

TEST REPORT

Report Numbe	r:	15175342-E4V4
Applicant	:	APPLE, INC. 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A.
Model	:	A3212 (PARENT MODEL) A3408, A3409, A3410 (VARIANT MODELS)
Brand	:	APPLE
FCC ID	:	BCG-E8725A (PARENT MODEL) BCG-E8726A, BCG-E8727A, BCG-E8728A (VARIANT MODELS)
IC	:	579C-E8725A (PARENT MODEL) 579C-E8726A, 579C-E8727A, 579C- E8728A (VARIANT MODELS)
EUT Description	:	SMARTPHONE
Test Standard(s)	:	FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 3

Date Of Issue:

ISED RSS-GEN ISSUE 5 + A1 + A2

2024/12/17

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	2024/11/07	Initial Issue	Tony Li
V2	2024/11/14	Addressed TCB Feedback on Section 6.5 and add section 12	Tony Li
V3	2024/12/12	Updated Section 9.3 to be compliant to ANSI 63.10-2020	Tony Li
V4	2014/12/17	Updated page 34 per TCB feedback	Tony Li

Page 2 of 317

1.	ATT	ESTATION OF TEST RESULTS 5	5
2.	TES	T RESULTS SUMMARY7	7
3.	TES	T METHODOLOGY	7
4.	FAC	ILITIES AND ACCREDITATION	3
5.	DEC	SISION RULES AND MEASUREMENT UNCERTAINTY)
5	.1.	METROLOGICAL TRACEABILITY)
5	.2.	DECISION RULES	9
5	.3.	MEASUREMENT UNCERTAINTY	9
5	.4.	SAMPLE CALCULATION)
6.	EQU	JIPMENT UNDER TEST11	I
6	.1.	EUT DESCRIPTION	1
6	.2.	MAXIMUM OUTPUT POWER11	1
6	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	1
6	.4.	SOFTWARE AND FIRMWARE	2
6	.5.	WORST-CASE CONFIGURATION AND MODE	2
6	.6.	DESCRIPTION OF TEST SETUP14	1
7.	MEA	ASUREMENT METHOD17	7
8.	TES	T AND MEASUREMENT EQUIPMENT18	3
9.	ANT	ENNA PORT TEST RESULTS)
9	.1.	ON TIME AND DUTY CYCLE)
9	.2.	99% BANDWIDTH	1
	9.2.	1. 802.11b/n/ax SISO MODE	2
0	9.2.4))
9	9.3. 9.3.	00B BANDWIDTH	3 }
	9.3.2	2. 802.11ax MIMO CDD MODE	I
9	.4.	OUTPUT POWER AND POWER SPECTRAL DENSITY	3
	9.4.1 9.4.1	1. 802.11b SISO MODE	5
	9.4.3	3. 802.11n HT20 MIMO MODE	, 7
	9.4.4	4. 802.11ax HE20 SISO MODE)
	9.4.5	5. 802.11ax HE20 MIMO MODE41	ł
9	.5.	CONDUCTED SPURIOUS EMISSIONS	3
	9.5.°	1. 802.110 SISO MODE	} >
	9.5.3	3. 802.11n HT20 MIMO MODE	- 1
	9.5.4	4. 802.11ax HE20 SISO MODE80)
		Page 3 of 317	

	9.5.5.	802.11ax HE20 MIMO MODE	104
10.	RADIA	TED TEST RESULTS	132
1	0.1.	TRANSMITTER ABOVE 1 GHz	134
	10.1.1.	802.11b SISO MODE - BANDEDGE	134
	10.1.2.	802.11b SISO MODE - SPURIOUS EMISSIONS	150
	10.1.3.	802.11n HT20 SISO MODE – BANDEDGE	162
	10.1.4.	802.11n HT20 MIMO MODE – BANDEDGE	194
	10.1.5.	802.11n HT20 CDD MODE 2TX - SPURIOUS EMISSIONS	
	10.1.6.	802.11ax HE20 SISO MODE – BANDEDGE	
	10.1.7.	802.11ax HE20 OFDMA MODE – BANDEDGE	
	10.1.8.	802.11ax HE20 OFDMA MODE - SPURIOUS EMISSIONS	
1	0.2.	WORST CASE BELOW 1 GHz	
1	0.3.	WORST CASE 18-26 GHz	
11.	AC PO	WER LINE CONDUCTED EMISSIONS	310
1	1.1.	AC POWER LINE WITH LAPTOP	311
1	1.2.	AC POWER LINE AC/DC ADAPTER	313
12.	SPOT	CHECK EVALUATION	315
1.	2.1.	MODEL DIFFERENCES	315
1.	2.2.	SPOT CHECK VERIFICATION RESULTS SUMMARY FOR A3408	316
1.	2.3.	SPOT CHECK VERIFICATION RESULTS SUMMARY FOR A3409	316
1.	2.4.	SPOT CHECK VERIFICATION RESULTS SUMMARY FOR A3410	316
13.	SETUR	PHOTOS	317

Page 4 of 317

1. ATTESTATION OF TEST RESULTS

s	TANDARD	TEST RESULTS
	APPLICABLE STANDARDS	
DATE TESTED:	2024/08/22 - 2024/11/19	
SAMPLE RECEIPT DATE:	2024/07/16, 2024/11/13	
	Variant Model Conducted: J970CH (A3409) KYFJV03QL6 (A3410) Variant Model Radiated: LKQVT2W (A3409), R0QQVMMXH7 (A3410)	YF9P (A3408), LHXH14D1WF /2YG (A3408), QV6H6WR6YR
SERIAL NUMBER:	Parent Model: KQFN75JXKL, JRY FK6XJ3G2YN, FYTW9G7YHY, JL	1Q7C9QQ (CONDUCTED) 2GY6CXGT (RADIATED)
BRAND:	APPLE	
MODEL:	A3212 (PARENT MODEL) A3408, A3409, A3410 (VARIANT M	IODELS)
EUT DESCRIPTION:	SMARTPHONE	
COMPANY NAME:	APPLE INC. 1 APPLE PARK WAY CUPERTINO, CA 95014, U.S.A	

STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	Complies
ISED RSS-247 Issue 3	Complies
ISED RSS-GEN Issue 5 + A1 + A2	Complies

UL Verification Inc.is tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Page 5 of 317

Approved & Released By:	Reviewed By:	Prepared By:
Chin Pany	Dallin	Rotan
Chin Pang	David Collins	Becky Yu
Senior Lab Engineer	Senior Test Engineer	Laboratory Engineer
UL Verification Services Inc.	UL Verification Services Inc.	UL Verification Services Inc.

