

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

Soundbar Speaker

MODEL NUMBER: HTL3310/XX

FCC ID: 2AR2SHTL3310

REPORT NUMBER: 4788995020-4

ISSUE DATE: May 30, 2019

Prepared for

MMD Hong Kong Holding Limited Units 1006-1007,10/F, C-Bons International Center 108 Wai Yip Street, Kwun Tong, Kowloon, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	05/30/2019	Initial Issue	

Summary of Test Results					
Clause	Test Items	FCC Rules	Test Results		
1	20dB Bandwidth and 99% Occupied Bandwidth	FCC 15.247 (a) (1)	Pass		
2	Conducted Output Power	FCC 15.247 (b) (1)	Pass		
3	Carrier Hopping Channel Separation	FCC 15.247 (a) (1)	Pass		
4	Number of Hopping Frequency	15.247 (a) (1) III	Pass		
5	Time of Occupancy (Dwell Time)	15.247 (a) (1) III	Pass		
6	Conducted Bandedge	FCC 15.247 (d)	Pass		
7	Radiated Bandedge and Spurious	FCC 15.247 (d) FCC 15.209 FCC 15.205	Pass		
8	Conducted Emission Test For AC Power Port	FCC 15.207	Pass		
9	Antenna Requirement	FCC 15.203	Pass		

TABLE OF CONTENTS

1.		ΑΤΤ	EST	ATION OF TESCT RESULTS	5
2.		TES	тм	ETHODOLOGY	7
3.		FAC	ILITI	IES AND ACCREDITATION	7
4.		CAL	.IBR/	ATION AND UNCERTAINTY 8	3
	4.	1.	MEA	ASURING INSTRUMENT CALIBRATION	3
	4.2	2.	MEA	ASUREMENT UNCERTAINTY	3
5.		EQL	ЛЬЩ	ENT UNDER TEST	•
	5.	1.	DES	CRIPTION OF EUT	9
	5.2	2.	MAX	(IMUM OUTPUT POWER	9
	5.	3.	PAC	KET TYPE CONFIGURATION	9
	5.4	4.	CHA	NNEL LIST10	2
	5.	5.	TES	T CHANNEL CONFIGURATION10)
	5.	6.	THE	WORSE CASE POWER SETTING PARAMETER10)
	5.	7.	DES	CRIPTION OF AVAILABLE ANTENNAS1	1
	5.8	8.	WO	RST-CASE CONFIGURATIONS1	1
	5.9	9.		CRIPTION OF TEST SETUP12	
	5.	10.	M	EASURING INSTRUMENT AND SOFTWARE USED13	3
6.		ΑΝΤ	ENN	IA PORT TEST RESULTS15	5
	6.	1.	ON	TIME AND DUTY CYCLE	5
	6.2			B BANDWIDTH AND 99% BANDWIDTH17	
		6.2.′ 6.2.2		GFSK MODE	
		-		K CONDUCTED OUTPUT POWER	
		3. 6.3.′		GFSK MODE	
		6.3.2	2.	∏/4-DQPSK MODE	3
		4. 6.4. ⁻		RIER HOPPING CHANNEL SEPARATION24 GFSK MODE	
		0.4. 6.4.2		Π /4-DQPSK MODE	
	6.	5.	NUN	ABER OF HOPPING FREQUENCY	7
		6.5.		GFSK MODE	-
		6.5.2 0			
	6.	6. 6.6.'		E OF OCCUPANCY (DWELL TIME)	
		6.6.2		Π /4-DQPSK MODE	

		Page 5 of 101
	6.7. CONDUCTED SPURIOUS EMISSION	
	6.7.1. GFSK MODE	
	6.7.2. ∏/4-DQPSK MODE	43
7.	RADIATED TEST RESULTS	49
	7.1. LIMITS AND PROCEDURE	49
	7.2. RESTRICTED BANDEDGE	
	7.2.1. GFSK MODE	
	7.2.2. ∏/4-DQPSK MODE	60
	7.3. SPURIOUS EMISSIONS (1~3GHz)	65
	7.3.1. GFSK MODE	
	7.3.2. ∏/4-DQPSK MODE	71
	7.4. SPURIOUS EMISSIONS (3~18GHz)	77
	7.4.1. GFSK MODE	77
	7.4.2. ∏/4-DQPSK MODE	83
	7.5. WORST-CASE CO-LOCATION	89
	7.5.1. BT Π /4-DQPSK AND 2.4G FSK MODE	89
	7.6. SPURIOUS EMISSIONS 18G ~ 26GHz	
	7.6.1. ∏/4-DQPSK MODE	91
	7.7. SPURIOUS EMISSIONS 30M ~ 1 GHz	
	7.7.1. ∏/4-DQPSK MODE	
	7.8. SPURIOUS EMISSIONS BELOW 30M	
	7.8.1. ∏/4-DQPSK MODE	
_		
8.		
	8.1.1. ∏/4-DQPSK MODE	99
9.	ANTENNA REQUIREMENTS	

1. ATTESTATION OF TESCT RESULTS

Applicant Information

Company Name: Address:	MMD Hong Kong Holding Limited Units 1006-1007,10/F, C-Bons International Center 108 Wai Yip Street, Kwun Tong, Kowloon, Hong Kong
Manufacturer Information	MMD Hong Kong Holding Limited
Company Name:	Units 1006-1007,10/F, C-Bons International Center 108 Wai Yip
Address:	Street, Kwun Tong, Kowloon, Hong Kong

EUT Description

Soundbar Speaker Philips HTL3310/XX XX=blank or /00 to /99, denoted for different country destination Normal May 20, 2019 May 21~28, 2019

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART C

PASS

Tested By:

Kebo. zhong.

Shawn Wen

Checked By: Sherry Men

Laboratory Leader

Kebo Zhang **Engineer Project Associate**

Approved By:

Aephenbuo

Stephen Guo Laboratory Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB414788 D01 Radiated Test Site v01r01, KDB 558074 D01 15.247 Meas Guidance v05r02, ANSI C63.10-2013, CFR 47 FCC Part 2 and CFR 47 FCC Part 15.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED.
	rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.
	Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note:

- All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
- 2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test	5.78dB (1GHz-18Gz)		
(1GHz to 26GHz)(include Fundamental emission)	5.23dB (18GHz-26Gz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	Soundbar Speaker				
Model Name	HTL3310/XX				
Model difference	XX=blank or /00 to /99, denoted for different country destination				
	Operation Frequency 2402 MH		z ~ 2480 MHz		
Product	Modulation Type		Data Rate		
Description (Bluetooth)	GFSK		1Mbps		
(∏/4-DQPSK		2Mbps		
Supply Voltage	AC120V,60Hz				
Bluetooth Version	BT 4.2+EDR				

5.2. MAXIMUM OUTPUT POWER

Bluetooth Mode	Frequency (MHz)	Channel Number	Max Output Power (dBm)	EIRP (dBm)
GFSK	2402-2480	0-78[79]	-1.371	-0.371
∏/4-DQPSK	2402-2480	0-78[79]	-1.489	-0.489

5.3. PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting(Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339
	2-DH1	54
∏/4-DQPSK	2-DH3	367
	2-DH5	679

5.4. CHANNEL LIST							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel Number	Test Channel
GFSK	CH 00, CH 39, CH 78	Low, Middle, High
∏/4-DQPSK	CH 00, CH 39, CH 78	Low, Middle, High

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Se	oftware	FCC Assist				
Modulation Type Transmit Antenna		Test Channel				
	Number	CH 00	CH 39	CH 78		
GFSK	1	Default	Default	Default		
∏/4-DQPSK	1	Default Default Default				

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency (MHz) Antenna Type		Antenna Gain (dBi)
2402-2480	Integral antenna	1

5.8. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	∏/4-DQPSK	2Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

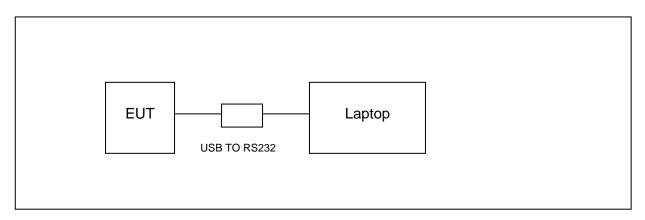
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	T460S	SL10K24796 JS
2	USB TO UART	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	0.50	/


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	/		/	/

TEST SETUP

The EUT can work in an engineer mode with software through a PC.

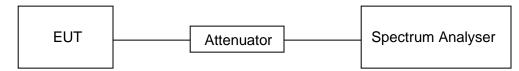
SETUP DIAGRAM FOR TESTS

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions							
			Instru	ment				
Used	Equipment	Manufacturer	Mode	Model No. S		۱o.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S	ES	SR3	10196	1	Dec.10,2018	Dec.10,2019
\checkmark	Two-Line V- Network	R&S	EN	/216	10198	3	Dec.10,2018	Dec.10,2019
V	Artificial Mains Networks	Schwarzbeck	NSLK	K 8126	81264	65	Dec.10,2018	Dec.10,2019
			Softv	vare				
Used	Des	cription		Manu	ufacturer		Name	Version
\checkmark	Test Software for C	Conducted distu	rbance	F	arad		EZ-EMC	Ver. UL-3A1
		Rad	iated E	missio	ns			
			Instru	ment				
Used	Equipment	Manufacturer	Mode	el No.	Serial N	۱o.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N90)38A	MY564 036	00	Dec.10,2018	Dec.10,2019
	Hybrid Log Periodic Antenna	TDK	HLP-:	3003C	13096	0	Sep.17, 2018	Sep.17, 2021
V	Preamplifier	HP	8447D		2944A0 99	90	Dec.10,2018	Dec.10,2019
V	EMI Measurement Receiver	R&S	ES	R26	10137	7	Dec.10,2018	Dec.10,2019
\checkmark	Horn Antenna	TDK	HRN	-0118	13093	9	Sep.17, 2018	Sep.17, 2021
V	High Gain Horn Antenna	Schwarzbeck	BBHA	A-9170	691		Aug.11, 2018	Aug.11, 2021
V	Preamplifier	TDK	PA-02	2-0118	TRS-30 0006		Dec.10,2018	Dec.10,2019
V	Preamplifier	TDK	PA-	02-2	TRS-30 00003		Dec.10,2018	Dec.10,2019
\checkmark	Loop antenna	Schwarzbeck	15	19B	0000	3	Jan.01,2019	Jan.01, 2022
V	Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS		4		Dec.10,2018	Dec.10,2019
V	High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS		23		Dec.10,2018	Dec.10,2019
			Softv	vare				
Used	Descr	iption	Μ	lanufact	urer		Name	Version
\checkmark	Test Software for Ra	adiated disturba	ince	Farac	ł		EZ-EMC	Ver. UL-3A1

REPORT NO.: 4788905020-4 Page 14 of 101

	Other instruments							
Used	ed Equipment Manufacturer Model No. Serial No. Last Cal. Next							
\checkmark	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.10,2018	Dec.10,2019		
\checkmark	Power Meter	Keysight	N1911A	MY55416024	Dec.10,2018	Dec.10,2019		
\checkmark	Power Sensor	Keysight	U2021XA	MY5100022	Dec.10,2018	Dec.10,2019		

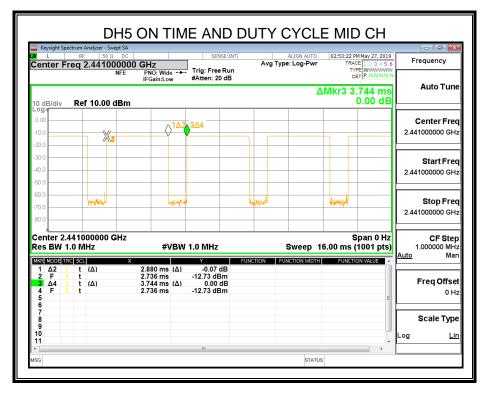

6. ANTENNA PORT TEST RESULTS 6.1. ON TIME AND DUTY CYCLE

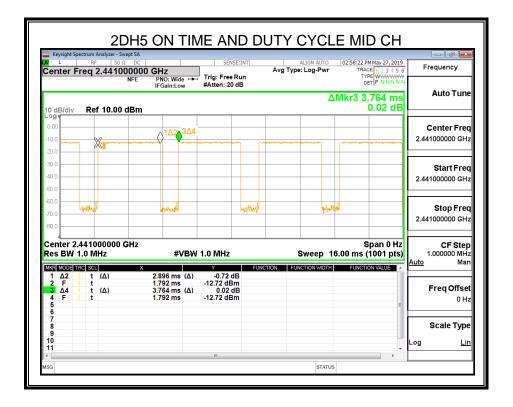
6.1. ON TIME AND DUTY CY

<u>LIMITS</u>

None; for reporting purposes only

TEST SETUP


TEST ENVIRONMENT


Temperature	23.4°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

RESULTS

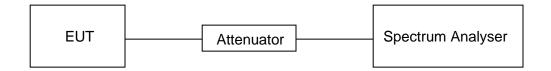
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
GFSK	2.880	3.744	0.769	76.9	1.14	0.35	0.5
∏/4- DQPSK	2.896	3.764	0.769	76.9	1.14	0.35	0.5

