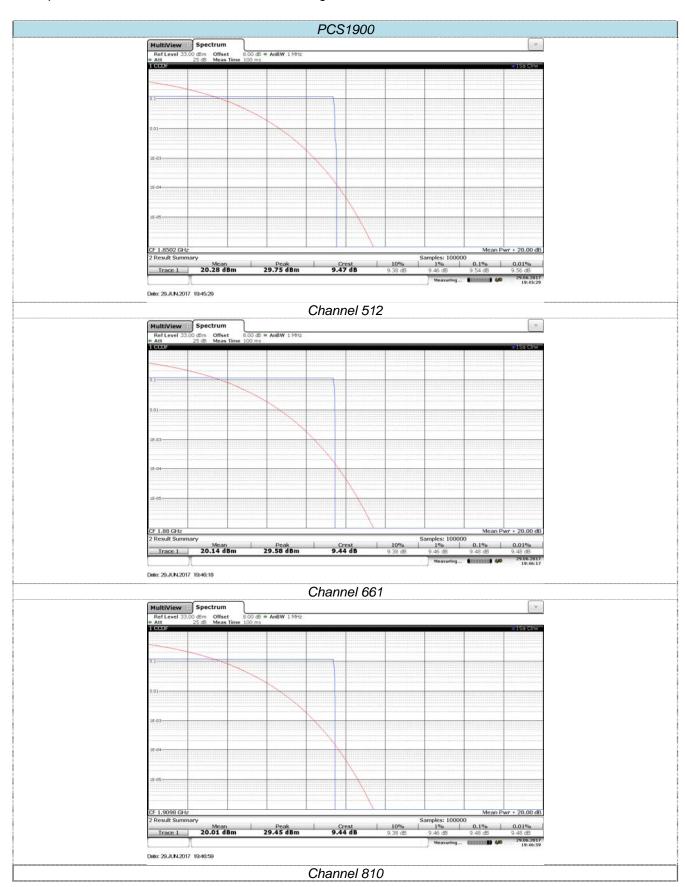
TEST PROCEDURE

According with KDB 971168

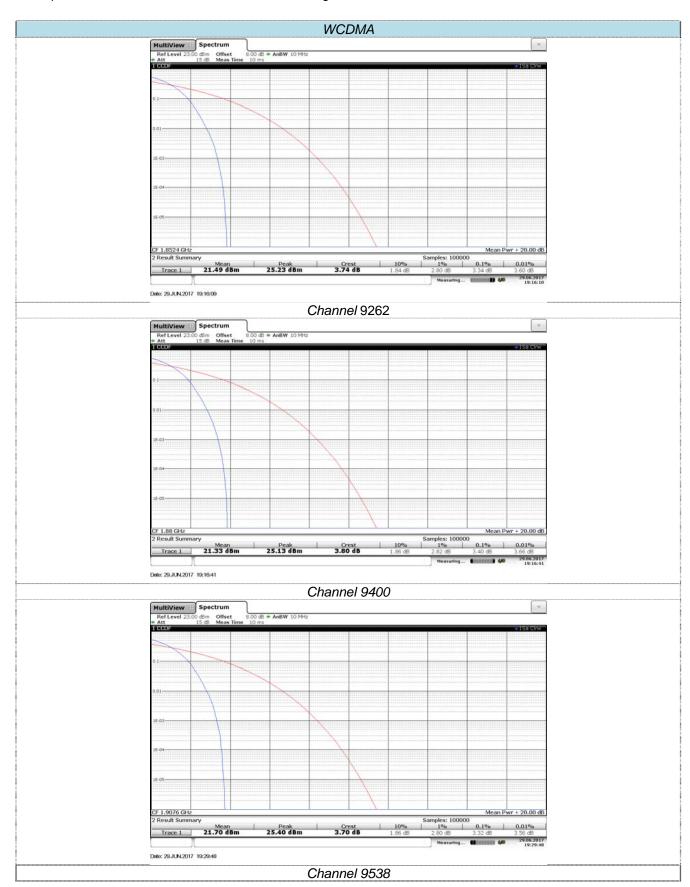
- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. Forcontinuous signals (>98% duty cycle), the measurement interval was set to 1ms. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