Page 6 of 317

2. TEST RESULTS SUMMARY

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for the validity of results after the integration of the data provided by the customer.

Below is a list of the data provided by the customer:

- 1. Antenna gain and type (see section 6.3)
- 2. Cable loss (see section 6.3)

FCC Clause	ISED Clause	Requirement	Result	Comment
Cas Commont			Reporting	ANSI C63.10
3ee C	omment	Duty Cycle	purposes only	Section 11.6
	DSS CEN 6.7		Reporting	ANSI C63.10
-	K33-GEN 0.7	99 % OBW	purposes only	Section 6.9.3
15.247 (a) (2)	RSS-247 5.2 (a)	6dB BW	Complies	None
15 247 (b) (2)	DSS 247 5 4 (d)	Output Bower (Average)	Complies	Per ANSI C63.10
15.247 (b) (5)	K33-247 5.4 (u)	Output Fower (Average)	Complies	Section 11.9.2.3.2
15.247 (e)	RSS-247 5.2 (b)	PSD	Complies	None
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Complies	None
15 209 15 205	RSS-GEN 8.9,	Radiated Emissions	Complies	None
10.200, 10.200	8.10		Complies	NONE
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Complies	None

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with.

- FCC CFR 47 Part 2
- FCC CFR 47 Part 15
- FCC KDB 558074 D01 v05r02 15.247 Meas Guidance
- KDB 484596 D01 V02r03
- ANSI C63.10-2020
- RSS-GEN Issue 5 + A1 + A2
- KDB 414788 D01 Radiated Test Site v01r01
- RSS-247 Issue 3

Page 7 of 317

4. FACILITIES AND ACCREDITATION

UL Verification Inc. is accredited by A2LA, certification #0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA			
\boxtimes	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA	US0104	2324A	550739
\boxtimes	Building 3: 843 Auburn Court, Fremont, CA 94538 USA		-	
\boxtimes	Building 4: 47658 Kato Rd, Fremont, CA 94538 USA			
\boxtimes	Building 5: 47670 Kato Rd, Fremont, CA 94538 USA			

Page 8 of 317

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{LAB}
Conducted Antenna Port Emission Measurement	1.94dB
Power Spectral Density	2.466dB
Time Domain Measurements Using SA	3.39dB
RF Power Measurement Direct Method Using Power Meter	1.30 dB (Peak) 0.45 dB (Ave)
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.22%
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

Page 10 of 317

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The Apple iPhone is a smartphone with GSM, GPRS, EGPRS, WCDMA, LTE, 5GNR1, IEEE 802.11a/b/g/n/ac/ax, Bluetooth (BT), Global Positioning System (GPS), Near-Field Communication (NFC), and Mobile Satellite Service (MSS) technologies. The rechargeable battery is not user accessible. This device is not user-serviceable and requires special tools to disassemble.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
1TX			
	802.11b 1Mbps	21.48	140.60
2412 - 2472	802.11b 11Mbps	21.48	140.60
	802.11g	Covered by 802.11n HT20 1TX	
	802.11n HT20 MCS0	21.47	140.28
	802.11n HT20 MCS7	21.43	139.00
	802.11ax HE20 MCS0	21.48	140.60
	802.11ax HE20 MCS9	21.49	140.93

2TX			
2412 - 2472	802.11g SDM/STBC	Covered by 802.11n HT20 CDD	
	802.11n HT20 CDD MCS0	24.49	281.19
	802.11n HT20 CDD MCS7	24.49	281.19
	802.11ax HE20 OFDMA MCS0	24.49	281.19
	802.11ax HE20 OFDMA MCS9	24.50	281.84

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna Type is IFA.

The antennas' gains, as provided by the manufacturer, are as follows:

Frequency Range (GHz)	ANT 4 (dBi)	ANT 3 (dBi)
2400 - 2483.5	-1.90	-1.20

The SMA Cable losses used for RF antenna port tests are as follow:

Frequency Range (GHz)	ANT 4 (dB)	ANT 3 (dB)
2400 - 2483.5	-1.7	-1.8

The cables were used for RF antenna port tests that had been offset to the test equipment during testing.

Page 11 of 317

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was 20_10_1127.

6.5. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in three orthogonal orientations: X (Flatbed), Y (Landscape) and Z (Portrait) on ANT 4, ANT 3, and 2TX. It was determined that X (Flatbed) orientation was the worst-case orientation for ANT 3, ANT 4 and 2TX.

With same power on Full RU and SU higher data rate, investigation was performed on both band edge to determine the worst case. SU mode was determined to be the worst case.

Radiated band edge, harmonic, and spurious emissions from 1GHz to 18GHz were performed with the EUT set to transmit at highest power on Low/Middle/High channels.

Radiated emissions below 1GHz, 18-26GHz and power line conducted emissions were performed with the EUT transmits at the channel with the highest output power as worst-case scenario. There were no emissions found below 30MHz within 20dB of the limit.

For radiated harmonics spurious below 1GHz, 1-18GHz L/M/H channels, 18-26GHz, and power line conducted emissions were performed with the EUT set at the 2TX OFDMA mode among the CDD/SDM modes and 2TX HE mode with power setting equal or higher than SISO modes as worst-case scenario. G mode covered by HT20 mode since it has the same power as HT20.