Note: Duty Cycle Correction Factor=10log(1/x). Where: x is Duty Cycle(Linear) Where: T is On Time (transmit duration)

6.2. 20 dB BANDWIDTH AND 99% BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C						
Section Test Item Limit Frequency Range (MHz)						
CFR 47 FCC 15.247 (a) (1) 20dB Occupied Bandwidth		N/A	2400-2483.5			
C63.10 Clause 6.9.3	99% Occupied Bandwidth	N/A	2400-2483.5			


TEST PROCEDURE

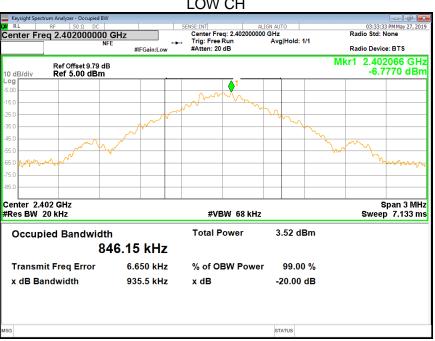
Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
	For 20dB Occupied Bandwidth:1% to 5% of the 20 dB bandwidth For 99% Occupied Bandwidth: 1% to 5% of the occupied bandwidth
	For 20dB Occupied Bandwidth: ≥ RBW For 99% Occupied Bandwidth: approximately 3×RBW
Span	approximately 2 to 3 times the 20 dB bandwidth
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

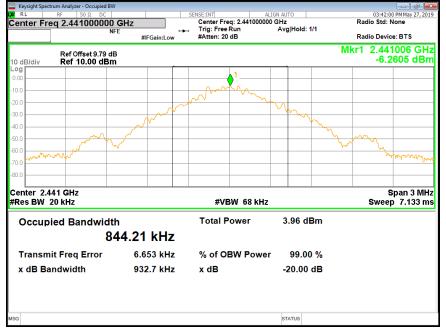
TEST ENVIRONMENT

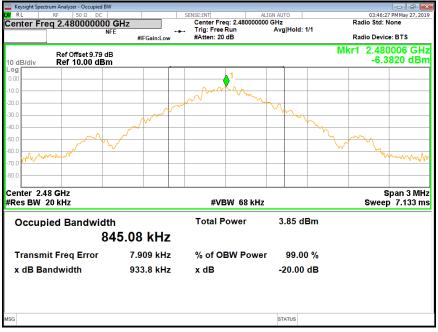

Temperature	23.4°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

RESULTS

6.2.1. GFSK MODE

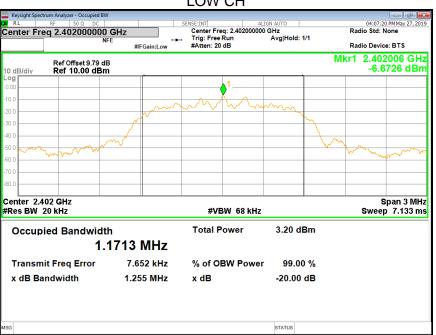
Channel	Frequency (MHz)	20dB bandwidth (MHz)	99% bandwidth (MHz)	Result
Low	2402	0.936	0.84615	PASS
Middle	2441	0.933	0.84421	PASS
High	2480	0.934	0.84508	PASS


Test Graph


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

LOW CH

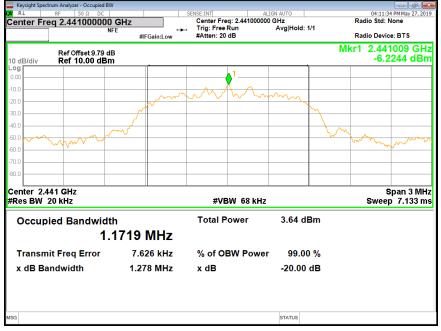
MID CH



HIGH CH

6.2.2. ||/4-DQPSK MODE

Channel	Frequency (MHz)	20dB bandwidth (MHz)	99% bandwidth (MHz)	Result
Low	2402	1.255	1.1713	Pass
Middle	2441	1.278	1.1719	Pass
High	2480	1.281	1.1714	Pass



UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

LOW CH

U

MID CH

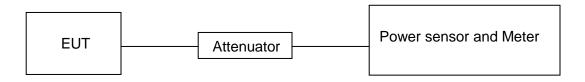
HIGH CH

6.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (b) (1)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel : 1 watt or 30dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel : 125 mW or 21dBm	2400-2483.5	

TEST PROCEDURE


Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

Peak Detector use for Peak result.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

RESULTS

6.3.1. GFSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK)	EIRP	Limit	Result
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	2402	-1.371	-0.371	30	Pass
Middle	2441	-2.766	-1.766	30	Pass
High	2480	-2.856	-1.856	30	Pass

Note: EIRP= Maximum Conducted Output Power + Antenna Gain

Note: The channel separation is 1MHz and the 20dB Bandwidth is less than 1MHz.

6.3.2. ∏/4-DQPSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK)	EIRP	Limit	Result
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	2402	-1.903	-0.903	21	Pass
Middle	2441	-1.489	-0.489	21	Pass
High	2480	-1.500	-0.500	21	Pass

Note: EIRP= Maximum Conducted Output Power + Antenna Gain

Note: The channel separation is 1MHz and the 20dB Bandwidth is bigger than 1MHz.

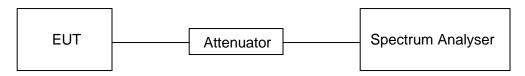
6.4. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

	CFR 47 FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC 15.247 (a) (1)	Carrier Hopping Channel Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5		

TEST PROCEDURE

Connect the UUT to the spectrum Analyzer and use the following settings:

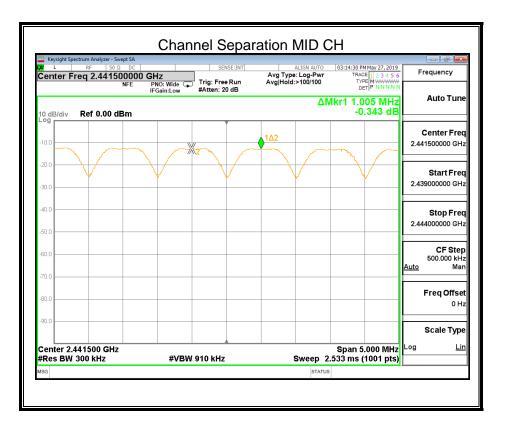

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
RBW	Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

A plot of the data shall be included in the test report.

TEST SETUP


TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

RESULTS

6.4.1. GFSK MODE

Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Middle	1.0	≥ 20 dB Bandwidth Of The Hopping Channel	PASS

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 6.2.1.

6.4.2. ∏/4-DQPSK MODE

Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Middle	1.0	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS

Keysight Spectrum Analyzer - Swept SA RF 50 Ω DC	SENSE:INT	ALIGN AUTO	03:13:04 PM May 27, 2019	
Center Freq 2.44150000	00 GHz	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6	Frequency
NFE	PNO: Wide Trig: Free Run IFGain:Low #Atten: 20 dB		DET P NNNN	Auto Tune
10 dB/div Ref 0.00 dBm		ΔN	lkr1 1.025 MHz -0.151 dB	Auto Tune
Log				Center Fred
-10.0		1Δ2		2.441500000 GHz
and the second se	man 12mm	- Alman Martin	man with	
-20.0				Start Fred
-30.0				2.439000000 GH
-40.0				Stop Fred
-50.0				2.444000000 GH
				CF Step
-60.0				500.000 kHz
-70.0				<u>Auto</u> Mar
				Freq Offse
-80.0				0 Hz
-90.0				
				Scale Type
Center 2.441500 GHz			Span 5.000 MHz	Log <u>Lir</u>
#Res BW 300 kHz	#VBW 910 kHz	Sweep 2.	533 ms (1001 pts)	
MSG		STATUS		

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 6.2.2.

6.5. NUMBER OF HOPPING FREQUENCY

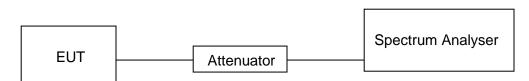
<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C									
Section	Test Item	Limit							
CFR 47 15.247 (a) (1) III	Number of Hopping Frequency	at least 15 hopping channels							

TEST PROCEDURE

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RRW	RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation
Trace	Max hold
Sweep time	Auto couple


Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer.

Count the quantity of peaks to get the number of hopping channels.

FHSS Mode: 79 Channels observed.

AFHSS Mode: 20 Channels declared.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

RESULTS

6.5.1. GFSK MODE

Hopping numbers	Limit	Results
79	>15	Pass

RI		İ	RF		50Ω	DC					SE	ENSE:I	NT			ALI	GN AUTO						06:2	1:16 PI	- 6 4 May 2	7,2
en	ter	Fre	eq 3	2.44	175		0 GI		PNO: FGain	Fast Low	Ģ	Trig #At	g: Free ten: 30	Run dB			Avg Avg I	Type: lold:>	Log- 10/10	Pwr)				TYP	E <mark>1 2</mark> E M₩ T P P	ww
	3/div	,		Offse f 20 .																	ΔN	lkr1	78		5 0 I .575	
o.0											_															1/
0.00 0.0	*	R	M		Ŵ				Ŵ	\mathcal{W}	M	Ŵ	MM	Ŵ	ANA	M				W		\mathbb{W}		M	M	
0.0	╞										_															+
0.0 0.0	ł.																									1
0.0 0.0	┝										-			-												
tar	t 2. s B			GHz Hz						#	vви	V 10	0 kHz							#Sw	/eep) 1.	Stop 000 i	2.48 ms (350 1001	Gi
	Mod≊ ∆2 F	TRC 1 1		(Δ)			8.556	0 MHz 0 GHz	(Δ)		0.575 728 d		FUN	CTION	F	JNCT	ION WIDT	Ή			Fl	UNCTION	on valu	JE		
4 5 6																										
7 8 9																										
9 0 1																										
		_																								Þ

6.5.2. ∏/4-DQPSK MODE

Hopping numbers	Limit	Results
79	>15	Pass

RL	RF	nalyzer - Swept SA 50 Ω DC	1		SENSE:INT		ALIGN AUTO		04:27:0	5 PM May 27, 201
Senter		.44175000	NFE	PNO: Fast		Run dB	Avg Type: Avg Hold:		т	RACE 1 2 3 4 5 TYPE MWWW DET P P P P P
I0 dB/div		Offset 9.79 dE 20.00 dB m	3					ΔΝ	1kr1 77.9	89 0 MH: 0.370 dE
10.0										1Δ2
0.00	Viv	www	www	wwww	www	www		www.ww	www.	
20.0										
-30.0										
-40.0										۱. ۱
60.0										
70.0										
Start 2.4 #Res Bi				#VB	W 100 kH:	z		Swee	Stop 2. p 1.000 ms	.48350 GH: s (1001 pts
		(Δ) 7	x 77.989 0 MHz	(Δ) 0.3	FUI 70 dB	ICTION FL	UNCTION WIDTH	F	UNCTION VALUE	
2 F	1 f		2 171 0 GHz	-3.277						
3										
3 4 5										
3 4 5 6 7 8										
3 4 5 6 7										

6.6. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

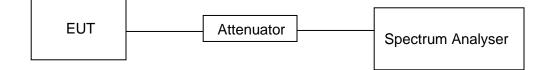
CFR 47 FCC Part15 (15.247), Subpart C										
Section	Test Item	Limit								
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.								

