SAR TESTREPORT ISSUED BY Shenzhen BALUN Technology Co., Ltd. **FOR** #### **Tablet PC** ISSUED TO Shenzhen Jingwah Information Technology Co., Ltd. 4F, Bldg 4, Jinghua Square, No.1 Huafa North Road, Futian District, Shenzhen, China Tested by: To Lang (Engineer) Date OCL. M. OV b Wei Yanguan (Chief Engineer) Date Ovt. 17, 206 Test Standard: Maximum SAR: BL-SZ1690235-701 Tablet PC BNTV450 Brand Name: nook FCC ID: RBD-BNTV450 Test Standard: FCC 47 CFR Part 2.1093 ANSI C95.1: 1999 IEEE 1528: 2013 Body (1 g): 1.163 W/kg Test Conclusion: Pas Report No.: **EUT Type:** Model Name: Test Date: Sep. 27, 2016 ~ Sep. 28, 2016 Date of Issue: Oct. 17, 2016 NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website. Block B, 1st FL,Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055 TEL: +86-755-66850100, FAX: +86-755-61824271 Email: info@baluntek.com www.baluntek.com ## **Revision History** VersionIssue DateRevisions ContentRev. 01Oct. 17, 2016Initial Issue ## TABLE OF CONTENTS | 1 | GENER | RAL INFORMATION | 4 | |---|--------|--|----| | | 1.1 | Identification of the Testing Laboratory | 4 | | | 1.2 | Identification of the Responsible Testing Location | 4 | | | 1.3 | Test Environment Condition | 4 | | | 1.4 | Announce | 5 | | 2 | PRODU | JCT INFORMATION | 6 | | | 2.1 | Applicant Information | 6 | | | 2.2 | Manufacturer Information | 6 | | | 2.3 | Factory Information | 6 | | | 2.4 | General Description for Equipment under Test (EUT) | 6 | | | 2.5 | Ancillary Equipment | 7 | | | 2.6 | Technical Information | 8 | | 3 | SUMM | ARY OF TEST RESULTS | 9 | | | 3.1 | Test Standards | 9 | | | 3.2 | Device Category and SAR Limit | 9 | | | 3.3 | Test Result Summary | 11 | | | 3.4 | Test Uncertainty | 12 | | 4 | SAR M | EASUREMENT SYSTEM | 13 | | | 4.1 | Definition of Specific Absorption Rate (SAR) | 13 | | | 4.2 | SATIMO SAR System | 13 | | 5 | SYSTE | M VERIFICATION | 22 | | | 5.1 | Antenna Port Test Requirement | 22 | | | 5.2 | Purpose of System Check | 22 | | | 5.3 | System Check Setup | 22 | | 6 | EUT TE | EST POSITION CONFIGURATUONS | 23 | | | 6.1 | Head Exposure Conditions | 23 | | (| 6.2 | Body-worn Position Conditions | 24 | |----|--------|---|-----| | (| 6.3 | Hotspot Mode Exposure Position Conditions | 25 | | 7 | SAR M | EASUREMENT PROCEDURES | 26 | | | 7.1 | SAR Measurement Process Diagram | 26 | | • | 7.2 | SAR Scan General Requirements | 27 | | | 7.3 | SAR Measurement Procedure | 28 | | • | 7.4 | Area & Zoom Scan Procedures | 28 | | 8 | CONDU | JCTED RF OUPUT POWER | 29 | | | 8.1 | WIFI | 29 | | | 8.2 | Bluetooth | 30 | | ; | 8.3 | Rated RF power output | 30 | | 9 | EUT AN | ITENNA LOCATION SKETCH | 31 | | , | 9.1 | SAR Test Exclusion Consider Table | 32 | | 10 | TEST F | RESULTS | 34 | | , | 10.1 | WIFI 2.4GHz | 34 | | | 10.2 | WIFI 5GHz | 34 | | 11 | SAR M | easurement Variability | 35 | | 12 | SIMUL | TANEOUS TRANSMISSION | 36 | | 13 | TEST E | QUIPMENTS LIST | 37 | | A١ | INEX A | SIMULATING LIQUID VERIFICATION RESULT | 38 | | A١ | INEX B | SYSTEM CHECK RESULT | 39 | | A١ | INEX C | TEST DATA | 48 | | A١ | INEX D | EUT EXTERNAL PHOTOS | 66 | | A١ | INEX E | SAR TEST SETUP PHOTOS | 66 | | A١ | INEX F | CALIBRATION REPORT | 67 | | l | F.1 | E-Field Probe | 67 | | | F.2 | 2450MHz Dipole | 77 | | | F.3 | Waveguide | 88 | | | F.4 | SATIMO Dipole | 101 | # 1 GENERAL INFORMATION # 1.1 Identification of the Testing Laboratory | Company Name | Shenzhen BALUN Technology Co., Ltd. | |--------------|---| | Address | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, | | Address | Nanshan District, Shenzhen, Guangdong Province, P. R. China | | Phone Number | +86 755 6685 0100 | | Fax Number | +86 755 6182 4271 | # 1.2 Identification of the Responsible Testing Location | Test Location | Shenzhen BALUN Technology Co., Ltd. | |---------------------------|---| | A dalago | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, | | Address | Nanshan District, Shenzhen, Guangdong Province, P. R. China | | | The laboratory has been listed by Industry Canada to perform | | | electromagnetic emission measurements. The recognition numbers of | | | test site are 11524A-1. | | | The laboratory has been listed by US Federal Communications | | Accreditation Certificate | Commission to perform electromagnetic emission measurements. The | | | recognition numbers of test site are 832625. | | | The laboratory is a testing organization accredited by China National | | | Accreditation Service for Conformity Assessment (CNAS) according to | | | ISO/IEC 17025. The accreditation certificate number is L6791. | | | All measurement facilities used to collect the measurement data are | | Description | located at Block B, FL 1, Baisha Science and Technology Park, Shahe | | Description | Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. | | | China 518055 | ## 1.3 Test Environment Condition | Ambient Temperature | 21 to 23°C | |---------------------|---------------| | Ambient Relative | 37 to 48% | | Humidity | | | Ambient Pressure | 100 to 102KPa | #### 1.4 Announce - (1) The test report reference to the report template version v2.2. - (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report. - (3) The test report is invalid if there is any evidence and/or falsification. - (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. - (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section. - (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory. # **2 PRODUCT INFORMATION** # 2.1 Applicant Information | Applicant | Shenzhen Jingwah Information Technology Co., Ltd. | |-----------|---| | Address | 4F, Bldg 4, Jinghua Square, No.1 Huafa North Road, Futian District, | | Addiess | Shenzhen, China | ## 2.2 Manufacturer Information | Manufacturer | SHENZHEN JINGWAH INFORMATION TECHNOLOGY CO., LTD | |--------------|---| | Address | 4F, Bldg 4, Jinghua Square, No.1 Huafa North Road, Futian District, | | Addiess | Shenzhen, China | # 2.3 Factory Information | Factory | SHENZHEN JINGWAH INFORMATION TECHNOLOGY CO., LTD | |---------|---| | Address | 4F, Bldg 4, Jinghua Square, No.1 Huafa North Road, Futian District, | | Address | Shenzhen, China | # 2.4 General Description for Equipment under Test (EUT) | EUT Type | Tablet PC | | |-----------------------|-------------------------------|--| | Model Name Under Test | BNTV450 | | | Series Model Name | N/A | | | Description of Model | N/A | | | Name Differentiation | | | | Hardware Version | T8370-V6.1 M1 | | | Software Version | BNTV450 | | | Dimensions (Approx.) | 190 mm x 110 mm x 8 mm | | | Network and Wireless | Bluetooth, 2.4G WLAN, 5G WLAN | | | connectivity | | | # 2.5 Ancillary Equipment | | Battery | | | |-----------------------|-----------------|------------------------------|--| | | Brand Name | N/A | | | | Model No. | PL3370100P | | | Ancillary Equipment 1 | Serial No. | N/A | | | | Capacitance | 3000 mAh | | | | Rated Voltage | 3.7 V | | | | Extreme Voltage | 4.2 V | | | | Charger 1 | | | | | Brand Name | N/A | | | Ancillary Equipment 2 | Model No. | TPA-95A050100UU | | | | Rated Input | 100-240 V~, 150 mA, 50/60 Hz | | | | Rated Output | 5V=, 1 A | | | Ancillary Equipment 2 | USB Cable | | | | Ancillary Equipment 3 | Length | 1.0 m | | ## 2.6 Technical Information The requirement for the following technical information of the EUT was tested in this report: | Operating Mode | 2.4G WLAN, 5G WLAN, Bluetooth | | | |-------------------|--|--------------------|-----------------------| | | 802.11b/g
/n(HT20/HT40) | 2400~2483.5 MHz | | | | 802.11a | 5150 MHz~ 5250 N | ЛНz | | Frequency Range | | 5250 MHz~ 5350 MHz | | | | | 5470 MHz~ 5725 MHz | | | | | 5725 MHz~ 5850 MHz | | | | Bluetooth | 2400 MHz ~2483.5 | 5 MHz | | Antenna Type | PIFA Antenna | | | | Hotspot Function | N/A | | | | Power Reduction | Not Support | | | | Exposure Category | General Population/Uncontrolled exposure | | | | EUT Stage | Portable Device | | | | Draduat | Туре | | | | Product | | | ☐ Identical prototype | ## 3 SUMMARY OF TEST RESULTS ## 3.1 Test Standards | No. | Identity | Document Title | | |-----|-----------------
---|--| | 1 | 47 CFR Part 2 | Frequency Allocations and Radio Treaty Matters; General Rules | | | ' | | and Regulations | | | 2 | ANSI/IEEE Std. | IEEE Standard for Safety Levels with Respect to Human Exposure | | | | C95.1-1999 | to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz | | | | IEEE Std. 1528- | Recommended Practice for Determining the Peak Spatial-Average | | | 3 | 2013 | Specific Absorption Rate (SAR) in the Human Head from Wireless | | | | | Communications Devices: Measurement Techniques | | | 4 | FCC KDB 447498 | Mobile and Portable Device RF Exposure Procedures and | | | 4 | D01 v06 | Equipment Authorization Policies | | | 5 | FCC KDB 865664 | SAR Measurement 100 MHz to 6 GHz | | | | D01 v01r04 | | | | 6 | FCC KDB 865664 | RF Exposure Reporting | | | | D02 v01r02 | | | | | FCC KDB 616217 | SAR Evaluation Considerations for Laptop, Notebook, Netbook | | | 7 | D04 SAR for | and Table Computers | | | | tablets v01r02 | | | | 8 | FCC KDB 248227 | SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS | | | U | D01 v02r02 | ON TOO DO THE OUT THE OUT OF OUT OF THE OUT OF THE | | ## 3.2 Device Category and SAR Limit This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. Table of Exposure Limits: | | SAR Value (W/Kg) | | | | | |--|-----------------------|---------------------|--|--|--| | Body Position | General Population/ | Occupational/ | | | | | | Uncontrolled Exposure | Controlled Exposure | | | | | Whole-Body SAR | 0.08 | 0.4 | | | | | (averaged over the entire body) | 0.06 | 0.4 | | | | | Partial-Body SAR | 1.60 | 8.0 | | | | | (averaged over any 1 gram of tissue) | 1.00 | 8.0 | | | | | SAR for hands, wrists, feet and | | | | | | | ankles | 4.0 | 20.0 | | | | | (averaged over any 10 grams of tissue) | | | | | | #### NOTE: **General Population/Uncontrolled:** Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Occupational/Controlled: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. # 3.3 Test Result Summary ## 3.3.1 Highest SAR (1 g Value) | Band | Maximum Scaled SAR