Below 30MHz, 30-1000MHz emission spurious test were performed with EUT connected to AC power adapter and set EUT on X orientation as the worst case; and for above 1GHz tests, the worst-case configuration reported was with EUT only. For AC line conducted emission, test was investigated with AC power adapter and with laptop.

The output power and psd for the 802.11ax mode were investigated between all different tones and we found that SU mode had the highest output power and Partial RU had the highest PSD readings. After investigation, antenna port conducted tests were performed on both SU and lowest tones; radiated spurious emission and radiated band edge tests were performed on SU and lowest tones. Please see worst case summary table below.

Page 12 of 317

WIFI DTS 2.4GHz - 802.11ax									
BW	Tone	Dillington	RU Index	Worst Case Tone					
(MHz)	(T)	RUINdex	(Chipset support)	Power	PSD				
	26	0 ~ 8	0 ~ 8	-	Х				
	52	37 ~ 40	37 ~ 40						
20	106	53 ~ 54	53 ~ 54						
	242	61	61						
	SU			Х					

For antenna port conducted tests, the following are the worst-case data rates set for test: 802.11b mode : 1Mbps & 11 Mbps 802.11n HT20 mode : MCS0 & MCS7 802.11ax HE SU mode: MCS0 & MCS9 802.11ax HE RU26 mode: MCS0

For radiated band-edge, the following are the worst-case data rates set for test: 802.11b mode : 1 Mbps 802.11n HT20 mode : MCS7 802.11ax HE SU mode: MCS9 802.11ax HE RU26 mode: MCS9

Low data rate was used to test radiated spurious emissions since it has the highest maximum power.

Note: In the Radiated Plots and emissions data, ANT1=ANT4 and ANT2=ANT 3.

Page 13 of 317

6.6. DESCRIPTION OF TEST SETUP

SUPPORT TEST EQUIPMENT									
D	escription	Manufacturer	Model	Serial Number		FCC ID/ DoC			
	Laptop	Apple	Macbook Pro	C02VD7S/	AHV22	BCGA1708			
Laptop	AC/DC adapter	Liteon Technology	A1424	NSW25	679	DoC			
EUT /	AC/DC adapter	Apple	A1720	C3D8417A7R	93KVPA8	DoC			
Condu	cted Switch Box	UL	n/a	20828	31	N/A			
		I/O CAE	BLES (RF CONDUC	TED TEST)					
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	Antenna	1	SMA	Un-shielded	0.2	To spectrum Analyzer			
2	USB	1	USB	Shielded	1.0	N/A			
3	AC	1	AC	Un-shielded	2	N/A			
	I/O CABLES (RF RADIATED TEST)								
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	AC	1	AC	Un-shielded	2	N/A			
2	USB	1	USB	Un-shielded	1	N/A			

TEST SETUP

The EUT setup is shown as below. Test software exercised the radio card.

Page 14 of 317

SETUP DIAGRAM FOR CONDUCTED TESTS

SETUP DIAGRAM FOR RADIATED TESTS Above 1 GHz (1 to 26.5GHz)

Page 15 of 317

SETUP DIAGRAM FOR below 1GHz and AC LINE CONDUCTED TEST

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

Page 16 of 317

7. MEASUREMENT METHOD

TEST ITEM	TEST METHOD
6 dB Bandwidth	ANSI C63.10 Subclause - 11.8.1
99% Bandwidth	ANSI C63.10 Subclause 6.9.3
Output Power	ANSI C63.10 Subclause - 11.9.2.3.2 Method AVGPM G (Measurement using an RF average- reading power meter)
Peak Spectral Density (PSD)	ANSI C63.10 Subclause - 11.10.3 Method AVGPSD-1
Radiated Emissions Non-Restricted Frequency Bands	ANSI C63.10 Subclause - 11.11
Radiated Emissions Restricted Frequency Bands	ANSI C63.10 Subclause - 11.12.1
Conducted Emissions in Restricted Frequency Bands	ANSI C63.10 Subclause - 11.12.2
Band-edge	ANSI C63.10 Subclause - 11.12.2.4 Peak Measurement
Band-edge	ANSI C63.10 Subclause - 11.12.2.5 Average Measurement
Radiated Spurious Emissions Below 30MHz	ANSI C63.10 Subclause 6.4
AC Power Line Conducted Emissions	ANSI C63.10 Subclause 6.2

Page 17 of 317

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST									
Description	Manufacturer	Model	ID Num	Cal Due					
Antenna, Horn 1-18GHz	ETS-Lindgren (Cedar Park, Texas)	3117	226673	2025/02/28					
RF Filter Box, 1-18GHz, 12 Ports	UL-FR1	Frankenstein	231874	2025/07/31					
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179372	2025/02/28					
*Antenna, Horn 1-18GHz	ETS-Lindgren (Cedar Park, Texas)	3117	41112	2024/10/31					
RF Filter Box, 1-18GHz, 12 Ports	UL-FR1	F2A	224478	2025/01/31					
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	201499	2025/02/28					
Antenna, Horn 1-18GHz	ETS-Lindgren (Cedar Park, Texas)	3117	200784	2025/01/31					
RF Filter Box, 1-18GHz, 17 Ports	UL-FR1	RATS 2	225474	2025/04/30					
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	201500	2025/02/28					
Antenna, Horn 1-18GHz	ETS-Lindgren (Cedar Park, Texas)	3117	80402	2025/07/31					
RF Filter Box, 1-18GHz, 12 Port	UL-FR1	Frankenstein	216812	2025/01/30					
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	230548	2025/02/28					
*Antenna, Horn 1-18GHz	ETS-Lindgren (Cedar Park, Texas)	3117	223083	2024/10/31					
RF Filter Box, 1-18GHz, 7 port Simplified	UL-FR1	F3A	243707	2025/02/22					
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	169927	2025/02/28					
Antenna, Broadband Hybrid, 30MHz to 3GHz	Sunol Sciences Corp.	JB3	232075	2025/04/30					
Link File, @3m, 9kHz-1000MHz Hybrid Path Loss	UL-FR1	Port 0 Factors	211062	2025/03/31					
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	235670	2025/02/28					
*Antenna, Horn 18 to 26.5GHz	A.R.A.	MWH-1826/B	172354	2024/10/31					
RF Amplifier Assembly, 18-26.5GHz, 60dB Gain	AMPLICAL	AMP18G26.5- 60	221832	2025/03/31					
Antenna, Passive Loop 30Hz - 1MHz	ELECTRO-METRICS	EM-6871	170013	2025/07/31					
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO-METRICS	EM-6872	170015	2025/07/31					
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	81188	2025/01/31					
Conducted Switch Box	N/A	CSB	245774	2025/05/31					
10dB Fixed Attenuator	Pasternack Enterprises	PE7087-10	178557	Verified Before Use					
10dB Fixed Attenuator	Pasternack Enterprises	PE7087-10	178558	Verified Before Use					
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90733	2025/01/31					
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	90419	2025/03/31					

Page 18 of 317

AC Line Conducted									
Description	۱	Manufa	Manufacturer		odel	ID Num	Cal Due		
EMI TEST RECEIVER 9kHz - 3.6GHz R		Rohde &	Schwarz	E	SR3	171646	2025/02/28		
LISN for Conducted E CISPR-16	Emissions FISCHER 6 COMMUN		CUSTOM CATIONS	FCC-LISN-50/250- 25-2-01-480V		175765	2025/01/31		
*Transient Limiter		TI	TE TBFL1		207996	2024/08/31			
		UL AUTOI	MATION S	SOFTW/	ARE				
Radiated Software	l	UL		MC	V	er 9.5, 2023, N	1ay 1		
Conducted Software	UL		UL EMC			2020.8.16			
AC Line Conducted Software	I	JL	UL EI	MC	V	′er 9.5, 2023, N	/lar 3		

*Testing is completed before equipment expiration date.

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 19 of 317

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Test Engineer:	12491
Test Date:	2024/09/09

Mode	Tone (T)	Data Rate	ON Time B (msec)	Period (msec)	Duty Cycle x (linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW (kHz)
h		1Mbps	49.6950	49.7200	0.9995	99.95%	0.00	0.010
d		11Mbps	1.2070	1.2210	0.9885	98.85%	0.00	0.010
LITOO		MCS0	1.9200	1.9420	0.9887	98.87%	0.00	0.010
11120		MCS7	0.2280	0.2490	0.9157	91.57%	0.38	4.386
	911	MCS0	1.4880	1.5090	0.9861	98.61%	0.00	0.010
115.00	30	MCS9	0.1680	0.1900	0.8842	88.42%	0.53	5.952
HE20	26	MCS0	3.9940	4.0390	0.9889	98.89%	0.00	0.010
	20	MCS9	0.3500	0.3950	0.8861	88.61%	0.53	2.857

Note: Duty cycle 2TX is the same as 1TX.

DUTY CYCLE PLOTS

Page 20 of 317

9.2. 99% **BANDWIDTH**

LIMITS

None; for reporting purposes only.

RESULTS

Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

Page 21 of 317

9.2.1. 802.11b/n/ax SISO MODE

 Test Engineer:
 12491

 Test Date:
 2024/09/10

Mode (SISO)	Frequency (MHz)	Channel Number	Data Rate	Tone	RU Index	99 Band (Mi	% width Hz)
						ANT 4	ANT 3
	2412	1				12.748	12.875
	2437	6	1 Mbps			12.799	12.862
ь [2472	13				12.922	12.702
, D	2412	1				12.614	12.777
	2437	6	11 Mbps			12.712	12.668
	2472	13				12.730	12.519
	2412	1				17.790	17.688
	2437	6	MCS0			17.744	17.759
HT20	2472	13				17.823	17.671
	2412	1	MCS7			17.742	17.756
	2437	6				17.901	17.880
	2472	13				17.807	17.648
	2412	1	MCS0	<u>SU</u>		18.911	18.925
			MCS9	50		18.891	18.831
			MCS0	26T	0	18.405	18.251
					4	16.815	16.736
					8	18.568	18.545
			MCS0	611		18.929	18.944
			MCS9	50		18.976	19.037
HE20	2437	6			0	18.358	18.401
			MCS0	26T	4	17.075	16.939
					8	18.691	18.503
			MCS0	<u></u>		18.921	18.888
			MCS9			18.876	18.908
	2472	13			0	18.149	18.213
			MCS0	26T	4	17.211	17.124
					8	18.730	18.830

Page 22 of 317

Page 23 of 317

Control Spectrum Margins 4(1):24312(1):44112(m32) Control Frag 2.437000000 GHz Control Frag 2.437000000 GHz Control Frag 2.437000000 GHz Control Frag 2.437000000 GHz Control Frag 2.437000000 GHz Radio Sub Margins Mit Gain2 and Argin Frag 2.43700000 GHz Radio Sub Margins Mit Gain2 and Argin Frag 2.43700000 GHz Radio Sub Margins Mit Gain2 and Argin Frag 2.43700000 GHz Radio Sub Margins Mit Gain2 and Argin Frag 2.43700000 GHz Radio Device BTS Mit Gain2 and Argin Frag 2.43700000 GHz Radio Device BTS Mit Gain2 and Argin Frag 2.43700000 GHz Radio Device BTS				Frequency	Intent Bl	ionally ank
	- 	April and	****	Center Freq 2.43700000 GHz		
Center 2.437 GHz #Res BW 300 kHz		VBW 910 kHz	Span 40 MHz Sweep 1 ms	CF Step		
Occupied Bandwidth 18. Transmit Freq Error x dB Bandwidth	358 MHz -638,18 kHz 20.11 MHz	Total Power OBW Power x dB	23.1 dBm 99.00 % -26.00 dB	Freq Offset 0 Hz		
			form.			

Page 24 of 317

1

Mode (MIMO)	Frequency (MHz)	Channel Number	Data Rate	Tone	RU Index	99 Band (MI	% width Hz)
						ANT 4	ANT 3
	2412	1				17.814	17.804
	2437	6	MCS0			17.798	17.784
UT20	2472	13				17.779	17.616
H120	2412	1				17.735	17.761
	2437	6	MCS7			17.836	17.804
	2472	13				17.729	17.645
	2412	1	MCS0	<u>SI I</u>		18.944	18.939
			MCS9	00		18.902	18.921
			MCS0	MCS0 26T	0	18.479	18.327
					4	16.849	16.706
					8	18.670	18.429
			MCS0	SU		18.955	18.930
			MCS9			18.981	18.947
HE20	2437	6			0	18.370	18.343
			MCS0	26T	4	16.882	16.590
					8	18.637	18.301
			MCS0	611		18.888	18.877
			MCS9	30		18.904	18.810
	2472	13			0	18.277	18.185
			MCS0	26T	4	16.995	16.715
					8	18.803	18.530

9.2.2. 802.11n/ax MIMO CDD MODE

1

Page 25 of 317

REPORT NO: 15175342-E4V4

Page 27 of 317

9.3. 6dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

The 6dB bandwidth was measured for the narrowest bandwidth mode, b Mode and ax HE20 Mode 26-Tone as worst case to demonstrate compliance with the minimum required bandwidth of 500 kHz to cover all OFDMA/CDD modes.

Only MID channel plot is reported to show setting parameter compliance with testing method/procedure.

Page 28 of 317

9.3.1. 802.11b/ax SISO MODE

 Test Engineer:
 12491

 Test Date:
 2024/11/07

Mode (SISO)	Frequency (MHz)	Channel Number	Data Rate	Tone	RU Index	6dB Bandwidth (MHz)		
						ANT 4	ANT 3	
	2412	1				8.76	8.72	
	2437	6	1 Mbps			8.80	8.76	
h	2472	13				8.80	8.68	
U U	2412	1				8.08	8.80	
	2437	6	11 Mbps			8.36	8.88	
	2472	13				8.64	8.48	
		1	MCS0	26T	0	2.12	2.16	
	2412				4	2.64	2.64	
					8	2.40	2.12	
					0	2.08	2.08	
HE20	2437	6	MCS0	26T	4	2.64	2.64	
					8	2.12	2.16	
					0	2.24	2.16	
	2472	13	MCS0	26T	4	2.80	2.72	
					8	2.12	2.08	

Page 29 of 317

9.3.2. 802.11ax MIMO CDD MODE

Test Engineer:	12491
Test Date:	2024/11/07

Mode (MIMO)	Frequency (MHz)	Channel Number	Data Rate	Tone	RU Index	6dB Bandwidth (MHz)		
						ANT 4	ANT 3	
		1			0	2.08	2.12	
	2412		MCS0	26T	4	2.68	2.68	
					8	2.24	2.28	
	2437	6	MCS0		0	2.08	2.24	
HE20				26T	4	2.64	2.64	
					8	2.16	2.08	
		13			0	2.20	2.20	
	2472		MCS0	26T	4	2.68	2.68	
					8	2.08	2.16	

Page 31 of 317

Page 32 of 317

9.4. OUTPUT POWER AND POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.247 (e)

RSS-247 (5.2) (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Measurements perform using a wideband RF power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband power sensor. Average output power was read directly from the power meter.

Only MID channel plot is reported to show setting parameter compliance with testing method/procedure.

Note: RBW setting greater than 3kHz is used on PSD measurement

DIRECTIONAL ANTENNA GAIN

For 1 TX:

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

For 2 TX:

Tx chains are uncorrelated for Power and correlated for PSD due to the device supporting CDD in all MIMO modes. The directional gains are as follows:

	ANT 4	ANT 3	Uncorrelated Chains	Correlated Chains
	Antenna	Antenna	Directional	Directional
Band	Gain	Gain	Gain	Gain
(GHz)	(dBi)	(dBi)	(dBi)	(dBi)
2.4	-1.90	-1.20	-1.54	1.47

Note: RBW setting is used greater than 3KHz on PSD measurement

Page 33 of 317

DIRECTIONAL GAIN CALCULATION:

ANSI C63.10-2020 section 14.6.3

Uncorrelated Directional Gain =
$$10 * \text{LOG}\left[\frac{10^{\frac{\text{ANT4}}{10}} + 10^{\frac{\text{ANT3}}{10}}}{2}\right]$$

Correlated Directional Gain =
$$10 * LOG \left[\frac{\left(10^{\frac{ANT4}{20}} + 10^{\frac{ANT3}{20}}\right)^2}{2} \right]$$

Sample Calculation:

ANT 4 = -1.90 dB ANT 3 = -1.20 dB

Uncorrelated Directional Gain =
$$10 * \text{LOG}\left[\frac{10^{\frac{-1.90}{10}} + 10^{\frac{-1.20}{10}}}{2}\right] = -1.54 \text{ dBi}$$

Correlated Directional Gain =
$$10 * \text{LOG}\left[\frac{\left(10^{\frac{-1.90}{20}} + 10^{\frac{-1.20}{20}}\right)^2}{2}\right] = 1.47 \text{ dBi}$$

RESULTS

Page 34 of 317

9.4.1. 802.11b SISO MODE

Test Engineer:	12491
Test Date:	2024/09/30

		Antenna Gain (dBi)				
DCCF (1Mbps) (dB)	0.00		ANT 4	-1.90		
DCCF (11Mbps) (dB)	0.00		ANT 3	-1.20		

Mode (SISO)	Freq (MHz)	Ch. #	Data Rate	Po Lii (dE	wer mit 3m)	Output (Ga (dE	t Power ted) 3m)	To Correcte (dE	otal ed Power 3m)	P: Lii (dBm	SD nit /3kHz)	P: (dBm	SD v/kHz)	To Correct (dBm	otal :ed PSD /kHz)
				ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3
	2412	1				20.38	20.43	20.38	20.43			-1.138	-0.984	-1.138	-0.984
	2437	6			30.00	21.47	21.48	21.47	21.48	8.00	8.00	0.190	0.218	0.190	0.218
	2462	11	1Mbps	30.00		21.46	21.45	21.46	21.45			0.165	0.089	0.165	0.089
	2467	12				20.44	20.42	20.44	20.42			-0.975	-1.040	-0.975	-1.040
h	2472	13				17.98	17.96	17.98	17.96			-3.357	-3.484	-3.357	-3.484
d	2412	1				20.46	20.47	20.46	20.47		8.00	-1.975	-1.936	-1.975	-1.936
	2437	6	1		30.00	21.48	21.48	21.48	21.48			-0.550	-0.580	-0.550	-0.580
	2462	11	11Mbps	30.00		21.44	21.43	21.44	21.43	8.00		-0.653	-0.697	-0.653	-0.697
	2467	12	1			20.48	20.47	20.48	20.47			-1.917	-1.949	-1.917	-1.949
	2472	13]			17.97	17.94	17.97	17.94			-3.853	-4.060	-3.853	-4.060

Page 35 of 317

9.4.2. 802.11n HT20 SISO MODE

Test Engineer:	12491
Test Date:	2024/10/01

		Antenna Gain (dBi)			
DCCF (MCS0) (dB)	0.00	ANT 4	-1.90		
DCCF (MCS7) (dB)	0.38	ANT 3	-1.20		

Mode (SISO)	Freq (MHz)	Ch. #	Data Rate	Po Li (di	Power Limit (dBm)		Output Power To (Gated) Correct (dBm) (d		otal PSD ed Power Limit Bm) (dBm/3kHz)		PSD (dBm/kHz)		Total Corrected PSD (dBm/kHz)		
				ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3
	2412	1				17.98	17.93	17.98	17.93			-6.082	-6.164	-6.082	-6.164
	2417	2				19.47	19.48	19.47	19.48			-4.123	-4.112	-4.123	-4.112
	2422	3				21.42	21.42	21.42	21.42		8.00	-2.317	-2.384	-2.317	-2.384
	2437	6				21.46	21.47	21.46	21.47			-2.209	-2.250	-2.209	-2.250
	2452	9	MCS0	30.00	30.00	20.98	20.95	20.98	20.95	8.00		-2.733	-2.873	-2.733	-2.873
	2457	10				19.46	19.41	19.46	19.41			-4.225	-4.576	-4.225	-4.576
	2462	2462 11			18.48	18.42	18.48	18.42			-5.579	-5.705	-5.579	-5.705	
	2467	12				15.97	15.92	15.97	15.92			-7.948	-8.044	-7.948	-8.044
UT20	2472	13				12.94	12.96	12.94	12.96			-10.943	-10.685	-10.943	-10.685
1120	2412	1				16.43	16.47	16.43	16.47			-7.756	-7.868	-7.376	-7.488
	2417	2				19.45	19.46	19.45	19.46			-2.498	-2.526	-2.118	-2.146
	2422	3				19.99	19.97	19.99	19.97			-3.421	-3.631	-3.041	-3.251
	2437	6				21.43	21.39	21.43	21.39			-2.350	-2.519	-1.970	-2.139
	2452	9	MCS7	30.00	30.00	19.98	19.95	19.98	19.95	8.00	8.00	-3.555	-3.627	-3.175	-3.247
	2457	10	+			19.48	19.44	19.48	19.44			-2.354	-2.575	-1.974	-2.195
	2462	11				17.45	17.45	17.45	17.45			-5.126	-5.036	-4.746	-4.656
	2467	12	Ī			15.44	15.46	15.44	15.46			-7.229	-7.063	-6.849	-6.683
247	2472	13				11.94	11.92	11.94	11.92			-10.582	-10.892	-10.202	-10.512

Page 36 of 317
9.4.3. 802.11n HT20 MIMO MODE

Test Engineer:	12491
Test Date:	2024/10/01

DCCF (MCS0) (dB)	0.00	Uncorrelated Gain (dBi)	-1.54
DCCF (MCS7) (dB)	0.38	Correlated Gain (dBi)	1.47

Mode (SISO)	Freq (MHz)	Ch. #	Data Rate	Power Limit	Power (Gated) Limit (dBm)		Power Total MIMO ted) Corrected 3m) Power		P: (dBm	SD /kHz)	Total Corrected PSD
				(abm)	ANT 4	ANT 3	(dBm)	(abm/skHz)	ANT 4	ANT 3	(dBm/kHz)
	2412	1			17.45	17.45	20.46		-7.062	-6.973	-4.007
	2417	2			18.48	18.48	21.49		-5.349	-5.345	-2.337
	2422	3			19.95	19.92	22.95		-3.782	-4.122	-0.938
	2437	6			21.46	21.48	24.48		-2.782	-2.640	0.300
HT20	2447	8	MCSO	30.00	21.47	21.48	24.49	8 000	-2.734	-2.636	0.326
11120	2452	9	WC30	30.00	19.47	19.43	22.46	0.000	-4.476	-4.356	-1.405
	2457	10			18.40	18.46	21.44		-5.550	-5.406	-2.467
	2462	11			17.46	17.45	20.47		-6.735	-6.943	-3.827
	2467	12			14.91	14.94	17.94		-8.909	-9.090	-5.988
	2472	13			11.92	11.93	14.94		-10.740	-10.721	-7.720
	2412	1			15.95	15.98	18.98		-6.474	-6.299	-2.995
	2417	2			18.43	18.46	21.46		-3.745	-3.909	-0.436
	2422	3			19.95	19.91	22.94		-1.866	-1.708	1.604
	2437	6			21.46	21.47	24.48		-0.376	-0.303	3.051
LIT20	2447	8	MCS7	30.00	21.48	21.47	24.49	8 000	-0.322	-0.316	3.071
11120	2452	9	101007	30.00	19.41	19.46	22.45	0.000	-2.690	-2.570	0.761
	2457	10			18.48	18.43	21.47		-3.734	-3.865	-0.409
	2462	11			16.45	16.48	19.48		-5.980	-5.998	-2.599
	2467	12			13.92	13.94	16.94		-8.220	-8.411	-4.924
	2472	13			11.40	11.44	14.43		-10.661	-10.320	-7.097

Page 37 of 317

9.4.4. 802.11ax HE20 SISO MODE

Test Engineer:	12491
Test Date:	2024/09/25

	SU	26T	Antenna	Gain (dBi)
DCCF (MCS0) (dB)	0.00	0.00	ANT 4	-1.90
DCCF (MCS9) (dB)	0.53		ANT 3	-1.20

Mode (SISO)	Freq Ch. # Data To (MHz) Ch. # Rate To		Data Rate Tone		Por Lir (dE	wer mit Bm)	Output (Ga (dE	: Power ted) Bm)	To Correcte (dE	otal ed Power 3m)	P: Lii (dBm.	SD nit /3kHz)	PS (dBm	SD /kHz)	To: Correcto (dBm)	tal ed PSD /kHz)	
						ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3	ANT 4	ANT 3
			MCS0	<u>en</u>				16.93	16.92	16.93	16.92			-8.401	-8.589	-8.401	-8.589
			MCS9	30				15.48	15.43	15.48	15.43			-6.787	-6.510	-6.257	-5.980
	2412	1			0			11.67	11.69	11.67	11.69			-5.304	-5.141	-5.304	-5.141
			MCS0	26T	4			11.72	11.71	11.72	11.71			-5.416	-5.493	-5.416	-5.493
					8			11.74	11.68	11.74	11.68			-5.263	-5.147	-5.263	-5.147
	2417	2	MCS0	911				17.97	17.91	17.97	17.91			-7.467	-7.649	-7.467	-7.649
	2417	2	MCS9	00				17.99	17.91	17.99	17.91			-3.775	-4.138	-3.245	-3.608
	2422	3	MCS0	SU				21.48	21.48	21.48	21.48			-3.828	-3.790	-3.828	-3.790
	2722	J	MCS9					21.47	21.36	21.47	21.36			-0.370	-0.657	0.160	-0.127
			MCS0	911				21.48	21.45	21.48	21.45			-3.989	-3.868	-3.989	-3.868
			MCS9	00				21.49	21.47	21.49	21.47			-0.280	-0.273	0.250	0.257
	2437	6			0			11.72	11.65	11.72	11.65			-5.369	-5.494	-5.369	-5.494
			MCS0	26T	4	-		11.70	11.74	11.70	11.74			-5.225	-5.203	-5.225	-5.203
					8		11.74	11.71	11.74	11.71			-5.286	-5.293	-5.286	-5.293	
	2452	<u>م</u>	MCS0	911				21.47	21.47	21.47	21.47			-3.875	-3.896	-3.875	-3.896
	2432	3	MCS9	30			21.46	21.36	21.46	21.36			-0.423	-0.585	0.107	-0.055	
HE20	2457	10	MCS0	011		30.00	30.00	17.94	17.97	17.94	17.97	8.000	8.000	-7.581	-7.441	-7.581	-7.441
	2437	10	MCS9	00				17.98	17.93	17.98	17.93			-3.769	-3.925	-3.239	-3.395
			MCS0	SU				16.91	16.92	16.91	16.92			-8.320	-8.575	-8.320	-8.575
			MCS9					15.96	15.97	15.96	15.97			-6.082	-5.980	-5.552	-5.450
	2462	11			0			11.73	11.67	11.73	11.67			-5.117	-5.149	-5.117	-5.149
			MCS0	26T	4			11.74	11.72	11.74	11.72			-5.102	-5.393	-5.102	-5.393
					8			11.71	11.71	11.71	11.71			-5.264	-5.302	-5.264	-5.302
			MCS0	911				14.98	14.92	14.98	14.92			-10.239	-10.439	-10.239	-10.439
			MCS9	00				13.91	13.95	13.91	13.95			-8.348	-8.109	-7.818	-7.579
	2467	12			0			11.72	11.72	11.72	11.72			-5.435	-5.290	-5.435	-5.290
			MCS0	26T	4			11.69	11.70	11.69	11.70			-5.319	-5.332	-5.319	-5.332
					8			11.74	11.73	11.74	11.73			-5.344	-5.387	-5.344	-5.387
			MCS0	911				8.98	8.95	8.98	8.95			-16.064	-16.174	-16.064	-16.174
			MCS9	30				8.42	8.48	8.42	8.48			-13.668	-13.343	-13.138	-12.813
	2472	13			0			-0.05	-0.01	-0.05	-0.01			-16.966	-16.884	-16.966	-16.884
			MCS0	26T	4			-0.03	-0.06	-0.03	-0.06			-16.851	-17.167	-16.851	-17.167
					8			-0.05	-0.04	-0.05	-0.04			-16.923	-16.780	-16.923	-16.780