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	zero span
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel

a. The transmitter output (antenna port) was connected to the spectrum analyzer


- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
 - A Period Time = (channel number)*0.4

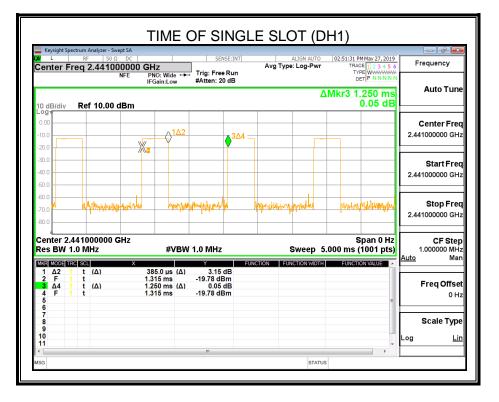
For Normal Mode (79 Channel): DH1 Time Slot: Reading * (1600/2)*31.6/(channel number) DH3 Time Slot: Reading * (1600/4)*31.6/(channel number) DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

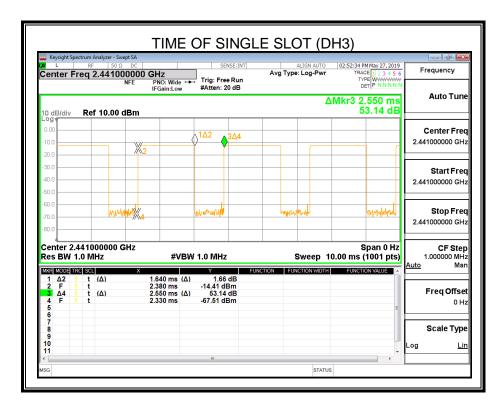
For AFH Mode (20 Channel): DH1 Time Slot: Reading * (800/2)*8/(channel number) DH3 Time Slot: Reading * (800/4)*8/(channel number) DH5 Time Slot: Reading * (800/6)*8/(channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

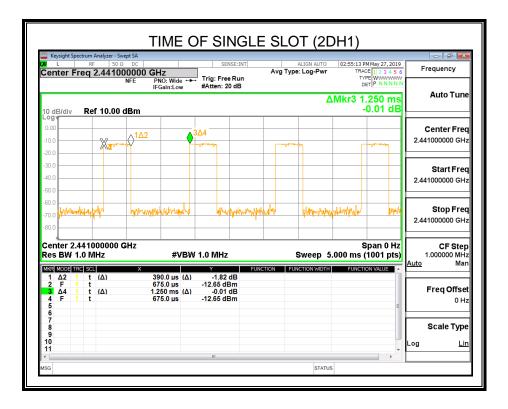

RESULTS

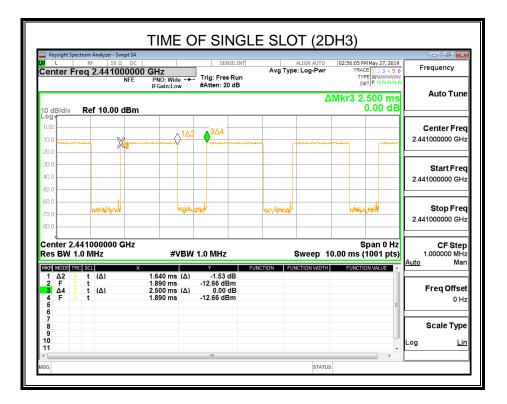

6.6.1. GFSK MODE

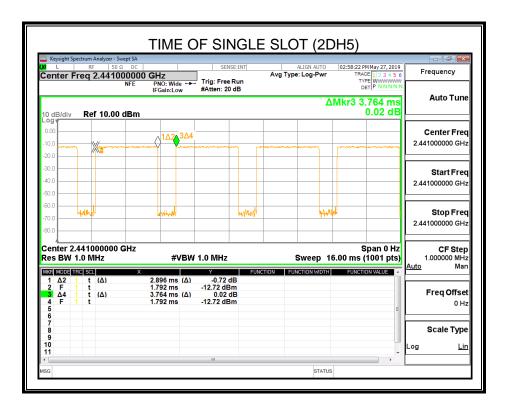
Normal Mode						
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [s]	Results		
DH1	МСН	0.385	0.1232	PASS		
DH3	МСН	1.640	0.2624	PASS		
DH5	МСН	2.880	0.3072	PASS		
AFH Mode						
DH1	МСН	0.385	0.0616	PASS		
DH3	МСН	1.640	0.1312	PASS		
DH5	МСН	2.880	0.1536	PASS		

Test Graph

(U)


TIME OF SINGLE SLOT (DH5)						
LXI L	ctrum Analyzer - Swept SA RF 50 Ω DC req 2.441000000		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	02:53:22 PM May 27, 2019 TRACE 1 2 3 4 5 (TYPE WWWWWW	Frequency
10 dB/div	NFE Ref 10.00 dBm		tten: 20 dB		Det P NNNN Mkr3 3.744 ms 0.00 dB	Auto Tune
0.00 -10.0	X2		4			Center Freq 2.441000000 GHz
-30.0						Start Freq 2.441000000 GHz
-60.0 -70.0 -80.0	14484	byWyW	4.47	njian		Stop Freq 2.441000000 GHz
	Center 2.441000000 GHz Res BW 1.0 MHz Sweep 16.00 ms (1001 pts) MXR M00PE Hrs. [SR]					
1 Δ2 1 2 F 1 3 Δ4 1 4 F 1 5	t (Δ) t t (Δ) t	3.744 ms (Δ)	-0.07 dB 2.73 dBm 0.00 dB 2.73 dBm		=	Freq Offset 0 Hz
6 7 8 9 10						Scale Type
11 MSG			III	STATU	s	


6.6.2. ∏/4-DQPSK MODE


Normal Mode					
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [s]	Results	
2DH1	MCH	0.390	0.1248	PASS	
2DH3	MCH	1.640	0.2624	PASS	
2DH5	MCH	2.896	0.3089	PASS	
AFH Mode					
2DH1	MCH	0.390	0.0624	PASS	
2DH3	MCH	1.640	0.1312	PASS	
2DH5	MCH	2.896	0.15445	PASS	

Test Graph

6.7. CONDUCTED SPURIOUS EMISSION

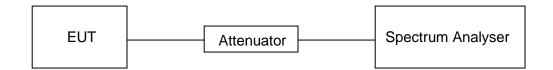
LIMITS

CFR 47 FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Please refer to the ANSI C63.10 section 6.10.

For Bandedge use the following settings:


Detector	Peak
RBW	100kHz
VBW	300kHz
Span	wide enough to fully capture the emission being measured
Trace	Max hold
Sweep time	Auto couple.

For Spurious Emission use the following settings:

Detector	Peak
RBW	100kHz
VBW	300kHz
Span	wide enough to fully capture the emission being measured
Trace	Max hold
Sweep time	Auto couple.

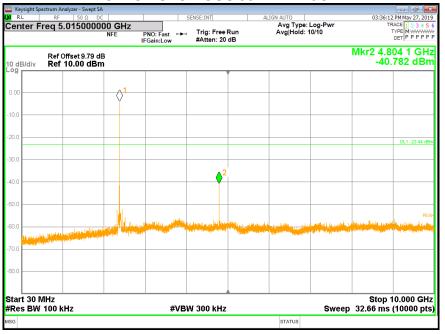
Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

TEST ENVIRONMENT

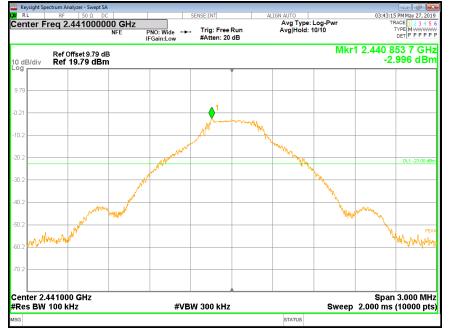
Temperature	23.4°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz



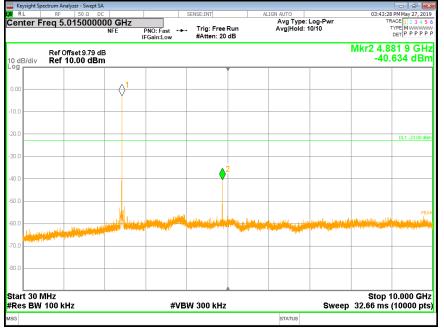

6.7.1. GFSK MODE

LOW CH BANDEDGE

LOW CH SPURIOUS REFERENCE

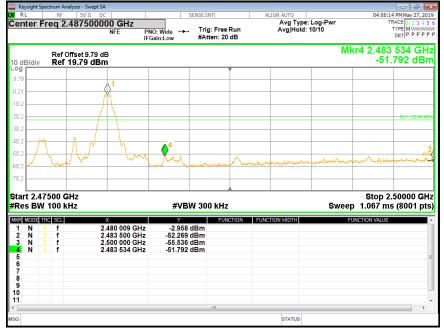


LOW CH SPURIOUS 30MHz ~ 10GHz


LOW CH SPURIOUS 10GHz ~ 26GHz

🔤 Keysight Spectrum Analyzer - Swept SA								
RL RF 50 Ω DC			SENSE:INT	AL	IGN AUTO	Law Deve		PM May 27, 2019
Center Freq 18.000000	NFE	PNO: Fast ++- FGain:Low	. Trig: Free #Atten: 20		Avg Type: Avg Hold: 1	Log-Pwr 10/10		DET PPPPP
Ref Offset 9.79 dE						N		64 0 GHz 540 dBm
0.00								
-10.0								
-20.0								DL1 -23.44 dBm
-30.0								
-40.0								
50.0							nanaa lan <mark>iilinna</mark>	PER PER
		endite distance in the	an an an Alaba I in the Ng Panana an Alaba I an Alaba				the other data little of a	The second state of the se
70.0								
-80.0								
Start 10.000 GHz #Res BW 100 kHz		#VB	W 300 kHz	<u> </u>		Sweep		6.000 GHz (10000 pts)
MSG					STATUS			,

MID CH SPURIOUS REFERENCE

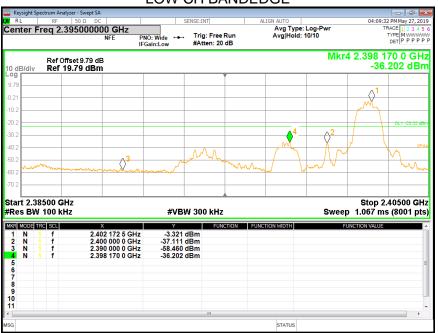

MID CH SPURIOUS 30MHz ~ 10GHz

MID CH SPURIOUS 10GHz ~ 26GHz

Keysight Spectrum Analyzer - Swept SA				
X/ RL RF 50Ω DO		SENSE:INT	ALIGN AUTO	03:43:40 PM May 27, 2019
Center Freq 18.000000	NFE PNO: Fast ↔ IFGain:Low	. Trig: Free Run #Atten: 20 dB	Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P
Ref Offset 9.79 dl 10 dB/div Ref 10.00 dBn			N	/kr1 25.977 6 GHz -52.255 dBm
0.00				
-10.0				
-20.0				DL1 -23.00 dBm
-30.0				
-40.0				1.
-50.0	ater til see station of sources to the	and the second		PEA,
and the state of the particular particular state of the s		a na a participation data and a lateral	a na indiana ya kata kata kata kata kata kata kata	
-70.0				
-80.0				
Start 10.000 GHz #Res BW 100 kHz	#VE	3W 300 kHz	Sweep	Stop 26.000 GHz 51.99 ms (10000 pts)
MSG			STATUS	

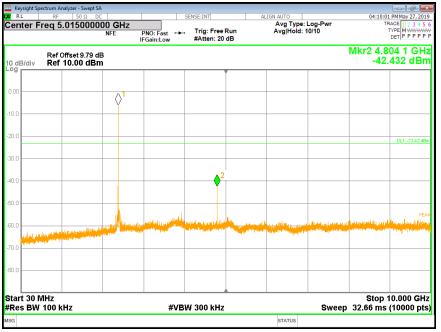

HIGH CH BANDEDGE

HIGH CH SPURIOUS REFERENCE


HIGH CH SPURIOUS 30MHz ~ 10GHz

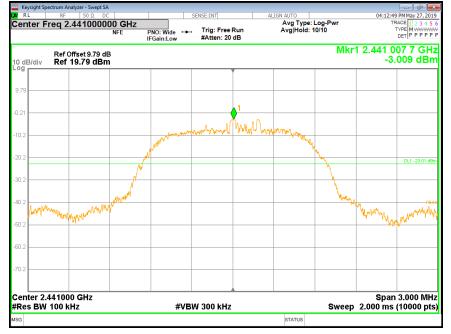
Keysight Spectrum Analyzer - Swept SA						
RL RF 50 Ω DC		SENSE:INT	ALIGN AUTO Avg Type: L	en Dun		4 PM May 27, 2019
enter Freq 18.000000	NFE PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Hold: 1			TYPE MWWWW DET PPPPP
Ref Offset 9.79 dB dB/div Ref 10.00 dBm				M		36 8 GHz 843 dBm
		Ĭ				
0.0						
20.0						DL1 -23.07 dBm
0.0						
0.0						
0.0					, half a	
						and the second second second
0.0						
10.0						
tart 10.000 GHz Res BW 100 kHz	#VB\	N 300 kHz	1	Sweep		26.000 GHz (10000 pts)
SG			STATUS	•		,