(W/kg)
Body | Maximum Report SAR
(W/kg)
Body | | |-----------|--------------------------------------|--------------------------------------|--------| | 2.4G WLAN | 0.538 | | Limit | | 5.2G WLAN | 0.910 | 4.400 | (W/kg) | | 5.6G WLAN | 0.663 | 1.163 | | | 5.8G WLAN | 1.163 | | | | Verdict | | Pass | · | ## 3.3.2 Highest Simultaneous SAR The simultaneous SAR is not required in this report. # 3.4 Test Uncertainty According to KDB 865664 D01, when the highest measured 1 g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis is not required in SAR reports submitted for equipment approval. The maximum 1 g SAR for the EUT in this report is 1.163 W/kg, which is lower than 1.5 W/kg, so the extensive SAR measurement uncertainty analysis is not required in this report. ### 4 SAR MEASUREMENT SYSTEM ## 4.1 Definition of Specific Absorption Rate (SAR) SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational / controlled exposure limits are higher than the limits for general population /uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma E^2}{\rho}$$ Where: σ is the conductivity of the tissue, $\boldsymbol{\rho}$ is the mass density of the tissue and E is the RMS electrical field strength. ## 4.2 SATIMO SAR System #### 4.2.1 SATIMO SAR System Diagram These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 850 mm), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in SAR standard with accuracy of better than ±10%. The spherical isotropy was evaluated with the procedure described in SAR standard and found to be better than ±0.25 dB. The phantom used was the SAM Phantom as described in FCC supplement C, IEEE P1528. #### 4.2.2 Robot The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application: - High precision (repeatability ±0.035 mm) - · High reliability (industrial design) - · Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) #### 4.2.3 E-Field Probe For the measurements the Specific Dosimetric E-Field Probe SN 34/15 EPGO 265 with following specifications is used -- Dynamic range: 0.01-100 W/kg - Tip Diameter: 2.5 mm - Lower detection limit: 7 mW/kg (repeatability better than +/- 1mm) - Probe linearity: +/- 0.07 dB - Calibration range: 450 MHz to 5800 MHz for head & body simulating liquid. Angle between probe axis (evaluation axis) and surface normal line: less than 30° #### **E-Field Probe Calibration Process** Probe calibration is realized, in compliance with CENELEC EN 62209-1/-2 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the IEC62209-1/2 annexe technique using reference guide at the five frequencies. $$SAR = \frac{4(P_{fw} - P_{bw})}{ab\sigma} \cos^2\left(\pi \frac{y}{a}\right) c^{(2\pi/\sigma)}$$ Where: Pfw = Forward Power Pbw = Backward Power a and b = Waveguide
Dimensions ı = Skin Depth #### **Keithley configuration** Rate = Medium; Filter = ON; RDGS=10; FILTER TYPE = MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it. The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are: CF(N)=SAR(N)/Vlin(N) (N=1,2,3) The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using $Vlin(N)=V(N)^*(1+V(N)/DCP(N))$ (N=1,2,3) Where the DCP is the diode compression point in $\,\mathrm{mV}.$ #### 4.2.4 Phantoms For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid. Photo of Phantom SN 30/13 SAM103 Photo of Phantom SN 30/13 SAM104 | Serial Number | Positionner Material | Permittivity | Loss Tangent | | |-----------------|-------------------------|--------------|--------------|--| | SN 30/13 SAM103 | Gelcoat with fiberglass | 3.4 | 0.02 | | | SN 30/13 SAM104 | Gelcoat with fiberglass | 3.4 | 0.02 | | | Serial Number | Left Head | | | Right Head | | Flat Part | | |------------------|-----------|------|---|------------|---|-----------|--| | | 2 | 2.00 | 2 | 2.03 | 1 | 2.09 | | | | 3 | 2.02 | 3 | 2.05 | 2 | 2.10 | | | | 4 | 2.04 | 4 | 2.04 | 3 | 2.09 | | | CN 20/12 CAM102 | 5 | 2.04 | 5 | 2.07 | 4 | 2.11 | | | SN 30/13 SAM103 | 6 | 2.02 | 6 | 2.07 | 5 | 2.11 | | | | 7 | 2.01 | 7 | 2.09 | 6 | 2.09 | | | | 8 | 2.04 | 8 | 2.10 | 7 | 2.11 | | | | 9 | 2.02 | 9 | 2.09 | - | - | | | | 2 | 2.05 | 2 | 2.06 | 1 | 2.03 | | | | 3 | 2.08 | 3 | 2.03 | 2 | 2.03 | | | | 4 | 2.05 | 4 | 2.03 | 3 | 2.01 | | | SN 30/13 SAM104 | 5 | 2.06 | 5 | 2.02 | 4 | 2.03 | | | 3N 30/13 3AN1104 | 6 | 2.08 | 6 | 2.02 | 5 | 2.03 | | | | 7 | 2.06 | 7 | 2.04 | 6 | 2.00 | | | | 8 | 2.07 | 8 | 2.04 | 7 | 1.98 | | | | 9 | 2.07 | 9 | 2.05 | - | - | | #### 4.2.5 Device Holder The SAR in the phantom is approximately inversely proportional to the square of ± 0.5 mm would produce a SAR uncertainty of ± 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. | Serial Number | Holder Material | Permittivity | Loss Tangent | |----------------|-----------------|--------------|--------------| | SN 25/13 MSH87 | Deirin | 3.7 | 0.005 | | SN 25/13 MSH88 | Deirin | 3.7 | 0.005 | The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°. #### 4.2.6 Simulating Liquid For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%. The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity. | | Head (Reference IEEE1528) | | | | | | | | |------------------|---------------------------|-----------|---------------|----------|--------------|------------|--------------|--------------| | Frequency | Water | Sugar | Cellulose | Salt | Preventol | DGBE | Conductivity | Permittivity | | (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | σ (S/m) | 3 | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | 900 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.97 | 41.5 | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.4 | 40.0 | | 2450 | 55.0 | 0 | 0 | 0.1 | 0 | 44.9 | 1.80 | 39.2 | | 2600 | 54.9 | 0 | 0 | 0.1 | 0 | 45.0 | 1.96 | 39.0 | | Fraguera (MIII-) | Water | ŀ | Hexyl Carbito | ol | Triton X-100 | | Conductivity | Permittivity | | Frequency(MHz) | (%) | | (%) | | (% | %) | σ (S/m) | 3 | | 5200 | 62.52 | | 17.24 | | 17.24 | | 4.66 | 36.0 | | 5800 | 62.52 | | 17.24 | | 17.24 | | 5.27 | 35.3 | | | | Body (Fro | m instrun | nent man | ufacturer) | | | | | Frequency | Water | Sugar | Cellulose | Salt | Preventol | DGBE | Conductivity | Permittivity | | (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | σ (S/m) | ε | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | 900 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 1.05 | 55.0 | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | 2450 | 68.6 | 0 | 0 | 0.1 | 0 | 31.3 | 1.95 | 52.7 | | 2600 | 68.2 | 0 | 0 | 0.1 | 0 | 31.7 | 2.16 | 52.5 | | | Frequency(MHz) | Water | DGBE | Salt | Conductivity | Permittivity | |---|------------------|--------|-------|------|--------------|--------------| | | riequency(wiriz) | vvalei | (%) | (%) | σ (S/m) | 3 | | ſ | 5200 | 78.60 | 21.40 | 1 | 5.54 | 47.86 | | | 5800 | 78.50 | 21.40 | 0.1 | 6.0 | 48.20 | #### 5 SYSTEM VERIFICATION ## 5.1 Antenna Port Test Requirement The SATIMO SAR system is equipped with one or more system validation kits. These units together with the predefined measurement procedures within the SATIMO software enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. ## 5.2 Purpose of System Check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. ## 5.3 System Check Setup In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: ### **6 EUT TEST POSITION CONFIGURATUONS** According to KDB 648474 D04 Handset, handsets are tested for SAR compliance in head, body-worn accessory and other use configurations described in the following subsections. ## 6.1 Head Exposure Conditions Head exposure is limited to next to the ear voice mode operations. Head SAR compliance is tested according to the test positions defined in IEEE Std 1528-2013 using the SAM phantom illustrated as below. #### 6.1.1 Define two imaginary lines on the handset - (a) The vertical center line passes through two points on the front side of the handset the midpoint of the width w t of the handset at the level of the acoustic output, and the midpoint of the width w b of the bottom of the handset. - (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A. - (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets. #### 6.1.2 Cheek Position - (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE. - (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost. #### 6.1.3 Tilted Position - (a) To position the device in the "cheek" position described above. - (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost. ## 6.2 Body-worn Position Conditions Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB 447498 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results