Note: Worst case PCS1900, WCDMA BAND1900


Band	Channel	Frequency(MHz)	PAR	Limit(dB)	Result
PCS1900	512	1850.2	9.54	13.00	Pass
	661	1880.0	9.48	13.00	Pass
	810	1909.8	9.47	13.00	Pass

Band	Channel	Frequency(MHz)	PAR	Limit(dB)	Result
WCDMA BAND II	9262	1852.4	3.34	13.00	Pass
	9400	1880.0	3.40	13.00	Pass
	9538	1907.6	3.32	13.00	Pass

Report No.: TRE1706011201 Page: 51 of 60 Issued: 2017-07-01


Report No.: TRE1706011201 Page: 52 of 60 Issued: 2017-07-01



Report No.: TRE1706011201 Page: 53 of 60 Issued: 2017-07-01

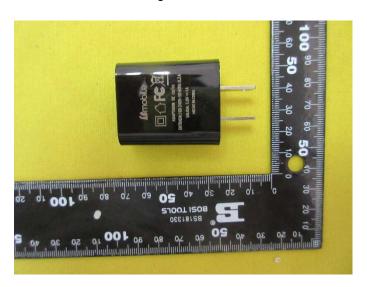
6. Test Setup Photos of the EUT

Radiated emission:

Report No.: TRE1706011201 Page: 54 of 60 Issued: 2017-07-01

7. External and Internal Photos of the EUT

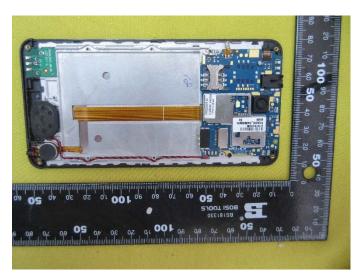
External photos of the EUT

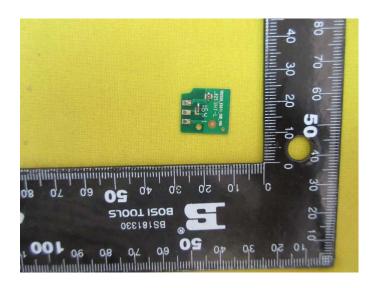

Report No.: TRE1706011201 Page: 55 of 60 Issued: 2017-07-01

Report No.: TRE1706011201 Page: 56 of 60 Issued: 2017-07-01

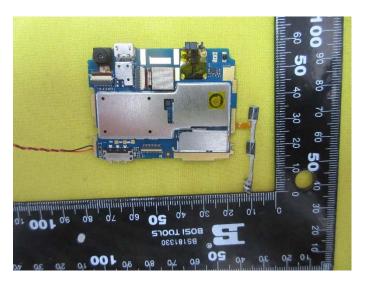
Report No.: TRE1706011201 Page: 57 of 60 Issued: 2017-07-01

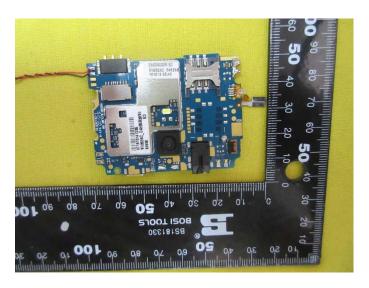
Internal photos of the EUT

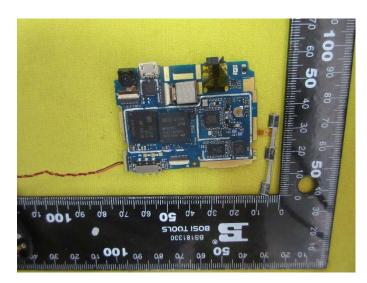


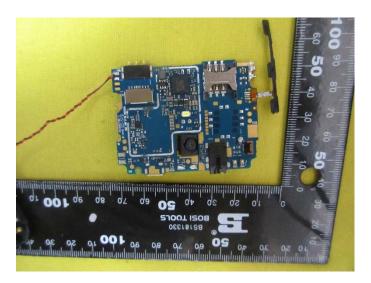


Report No.: TRE1706011201 Page: 58 of 60 Issued: 2017-07-01






Report No.: TRE1706011201 Page: 59 of 60 Issued: 2017-07-01



Report No.: TRE1706011201 Page: 60 of 60 Issued: 2017-07-01

-----End of Report-----