HIGH CH SPURIOUS 10GHz ~ 26GHz


6.7.2. ∏/4-DQPSK MODE

LOW CH BANDEDGE

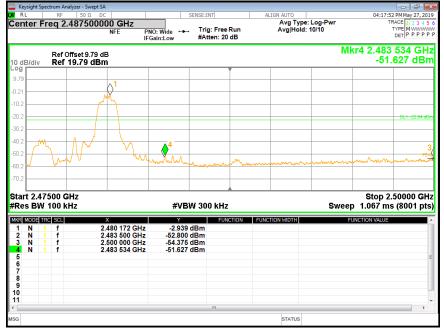
LOW CH SPURIOUS REFERENCE


LOW CH SPURIOUS 30MHz ~ 10GHz

LOW CH SPURIOUS 10GHz ~ 26GHz

	pectrum Analyzer - Swept SA							- 0 ×
X RL Center F	RF 50 Ω D			SENSE:INT	IGN AUTO Avg Type: I	Log-Pwr	TF	2 PM May 27, 2019 RACE 1 2 3 4 5 6
	•	NFE	PNO: Fast ++ IFGain:Low	. Trig: Free #Atten: 20	Avg Hold: 1	0/10		DET P P P P P
10 dB/div	Ref Offset 9.79 d Ref 10.00 dBn					N		77 6 GHz 495 dBm
0.00								
10.0								
20.0								DL1 -23.42 dBm
30.0								
40.0								
50.0								1 PEA
60.0 (4)		at a factor than	n the state has been			n adalah dalah katalah P		
70.0								
80.0								
Start 10.0				<u> </u>				26.000 GHz
	100 kHz		#VB	W 300 kHz		Sweep	51.99 ms	(10000 pts)
ISG					STATUS			

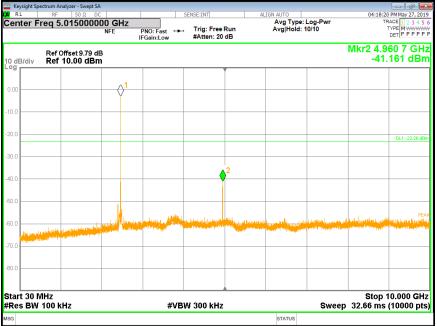
MID CH SPURIOUS REFERENCE


MID CH SPURIOUS 30MHz ~ 10GHz

MID CH SPURIOUS 10GHz ~ 26GHz


RL		DC		SENSE:INT	AL	IGN AUTO			4 PM May 27, 201
enter F	req 18.00000	NFE	PNO: Fast	→ Trig: Free #Atten: 20		Avg Type: Avg Hold:			TYPE MWWWW DET P P P P P
0 dB/div	Ref Offset 9.79 Ref 10.00 dB				•		N	lkr1 25.7 -51.	74 4 GH 729 dBr
0.00									
0.0									
0.0									DL1 -23.01 d
0.0									
0.0									
0.0									n
		al all balland		distanting on the last	n an				
0.0									
0.0									
tart 10.0 Res BW	00 GHz 100 kHz		#\	VBW 300 kHz			Sweep	Stop 2 51.99 ms	26.000 GH (10000 pt
G						STATUS			

HIGH CH BANDEDGE



HIGH CH SPURIOUS REFERENCE

HIGH CH SPURIOUS 30MHz ~ 10GHz

Keysight Spectrum Analyzer - Swept S/	A		UGHZ ~ 20			X
RL RF 50Ω D		SENSE:INT	ALIGN AUTO			2 PM May 27, 2019
enter Freq 18.00000	NFE PNO: Fast IFGain:Low	→ Trig: Free Run #Atten: 20 dB	Avg Type: Lo Avg Hold: 10			TYPE M WWWW DET P P P P P
Ref Offset 9.79 d 0 dB/div Ref 10.00 dBr				М		82 4 GHz 752 dBm
		Ī				
.00						
0.0						
20.0						DL1 -23.26 dBm
0.0						
0.0						
						4
					ملطقا أساسي	Party and P
0.0 alternative landship to a bin					 Manufacture de la contraction de la	a de la seconda de la constante La constante de la constante de la constante de la constante de la constante de
0.0	the set of					
0.0						
0.0						
tart 10.000 GHz Res BW 100 kHz	#\	/BW 300 kHz	I	Sweep		26.000 GHz (10000 pts)
SG			STATUS			

HIGH CH SPURIOUS 10GHz ~ 26GHz

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209

_			/
	Frequency	Field Strength	Measurement Distance
	(MHz)	(microvolts/meter)	(meters)
	0.009~0.490	2400/F(kHz)	300
	0.490~1.705	24000/F(kHz)	30
	1.705~30.0	30	30
	30~88	100	3
	88~216	150	3
	216~960	200	3
	960~1000	500	3

Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

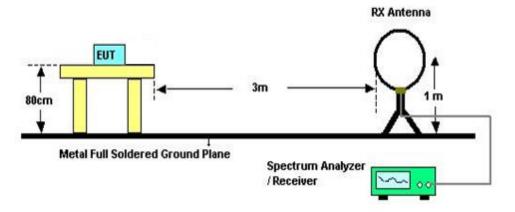
Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)		
	Peak	Average	
Above 1000	74	54	

Restricted bands of operation


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

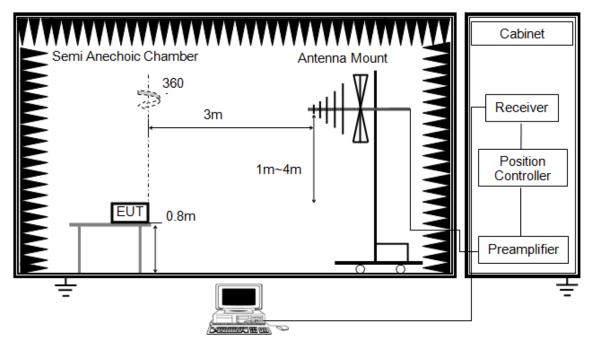
1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80cm meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

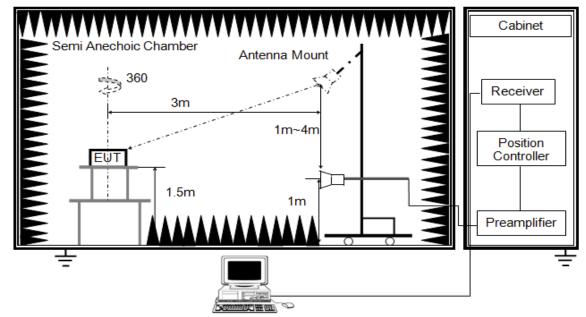
Below 1G and above 30MHz

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 80cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

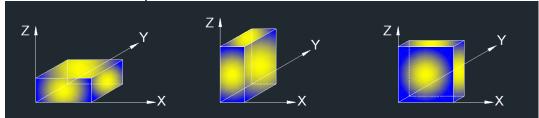
Above 1G

RBW	1M
VBW	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

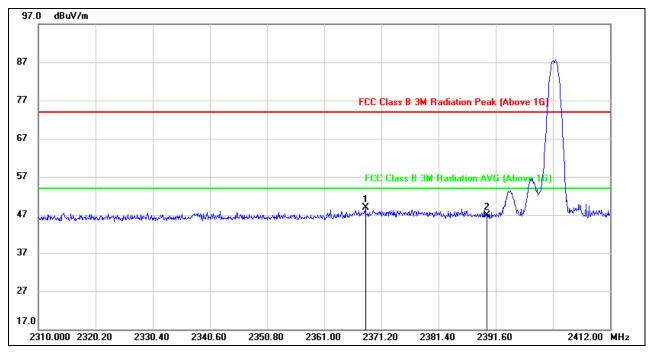
5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector. For the Duty Cycle please refer to clause 6.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT


Temperature	23.4°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

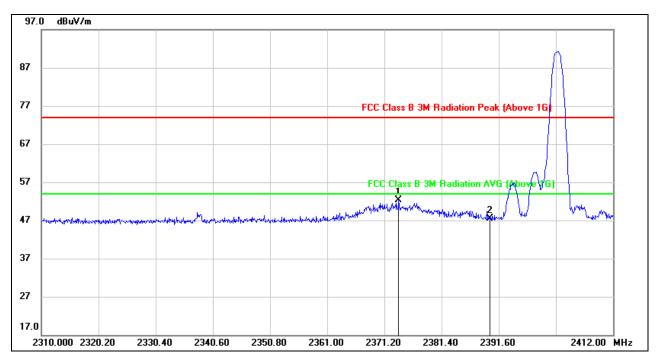
RESULTS

7.2. RESTRICTED BANDEDGE

7.2.1. GFSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2368.344	16.01	32.87	48.88	74.00	-25.12	peak
2	2390.000	13.88	32.94	46.82	74.00	-27.18	peak

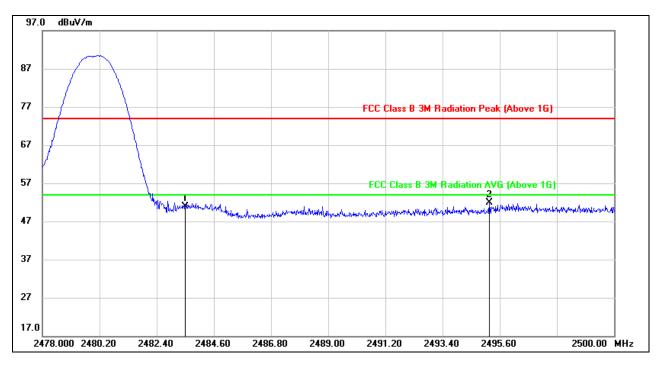

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2373.750	19.35	32.89	52.24	74.00	-21.76	peak
2	2390.000	14.62	32.94	47.56	74.00	-26.44	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.25	33.58	50.83	74.00	-23.17	peak
2	2495.204	18.24	33.66	51.90	74.00	-22.10	peak

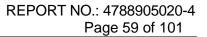
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

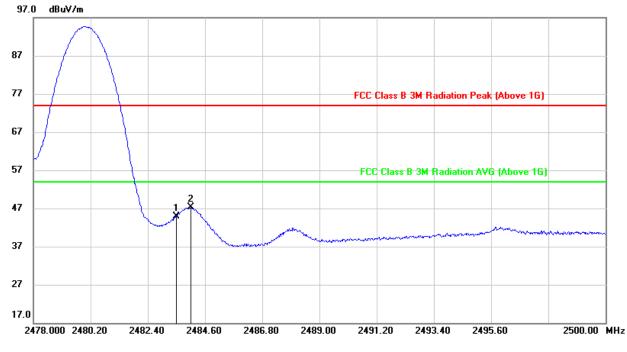
3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	20.23	33.58	53.81	74.00	-20.19	peak
2	2484.050	19.33	33.58	52.91	74.00	-21.09	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

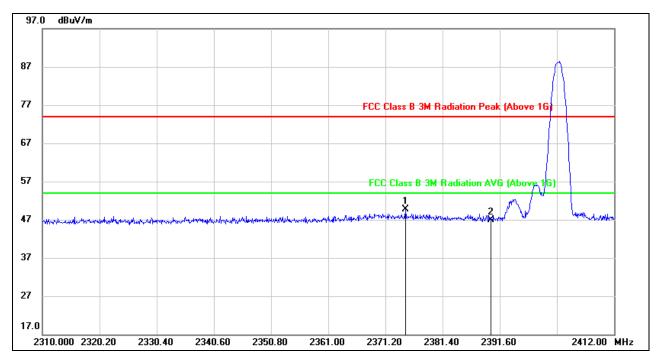
3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	11.36	33.58	44.94	54.00	-9.06	AVG
2	2484.050	13.72	33.58	47.30	54.00	-6.70	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

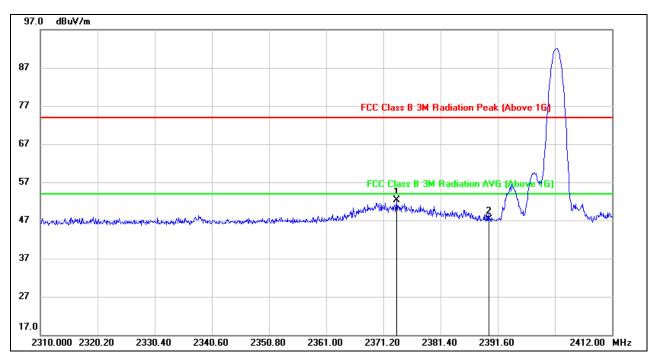
4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 6.1.