for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. Body-worn accessories that do not contain metallic or conductive components may be tested according to worstcase exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device. Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required. A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance. ## 6.3 Hotspot Mode Exposure Position Conditions For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface). ## 7 SAR MEASUREMENT PROCEDURES # 7.1 SAR Measurement Process Diagram ## 7.2 SAR Scan General Requirements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. | | | | ≤3GHz | >3GHz | | |---|-----------------|----------------------|---------------------------------------|-----------------------------------|--| | Maximum distance from | closest meas | surement point | F.1 mm | 1/ S In/2) LO E mm | | | (geometric center of probe sensors) to phantom surface | | | 5±1 mm | ½·δ·ln(2)±0.5 mm | | | Maximum probe angle from | om probe ax | s to phantom surface | 30°±1° | 20°±1° | | | normal at the measurement | ent location | | 30 ±1 | 20 ±1 | | | | | | ≤ 2 GHz: ≤ 15 mm | 3–4 GHz: ≤ 12 mm | | | | | | 2 – 3 GHz: ≤ 12 mm | 4 – 6 GHz: ≤ 10 mm | | | | | | When the x or y dimension of t | he test device, in the | | | Maximum area scan spa | tial resolution | n: ∆x Area , ∆y Area | measurement plane orientation | n, is smaller than the above, | | | | | | the measurement resolution m | ust be \leq the corresponding x | | | | | | or y dimension of the test device | ce with at least one | | | | | | measurement point on the test device. | | | | Maximum zoom scan spatial resolution: Δx Zoom , Δy Zoom | | ≤ 2 GHz: ≤ 8 mm | 3–4 GHz: ≤ 5 mm* | | | | waximum zoom scan spa | atiai resolutio | n: Дх 200m , Ду 200m | 2 –3 GHz: ≤ 5 mm* | 4 – 6 GHz: ≤ 4 mm* | | | | | | | 3–4 GHz: ≤ 4 mm | | | | unifor | m grid: Δz Zoom (n) | ≤ 5 mm | 4–5 GHz: ≤ 3 mm | | | | | | | 5–6 GHz: ≤ 2 mm | | | Maximum zoom scan | | ∆ z Zoom (1): | | 3–4 GHz: ≤ 3 mm | | | spatial resolution, | | between 1st two | ≤ 4 mm | 4–5 GHz: ≤ 2.5 mm | | | normal to phantom | graded | points closest to | = 4 mm | 5–6 GHz: ≤ 2 mm | | | surface | graded | phantom surface | | 5-0 GHZ. 3 Z IIIII | | | | grid | ∆ z Zoom (n>1): | ≤ 1.5·Δz 2 | Zoom (n-1) | | | betw | | between subsequent | | | | | | | points | | , | | | Minimum zoom | | | | 3–4 GHz: ≥ 28 mm | | | scan volume | | x, y, z | ≥30 mm | 4–5 GHz: ≥ 25 mm | | | Scari volume | | | | 5–6 GHz: ≥ 22 mm | | #### Note: - δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. - 2. * When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### 7.3 SAR Measurement Procedure The following steps are used for each test position - Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface - Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift. - Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. - Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. #### 7.4 Area & Zoom Scan Procedures First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. # **8 CONDUCTED RF OUPUT POWER** ## 8.1 WIFI #### 8.1.1 2.4GWIFI | Band | Mada | Channal | Freq. | Peak. Power | SAR Test | |--------------|---------------|---------|-------|-------------|----------| | (GHz) | Mode | Channel | (MHz) | (dBm) | Require. | | | | 1 | 2412 | 19.79 | Yes | | | 802.11b | 6 | 2437 | 19.29 | No | | | | 11 | 2462 | 19.31 | No | | | | 1 | 2412 | 17.37 | No | | | 802.11g | 6 | 2437 | 17.88 | No | | 2.4 | | 11 | 2462 | 17.28 | No | | (2.4~2.4835) | 802.11n(HT20) | 1 | 2412 | 18.46 | No | | | | 6 | 2437 | 19.30 | No | | | | 11 | 2462 | 18.37 | No | | | | 3 | 2422 | 15.90 | No | | | 802.11n(HT40) | 6 | 2437 | 17.31 | No | | | | 9 | 2452 | 15.51 | No | ## 8.1.2 5GWIFI | Band | Mada | Ob a rest of | Freq. | Peak. Power | SAR Test | |---------------------|---------|--------------|-------|-------------|----------| | (GHz) | Mode | Channel | (MHz) | (dBm) | Require. | | F 2 | | 36 | 5180 | 11.21 | No | | 5.2
(5.15~5.25) | 802.11a | 44 | 5220 | 9.81 | No | | (5.15~5.25) | | 48 | 5240 | 11.50 | Yes | | F 2 | | 52 | 5260 | 10.25 | No | | 5.3
(5.25~5.35) | 802.11a | 60 | 5300 | 10.21 | No | | (0.20*0.00) | | 64 | 5320 | 9.51 | No | | F 6 | | 100 | 5500 | 10.92 | No | | 5.6
(5.47~5.725) | 802.11a | 120 | 5600 | 11.50 | Yes | | (5.47~5.725) | | 140 | 5700 | 10.82 | No | | F 0 | | 149 | 5745 | 10.21 | No | | 5.8 | 802.11a | 157 | 5785 | 10.83 | No | | (5.725~5.850) | | 161 | 5805 | 11.31 | Yes | ## 8.2 Bluetooth | Mode | GFSK | | | π/4-DQPSK | | | |------------------|------|--------|------|-----------|-------|-------| | Channel | 0 | 39 | 78 | 0 | 39 | 78 | | Frequency (MHz) | 2402 | 2441 | 2480 | 2402 | 2441 | 2480 | | Peak Power (dBm) | 6.61 | 5.46 | 6.22 | 4.70 | 5.26 | 6.02 | | Mode | | 8-DPSK | | BLE | | | | Channel | 0 | 39 | 78 | 0 | 19 | 39 | | Frequency (MHz) | 2402 | 2441 | 2480 | 2402 | 2440 | 2480 | | Peak Power (dBm) | 4.90 | 5.43 | 6.25 | -3.21 | -2.60 | -2.17 | # 8.3 Rated RF power output | Band
(GHz) | Mode | Range(dBm) | |---------------|--------------------|-------------| | | IEEE 802.11b | 19.20-19.90 | | 2.4 | IEEE 802.11g | 17.20-18.00 | | (2.4~2.4835) | IEEE 802.11n(HT20) | 18.15-19.40 | | | IEEE 802.11n(HT40) | 15.40-17.40 | | Band
(GHz) | Mode | Range(dBm) | |-------------------|--------------|-------------| | 5.2 (5.15~5.25) |
IEEE 802.11a | 9.70-11.60 | | 5.3 (5.25~5.35) | IEEE 802.11a | 9.40-10.35 | | 5.6 (5.47~5.725) | IEEE 802.11a | 10.70-11.60 | | 5.8 (5.725~5.850) | IEEE 802.11a | 10.10-11.40 | | Band
(GHz) | Mode | Range(dBm) | |---------------|--------|-----------------| | Dluotooth | BR/EDR | 4.60-6.70 | | Bluetooth | BLE | (-3.30)-(-2.05) | # 9 EUT ANTENNA LOCATION SKETCH ## 9.1 SAR Test Exclusion Consider Table According with FCC KDB 447498 D01, Appendix A, <SAR Test Exclusion Thresholds for 100 MHz − 6 GHz and ≤ 50 mm> Table, this Device SAR test configurations consider as following : | | | Max. Peak Power | | Test Position Configurations | | | | | | | |---------------|---------------|-----------------|----------|------------------------------|------|-------|-------|-------|--------|--| | Band | Mode | IVIAX. PE | ak Powei | Front | Back | Left | Right | Тор | Bottom | | | | | dBm | mW | FIOIIL | | Edge | Edge | Edge | Edge | | | | Distanc | e to User | | 6mm | <5mm | 12mm | 55mm | 173mm | <5mm | | | \A/I A \ I | 802.11b | 19.90 | 97.724 | No | Yes | Yes | No | No | Yes | | | WLAN
2.4 G | 802.11g | 18.00 | 63.096 | No | No | No | No | No | No | | | 2.4 G | 802.11n(HT20) | 19.40 | 87.096 | No | No | No | No | No | No | | | | 802.11n(HT40) | 17.40 | 54.954 | No | No | No | No | No | No | | | WLAN | Distanc | e to User | | 6mm | <5mm | 12mm | 55mm | 173mm | <5mm | | | 5.2 G | 802.11a | 11.60 | 14.454 | No | Yes | Yes | No | No | Yes | | | WLAN | Distanc | 6mm | <5mm | 12mm | 55mm | 173mm | <5mm | | | | | 5.3 G | 802.11a | 10.35 | 10.839 | No | No | No | No | No | No | | | WLAN | Distanc | e to User | | 6mm | <5mm | 12mm | 55mm | 173mm | <5mm | | | 5.6 G | 802.11a | 11.60 | 14.454 | No | Yes | Yes | No | No | Yes | | | WLAN | Distanc | e to User | | 6mm | <5mm | 12mm | 55mm | 173mm | <5mm | | | 5.8 G | 802.11a | 11.40 | 13.804 | No | Yes | Yes | No | No | Yes | | | | Distanc | e to User | | 6mm | <5mm | 12mm | 55mm | 173mm | <5mm | | | Bluetooth | BR/EDR | 6.70 | 4.677 | No | No | No | No | No | No | | | | BLE | -2.05 | 0.624 | No | No | No | No | No | No | | #### Note: - 1. Maximum power is the source-based time-average power and represents the maximum RF output power including tuneup tolerance among production units - 2. Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - Per KDB 447498 D01, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is 5mm, 5mm is used to determine SAR exclusion threshold - 4. Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - a. f(GHz) is the RF channel transmit frequency in GHz - b. Power and distance are rounded to the nearest mW and mm before calculation - c. The result is rounded to one decimal place for comparison - d. For < 50 mm distance, we just calculate mW of the exclusion threshold value (3.0) to do compare. This formula is [3.0] / [\(f(GHz) \)] \(\) [(min. test separation distance, mm)] = exclusion threshold of mW. - 5. Per KDB 447498 D01, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following - a. [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b. [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz - 6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.8. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate - 7. Per KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions. - a. When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration. - b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg. - 8. Per KDB 248227 D01 SAR is not required for the following U-NII-1 and U-NII-2A bands conditions. - a. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR. - b. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR. ## **10 TEST RESULTS** ## 10.1WIFI 2.4GHz | Mode | Position | Dist.
(mm) | Ch. | Freq.
(MHz) | Power
Drift
(%) | 1 g
Meas.
SAR
(W/Kg) | Meas.
Power
(dBm) | Max.
tune-up
Power(dBm) | Scaling
Factor | 1 g
Scaled
SAR
(W/Kg) | Meas.
No. | |----------|-------------|---------------|-----|----------------|-----------------------|-------------------------------|-------------------------|-------------------------------|-------------------|--------------------------------|--------------| | Dody | | | | | | | | | | | | | | Back Side | 0 | 1 | 2412 | -4.99 | 0.491 | 19.79 | 19.90 | 1.03 | 0.504 | 1# | | 802.11 b | Left Edge | 0 | 1 | 2412 | -3.44 | 0.094 | 19.79 | 19.90 | 1.03 | 0.096 | 2# | | | Bottom Edge | 0 | 1 | 2412 | -3.61 | 0.525 | 19.79 | 19.90 | 1.03 | 0.538 | 3# | Note 1: Refer to ANNEX C for the detailed test data for each test configuration. #### **10.2WIFI 5GHz** | Fre.
Band | Mode | Position | Dist.
(mm) | Ch. | Freq.