Page 40 of 317

9.4.5. 802.11ax HE20 MIMO MODE

Test Engineer:	12491
Test Date:	2024/09/27

	SU	26T
DCCF (MCS0) (dB)	0.00	0.00
DCCF (MCS9) (dB)	0.53	

Uncorrelated Gain (dBi)	-1.54
Correlated Gain (dBi)	1.47

Mode (MIMO)	Freq (MHz)	Ch. #	Data Rate	Tone	RU Index	₹U Index (dBm)		t Power ted) Bm)	Total MIMO Corrected Power	PSD Limit (dBm/3k	PSD (dBm/kHz)		Total Corrected PSD
						(ubiii)	ANT 4	ANT 3	(dBm)	Hz)	ANT 4	ANT 3	(dBm/kHz)
			MCS0	S11			15.96	15.92	18.95		-9.312	-9.547	-6.418
			MCS9				14.97	14.95	17.97		-7.205	-7.348	-3.736
	2412	1			0		11.70	11.71	14.72		-5.248	-5.216	-2.222
			MCS0	26T	4		11.68	11.74	14.72		-5.168	-5.088	-2.118
					8		11.72	11.74	14.74		-5.240	-5.060	-2.139
	2417	2	MCS0	511			16.94	16.93	19.95		-8.486	-8.439	-5.452
	2417	2	MCS9	00			16.98	16.93	19.97		-5.844	-6.226	-2.491
	2422	3	MCS0	911			18.99	18.95	21.98		-6.474	-6.837	-3.641
	2422	5	MCS9	30			18.98	18.96	21.98		-2.991	-3.221	0.436
	2427	А	MCS0	511			21.49	21.45	24.48		-4.264	-4.194	-1.219
	2427	+	MCS9	- 50			21.45	21.46	24.47		-1.186	-1.071	2.412
			MCS0	<u><u> </u></u>			21.46	21.49	24.49		-4.100	-4.229	-1.154
			MCS9	30			21.49	21.43	24.47		-1.077	-1.161	2.422
	2437	6			0		11.71	11.72	14.73		-5.195	-5.329	-2.251
			MCS0	0 26T	4		11.69	11.69	14.70		-5.333	-5.386	-2.349
					8		11.70	11.71	14.72		-5.220	-5.180	-2.190
	2447	Q	MCS0	MCS0 MCS9			21.47	21.47	24.48		-4.107	-4.179	-1.133
	2447	0	MCS9				21.48	21.49	24.50		-1.174	-1.190	2.358
HE20	2452	0	MCS0	<u><u> </u></u>		30.00	18.48	18.47	21.49	8.000	-7.138	-7.223	-4.170
	2452	9	MCS9	30			18.49	18.40	21.46		-3.920	-4.179	-0.507
	2457	10	MCS0	S11			16.95	16.95	19.96		-8.527	-8.422	-5.464
	2437	10	MCS9	30			16.95	16.93	19.95		-5.930	-6.225	-2.535
			MCS0	911			15.98	15.94	18.97		-9.279	-9.429	-6.343
			MCS9	30			14.99	14.94	17.98		-6.901	-7.263	-3.538
	2462	11			0		11.73	11.71	14.73		-5.064	-5.280	-2.160
			MCS0	26T	4		11.71	11.69	14.71		-5.065	-5.207	-2.125
					8		11.72	11.71	14.73		-5.191	-5.241	-2.206
			MCS0	SU .			13.97	13.94	16.97		-11.398	-11.480	-8.429
			MCS9	30			12.97	12.95	15.97		-10.282	-10.409	-6.805
	2467	12			0		11.74	11.67	14.72		-5.232	-5.357	-2.284
			MCS0	26T	4		11.68	11.73	14.72		-5.222	-5.354	-2.277
					8		11.72	11.70	14.72		-5.385	-5.241	-2.302
			MCS0	<u>çı</u> ı			8.42	8.47	11.46		-17.546	-17.144	-14.330
			MCS9	30			7.96	7.98	10.98		-14.722	-14.564	-11.102
	2472	13			0		-1.09	-1.05	1.94		-18.479	-18.213	-15.334
			MCS0	26T	4		-1.02	-1.12	1.94		-18.243	-18.508	-15.363
					8		-1.01	-1.08	1.97		-18.349	-18.343	-15.336

Page 41 of 317

UL VERIFICATION SERVICES INC.47173 Benicia Street, Fremont, CA 94538; USATEL:(510) 319-4000FAX:(510) 661-0888This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Center 2.43700 GHz #Res BW 30 kHz

#VBW 91 kHz*

Channel 6 – 26 Tone Index 0 [ANT 4] –

MCS0

Page 42 of 317

Center 2.43700 GHz Res BW 30 kHz

#VBW 91 kHz

Channel 6 - 26 Tone Index 0 [ANT 3] -

MCS0

Span 28.00 MHz Sweep 13.07 ms (2001 pts

Span 28.00 MHz Sweep 38.4 ms (2001 pts)

9.5. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RESULTS

Page 43 of 317

9.5.1. 802.11b SISO MODE

Test Engineer:	12491
Test Date:	2024/10/01

1Mbps

ANT 4

Page 44 of 317

ANT 3

Page 46 of 317

<u>11Mbps</u>

ANT 4

Page 48 of 317

ANT 3

Page 50 of 317

Page 51 of 317

9.5.2. 802.11n HT20 SISO MODE

Test Engineer:	12491
Test Date:	2024/10/01

MCS0

ANT 4

Page 52 of 317

Page 53 of 317

Page 54 of 317

ANT 3

Page 55 of 317

Page 56 of 317

Page 57 of 317

<u>MCS7</u> ANT 4

Page 58 of 317

Page 59 of 317

Page 60 of 317

ANT 3

Page 61 of 317

Page 62 of 317

Page 63 of 317

9.5.3. 802.11n HT20 MIMO MODE

Test Engineer:	12491
Test Date:	2024/10/04

MCS0

ANT 4 + ANT 3

Page 64 of 317

REPORT NO: 15175342-E4V4

DATE: 2024/12/17

Page 65 of 317

Page 66 of 317

Page 67 of 317

Page 68 of 317

Page 69 of 317

Page 70 of 317

Page 71 of 317

<u>MCS7</u> ANT 4 + ANT 3

Page 72 of 317

Page 73 of 317

Page 74 of 317

Page 75 of 317

Page 76 of 317

Page 77 of 317

Page 78 of 317

Page 79 of 317

9.5.4. 802.11ax HE20 SISO MODE

Test Engineer:	12491
Test Date:	2024/10/04

<u>ANT 4: SU – MCS0</u>

Page 80 of 317

Page 81 of 317

Page 82 of 317

ANT 4: SU – MCS9

Page 83 of 317

Page 84 of 317

Page 85 of 317

ANT 4: 26-Tone RU Index 0 – MCS0

Page 86 of 317

ANT 4: 26-Tone RU Index 4 – MCS0

Page 88 of 317

ANT 4: 26-Tone RU Index 8 – MCS0

Page 90 of 317