7.2.2. ∏/4-DQPSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2374.770	16.83	32.89	49.72	74.00	-24.28	peak
2	2390.000	13.87	32.94	46.81	74.00	-27.19	peak

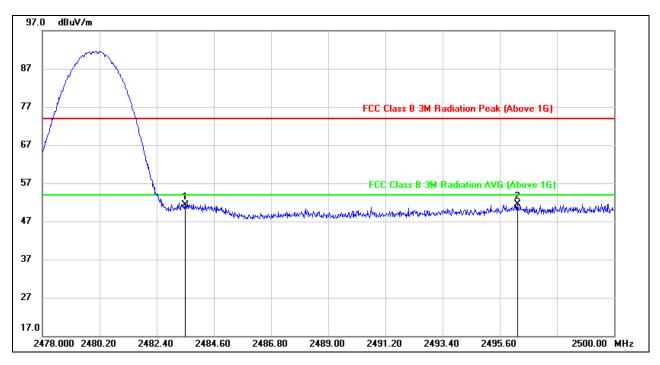

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2373.546	19.34	32.89	52.23	74.00	-21.77	peak
2	2390.000	14.38	32.94	47.32	74.00	-26.68	peak

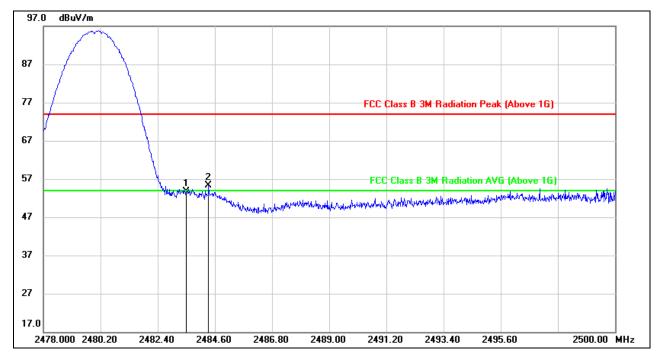

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.70	33.58	51.28	74.00	-22.72	peak
2	2496.282	17.75	33.67	51.42	74.00	-22.58	peak

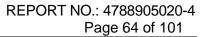
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

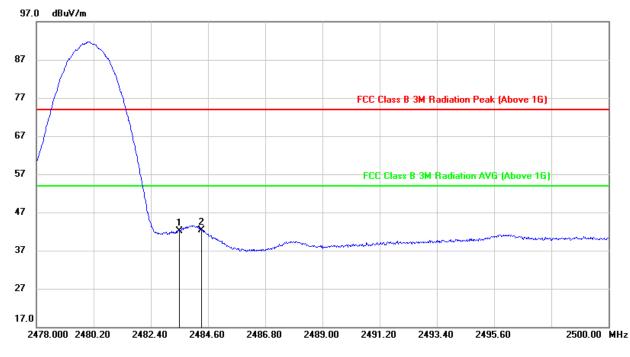
3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	20.03	33.58	53.61	74.00	-20.39	peak
2	2484.358	21.64	33.59	55.23	74.00	-18.77	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>AVG</u>

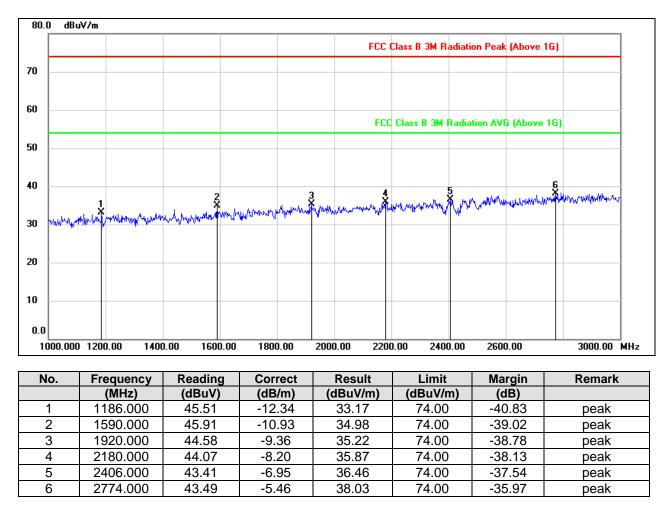
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	8.50	33.58	42.08	54.00	-11.92	AVG
2	2484.358	8.79	33.59	42.38	54.00	-11.62	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

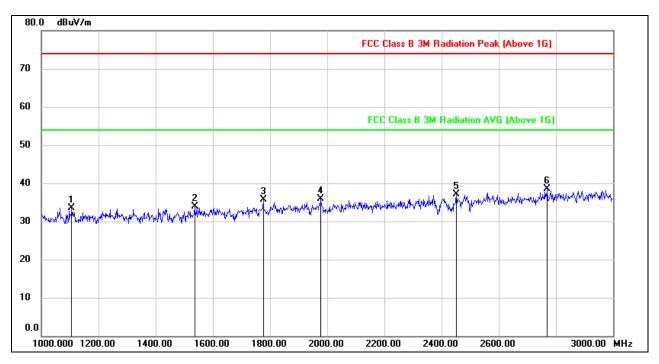
4. AVG: VBW=1/Ton where: ton is transmit duration.


5. For transmit duration, please refer to clause 6.1.

7.3. SPURIOUS EMISSIONS (1~3GHz)

7.3.1. GFSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)


Note: 1. Measurement = Reading Level + Correct Factor.

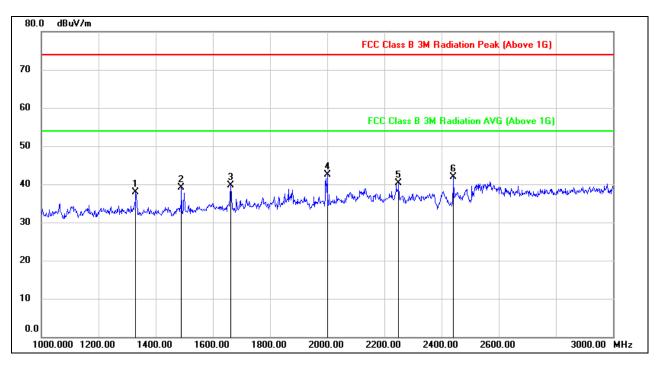
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1106.000	46.65	-13.08	33.57	74.00	-40.43	peak
2	1536.000	45.24	-11.42	33.82	74.00	-40.18	peak
3	1776.000	45.58	-9.86	35.72	74.00	-38.28	peak
4	1978.000	45.30	-9.41	35.89	74.00	-38.11	peak
5	2452.000	43.65	-6.57	37.08	74.00	-36.92	peak
6	2770.000	44.02	-5.50	38.52	74.00	-35.48	peak

Note: 1. Measurement = Reading Level + Correct Factor.

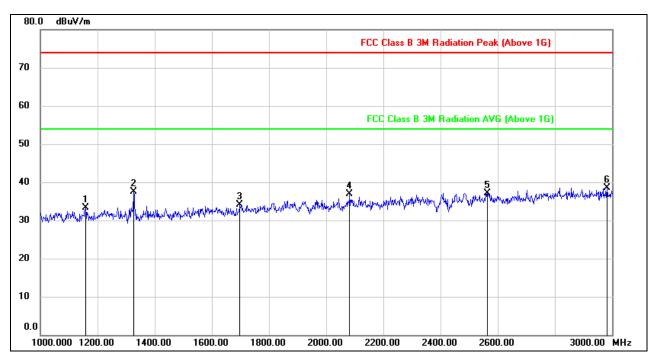

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1330.000	49.72	-11.87	37.85	74.00	-36.15	peak
2	1490.000	50.83	-11.78	39.05	74.00	-34.95	peak
3	1662.000	50.38	-10.69	39.69	74.00	-34.31	peak
4	2000.000	51.93	-9.43	42.50	74.00	-31.50	peak
5	2250.000	48.11	-7.79	40.32	74.00	-33.68	peak
6	2442.000	48.49	-6.65	41.84	74.00	-32.16	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

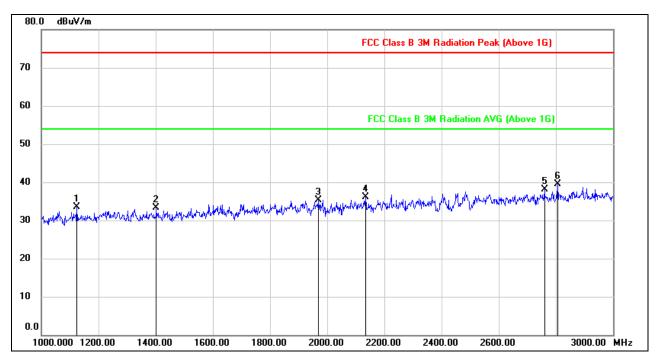
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1158.000	45.97	-12.60	33.37	74.00	-40.63	peak
2	1326.000	49.42	-11.86	37.56	74.00	-36.44	peak
3	1698.000	44.70	-10.61	34.09	74.00	-39.91	peak
4	2082.000	45.58	-8.74	36.84	74.00	-37.16	peak
5	2564.000	43.53	-6.43	37.10	74.00	-36.90	peak
6	2982.000	42.91	-4.40	38.51	74.00	-35.49	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

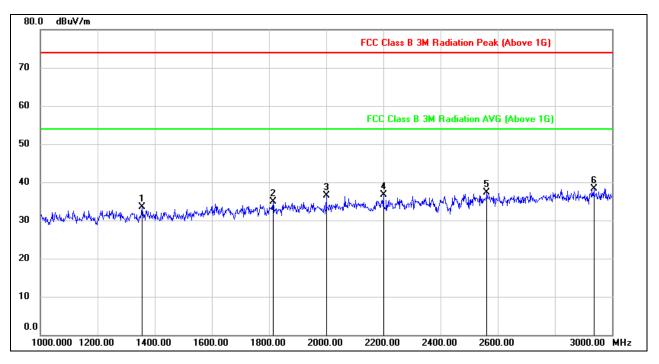
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1124.000	46.33	-12.92	33.41	74.00	-40.59	peak
2	1402.000	45.17	-11.91	33.26	74.00	-40.74	peak
3	1970.000	44.71	-9.40	35.31	74.00	-38.69	peak
4	2134.000	44.61	-8.42	36.19	74.00	-37.81	peak
5	2760.000	43.67	-5.56	38.11	74.00	-35.89	peak
6	2806.000	44.71	-5.25	39.46	74.00	-34.54	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

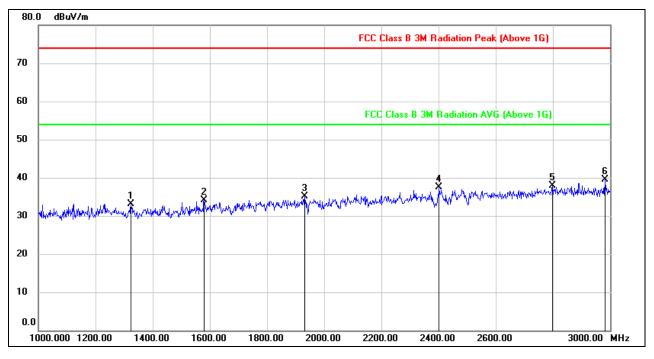
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1356.000	45.38	-11.89	33.49	74.00	-40.51	peak
2	1814.000	44.40	-9.58	34.82	74.00	-39.18	peak
3	2000.000	46.02	-9.43	36.59	74.00	-37.41	peak
4	2200.000	44.75	-8.09	36.66	74.00	-37.34	peak
5	2562.000	43.66	-6.43	37.23	74.00	-36.77	peak
6	2936.000	42.84	-4.59	38.25	74.00	-35.75	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