(MHz) | Power
Drift
(%) | 1 g
Meas.
SAR
(W/Kg) | Meas.
Power
(dBm) | Max.
tune-up
Power
(dBm) | Scaling
Factor | 1 g
Scaled
SAR
(W/Kg) | Meas.
No. | |--------------|----------|-------------|---------------|-----|----------------|-----------------------|-------------------------------|-------------------------|-----------------------------------|-------------------|--------------------------------|--------------| | Body | | | | | | | | | | | | | | | | Back Side | 0 | 48 | 5240 | -4.01 | 0.649 | 11.50 | 11.60 | 1.02 | 0.664 | 4# | | | | Left Edge | 0 | 48 | 5240 | 2.29 | 0.614 | 11.50 | 11.60 | 1.02 | 0.628 | 5# | | 5.2G | 802.11 a | Bottom Edge | 0 | 48 | 5240 | -2.80 | 0.874 | 11.50 | 11.60 | 1.02 | 0.894 | 6# | | | | | 0 | 36 | 5180 | 0.74 | 0.832 | 11.21 | 11.60 | 1.09 | 0.910 | 7# | | | | | 0 | 44 | 5220 | 1.05 | 0.563 | 9.81 | 11.60 | 1.51 | 0.850 | 8# | | | | Back Side | 0 | 120 | 5600 | 2.15 | 0.553 | 11.50 | 11.60 | 1.02 | 0.566 | 9# | | 5.6G | 802.11 a | Left Edge | 0 | 120 | 5600 | -1.21 | 0.392 | 11.50 | 11.60 | 1.02 | 0.401 | 10# | | | | Bottom Edge | 0 | 120 | 5600 | -4.91 | 0.648 | 11.50 | 11.60 | 1.02 | 0.663 | 11# | | | | Back Side | 0 | 161 | 5805 | 1.78 | 0.885 | 11.31 | 11.40 | 1.02 | 0.906 | 12# | | | | | 0 | 149 | 5745 | -3.13 | 0.856 | 10.21 | 11.40 | 1.32 | 1.126 | 13# | | | | | 0 | 157 | 5785 | -1.89 | 0.864 | 10.83 | 11.40 | 1.14 | 0.985 | 14# | | 5.8G | 802.11 a | Left Edge | 0 | 161 | 5805 | 4.61 | 0.418 | 11.31 | 11.40 | 1.02 | 0.428 | 15# | | | | Bottom Edge | 0 | 161 | 5805 | -2.55 | 1.060 | 11.31 | 11.40 | 1.02 | 1.085 | 16# | | | | | 0 | 149 | 5745 | -1.51 | 0.868 | 10.21 | 11.40 | 1.32 | 1.142 | 17# | | | | | 0 | 157 | 5785 | -1.88 | 1.020 | 10.83 | 11.40 | 1.14 | 1.163 | 18# | Note 1: Refer to ANNEX C for the detailed test data for each test configuration. ^{2:} According to KDB 616217 D04, SAR evaluation for the front of the surface display screens are not necessary. ^{2:} According to KDB 616217 D04, SAR evaluation for the front of the surface display screens are not necessary. # 11 SAR Measurement Variability According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. SAR repeated measurement procedure: - 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required. - 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once. - 3. If the ratio of largest to smallest SAR for the
original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement. - 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement. | Frequency Band (MHz) | Wireless Band | RF Exposure Conditions | Test Position | Highest
Measured SAR
(W/kg) | Repeated
SAR
(Yes/No) | Highest
Measured SAR
(W/kg) | Largest to Smallest
SAR Radio | |------------------------|---------------|------------------------|---------------|-----------------------------------|-----------------------------|-----------------------------------|----------------------------------| | 5200 | 5000 | Body | Bottom Edge | 0.874 | Yes | 0.862 | 1.01 | | 5200 | WIFI 802.11 a | Body | Bottom Edge | 0.832 | Yes | 0.813 | 1.02 | | | WIFI 802.11 a | Body | Back side | 0.885 | Yes | 0.877 | 1.01 | | | | Body | Back side | 0.856 | Yes | 0.842 | 1.02 | | 5000 | | Body | Back side | 0.864 | Yes | 0.861 | 1.00 | | 5800 | | Body | Bottom Edge | 1.060 | Yes | 1.033 | 1.03 | | | | Body | Bottom Edge | 0.868 | Yes | 0.849 | 1.02 | | | | Body | Bottom Edge | 1.020 | Yes | 0.995 | 1.03 | Note: The ratio of largest to smallest SAR for the original and first repeated measurements is < 1.20, the second repeated measurement is not required. # 12 SIMULTANEOUS TRANSMISSION 2.4G WLAN, 5G WLAN and Bluetooth share the same antenna, so the simultaneous transmission SAR is not required in this report. # **13 TEST EQUIPMENTS LIST** | Description | Manufacturer | Model | Serial No. | Cal. Date | Cal. Due | |----------------------|--------------|------------|-------------------------|------------|------------| | PC | Dell | N/A | N/A | N/A | N/A | | 2450MHz Dipole | SATIMO | SID 2450 | S/N 25/13 DIP 2G450-251 | 2015/03/16 | 2018/03/15 | | Waveguide | SATIMO | SWG5500 | S/N 30/13 DIP WGA24 | 2015/03/16 | 2018/03/15 | | E-Field Probe | MVG | SSE2 | S/N 34/15 EPGO 265 | 2015/10/12 | 2016/10/11 | | Antenna | SATIMO | ANTA3 | SN 17/13 ZNTA45 | N/A | N/A | | Phantom1 | SATIMO | SAM | SN 30/13 SAM103 | N/A | N/A | | Phantom2 | SATIMO | SAM | SN 30/13 SAM104 | N/A | N/A | | Dielectric Probe Kit | SATIMO | SCLMP | SN 25/13 OCPG56 | 2016/08/17 | 2017/08/16 | | MultiMeter | Keithley | MultiMeter | 4024022 | 2016/07/13 | 2017/07/12 | | Waltivictor | Retificy | 2000 | 7027022 | 2010/01/10 | 2011/01/12 | | Signal Generator | R&S | SMF100A | 1167.0000k02/104260 | 2016/07/13 | 2017/07/12 | | Power Meter | Agilent | E4419B | GB40201833 | 2015/10/14 | 2016/10/13 | | Power Sensor | R&S | NRP-Z21 | 103971 | 2016/07/13 | 2017/07/12 | | Power Amplifier | SATIMO | 6552B | 22374 | N/A | N/A | | Network Analyzer | R&S | ZVL-6 | 101380 | 2016/07/13 | 2017/07/12 | | Attenuator | COM-MW | ZA-S1-31 | 1305003187 | N/A | N/A | | Directional coupler | AA-MCS | AAMCS-UDC | 000272 | N/A | N/A | Note: Per KDB 865664 Dipole SAR Validation Verification, BALUN LAB has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria: - 1. There is no physical damage on the dipole; - 2. System validation with specific dipole is within 10% of calibrated value; - 3. Return-loss in within 20% of calibrated measurement. # ANNEX A SIMULATING LIQUID VERIFICATION RESULT The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SCLMP Dielectric Probe Kit. | Date | Liquid
Type | Fre.
(MHz) | Temp. | Meas. Conductivity (σ) (S/m) | Meas.
Permittivity
(ε) | Target Conductivity (σ) (S/m) | Target
Permittivity
(ε) | Conductivity Tolerance (%) | Permittivity Tolerance (%) | |------------|----------------|---------------|-------|------------------------------|------------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------| | 2016.09.28 | Body | 2450 | 21.1 | 1.96 | 52.11 | 1.95 | 52.70 | 0.51 | -1.12 | | 2016.09.27 | Body | 5200 | 21.3 | 5.35 | 49.42 | 5.30 | 49.01 | 0.94 | 0.84 | | 2016.09.27 | Body | 5600 | 21.3 | 5.78 | 47.97 | 5.77 | 48.47 | 0.17 | -1.03 | | 2016.09.27 | Body | 5800 | 21.3 | 6.12 | 46.87 | 6.00 | 48.20 | 2.00 | -2.76 | Note: The tolerance limit of Conductivity and Permittivity is± 5%. # ANNEX B SYSTEM CHECK RESULT Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10%(for 1 g). | Date | Liquid
Type | Freq.