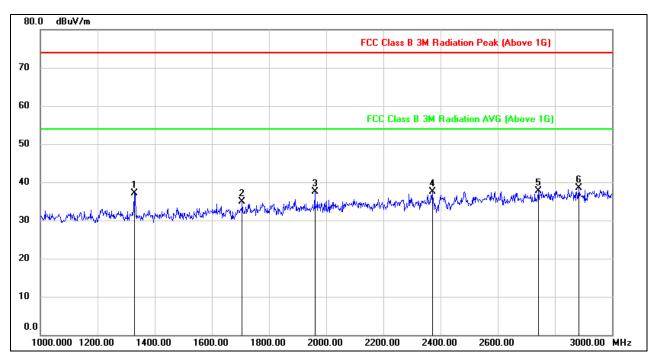
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

7.3.2. ∏/4-DQPSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1324.000	45.05	-11.87	33.18	74.00	-40.82	peak
2	1580.000	45.16	-11.02	34.14	74.00	-39.86	peak
3	1932.000	44.54	-9.37	35.17	74.00	-38.83	peak
4	2402.000	44.46	-7.00	37.46	74.00	-36.54	peak
5	2798.000	43.13	-5.31	37.82	74.00	-36.18	peak
6	2982.000	43.95	-4.40	39.55	74.00	-34.45	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

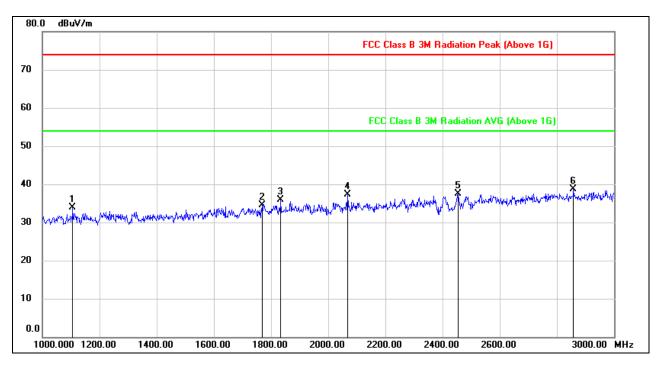
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	48.97	-11.86	37.11	74.00	-36.89	peak
2	1706.000	45.51	-10.54	34.97	74.00	-39.03	peak
3	1960.000	46.84	-9.40	37.44	74.00	-36.56	peak
4	2372.000	44.66	-7.14	37.52	74.00	-36.48	peak
5	2742.000	43.34	-5.69	37.65	74.00	-36.35	peak
6	2884.000	43.26	-4.83	38.43	74.00	-35.57	peak

Note: 1. Measurement = Reading Level + Correct Factor.

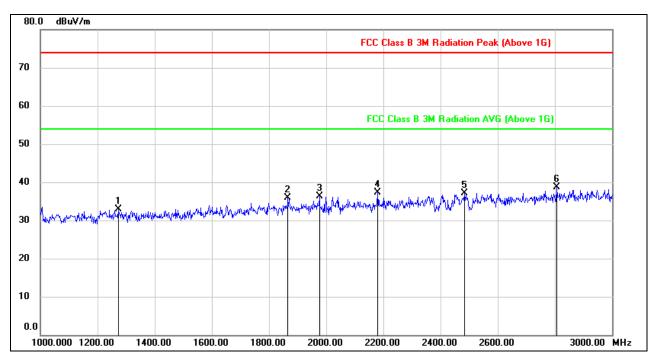

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1106.000	46.99	-13.08	33.91	74.00	-40.09	peak
2	1770.000	44.41	-9.91	34.50	74.00	-39.50	peak
3	1834.000	45.34	-9.52	35.82	74.00	-38.18	peak
4	2068.000	46.18	-8.86	37.32	74.00	-36.68	peak
5	2454.000	43.99	-6.55	37.44	74.00	-36.56	peak
6	2858.000	43.65	-4.97	38.68	74.00	-35.32	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

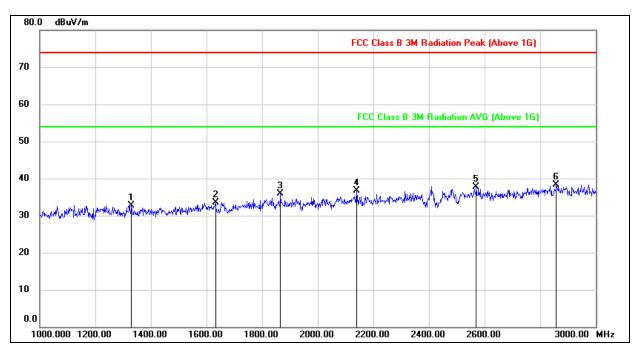
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1272.000	44.77	-11.95	32.82	74.00	-41.18	peak
2	1866.000	45.34	-9.45	35.89	74.00	-38.11	peak
3	1976.000	45.75	-9.41	36.34	74.00	-37.66	peak
4	2180.000	45.54	-8.20	37.34	74.00	-36.66	peak
5	2484.000	43.46	-6.30	37.16	74.00	-36.84	peak
6	2806.000	43.96	-5.25	38.71	74.00	-35.29	peak

Note: 1. Measurement = Reading Level + Correct Factor.

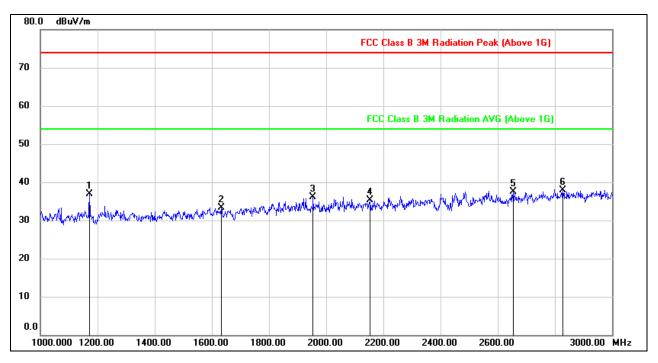

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1330.000	44.61	-11.87	32.74	74.00	-41.26	peak
2	1632.000	44.33	-10.75	33.58	74.00	-40.42	peak
3	1866.000	45.26	-9.45	35.81	74.00	-38.19	peak
4	2140.000	45.16	-8.39	36.77	74.00	-37.23	peak
5	2570.000	44.25	-6.46	37.79	74.00	-36.21	peak
6	2858.000	43.20	-4.97	38.23	74.00	-35.77	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

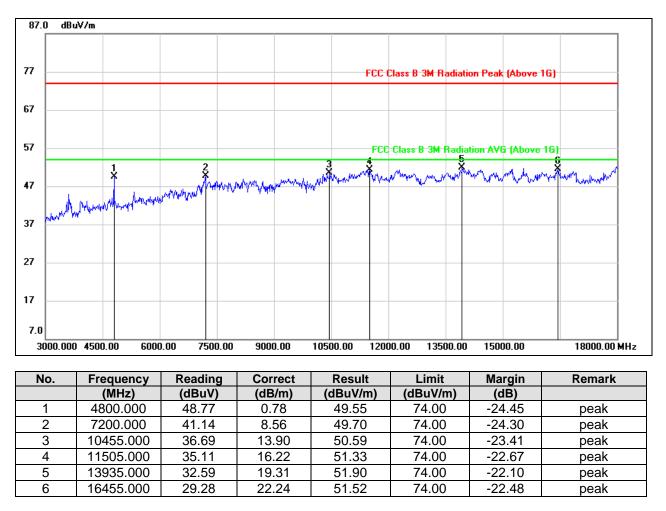
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1172.000	49.41	-12.47	36.94	74.00	-37.06	peak
2	1632.000	44.00	-10.75	33.25	74.00	-40.75	peak
3	1954.000	45.46	-9.39	36.07	74.00	-37.93	peak
4	2154.000	43.67	-8.32	35.35	74.00	-38.65	peak
5	2654.000	43.76	-6.26	37.50	74.00	-36.50	peak
6	2828.000	43.01	-5.14	37.87	74.00	-36.13	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

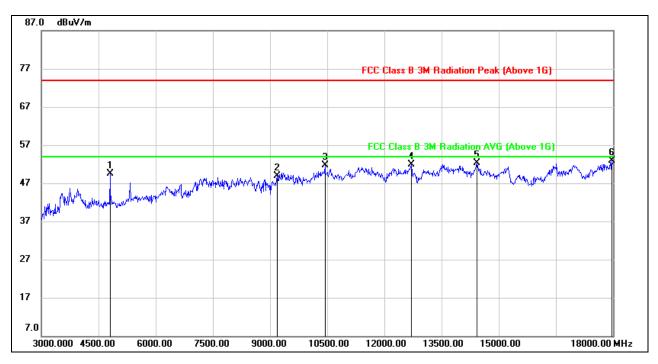
3. Peak: Peak detector.


4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

7.4. SPURIOUS EMISSIONS (3~18GHz)

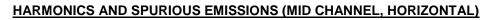
7.4.1. GFSK MODE

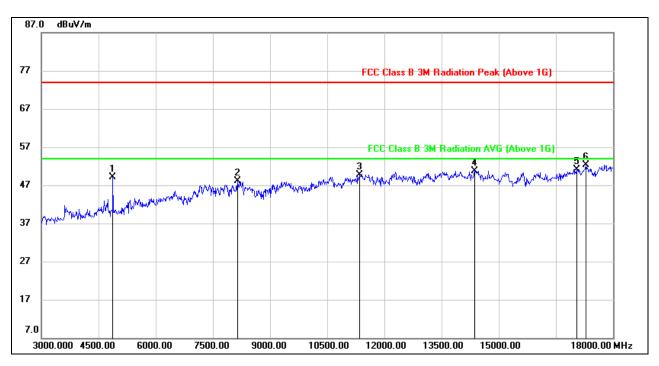
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



Note: 1. Peak Result = Reading Level + Correct Factor.

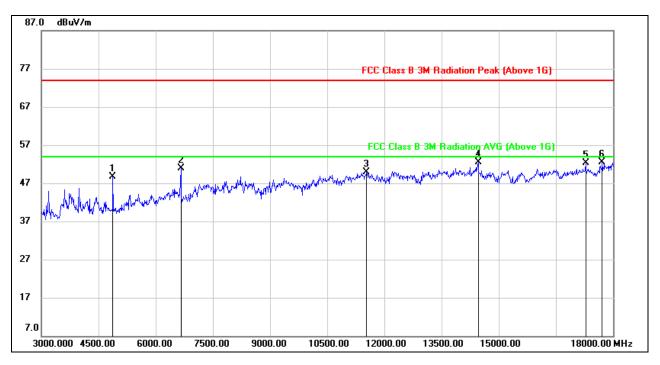
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.





No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	48.70	0.78	49.48	74.00	-24.52	peak
2	9195.000	37.74	11.23	48.97	74.00	-25.03	peak
3	10440.000	37.82	13.80	51.62	74.00	-22.38	peak
4	12705.000	34.81	17.16	51.97	74.00	-22.03	peak
5	14430.000	32.87	19.41	52.28	74.00	-21.72	peak
6	17970.000	25.82	27.02	52.84	74.00	-21.16	peak

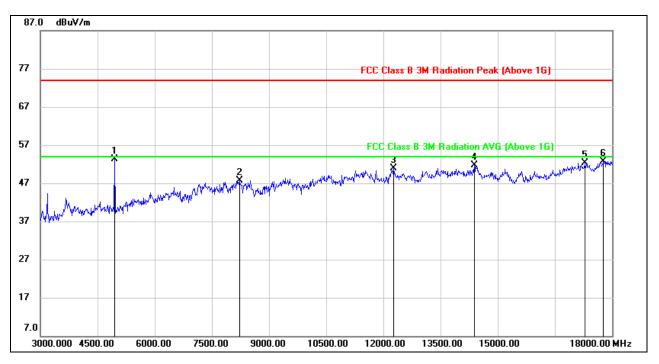
- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	49.15	-0.12	49.03	74.00	-24.97	peak
2	8145.000	38.86	9.30	48.16	74.00	-25.84	peak
3	11340.000	36.57	13.08	49.65	74.00	-24.35	peak
4	14370.000	34.41	16.39	50.80	74.00	-23.20	peak
5	17040.000	30.62	20.51	51.13	74.00	-22.87	peak
6	17280.000	30.53	21.72	52.25	74.00	-21.75	peak

- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.