(MHz) | Power (mW) | Measured
SAR
(W/kg) | Normalized
SAR (W/kg) | Dipole SAR
(W/kg) | Tolerance (%) | Targeted
SAR(W/kg) | Tolerance (%) | |--|----------------|----------------|------------|---------------------------|--------------------------|----------------------|---------------|-----------------------|---------------| | 2016.09.28 | Body | 2450 | 100 | 5.472 | 54.72 | 54.70 | 0.04 | 52.40 | 4.43 | | 2016.09.27 | Body | 5200 | 100 | 15.392 | 153.92 | 155.12 | -0.77 | 159.00 | -3.19 | | 2016.09.27 | Body | 5600 | 100 | 16.594 | 165.94 | 167.13 | -0.71 | 173.80 | -4.52 | | 2016.09.27 | Body | 5800 | 100 | 16.895 | 168.95 | 173.19 | -2.45 | 181.20 | -6.76 | | Note: The tolerance limit of System validation ±10%. | | | | | | | | | | # **System Performance Check Data(2450 MHz Body)** Type: Phone measurement (Complete) E-Field Probe: SN 34/15 SSE2 EPGO265 Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2016.09.28 Measurement duration: 17 minutes 51 seconds **Experimental conditions.** | Phantom File | surf_sam_plan.txt | | | |-----------------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Band | 2450MHz | | | | Signal | CW | | | | Frequency (MHz) | 2450.000000 | | | | Relative permittivity (real part) | 52.106513 | | | | Conductivity (S/m) | 1.964598 | | | | Power drift (%) | 0.270000 | | | | Ambient Temperature: | 22.5°C | | | | Liquid Temperature: | 21.1°C | | | | ConvF: | 2.55 | | | | Crest factor: | 1:1 | | | Maximum location: X=1.00, Y=-1.00 SAR Peak: 9.70W/kg | SAR 10g (W/Kg) | 2.335417 | | |----------------|----------|--| | SAR 1g (W/Kg) | 5.471698 | | # **System Performance Check Data(5200 MHz Body)** Type: Phone measurement (Complete) Area scan resolution: dx=8 mm,dy=8 mm Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm Date of measurement: 2016.09.27 Measurement duration: 29 minutes 39 seconds **Experimental conditions.** | Phantom File | surf_sam_plan.txt | | | |-----------------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Band | 5200 MHz | | | | Signal | CW | | | | Frequency (MHz) | 5200.000000 | | | | Relative permittivity (real part) | 49.418539 | | | | Conductivity (S/m) | 5.345241 | | | | Power drift (%) | 0.260000 | | | | Ambient Temperature: | 22.8℃ | | | | Liquid Temperature: | 21.3℃ | | | | ConvF: | 1.85 | | | | Crest factor: | 1:1 | | | Maximum location: X=0.00, Y=0.00 SAR Peak: 41.11 W/kg | SAR 10 g (W/Kg) | 5.289124 | |-----------------|-----------| | SAR 1 g (W/Kg) | 15.392071 | # **System Performance Check Data(5600MHz Body)** Type: Phone measurement (Complete) Area scan resolution: dx=8 mm,dy=8 mm Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm Date of measurement: 2016.09.27 Measurement duration: 30 minutes 39 seconds **Experimental conditions.** | Phantom File | surf_sam_plan.txt | | | |-----------------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Band | 5600 MHz | | | | Signal | CW | | | | Frequency (MHz) | 5600.000000 | | | | Relative permittivity (real part) | 47.973649 | | | | Conductivity (S/m) | 5.781354 | | | | Power drift (%) | 0.330000 | | | | Ambient Temperature: | 22.8℃ | | | | Liquid Temperature: | 21.3℃ | | | | ConvF: | 2.15 | | | | Crest factor: | 1:1 | | | Maximum location: X=-2.00, Y=0.00 SAR Peak: 45.98 W/kg | SAR 10 g (W/Kg) | 5.633108 | |-----------------|-----------| | SAR 1 g (W/Kg) | 16.593712 | # **System Performance Check Data(5800MHz Body)** Type: Phone measurement (Complete) Area scan resolution: dx=8 mm,dy=8 mm Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm Date of measurement: 2016.09.27 Measurement duration: 29 minutes 38 seconds **Experimental conditions.** | Phantom File | surf_sam_plan.txt | | | |-----------------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Band | 5800 MHz | | | | Signal | CW | | | | Frequency (MHz) | 5800.000000 | | | | Relative permittivity (real part) | 46.872468 | | | | Conductivity (S/m) | 6.124730 | | | | Power drift (%) | -0.160000 | | | | Ambient Temperature: | 22.8°C | | | | Liquid Temperature: | 21.3℃ | | | | ConvF: | 1.93 | | | | Crest factor: | 1:1 | | | Maximum location: X=0.00, Y=0.00 SAR Peak: 51.27 W/kg | SAR 10 g (W/Kg) | 5.870314 | |-----------------|-----------| | SAR 1 g (W/Kg) | 16.895311 | ## ANNEX C TEST DATA # MEAS. 1 Body Plane with Back Side on Low Channel in IEEE 802.b mode **Test Date:** 28/9/2016 Measurement duration: 19 minutes 0 seconds Signal: WLAN, f=2412.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 53.12; Conductivity: 1.94 S/m **Test condition:** Ambient Temperature: 22.5°C, Liquid Temperature: 21.1°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 2.55Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x7,dx=5mm, dy=5mm, dz=5mm,Complete **Maximum location:** X=10.000000, Y=-2.000000 SAR 10g (W/Kg): 0.256793 SAR 1g (W/Kg): 0.490902 Power drift (%): -4.99 3D screen shot # MEAS. 2 Body Plane with Left Edge on Low Channel in IEEE 802.b mode **Test Date:** 28/9/2016 Measurement duration: 17 minutes 13 seconds Signal: WLAN, f=2412.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 53.12; Conductivity: 1.94 S/m **Test condition:** Ambient Temperature: 22.5°C, Liquid
Temperature: 21.1°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 2.55Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x7,dx=5mm, dy=5mm, dz=5mm,Complete **Maximum location:** X=0.000000, Y=8.000000 SAR 10g (W/Kg): 0.058945 SAR 1g (W/Kg): 0.093614 Power drift (%): -3.44 3D screen shot # MEAS. 3 Body Plane with Bottom Edge on Low Channel in IEEE 802.b mode **Test Date:** 28/9/2016 **Measurement duration:** 17 minutes 34 seconds Signal: WLAN, f=2412.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 53.12; Conductivity: 1.94 S/m **Test condition:** Ambient Temperature: 22.5°C, Liquid Temperature: 21.1°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 2.55Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x7,dx=5mm, dy=5mm, dz=5mm,Complete **Maximum location:** X=0.000000, Y=8.000000 SAR 10g (W/Kg): 0.231314 SAR 1g (W/Kg): 0.524899 Power drift (%): -3.61 3D screen shot # MEAS. 4 Body Plane with Back Side on Channel 48 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 28 minutes 41 seconds Signal: WLAN, f=5240.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 48.99; Conductivity: 5.40 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=10.000000, Y=-2.000000 SAR 10g (W/Kg): 0.287936 SAR 1g (W/Kg): 0.648942 Power drift (%): -4.01 3D screen shot # MEAS. 5 Body Plane with Left Edge on Channel 48 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 27 minutes 27 seconds Signal: WLAN, f=5240.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 48.99; Conductivity: 5.40 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=0.000000, Y=-2.000000 SAR 10g (W/Kg): 0.255491 SAR 1g (W/Kg): 0.613543 Power drift (%): 2.29 3D screen shot # MEAS. 6 Body Plane with Bottom Edge on Channel 48 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 28 minutes 12 seconds Signal: WLAN, f=5240.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 48.99; Conductivity: 5.40 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=10.000000, Y=18.000000 SAR 10g (W/Kg): 0.334781 SAR 1g (W/Kg): 0.873557 Power drift (%): -2.80 3D screen shot # MEAS. 7 Body Plane with Bottom Edge on Channel 36 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 27 minutes 47 seconds Signal: WLAN, f=5180.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 49.64; Conductivity: 5.29 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=0.000000, Y=18.000000 SAR 10g (W/Kg): 0.322048 SAR 1g (W/Kg): 0.832463 Power drift (%): 0.74 3D screen shot # MEAS. 8 Body Plane with Bottom Edge on Channel 44 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 29 minutes 12 seconds Signal: WLAN, f=5220.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 49.19; Conductivity: 5.36S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=10.000000, Y=8.000000 SAR 10g (W/Kg): 0.246528 SAR 1g (W/Kg): 0.562869 Power drift (%): 1.05 3D screen shot # MEAS. 9 Body Plane with Back Side on Channel 120 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 27 minutes 46 seconds Signal: WLAN, f=5600.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 47.97; Conductivity: 5.78 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 2.15Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=0.000000, Y=-2.000000 SAR 10g (W/Kg): 0.274483 SAR 1g (W/Kg): 0.532683 Power drift (%): 2.15 3D screen shot # MEAS. 10 Body Plane with Left Edge on Channel 120 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 27 minutes 14 seconds Signal: WLAN, f=5600.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 47.97; Conductivity: 5.78 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 2.15Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=0.000000, Y=-2.000000 SAR 10g (W/Kg): 0.196464 SAR 1g (W/Kg): 0.391799 Power drift (%): -1.21 3D screen shot # MEAS. 11 Body Plane with Bottom Edge on Channel 120 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 27 minutes 17 seconds Signal: WLAN, f=5600.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 47.97; Conductivity: 5.78 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 2.15Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=0.000000, Y=-12.000000 SAR 10g (W/Kg): 0.276002 SAR 1g (W/Kg): 0.647916 Power drift (%): -4.91 3D screen shot # MEAS. 12 Body Plane with Back Side on Channel 161 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 29 minutes 21 seconds Signal: WLAN, f=5805.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 46.80; Conductivity: 6.13S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.93Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=10.000000, Y=-2.000000 SAR 10g (W/Kg): 0.360471 SAR 1g (W/Kg): 0.885218 Power drift (%): 1.78 3D screen shot # MEAS. 13 Body Plane with Back Side on Channel 149 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 28 minutes 43 seconds Signal: WLAN, f=5745.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 47.57; Conductivity: 5.98 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.93Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=10.000000, Y=-2.000000 SAR 10g (W/Kg): 0.353069 SAR 1g (W/Kg): 0.855655 Power drift (%): -3.13 3D screen shot # MEAS. 14 Body Plane with Back Side on Channel 157 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 29 minutes 31 seconds Signal: WLAN, f=5785.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 47.22; Conductivity: 6.08 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.93Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=10.000000, Y=-2.000000 SAR 10g (W/Kg): 0.342849 SAR 1g (W/Kg): 0.863715 Power drift (%): -1.89 3D screen shot # MEAS. 15 Body Plane with Left Edge on Channel 161 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 27 minutes 44 seconds Signal: WLAN, f=5805.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 46.80; Conductivity: 6.13 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.93Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=0.000000, Y=18.000000 SAR 10g (W/Kg): 0.205631 SAR 1g (W/Kg): 0.417818 Power drift (%): 4.61 3D screen shot # MEAS. 16 Body Plane with Bottom Edge on Channel 161 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 28 minutes 12 seconds Signal: WLAN, f=5805.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 46.80; Conductivity: 6.13 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.93Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=0.000000, Y=-2.000000 SAR 10g (W/Kg): 0.390174 SAR 1g (W/Kg): 1.059538 Power drift (%): -2.55 3D screen shot # MEAS. 17 Body Plane with Bottom Edge on Channel 149 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 28 minutes 16 seconds Signal: WLAN, f=5745.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 47.57; Conductivity: 5.98 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.93Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=0.000000, Y=-2.000000 SAR 10g (W/Kg): 0.362349 SAR 1g (W/Kg): 0.868057 Power drift (%): -1.51 3D screen shot # MEAS. 18 Body Plane with Bottom Edge on Channel 157 in IEEE 802.a mode **Test Date:** 27/9/2016 **Measurement duration:** 28 minutes 4 seconds Signal: WLAN, f=5785.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 47.22; Conductivity: 6.08 S/m **Test condition:** Ambient Temperature: 22.8°C, Liquid Temperature: 21.3°C Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.93Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete **Maximum location:** X=0.000000, Y=-12.000000 SAR 10g (W/Kg): 0.392363 SAR 1g (W/Kg): 1.019759 Power drift (%): -1.88 3D screen shot # ANNEX D EUT EXTERNAL PHOTOS Please refer the document