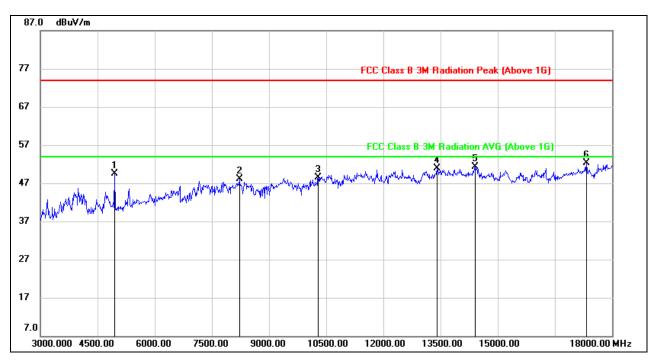
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	48.73	-0.12	48.61	74.00	-25.39	peak
2	6660.000	44.81	6.00	50.81	74.00	-23.19	peak
3	11535.000	35.89	14.10	49.99	74.00	-24.01	peak
4	14460.000	36.13	16.35	52.48	74.00	-21.52	peak
5	17280.000	30.65	21.72	52.37	74.00	-21.63	peak
6	17715.000	30.10	22.39	52.49	74.00	-21.51	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

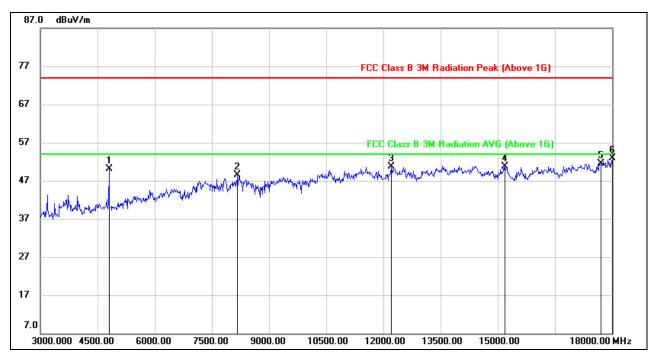
- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4960.000	52.97	0.25	53.22	74.00	-20.78	peak
2	8220.000	38.39	9.40	47.79	74.00	-26.21	peak
3	12270.000	36.65	14.34	50.99	74.00	-23.01	peak
4	14385.000	35.23	16.41	51.64	74.00	-22.36	peak
5	17295.000	30.43	21.86	52.29	74.00	-21.71	peak
6	17775.000	29.79	22.97	52.76	74.00	-21.24	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.

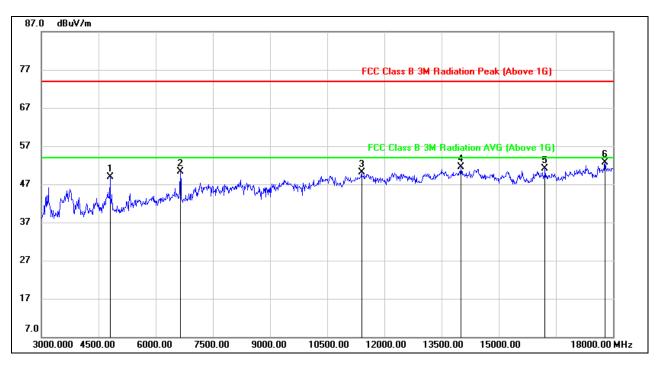


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	49.36	0.19	49.55	74.00	-24.45	peak
2	8220.000	38.65	9.40	48.05	74.00	-25.95	peak
3	10290.000	37.07	11.51	48.58	74.00	-25.42	peak
4	13410.000	35.01	15.86	50.87	74.00	-23.13	peak
5	14400.000	34.96	16.43	51.39	74.00	-22.61	peak
6	17325.000	30.55	21.80	52.35	74.00	-21.65	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 6.1.
- 6. High pass filter losses had already added into the correct factor.

7.4.2. ∏/4-DQPSK MODE

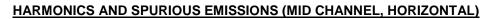
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

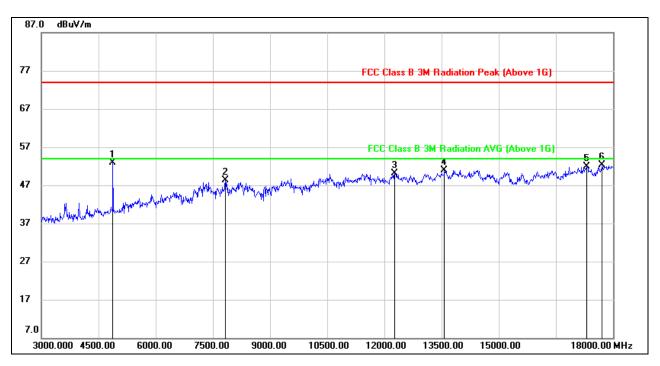

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	50.29	-0.25	50.04	74.00	-23.96	peak
2	8175.000	39.00	9.48	48.48	74.00	-25.52	peak
3	12210.000	36.54	14.25	50.79	74.00	-23.21	peak
4	15195.000	35.19	15.56	50.75	74.00	-23.25	peak
5	17700.000	29.23	22.24	51.47	74.00	-22.53	peak
6	18000.000	29.55	23.27	52.82	74.00	-21.18	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.

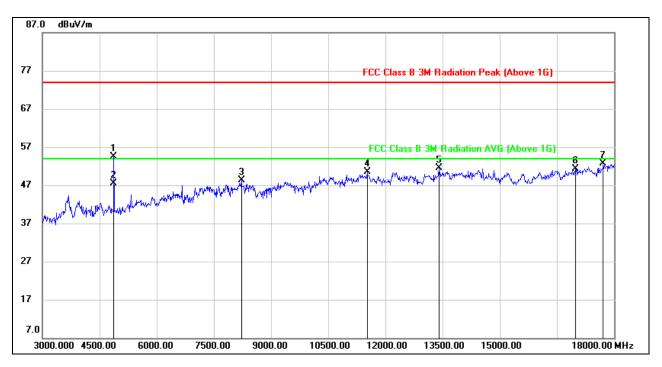
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)




No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	49.16	-0.25	48.91	74.00	-25.09	peak
2	6645.000	44.27	5.99	50.26	74.00	-23.74	peak
3	11400.000	36.65	13.36	50.01	74.00	-23.99	peak
4	14010.000	35.07	16.34	51.41	74.00	-22.59	peak
5	16215.000	33.02	18.00	51.02	74.00	-22.98	peak
6	17790.000	29.62	23.12	52.74	74.00	-21.26	peak

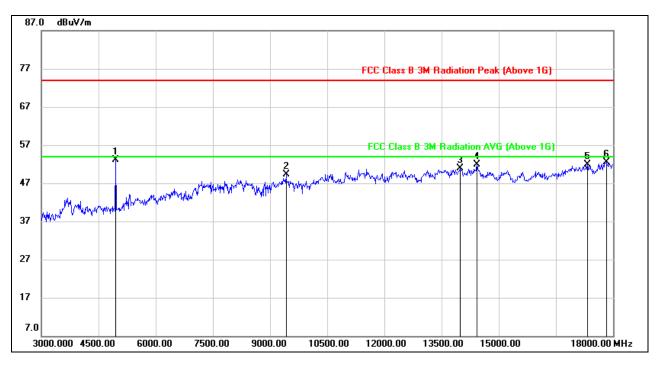
Note: 1. Peak Result = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4880.000	52.94	-0.12	52.82	74.00	-21.18	peak
2	7830.000	39.55	8.75	48.30	74.00	-25.70	peak
3	12270.000	35.83	14.34	50.17	74.00	-23.83	peak
4	13575.000	34.99	15.98	50.97	74.00	-23.03	peak
5	17310.000	30.04	21.86	51.90	74.00	-22.10	peak
6	17715.000	29.98	22.39	52.37	74.00	-21.63	peak

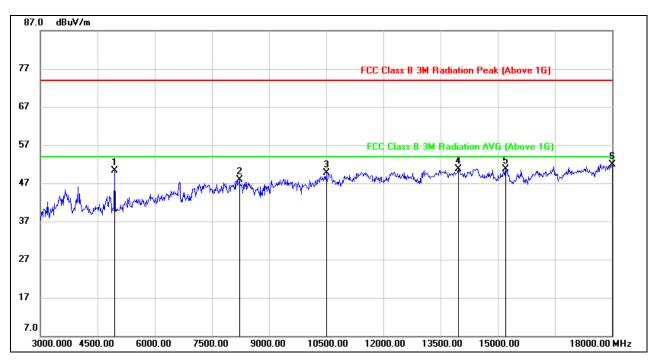
- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4881.973	54.56	-0.12	54.44	74.00	-19.56	peak
2	4881.973	47.66	-0.12	47.54	54.00	-6.46	AVG
3	8220.000	38.90	9.40	48.30	74.00	-25.70	peak
4	11520.000	36.31	14.10	50.41	74.00	-23.59	peak
5	13410.000	35.62	15.86	51.48	74.00	-22.52	peak
6	16995.000	30.95	20.32	51.27	74.00	-22.73	peak
7	17715.000	30.39	22.39	52.78	74.00	-21.22	peak

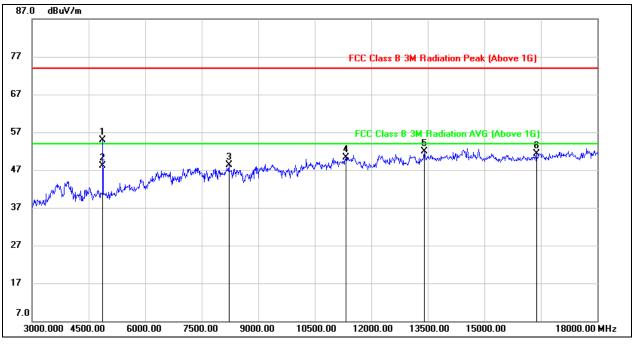
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 6.1.
- 6. High pass filter losses had already added into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4960.000	52.92	0.25	53.17	74.00	-20.83	peak
2	9420.000	39.05	10.34	49.39	74.00	-24.61	peak
3	13980.000	34.61	16.32	50.93	74.00	-23.07	peak
4	14430.000	35.49	16.39	51.88	74.00	-22.12	peak
5	17325.000	30.17	21.80	51.97	74.00	-22.03	peak
6	17820.000	29.21	23.21	52.42	74.00	-21.58	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	50.17	0.19	50.36	74.00	-23.64	peak
2	8220.000	38.46	9.40	47.86	74.00	-26.14	peak
3	10500.000	37.88	11.73	49.61	74.00	-24.39	peak
4	13965.000	34.37	16.29	50.66	74.00	-23.34	peak
5	15210.000	35.24	15.55	50.79	74.00	-23.21	peak
6	18000.000	28.68	23.27	51.95	74.00	-22.05	peak

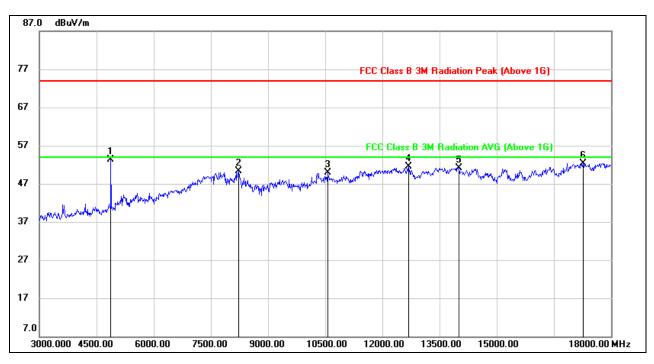
- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.

7.5. WORST-CASE CO-LOCATION

7.5.1. BT []/4-DQPSK AND 2.4G FSK MODE HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV)	(dBuV)	(dB)	
1	4875.000	55.06	-0.12	54.94	74.00	-19.06	peak
2	4875.000	48.17	-0.12	48.05	54.00	-5.95	AVG
3	8220.000	38.90	9.40	48.30	74.00	-25.70	peak
4	11325.000	37.28	13.02	50.30	74.00	-23.70	peak
5	13410.000	36.12	15.86	51.98	74.00	-22.02	peak
6	16380.000	32.93	18.47	51.40	74.00	-22.60	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. High pass filter losses had already added into the correct factor.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV)	(dBuV)	(dB)	
1	4875.000	53.44	-0.12	53.32	74.00	-20.68	peak
2	8235.000	41.06	9.23	50.29	74.00	-23.71	peak
3	10560.000	37.57	12.37	49.94	74.00	-24.06	peak
4	12690.000	37.31	14.28	51.59	74.00	-22.41	peak
5	14010.000	34.86	16.34	51.20	74.00	-22.80	peak
6	17265.000	30.70	21.59	52.29	74.00	-21.71	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.