"BL-SZ1690235-AW.pdf". # ANNEX E SAR TEST SETUP PHOTOS Please refer the document "BL-SZ1690235-AS.pdf". ## ANNEX F CALIBRATION REPORT F.1 E-Field Probe ### **COMOSAR E-Field Probe Calibration Report** Ref: ACR.299.1.15.SATU.A SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD, NANSHAN DISTRICT SHENZHEN CHANCDONG NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055 MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 34/15 EPGO265 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 10/12/2015 #### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions. Ref: ACR.299.1,15.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|----------------------| | Prepared by : | Jérôme LUC | Product Manager | 10/26/2015 | JES | | Checked by: | Jérôme LUC | Product Manager | 10/26/2015 | 75 | | Approved by : | Kim RUTKOWSKI | Quality Manager | 10/26/2015 | them that throws the | | | Customer Name | |---------------|---------------| | Distribution: | SHENZHEN | | | BALUN | | | TECHNOLOGY | | | Co.,Ltd. | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 10/26/2015 | Initial release | | | | | | | | | | | | | | | | | Page: 2/10 Ref: ACR.299.1.15.SATU.A #### TABLE OF CONTENTS | 1 | De | vice Under Test4 | | |---|-----|------------------------------|---| | 2 | Pro | duct Description | | | | 2.1 | General Information | 4 | | 3 | Me | asurement Method | | | | 3.1 | Linearity | 4 | | | 3.2 | Sensitivity | 5 | | | 3.3 | Lower Detection Limit | 5 | | | 3.4 | Isotropy | 5 | | | 3.5 | Boundary Effect | 5 | | 4 | Me | asurement Uncertainty | | | 5 | Cal | ibration Measurement Results | | | | 5.1 | Sensitivity in air | 6 | | | 5.2 | Linearity | 7 | | | 5.3 | Sensitivity in liquid | 7 | | | 5.4 | Isotropy | | | 6 | Lis | t of Equipment10 | | Page: 3/10 Ref: ACR.299.1,15.SATU.A #### 1 DEVICE UNDER TEST | Device Under Test | | | | |--|----------------------------------|--|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | | Manufacturer | MVG | | | | Model | SSE2 | | | | Serial Number | SN 34/15 EPGO265 | | | | Product Condition (new / used) | New | | | | Frequency Range of Probe | 0.45 GHz-6GHz | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.192 MΩ | | | | | Dipole 2: R2=0.230 MΩ | | | | | Dipole 3: R3=0.205 MΩ | | | A yearly calibration interval is recommended. #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. Figure 1 - MVG COMOSAR Dosimetric E field Dipole | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | #### 3 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. #### 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. Page: 4/10 Ref: ACR.299.1.15.SATU.A #### 3.2 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. #### 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. #### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0° - 180°) in 15° increments. At each step the probe is rotated about its axis (0° - 360°). #### 3.5 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. #### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | ERROR SOURCES | Uncertainty value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | |---------------------------|-----------------------|-----------------------------|-------------|----|-----------------------------| | Incident or forward power | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | Reflected power | 3,00% | Rectangular | $-\sqrt{3}$ | 1 | 1.732% | | Liquid conductivity | 5.00% | Rectangular | $-\sqrt{3}$ | 1 | 2.887% | | Liquid permittivity | 4.00% | Rectangular | $-\sqrt{3}$ | 1 | 2,309% | | Field homogeneity | 3,00% | Rectangular | $-\sqrt{3}$ | 1 | 1.732% | | Field probe positioning | 5.00% | Rectangular | $\sqrt{3}$ | 1 | 2.887% | Page: 5/10 Ref: ACR.299.1.15.SATU.A | Field probe linearity | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | |--|-------|-------------|------------|---|--------| | Combined standard uncertainty | | | | - | 5.831% | | Expanded uncertainty 95 % confidence level k = 2 | | | | | 12.0% | #### 5 CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | | |------------------------|-------|--| | Liquid Temperature | 21 °C | | | Lab Temperature | 21 °C | | | Lab Humidity | 45 % | | #### 5.1 SENSITIVITY IN AIR | | Normy dipole $2 (\mu V/(V/m)^2)$ | | |------|----------------------------------|------| | 0.72 | 0.81 | 0.85 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 92 | 90 | 95 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: $$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$ Page: 6/10 Ref: ACR.299.1.15.SATU.A # 5.2 LINEARITY Linearity: (1+/-1.61% (+/-0.07dB) ## 5.3 SENSITIVITY IN LIQUID | Liquid | Frequency
(MHz +/-
100MHz) | Permittivity | Epsilon (S/m) | ConvF | |---------|----------------------------------|--------------|---------------|-------| | HL450 | 450 | 44.12 | 0.88 | 1.85 | | BL450 | 450 | 58.92 | 1.00 | 1.90 | | HL750 | 750 | 42.24 | 0.90 | 1.81 | | BL750 | 750 | 56.85 | 0.99 | 1.88 | | HL850 | 835 | 43.02 | 0.90 | 2.04 | | BL850 | 835 | 53.72 | 0,98 | 2,12 | | HL900 | 900 | 42.47 | 0.99 | 1.86 | | BL900 | 900 | 56.97 | 1.09 | 1.92 | | HL1800 | 1800 | 42.24 | 1.40 | 2.04 | | BL1800 | 1800 | 53.53 | 1.53 | 2.08 | | HL1900 | 1900 | 40.79 | 1.42 | 2.35 | | BL1900. | 1900 | 54.47 | 1.57 | 2.42 | | HL2000 | 2000 | 40.52 | 1.44 | 2.23 | | BL2000 | 2000 | 54.18 | 1.56 | 2.32 | | HL2450 | 2450 | 38.73 | 1.81 | 2.47 | | BL2450 | 2450 | 53.23 | 1,96 | 2.55 | | HL2600 | 2600 | 38.54 | 1.95 | 2.36 | | BL2600 | 2600 | 52.07 | 2.23 | 2.43 | | HL5200 | 5200 | 36.80 | 4.84 | 1.81 | | BL5200 | 5200 | 51.21 | 5.16 | 1.85 | | HL5400 | 5400 | 36.35 | 4.96 | 2.04 | | BL5400 | 5400 | 50.51 | 5.70 | 2.11 | | HL5600 | 5600 | 35.57 | 5.23 | 2.08 | | BL5600 | 5600 | 49.83 | 5,91 | 2.15 | | HL5800 | 5800 | 35.30 | 5,47 | 1.88 | | BL5800 | 5800 | 49.03 | 6.28 | 1.93 | # LOWER DETECTION LIMIT: 7mW/kg Page: 7/10 Ref: ACR.299.1.15.SATU.A ## 5.4 ISOTROPY # HL900 MHz - Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.06 dB # HL1800 MHz - Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.06 dB Page: 8/10 Ref: ACR.299.1,15.SATU.A # HL5600 MHz - Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.09 dB Page: 9/10 Ref: ACR.299.1.15.SATU.A # 6 LIST OF EQUIPMENT | Factorial Manufacture / Commit New Collinsia | | | | | | | |--|-------------------------|--------------------|---|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | Flat Phantom | MVG | SN-20/09-SAM71 | Validated, No cal
required. | Validated, No ca
required. | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No ca
required. | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | | | Reference Probe | MVG | EP 94 SN 37/08 | 10/2015 | 10/2016 | | | | Multimeter | Keithley 2000 | 1188656 | 12/2013 | 12/2016 | | | | Signal Generator | Agilent E4438C |
MY49070581 | 12/2013 | 12/2016 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to
test. No cal required | | | | Power Meter | HP E4418A | US38261498 | 12/2013 | 12/2016 | | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2013 | 12/2016 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to
test. No cal required. | | | | Waveguide | Mega Industries | 069Y7-158-13-712 | Validated. No cal required. | Validated. No cal required. | | | | Waveguide Transition | Mega Industries | 069Y7-158-13-701 | A CHARLESTON AND MAKE | Validated. No cal required. | | | | Waveguide Termination | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. | Validated. No cal required. | | | Page: 10/10 # F.2 2450MHz Dipole # SAR Reference Dipole Calibration Report Ref: ACR.75.13.15.SATU.A # SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD, NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055 # MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 25/13 DIP 2G450-251 ## Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 03/16/2015 ## Summary: This document presents the method and results from an accredited SAR reference thipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Ret: ACR-75-13-15-3-A017/Ac | | Name | Function | Date | Signature | |---------------|---------------|-----------------|-----------|--------------------| | Prepared by : | Jérôme LUC | Product Manager | 3/16/2015 | 15 | | Checked by z | Jérôme LUC | Product Manager | 3/16/2015 | JS | | Approved by: | Kim RUTKOWSKI | Quality Manager | 3/16/2015 | April Voite Califo | | | Customer Name | |---------------|---------------| | Distribution: | SHENZHEN | | | BALUN | | | TECHNOLOGY | | | Co.,Ltd. | | Issue | Date | Modifications | |-------|-----------|---------------------------| | A | 3/16/2015 | Initial release | | 700.0 | | Laure and the contract of | | | | | | - 1 | | | | | | | Page; 2/11 This document shall not be expressived, except to full or to part, without the vertiles appared of MFT. The information continued himsets to be used only for the purpose for which it is submitted and is not to be released in whole or part unition written approval of MFC. Ret ACR 75.13.15 SA'TLA ## TABLE OF CONTENTS | 1 | Int | roduction | | |---|-----|--|----| | 2 | De | vice Under Test | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | Me | asurement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 3 | | 5 | Me | asurement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Ca | ibration Measurement Results6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Va | lidation measurement7 | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | 10 | | 8 | Lis | t of Equipment | | Page: 3/11 Ref: ACR.75.13.15.SATT/ A ## 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ## 2 DEVICE UNDER TEST | Device Under Test | | | | | |--------------------------------|-----------------------------------|--|--|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | | | Manufacturer | MVG | | | | | Model | SID2450 | | | | | Serial Number | SN 25/13 DIP 2G450-251 | | | | | Product Condition (new / used) | Used | | | | A yearly calibration interval is recommended. # 3 PRODUCT DESCRIPTION ## 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/11 This document shall not be reproduced, except to full or to part, willows the vertices apparent of MV7. The information contained brown is so be used only for the purpose for which it is submitted and is not to be released to whole or part sations written approval of MV3. Re: ACR-72.13 (3.5A) (1.A. #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a figuid filled that phantom, with the phantom constructed as outlined in the fore mentioned standards. ## 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEDEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. ## 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement | Frequency band | Expanded Uncertainty on Return La | | |----------------|-----------------------------------|--| | 400-6000MHz | 0.1 dB | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Expanded Uncertainty on Length | | | |--------------------------------|------------------------|--| | m | 3 - 300 | | | | Length (mm)
3 - 300 | | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CELIEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | Page: 5/11 This document shall not be reproduced varyed in field or in poet, without the written apparend of MPT. The information continued himsen is so by used only for the purpose for which it is submitted smills not to be released in while or part unions written appeared of MPC. ROS: ACR. 75.13.15. SATTI-A | 10 g | 20.1 % | | |------|--------|--| |------|--------|--| ## 6 CALIBRATION MEASUREMENT RESULTS ## 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | 2450 | -26.46 | -20 | 49.3 Ω - 4.7 jΩ ## 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 2450 | -23.34 | -20 | 53.4 Ω - 6.2 iΩ | # 6.3 MECHANICAL DIMENSIONS | Frequency MH2 | Le | nim | h m | ir mim | | mm- | |---------------|-------------|----------|-----------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1% | 1 | 6.35 ±1 %. | | Page: 6/11 Rat: ACR-72-13-15-5-6-11/-A- | 450 | 290/0 ±1 % | | 166.7±1%. | | 635±1% | | |------|-------------|------|-------------|------|-----------|------| | 750 | 176,0±1 % | | 100,0±1%. | | 6.35 ±1% | | | 855 | 161 / 11 kc | | 89.8 ±1 1/4 | | 3.6±1% | | | 900 | 149.0 ±1 % | | 83.3 :1% | | 3.6 :1% | | | 1450 | 89,1±1%; | | 51.7±1% | | 3.6 21 %. | | | 1500 | 80.5±1% | | 50,0:1% | | 1.6±1%. | | | 1640 | 79.0 +1 % | | 45.7±1 % | | 3.6±1% | | | 1750 | 75,2 ±1 %. | | 42,9 ±1 % | | 3.6 ±1% | | | 1800 | 72.0±1% | | 41.711% | | 3.6 21% | | | 1900 | 68.0±1% | | 39.5 ±1.% | 1 | 3,6±1%. | | | 1950 | 66.3±1% | | 38.5 ±1.34 | | 3.6 ±1.54 | | | 2000 | 64.5 ±1 %. | | 37.5 £1 % | | 3.6 ±1 % | | | 2100 | 61.0±1 %. | | 35.7 ±1 % | | 3.6 ±1%. | | | 2300 | 55.5 ±1 %. | | 32.6 11.% | | 3.6 ±1% | | | 2450 | 51,5±1%. | PASS | 30,441 % | PASS | 3.6 ±1%. | PASS | | 2600 | 185±1% | | 28.8 ±1.% | | 3.6 ±1% | | | 3000 | 41.5±1% | | 25.0 ±1.% | | 3.6:±1% | | | 3500 | 37 0±1 %. | | 26.4±1 % | | 3.6±1.9L | | | 3700 | 34.7±1 %. | | 26.4 ±1 % | | 3.6 ±1% | | ## 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEFEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 HEAD LIQUID MEASUREMENT | Frequency
MH2 | Relative permittivity (s.') | | Conductivity (a) 5/r | | |------------------|-----------------------------|----------|----------------------|----------| | | regulred | measured | required | measured | | 300 | 45.3.45.76 | | 0.8715% | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9±5% | | 0.89 ±5 % | | | 835 | 41.5 ±5% | | 0.90±5 % | | | 900 | W1,5±5% | | 0.97
±5 % | | | 1450 | 40.5 ±5 % | | 1.20 +5 % | | | 1500 | 40.4 45 % | | 1.23 15 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 3750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11 This document shall not be reproduced sacint in fall or in part, withink the written apparent of MFC. The information contained hymen is go be used only for the purpose for which it is submitted and is not to be released in while or part unition written appeared of MFG. Rat: ACR-72.13 15.54(1). A. | | 1.40.15% | | 40.0'±5% | 1800 | |------|-----------|------|------------|------| | | 1,40±5% | | 40,0 45 % | 1900 | | | 1,40 ±5 % | | 40,015% | 1950 | | | 1.40.15% | | 40.0 15% | 2000 | | | 1,49 ±5% | | 39.8 ±5.1% | 2100 | | | 1.67 ±5 % | | 39.5±5 % | 2300 | | PASS | 180±5% | PASS | 39,2±5\/ | 2450 | | | 1.96 ±5 % | | 39.0/±5.0(| 2600 | | | 2,40 ±5 % | | 38.5 ±5 % | 3000 | | | 2.95.±5 W | | 37.9 45 % | 3500 | ## 7.2 SAR MEASUREMENT RESULT WITH READ LIQUID The EEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | | |---|---|--| | Phantom | SN 2009 SAM71 | | | Probe | SN 18/11 EPG122 | | | Liquid | Head Liquid Values: eps. 38.9 sigma . 179 | | | Distance between dipole center and liquid | 10.0 mm | | | Area scan resolution | ds-Smin dy-Simm | | | Zoen Scan Resolution | dx-Smmdy-Sm/dx-Smm | | | Frequency | 3450 MHz | | | Input power | 20 de m | | | Liquid Temperature | 21°C | | | Lab Temperature | Tr C | | | Lab Humidity | 45 % | | | Frequency | 1 g SAR (W/kg/W) | | 10 g SAR | (W/kg/W) | |-----------|------------------|----------|----------|----------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4,58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10,9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30,5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1.800 | 38,4 | | 20.1 | | Page: 8/11 This document shad not be reproduced succept in field or in part, initions the written apparent of MFC. The information contained horized to be used only for the purpose for which it is submitted and is not to be redeased in which a few purpose for which is a submitted and is not to. Res: ACR.75.13.15.SA(1).A | 1900 | 39.7 | | 20.5 | | |------|-------|--------------|------|--------------| | 1950 | 40.5 | | 20.9 | | | 2000 | 41,1 | | 21.1 | | | 2100 | .43.6 | 1 | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | 54.29 (5.43) | 24 | 24.20 (2.42) | | 2600 | 55,3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67,1 | | 25 | | # 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (c,') | | ity (a) S/m | |------------------|--------------|-----------------------------|-----------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±5.56 | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5% | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | | 0.96 ±5 % | | | 835 | 55.2 ±5 % | | 0.97 ±5 % | | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06±5% | | | 1450 | 54.0 ±5 % | | 1.30±5% | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | | 1.52 ±5 % | | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5.% | | 1,52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7±5% | PASS | 1.95 ±5 % | PASS | Page: 9/11 Res: ACR.73.13.15.SATU A | 2600 | 52.5±5% | 2.16±5% | |------|------------|------------| | 3000 | 52.0 ±5 % | 2,73 ±5 % | | 3500 | 51,3 ±5 % | 3.31 ±5 % | | 5200 | 49.0±10% | 5.30±10% | | 5300 | 48.9 ±10% | 5.42 ±10 % | | 5400 | 48.7±10% | 5.53±10 % | | 5500 | 48.6 ±10 % | 5,65 ±10 % | | 5600 | 48.5 ±10 % | 5.77±10% | | 5800 | 48.2±10% | 6,00±10% | # 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | | |---|--|--| | Phantom | SN 20/09 SAM71 | | | Probe | SN 18/11 EPG122 | | | Liquid | Body Liquid Values: eps 52.7 sagma: 1.94 | | | Distance between dipole center and liquid | 10.0 mm | | | Area scan resolution | dx=8mm/dy=8mm | | | Zoon Sean Resolution | dx-5mm/dy-5m/dz-5mm | | | Frequency | 2450 MHz | | | Input power | 20 dBm | | | Liquid Temperature | 21°C | | | Lab Temperature | 21 °C | | | Lab Humidity | 45 % | | | | | | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | |------------------|------------------|-------------------| | | measured | measured | | 2450 | 54.70 (5.47) | 24.86 (2.49) | Page: 10/11 Ref: ACR.75.13.15.SATU.A # 8 LIST OF EQUIPMENT | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | |-------------------------------------|-------------------------|--------------------|--|---|--| | SAM Phantom | MVG | SN-20/09-SAM71 | Validated No cal required. | Validated No ca
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated, No ca
required. | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | | Calipers | Garrera | CALIPER-01 | 12/2013 | 12/2016 | | | Reference Probe | MVG | EPG122 SN 18/11 | 10/2014 | 10/2015 | | | Multimeter | Kelthley 2000 | 1188656 | 12/2013 | 12/2016 | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2013 | 12/2016 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required | Characterized prior to
test. No cal required | | | Power Meter | HP E4418A | US38261498 | 12/2013 | 12/2016 | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2013 | 12/2016 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to
test. No cal required. | Characterized prior to
test. No cal required | | | Temperature and
Hurnidity Sensor | Control Company | 11-661-9 | 8/2012 | 8/2015 | | Page: 11/11 # F.3 Waveguide # SAR Reference Waveguide Calibration Report Ref. ACR.75.15.15.SATU.A # SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD, NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055 ## MVG COMOSAR REFERENCE WAVEGUIDE FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 30/13 WGA24 ## Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 #### 03/16/2015 ## Summary: This document presents the method and results from an accredited SAR reference waveguide calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. ROS ACR. 75 15 14 SAITE A. | | Name | Function | Date | Signature | |---------------|---------------|-----------------|-----------|-------------------| | Prepared by : | Jérôme LUC | Product Manager | 3/16/20(5 | 25 | | Checked by ; | Jérôme LUC | Product Manager | 3/16/2015 | Jes | | approved by ; | Kim RUTKOWSKI | Quality Manager | 3/16/2015 | TO B. Part Langte | | | Customer Nam
SHENZHEN
BALUN | | |----------------|-----------------------------------|--| | Enspelhation (| | | | Issue | Date | Modifications | |-------|-----------|-----------------| | A | 3/16/2015 | Initial release | | 47 | 100000 | | | | | | | 1 | | | | | | | Page; 2/13 This abcument shad not be expressived, excipt to full or to part, without the vertices appared of MET. The information constitued threen is so be used only for the purpose for which it is submitted and is not to be released in whole or part unitous written approval of MEC. ROE ACR. 75.15.14.5ATT. A. ## TABLE OF CONTENTS | 1 1 | ntroduction | | |-----|---------------------------------|----| | 2 1 | Device Under Test | | | 3 F | Product Description4 | | | 3.1 | General Information | 4 | | 4 5 | Measurement Method4 | | | 4.1 | Return Loss Requirements | 4 | | 4.2 | Mechanical Requirements | 4 | | 5 1 | Measurement Uncertainty | | | 5.1 | Return Loss | 5 | | 5.2 | 2 Dimension Measurement | 5 | | 5.3 | Validation Measurement | 5 | | 6 (| Calibration Measurement Results | | | 6.1 | Return Loss | 5 | | 6.2 | 2. Mechanical Dimensions | 6 | | 7 1 | Validation measurement | | | 7.1 | Head Liquid Measurement | 7 | | 7.2 | Measurement Result | 7 | | 7.3 | Body Measurement Result | 10 | | 8 1 | ist of Equipment 13 | | Page: 3/13 Ret: ACR 75 [5 24 5 A 11] A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | | Device Under Test | |--------------------------------|---| | Device Type | COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE | | Manufacturer | MVG | | Model | SWG5500 | | Serial Number | SN 30/13 WGA24 | | Product Condition (new / used) | Used | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. ## 4 MEASUREMENT METHOD The IEEE 1528 and CEI/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ## 4.1 RETURN LOSS REQUIREMENTS The waveguide used for SAR system validation measurements and checks must have a return loss of +8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact
with the phantom shell as outlined in the fore mentioned standards. ## 4.2 MECHANICAL REQUIREMENTS The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure 1 shows how the dimensions relate to the physical construction of the waveguide. Page: 4/13 This document shad not be reproduced, excipt to full or to part, without the settlers apparend of MEC. The information continued hymen is to be used only for the purpose for which it is admitted and is not to the released in whole or part various written appeared of MEC. Ref: ACR. 75 15 14 5 A1T / A. ## 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ## 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Expanded Uncertainty on Return Lo | | | | | |-----------------------------------|--|--|--|--| | 0.1 dB | | | | | | | | | | | ## 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | ## 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | | | |-------------|----------------------|--|--| | 1 g | 20.3 % | | | | 10 g | 29.1 % | | | ## 6 CALIBRATION MEASUREMENT RESULTS ## 6.1 RETURN LOSS IN HEAD LIQUID Page: 5/13 This document shall not be regardeded, excipt to full or to part, initions the senten apparent of hWT. The information contained horsen is so be used only for the purpose for which it is submitted used is not to be released in whole or part various written appeared of MTCs. Rat. ACR. 75 [5] [4.5 A/IT] A: | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | | |-----------------|------------------|------------------|------------------------------|--| | 5200 | -9.78 | -8 | 26.6 Ω = 9.1 jΩ | | | 5400 | -10:54 | -8 | $89.7 \Omega + 12.3 j\Omega$ | | | 5600 | -15,11 | -8 | 38.1 Ω - 9.8 jΩ | | | 5800 | -13.04 | -8 | $54.0 \Omega + 23.4 j\Omega$ | | # 6.2 RETURN LOSS IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | | |-----------------|------------------|------------------|------------------------------|--| | 5200 | -9.20 | -8 | $25.7 \Omega + 10.6 j\Omega$ | | | 5400 | -9.92 | -8 | 95.8 Ω + 8.8 jΩ | | | 5600 | -13.89 | -8 | 35.3 Ω - 9.2 jΩ | | | 5800 | -11.91 | -8 | 56.0 \Q = 27.2 \Q | | # 6.3 MECHANICAL DIMENSIONS | transment. | Lo | nana) | W (| mem). | Let | nana) | Wet | nam) | To | untin) | |------------|-----------------|---------|-----------------|---------|-----------------|--------------|-----------------|--------------|---------|---------| | y (MHz) | Require | Measure | Require | Measure | Require | Measure
A | Require | Mensara
d | Require | Measure | | 5200 | 40.39 =
0.13 | PASS | 20.19 ± | PASS. | 81.03 ±
0.13 | PASS | 61.98±
0.13 | PASS- | 5.3* | PASS | | 5800 | 40.39 ±
0.13 | PASS | 20.19.±
0.13 | PASS | 81.03 ±
0.43 | PASS | 61.98 ±
0.13 | FASS | 43* | PASS | ^{*} The tolerance for the matching layer is included in the return loss measurement. Page: 6/13 This document shall not be expressived, excipt to full or to part, willow the vertices apparent of MFT. The information contained hymon is so be used only for the purpose for which it is admitted each is not to be released in whole or part unitous written approval of MFC. Ret ACR-75 [5 24 5 ATT] A. Figure 1: Validation Waveguide Dimensions ## 7 VALIDATION MEASUREMENT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell. #### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (s.') | Conductivity (a) 5/m | | | |------------------|--------------|-----------------|----------------------|----------|--| | | required | measured | required | measured | | | 5000 | 36.2 ±10 % | | 4.45 ±10% | | | | 5100 | 36,1±10% | | 4.56±10% | | | | 5200 | 36.0 ±10 % | PASS | 4.66 ±10 % | PASS | | | 5300 | 35.9±10% | | A,76±10% | | | | 5400 | 35.8 ±10% | PASS | 4.86 ±10 % | PASS | | | 5300 | 35.6 ±10 % | | 4.97 ±10 % | | | | 5600 | 35.5 ±10 % | PASS | 5.07 ±10 % | PASS | | | 5700 | 35.4 ±10 % | | 5.17 ±10 % | | | | 5800 | 35.3±10% | PA55 | 5.27 ±10 % | PASS | | | 5900 | 35.2410% | | 5.38±10% | | | | 6000 | 35.1±10% | 1 | 5.48 ±10 % | | | ## 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power. Page: 7/13 This document shall not be reproduced, excipt to full or to part, initions the artists apparend of MAT. The information contained hymen is so by used only for the purpose for which it is admitted and is not to be released in whole or part various written appeared of MAX. Rat. ACR-75 [5][4.5A(T)] A. | Software | OPENSAR V4 | |--|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values 5200 MHz eps' 36.44 sigma 4.79
Head Liquid Values 5400 MHz eps' 35.99 sigma 4.91
Head Liquid Values 5600 MHz eps' 35.22 sigma 5.18
Head Liquid Values 5800 MHz eps' 34.95 sigma 5.42 | | Distance between dipole waveguide and liquid | 0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=4mm/dy=4m/dz=2mm | | Frequency | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | Input power | 20 dBm | | Liquid Temperature | গ্রাপ্ট | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | | Frequency (MHz) | I g SAR (W/kg) | | 10 g SAR (W/kg) | | |-----------------|----------------|----------------|-----------------|--------------| | | required | measured | required | measured | | 5200 | 159.00 | 157.80 (15.78) | 56.90 | 55.01 (5.50) | | 5400 | 166.40 | 162.69 (16.27) | 58.43 | 56.17 (5.62) | | 5600 | 173.80 | 171,22 (17.12) | 59.97 | 58.57 (5.86) | | 5800 | 181.20 | 179.53 (17.95) | 61.50 | 60.55 (6.05) | Page: 8/13 This document shad not be reproduced savige to full or in part, willow the written appeared of MFC. The information contained horizon is so be used only for the purpose for which it is submitted usel to not to be released in whole or part unition written appeared of MFC. Ref: ACR.75.15.14.SATU.A. # SAR MEASUREMENT PLOTS @ 5600 MHz # SAR MEASUREMENT PLOTS @ 5800 MHz Page: 9/13 Ret: ACR-75-15-14-5-K1T/-Ac # 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (c.') | | Conductivity (a) S/m | | |------------------|-----------------------------|----------|----------------------|----------| | | inquired | measured | required | measured | | 5200 | 49.0±10.90 | PASS | 5.30±20% | PASS | | 5300 | 48.9±10% | | 5.42 ±10 % | | | 5400 | 48.7 ±10% | PASS | 5.53.£10% | PASS | | 5500 | 48.5 ±10 % | | 5.65 \$10 % | | | 5600 | 48.5 ±10 % | PASS | 5.77±10% | PASS | | 5800 | 48.2 ±10 % | PASS . | 600:10% | PASS | # 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V4 | | |--|---|--| | Phantom | SN 2009 SAM71 | | | Probe | SN 18/11 EPG172 | | | Liquid | Body Liquid Values 5200 MHz: eps: 50.70 sgma; 5.11
Body Liquid Values 5400 MHz: eps: 50.01 sgms; 5.54
flody Liquid Values 5600 MHz: eps: 49.34 sgma; 5.85
Body Liquid Values 5800 MHz: eps: 48.54 sgma; 6.22 | | | Distance between dipole waveguide and liquid | Cum | | | Area scan resolution | ds: Kmm/dy Hmm | | | Zoon Scan Resolution | dx-4mm/dy-4m/dz-2mm | | | Frequency | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | | Input power | 20 dBm | | | Liquid Temperature | 2) °C | | | Lab l'emperature | 31.5C | | | Lab Humidity | 45.% | | | Frequency (MHz) | 1 g SAR (Wkg) | 10 g SAR (W/kg) | |-----------------|----------------|-----------------| | | measured | measured | | 5200 | 155.12 (15.51) | 54,66 (5,47) | | 5400 | 162,06 (16,21) | 56.46 (5.65) | | 3600 | 167.13 (16.71) | 37,78 (5,78) | | 5800 | 173.19 (17.32) | 59.30 (5.93) | Page: 10/13 This document obtain not be expendenced except to full or to part, without the vertices apparent of MFC. The information consumed his new to a send only for the purpose for which it is submitted and is not to be released in whole or part united written approval of MFC. Ref: ACR.75.15.14.SATU.A. # BODY SAR MEASUREMENT PLOTS @ 5400 MHz # BODY SAR MEASUREMENT PLOTS @ 5600 MHz Page: 11/13 Rate ACR-75 15 14 SATTLA # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |------------------------------------|------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer/
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | Flat Phantom | MVG | SN-20/09-SAM71 |
Validated. No cal required. | Validated No ca
required | | | COMOSAR Test Bench | Version 3 | NA | Validated. No call
required. | Validated No ca
required | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | | Calipers | Carrera | CALIPER-01 | 12/2013 | 12/2016 | | | Reference Probe | MVG | EPG122.SN 18/11 | 10/2014 | 10/2015 | | | Multimeter | Keithley 2000 | 1188656 | 12/2013 | 12/2016 | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2013 | 12/2016 | | | Amplifier | Aetheroomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required | | | Power Meter | HP E4416A | US38261498 | 12/2013 | 12/2016 | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2013 | 12/2016 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to
test. No cal required | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 8/2012 | B/2015 | | Page: 13/13 This accumum) shad not be expressured, excise to full or to part, without the written approved of MFT. The information constitued horizon is to be used only for the purpose for which it is submitted and is not to be released in whole or part unitous written approval of MFC. Rate ACR-75 15 14 SATTLA # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |------------------------------------|------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer/
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | Flat Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated No ca
required | | | COMOSAR Test Bench | Version 3 | NA | Validated. No call
required. | Validated No ca
required | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | | Calipers | Carrera | CALIPER-01 | 12/2013 | 12/2016 | | | Reference Probe | MVG | EPG122.SN 18/11 | 10/2014 | 10/2015 | | | Multimeter | Keithley 2000 | 1188656 | 12/2013 | 12/2016 | | | Signal Generator | Agilent E4438C | MY49070531 | 12/2013 | 12/2016 | | | Amplifier | Aetheroomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to
test. No cal required | | | Power Meter | HP E4416A | US38261498 | 12/2013 | 12/2016 | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2013 | 12/2016 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to
test. No cal required | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 8/2012 | B/2015 | | Page: 13/13 This accumum) shad not be expressured, excise to full or to part, without the written approved of MFT. The information constitued horizon is to be used only for the purpose for which it is submitted and is not to be released in whole or part unitous written approval of MFC. # F.4 SATIMO Dipole Please refer the document "SATIMO Dipole Measurement Report.pdf". --END OF REPORT--