7.6. SPURIOUS EMISSIONS 18G ~ 26GHz

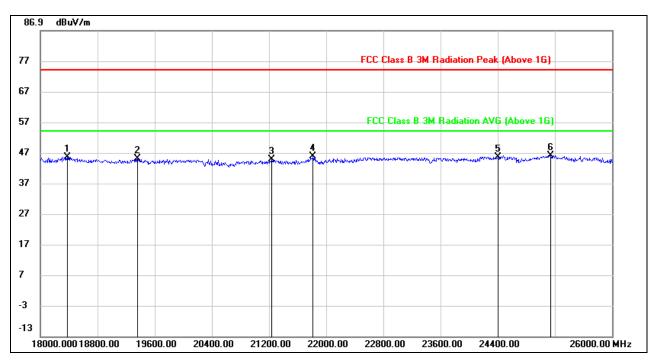
7.6.1. ∏/4-DQPSK MODE

		'/m						 							
7										FCC (Class B 3	M R	adiation Pea	ak (Above 1G	,
7															
7										FCC	Class B	3М	Radiation A	/G (Above 10	i)
,	marchen	and the second second	1	munhe	Winnyana	2	 maline	wyhellow	dela programme		4		5	-	6
,							 -								
3															

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19144.000	50.97	-4.98	45.99	74.00	-28.01	peak
2	20072.000	51.34	-4.51	46.83	74.00	-27.17	peak
3	21200.000	51.65	-5.46	46.19	74.00	-27.81	peak
4	23296.000	52.30	-5.16	47.14	74.00	-26.86	peak
5	24280.000	50.52	-3.48	47.04	74.00	-26.96	peak
6	25216.000	47.55	-1.16	46.39	74.00	-27.61	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

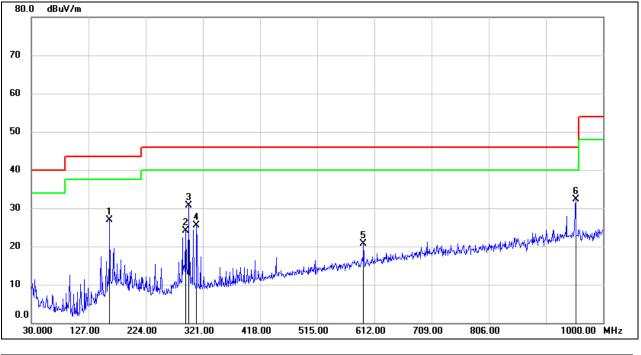
3. Peak: Peak detector.

4. High pass filter losses had already added into the correct factor.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18376.000	49.88	-4.37	45.51	74.00	-28.49	peak
2	19360.000	50.04	-4.93	45.11	74.00	-28.89	peak
3	21232.000	50.38	-5.49	44.89	74.00	-29.11	peak
4	21816.000	51.58	-5.88	45.70	74.00	-28.30	peak
5	24400.000	48.64	-2.99	45.65	74.00	-28.35	peak
6	25136.000	47.16	-1.14	46.02	74.00	-27.98	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. High pass filter losses had already added into the correct factor.

Note: All test mode has been tested, only the worst data record in the report.

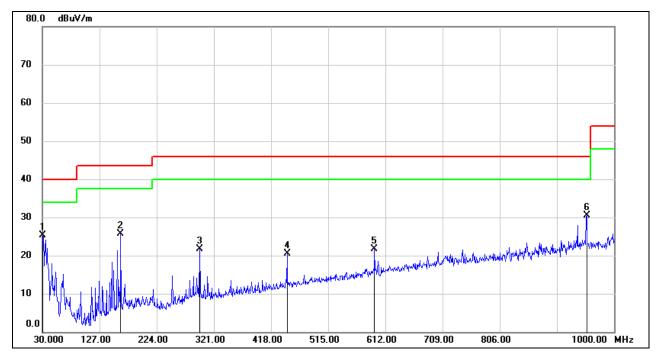
7.7. SPURIOUS EMISSIONS 30M ~ 1 GHz

7.7.1. ∏/4-DQPSK MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	162.8900	44.52	-17.62	26.90	43.50	-16.60	QP
2	291.9000	38.43	-14.34	24.09	46.00	-21.91	QP
3	296.7500	44.82	-14.04	30.78	46.00	-15.22	QP
4	310.3299	39.31	-13.79	25.52	46.00	-20.48	QP
5	593.5700	29.24	-8.57	20.67	46.00	-25.33	QP
6	953.4400	35.73	-3.37	32.36	46.00	-13.64	QP

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.


2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

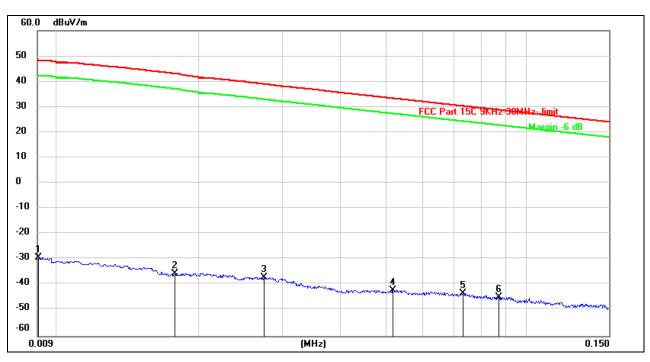
Page 94 of 101

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	42.39	-17.00	25.39	40.00	-14.61	QP
2	162.8900	43.33	-17.62	25.71	43.50	-17.79	QP
3	296.7500	35.77	-14.04	21.73	46.00	-24.27	QP
4	445.1600	31.96	-11.50	20.46	46.00	-25.54	QP
5	593.5700	30.27	-8.57	21.70	46.00	-24.30	QP
6	953.4400	33.88	-3.37	30.51	46.00	-15.49	QP

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.


3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

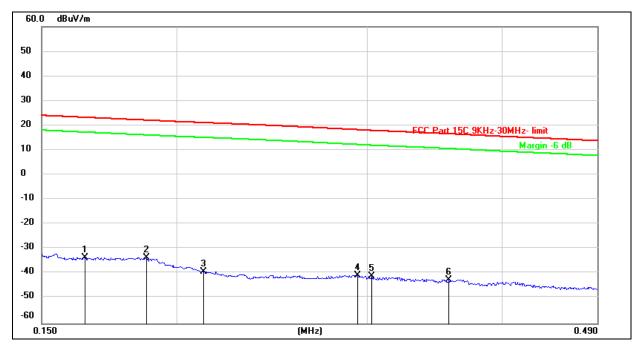
7.8. SPURIOUS EMISSIONS BELOW 30M

7.8.1. ∏/4-DQPSK MODE

(LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9KHz~ 150KHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0091	72.08	-101.33	-29.25	48.29	-77.54	peak
2	0.0177	65.84	-101.35	-35.51	42.96	-78.47	peak
3	0.0274	64.31	-101.38	-37.07	38.98	-76.05	peak
4	0.0517	59.37	-101.49	-42.12	33.35	-75.47	peak
5	0.0733	58.16	-101.58	-43.42	30.32	-73.74	peak
6	0.0873	56.96	-101.69	-44.73	28.80	-73.53	peak

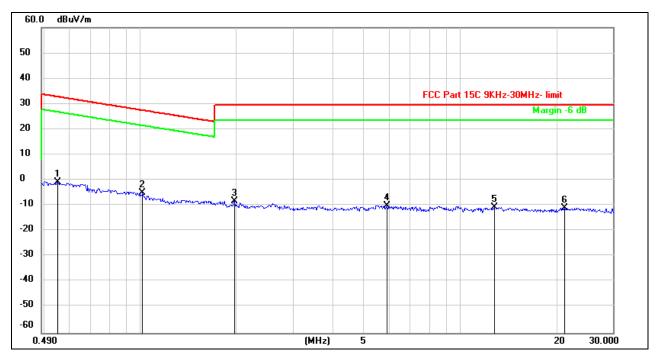

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u> 150KHz ~ 0.49MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1645	68.25	-101.66	-33.41	23.29	-56.70	peak
2	0.1877	68.22	-101.70	-33.48	22.14	-55.62	peak
3	0.2116	62.53	-101.73	-39.20	21.17	-60.37	peak
4	0.2942	61.32	-101.85	-40.53	18.26	-58.79	peak
5	0.3029	60.81	-101.86	-41.05	17.99	-59.04	peak
6	0.3573	59.58	-101.91	-42.33	16.63	-58.96	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

0.49MHz ~ 30MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5521	61.34	-62.08	-0.74	32.81	-33.55	peak
2	1.0144	57.18	-62.27	-5.09	27.48	-32.57	peak
3	1.9681	53.50	-61.83	-8.33	29.54	-37.87	peak
4	5.9198	51.43	-61.36	-9.93	29.54	-39.47	peak
5	12.7660	50.40	-60.92	-10.52	29.54	-40.06	peak
6	21.2056	49.73	-60.74	-11.01	29.54	-40.55	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All test mode has been tested, only the worst data record in the report.

8. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a).

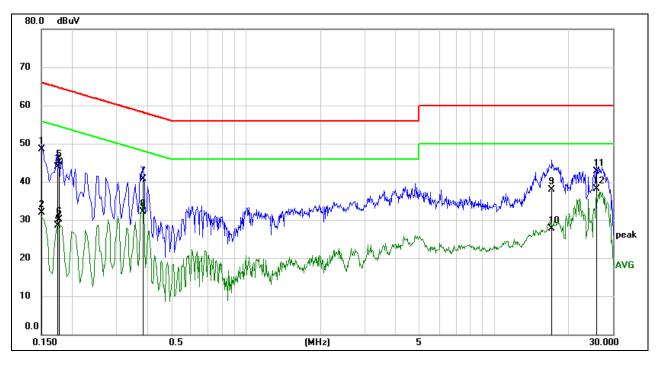
FREQUENCY (MHz)	Quasi-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 12mm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz. The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

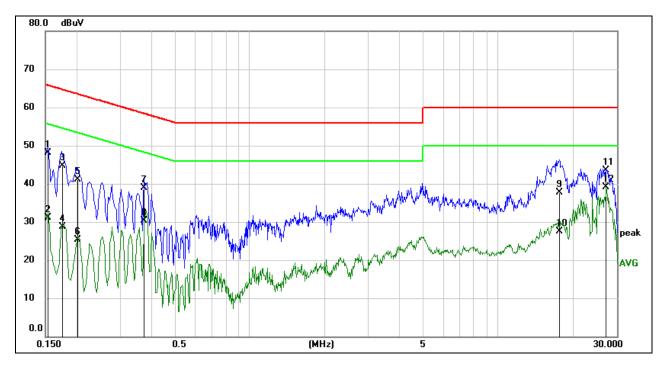

RESULTS

8.1.1. **∏/4-DQPSK MODE**

TEST RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)

LINE N RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1515	38.88	9.60	48.48	65.92	-17.44	QP
2	0.1515	22.23	9.60	31.83	55.92	-24.09	AVG
3	0.1747	34.35	9.60	43.95	64.73	-20.78	QP
4	0.1747	18.98	9.60	28.58	54.73	-26.15	AVG
5	0.1771	35.51	9.60	45.11	64.62	-19.51	QP
6	0.1771	20.47	9.60	30.07	54.62	-24.55	AVG
7	0.3852	31.01	9.60	40.61	58.17	-17.56	QP
8	0.3852	22.42	9.60	32.02	48.17	-16.15	AVG
9	17.0401	27.91	10.04	37.95	60.00	-22.05	QP
10	17.0401	17.76	10.04	27.80	50.00	-22.20	AVG
11	25.7602	32.73	10.04	42.77	60.00	-17.23	QP
12	25.7602	28.02	10.04	38.06	50.00	-11.94	AVG


Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

LINE L RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1529	38.55	9.61	48.16	65.84	-17.68	QP
2	0.1529	21.56	9.61	31.17	55.84	-24.67	AVG
3	0.1759	35.06	9.61	44.67	64.68	-20.01	QP
4	0.1759	19.03	9.61	28.64	54.68	-26.04	AVG
5	0.2009	31.44	9.60	41.04	63.57	-22.53	QP
6	0.2009	15.80	9.60	25.40	53.57	-28.17	AVG
7	0.3779	29.39	9.60	38.99	58.33	-19.34	QP
8	0.3779	20.79	9.60	30.39	48.33	-17.94	AVG
9	17.6402	27.68	10.00	37.68	60.00	-22.32	QP
10	17.6402	17.56	10.00	27.56	50.00	-22.44	AVG
11	27.2007	33.59	9.89	43.48	60.00	-16.52	QP
12	27.2007	29.21	9.89	39.10	50.00	-10.90	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).

4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT