

TEST REPORT

Applicant: Shenzhen Xinguodu Technology Co.,Ltd.

Address: 17B JinSong Mansion, Terra Industrial & Trade Park Chegongmiao, Futian District, Shenzhen, Guangdong, China.

FCC ID: XDQUN20-01

Product Name: POS Terminal

Standard(s): 47 CFR Part 15, Subpart E(15.407) ANSI C63.10-2013 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

The above equipment has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR230204666-00E

Date Of Issue: 2023/3/30

Reviewed By: Sun Zhong

Sun 2hong

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol " \blacktriangle ". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

TEST FACILITY	2
DECLARATIONS	2
DOCUMENT REVISION HISTORY	5
1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
1.2 DESCRIPTION OF TEST CONFIGURATION	8
 1.2.1 EUT Operation Condition: 1.2.2 Support Equipment List and Details 1.2.3 Support Cable List and Details 1.2.4 Block Diagram of Test Setup 1.3 MEASUREMENT UNCERTAINTY	9 9 9
2. SUMMARY OF TEST RESULTS	12
3. REQUIREMENTS AND TEST PROCEDURES	
3.1 AC LINE CONDUCTED EMISSIONS	
 3.1.1 Applicable Standard	
3.2.1 Applicable Standard	
 3.2.2 EUT Setup 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup 3.2.4 Test Procedure 3.2.5 Corrected Amplitude & Margin Calculation 3.3 EMISSION BANDWIDTH:	17 17 18 18
3.3.1 Applicable Standard	19
3.3.2 EUT Setup 3.3.3 Test Procedure	
3.4 MAXIMUM CONDUCTED OUTPUT POWER:	
 3.4.1 Applicable Standard 3.4.2 EUT Setup 3.4.3 Test Procedure 3.5 MAXIMUM POWER SPECTRAL DENSITY:	21
3.5.1 Applicable Standard	
3.5.2 EUT Setup 3.5.3 Test Procedure	
3.7 DUTY CYCLE:	
3.7.1 EUT Setup 3.7.2 Test Procedure	
3.8 ANTENNA REQUIREMENT.	

3.8.1 Applicable Standard	
3.8.1 Applicable Standard 3.8.2 Judgment	
4. Test DATA AND RESULTS	
4.1 AC LINE CONDUCTED EMISSIONS	
4.2 RADIATION SPURIOUS EMISSIONS	
4.3 Emission Bandwidth:	41
4.4 MAXIMUM CONDUCTED OUTPUT POWER:	55
4.5 MAXIMUM POWER SPECTRAL DENSITY:	57
4.6 DUTY CYCLE:	65

DOCUMENT REVISION HISTORY

Revision Number	vision Number Report Number Description of Revision		Date of Revision
1.0	CR230204666-00E	Original Report	2023/3/30

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

1.1.1 General:

EUT Name:	POS Terminal	
EUT Model:	UN20	
Operation Frequency:	5180-5240 MHz (802.11a/n ht20/ac vht20) 5190-5230 MHz(802.11n ht40/ac vht40) 5210 MHz(802.11ac vht80) 5745-5825 MHz (802.11a/n ht20/ac vht20) 5755-5795 MHz(802.11n ht40/ac vht40) 5775 MHz(802.11ac vht80)	
Maximum Average Output Power (Conducted):	15.55 dBm (5150-5250 MHz) 14.88 dBm (5725-5850 MHz)	
Modulation Type:	802.11a/n/ac: OFDM-BPSK, QPSK, 16QAM, 64QAM,256QAM	
Rated Input Voltage:	DC 12V from adapter or AC15—30V	
Serial Number:	1ZO9	
EUT Received Date:	2023/2/6	
EUT Received Status:	Good	
Note: Only adapter power mode was tested since it is the worst mode per test for DSS report.		

1.1.2 Operation Frequency Detail: For 802.11a/n ht20/ac vht20:

5150-5250MHz Band		5725-5850MHz Band		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
36	5180	149	5745	
40	5200	153	5765	
44	5220	157	5785	
48	5240	161	5805	
/	/	165	5825	
Per section 15.31(m), the	below frequencies were perform	ed the test as below:		
36	5180	149	5745	
40	5200	157	5785	
48	5240	165	5825	

For 802.11n ht40/ac vht40:

5150-5250MHz Band		5725-5850MHz Band	
Channel	Channel Frequency (MHz)		Frequency (MHz)
38	5190	151	5755
46	5230	159	5795
Per section 15.31(m), the	below frequencies were perform	ed the test as below:	
38	5190	151	5755
46	5230	159	5795

For 802.11ac vht80:

5150-5250MHz Band		5725-5850MHz Band		
Channel Frequency (MHz)		Channel	Frequency (MHz)	
42	5210	155	5775	
Per section 15.31(m), the below frequencies were performed the test as below:				
42	5210	155	5775	

1.1.3 Antenna Information Detail▲:

Antenna Model	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
UN20-WiFi-V01	FPC	50	5150-5250MHz	3.79 dBi
01120-10161-001	rrC	50	5725-5850MHz	3.94 dBi

The Method of §15.203 Compliance:

Antenna must be permanently attached to the unit.

Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

1.1.4 Accessory Information:

Accessory Description	Manufacturer	Model
Adapter	SHENZHEN HONOR ELECTRONIC CO., LTD.	ADS-65HI-12N-3 12048E

1.2 Description of Test Configuration

1.2.1 EUT Operation Condition:

	EUT Oper	ation Mode:		stem was configured was provided by the	for testing in Engineering Mode, manufacturer.
Equipment Modifications:			No	1 7	
	<u> </u>	se Software:	Engine	ering mode	
The software was p manufacturer▲:	provided by manufact	turer. The max	imum po	ower was configured	as below, that was provided by the
5150-5250 MHz B	and:				
Test Modes	Test Channels	Test Freque (MHz)	ency	Data rate	Power Level Setting
	Lowest	5180		6Mbps	21
802.11a	Middle	5200		6Mbps	21
	Highest	5240		6Mbps	21
	Lowest	5180		MCS0	22
802.11n ht20	Middle	5200		MCS0	22
	Highest	5240		MCS0	22
802.11n ht40	Lowest	5190		MCS0	20.5
802.1111 11140	Highest	5230		MCS0	20.5
802.11ac vht80	Middle	5210		MCS0	21
5725-5850 MHz B	and:				
Test Modes	Test Channels	Test Freque (MHz)	ency	Data rate	Power Level Setting
	Lowest	5745		6Mbps	22
802.11a	Middle	5785		6Mbps	22
	Highest	5825		6Mbps	22
	Lowest	5745		MCS0	22
802.11n ht20	Middle	5785		MCS0	22
	Highest	5825		MCS0	22
802.11n ht40	Lowest	5755		MCS0	20.5
002.1111 11140	Highest	5795		MCS0	20.5
802.11ac vht80	Middle	5775		MCS0	21

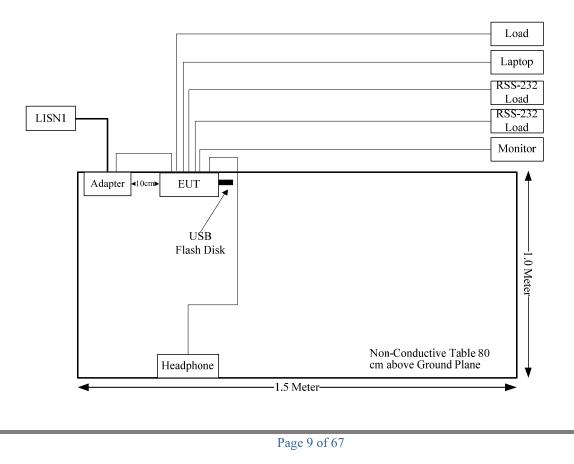
Note:

The system support 802.11a/n ht20/n ht40/ac vht20/vht40/vht80, the vht20/vht40 were reduced since the identical parameters with 802.11n ht20 and ht40.

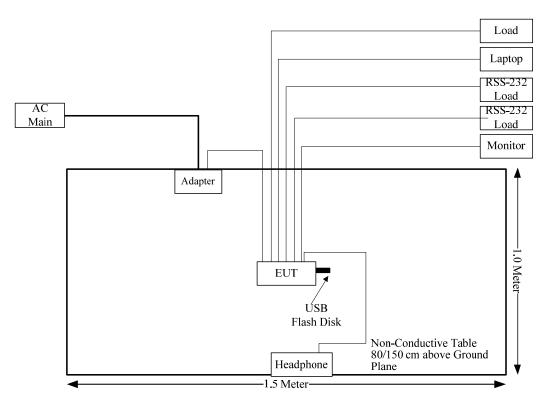
The above are the worst-case data rates, which are determined for each mode based upon investigations by measuring the average power and PSD across all data rates, bandwidths, and modulations.

China Certification ICT Co., Ltd (Dongguan)

Manufacturer	Description	Model	Serial Number
SanDisk	USB Flash Disk	16 GB	BL201026210Z
Lenovo	Laptop	T460S	60PDTEK8
CLC	Earphone	Whiteview5.0	EP21106054
PHILIPS	Monitor	24PFF5595/T3	XM2A2124000343
Unknown	RSS-232 Load 1	Unknown	RSS-232 Load 1
Unknown	RSS-232 Load 2	Unknown	RSS-232 Load 2
Unknown	Load	Unknown	Load 3


1.2.2 Support Equipment List and Details

1.2.3 Support Cable List and Details


Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
RS232 Cable	No	No	5	EUT	RS232 Load 1
RS232 Cable	No	No	5	EUT	RS232 Load 2
HDMI Cable	Yes	No	1.5	EUT	Monitor
Earphone Cable	No	No	1.5	EUT	Earphone
DC Cable	No	No	2	EUT	Load

1.2.4 Block Diagram of Test Setup

AC line conducted emissions:

Spurious Emissions:

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	$\pm 5\%$
RF output power, conducted	$\pm 0.61 dB$
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB, 6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	$\pm 1^\circ \mathbb{C}$
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	2.8 dB (150 kHz to 30 MHz)

2. SUMMARY OF TEST RESULTS

Standard(s) Section	Test Items	Result
FCC§15.207(a)	AC line conducted emissions	Compliant
FCC§15.205& §15.209 &§15.407(b)	Radiated Spurious Emissions	Compliant
FCC§15.407(a) (e)	Emission Bandwidth	Compliant
FCC§15.407(a)	Conducted Transmitter Output Power	Compliant
FCC§15.407 (a)	Power Spectral Density	Compliant
FCC§15.203	Antenna Requirement	Compliant

3. REQUIREMENTS AND TEST PROCEDURES

3.1 AC Line Conducted Emissions

3.1.1 Applicable Standard

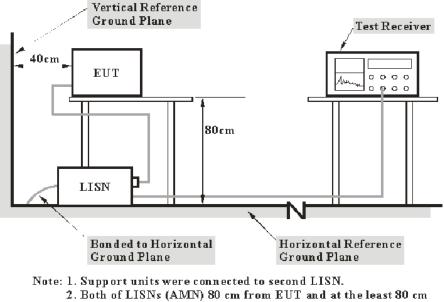
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)	
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μV within the frequency band 535-1705 kHz, as measured using a 50 $\mu H/50$ ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

3.1.2 EUT Setup

from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

3.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz - 30 MHz	9 kHz

3.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the reported over all the current-carrying conductor s.

3.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

3.2 Radiation Spurious Emissions

3.2.1 Applicable Standard

FCC §15.407 (b);

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of - 27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of - 27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of - 27 dBm/MHz.

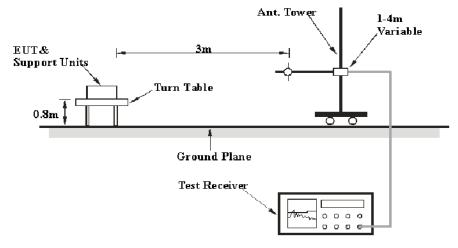
(4) For transmitters operating solely in the 5.725-5.850 GHz band:

(i) All emissions shall be limited to a level of - 27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

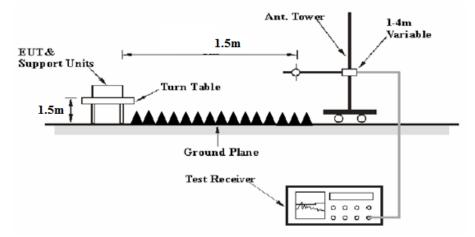
(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2018.

(8) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(9) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.


(10) The provisions of § 15.205 apply to intentional radiators operating under this section.

(11) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.


(c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

3.2.2 EUT Setup

Below 1GHz:

1-40 GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was FCC 15.209, FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

3.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30MHz-1000MHz:

Measurement	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

1GHz-40GHz:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
AV	>98%	1MHz	10 Hz
Av	<98%	1MHz	1/T

Note: T is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

3.2.4 Test Procedure

During the radiated emission test, the adapter was connected to the first AC floor outlet.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

According to C63.10, the above 1G test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.5m Distance extrapolation Factor =20 log (specific distance [3m]/test distance [1.5m]) dB= 6.02 dB

All emissions under the average limit and under the noise floor have not recorded in the report.

3.2.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Factor = Antenna Factor + Cable Loss- Amplifier Gain

For 30MHz-1GHz: Result = Reading + Factor

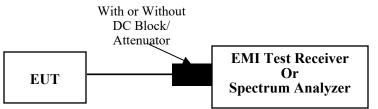
For 1GHz-40GHz Result = Reading + Factor-Distance extrapolation Factor

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

3.3 Emission Bandwidth:

3.3.1 Applicable Standard


FCC §15.407 (a),(h)

(h)(2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

FCC §15.407 (e)

Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.3.2 EUT Setup

3.3.3 Test Procedure

26dB Emission Bandwidth:

According to ANSI C63.10-2013 Section 12.4.1

a) Set RBW = approximately 1% of the emission bandwidth.

- b) Set the VBW > RBW.
- c) Detector = peak.

d) Trace mode = max hold

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

6 dB emission bandwidth:

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \geq 3 RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described in this section. For devices that use channel aggregation refer to III.A and III.C for determining emission bandwidth.

99% Occupied Bandwidth:

According to ANSI C63.10-2013 Section 12.4.2&6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.f) Use the 99% power bandwidth function of the instrument (if available) and report the measured

bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

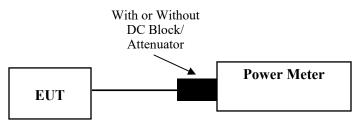
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

3.4 Maximum Conducted Output Power:

3.4.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


FCC §15.407(a) (2)

For the 5.25- $\dot{5}$. $\dot{3}$ $\dot{5}$ GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

3.4.2 EUT Setup

3.4.3 Test Procedure

According to ANSI C63.10-2013 Section 12.3.3.2

Method PM-G is measurement using a gated RF average power meter.

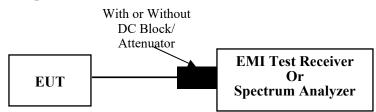
Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.5 Maximum Power Spectral Density:

3.5.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

3.5.2 EUT Setup

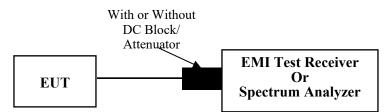
3.5.3 Test Procedure

According to ANSI C63.10-2013Section 12.3.2

Duty cycle ≥98%

Method SA-1 was used.

Duty cycle <98%, duty cycle variations are less than $\pm 2\%$


Method SA-2 was used.

Duty cycle <98%, duty cycle variations exceed $\pm 2\%$

Method SA-3 was used.

3.7 Duty Cycle:

3.7.1 EUT Setup

3.7.2 Test Procedure

According to ANSI C63.10-2013 Section 12.2

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set $RBW \ge OBW$ if possible; otherwise, set RBW to the largest available value.

3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \ \mu s$.)

3.8 Antenna Requirement

3.8.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

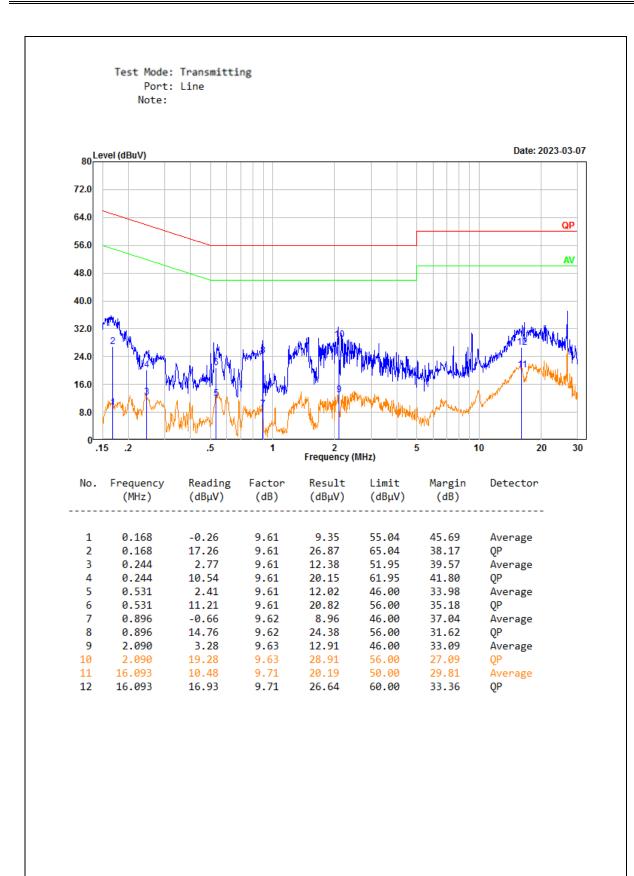
3.8.2 Judgment

Result: Compliant. Please refer to the Antenna Information detail in Section 1.

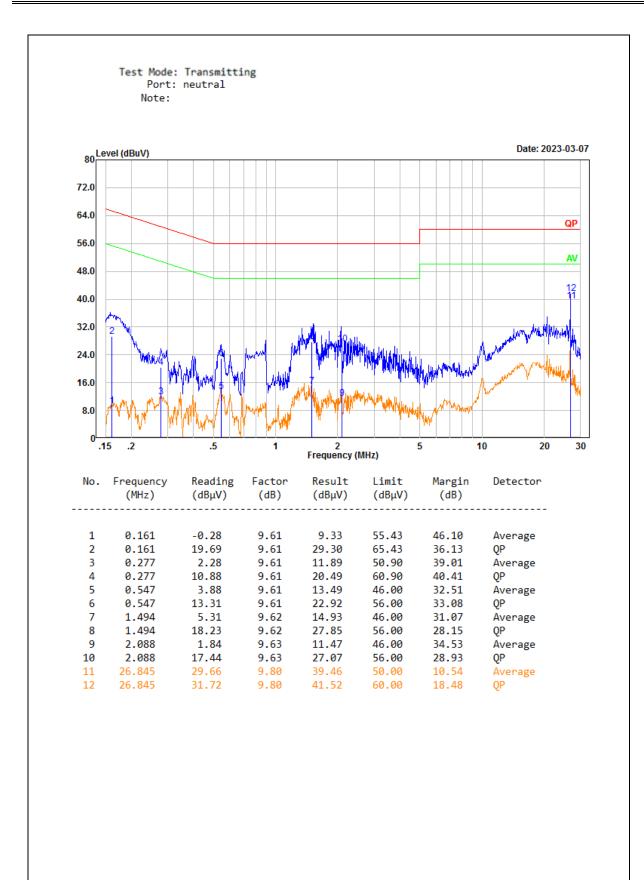
4. Test DATA AND RESULTS

4.1 AC Line Conducted Emissions

Serial Number:	1ZO9	Test Date:	2023/3/7
Test Site:	CE	Test Mode:	Operating (802.11a 5785 MHz was the worst)
Tester:	Bob Yang	Test Result:	Pass


Environmental Conditions:						
Temperature: (°C)	24	Relative Humidity: (%)	36	ATM Pressure: (kPa)	102.1	

Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101134	2022/04/01	2023/03/31
R&S	EMI Test Receiver	ESR3	102726	2022/07/15	2023/07/14
MICRO-COAX	Coaxial Cable	UTIFLEX	C-0200-01	2022/08/07	2023/08/06
Audix	Test Software	E3	190306 (V9)	N/A	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

China Certification ICT Co., Ltd (Dongguan)

China Certification ICT Co., Ltd (Dongguan)

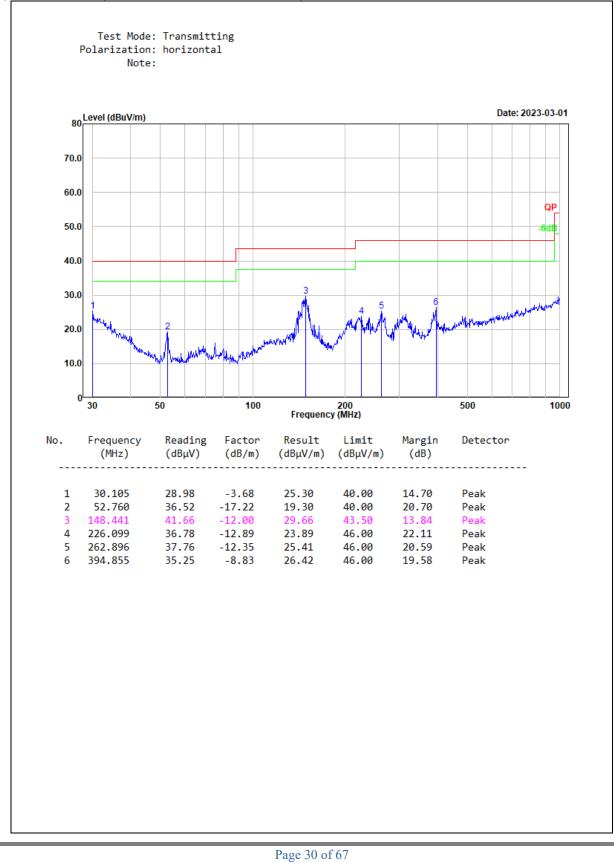
4.2 Radiation Spurious Emissions

Serial Number:	1ZO9	Test Date:	2023/3/1
Test Site:	966-1, 966-2	Test Mode:	Transmitting
Tester:	Vic Du, coco Tian	Test Result:	Pass

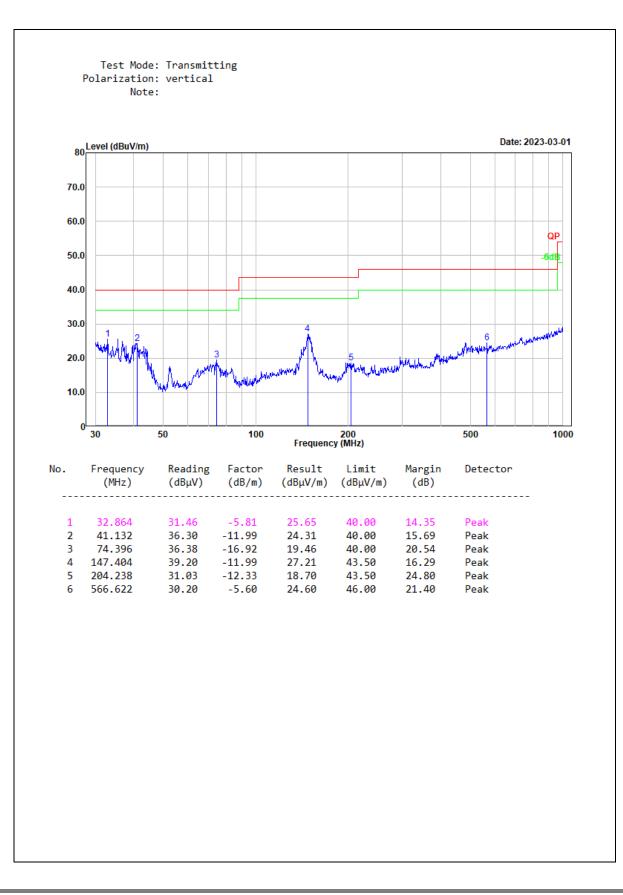
Environmental	Conditions:				
Temperature: (℃)	23.5	Relative Humidity: (%)	41	ATM Pressure: (kPa)	102.2

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Antenna	JB6	A082520-5	2020/10/19	2023/10/18
R&S	EMI Test Receiver	ESR3	102724	2022/07/15	2023/07/14
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0470-02	2022/07/17	2023/07/16
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0780-01	2022/07/17	2023/07/16
Sonoma	Amplifier	310N	186165	2022/07/17	2023/07/16
Audix	Test Software	E3	201021 (V9)	N/A	N/A
ETS-Lindgren	Horn Antenna	3115	9912-5985	2020/10/13	2023/10/12
R&S	Spectrum Analyzer	FSV40	101591	2022/07/15	2023/07/14
MICRO-COAX	Coaxial Cable	UFA210A-1- 1200-70U300	217423-008	2022/08/07	2023/08/06
MICRO-COAX	Coaxial Cable	UFA210A-1- 2362-300300	235780-001	2022/08/07	2023/08/06
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2022/11/09	2023/11/08
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/02/05	2024/02/04
AH	Preamplifier	PAM-1840VH	190	2022/11/09	2023/11/08
MICRO-COAX	Coaxial Cable	UFB142A-1- 2362-200200	235772-001	2022/08/07	2023/08/06
E-Microwave	Band Rejection Filter	5150-5850MHz	OE01902423	2022/08/07	2023/08/06
Mini Circuits	High Pass Filter	VHF-6010+	31119	2022/08/07	2023/08/06
PASTERNACK	Horn Antenna	PE9850/2F-20	072001	2021/02/05	2024/02/04


* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:


Please refer to the below table and plots.

China Certification ICT Co., Ltd (Dongguan)

1) 30MHz-1GHz(802.11a 5785MHz was the worst)

China Certification ICT Co., Ltd (Dongguan)

2) 1GHz-40GHz: 5150-5250MHz

802.11a:

Frequency (MHz)	Receiver		Polar	Factor	Result	Limit	Manain
	Reading (dBµV)	Detector	(H/V)	(dB/m)	(dBµV/m)	(dBµV/m)	Margin (dB)
			Low C	hannel: 5180M	Hz		
5180.000	76.07	РК	Н	38.68	108.73	N/A	N/A
5180.000	70.90	AV	Н	38.68	103.56	N/A	N/A
5180.000	71.31	РК	V	38.68	103.97	N/A	N/A
5180.000	65.70	AV	V	38.68	98.36	N/A	N/A
5150.000	31.54	PK	Н	38.64	64.16	74.00	9.84
5150.000	14.97	AV	Н	38.64	47.59	54.00	6.41
10360.000	33.49	РК	Н	19.18	46.65	68.20	21.55
15540.000	34.17	PK	Н	22.44	50.59	74.00	23.41
15540.000	23.20	AV	Н	22.44	39.62	54.00	14.38
]	Middle Ch	annel: 5200 Ml	Hz		
5200.000	72.75	PK	Н	38.70	105.43	N/A	N/A
5200.000	68.08	AV	Н	38.70	100.76	N/A	N/A
5200.000	68.11	PK	V	38.70	100.79	N/A	N/A
5200.000	62.65	AV	V	38.70	95.33	N/A	N/A
10400.000	34.24	РК	Н	19.16	47.38	68.20	20.82
15600.000	34.51	PK	Н	22.41	50.90	74.00	23.10
15600.000	22.60	AV	Н	22.41	38.99	54.00	15.01
			High Cha	nnel: 5240 MH	Z		
5240.000	69.59	PK	Н	38.85	102.42	N/A	N/A
5240.000	63.29	AV	Н	38.85	96.12	N/A	N/A
5240.000	67.60	PK	V	38.85	100.43	N/A	N/A
5240.000	63.13	AV	V	38.85	95.96	N/A	N/A
5350.000	26.58	PK	Н	39.03	59.59	74.00	14.41
5350.000	12.93	AV	Н	39.03	45.94	54.00	8.06
10480.000	34.38	PK	Н	18.86	47.22	68.20	20.98
15720.000	34.70	PK	Н	22.28	50.96	74.00	23.04
15720.000	22.92	AV	Н	22.28	39.18	54.00	14.82

802.11n ht20:

Frequency (MHz)	Receiver		D.1.	Easter		T :	Manain
	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Cha	nnel: 5180MH	Z		
5180.000	71.01	PK	Н	38.68	103.67	N/A	N/A
5180.000	64.34	AV	Н	38.68	97.00	N/A	N/A
5180.000	66.75	PK	V	38.68	99.41	N/A	N/A
5180.000	61.08	AV	V	38.68	93.74	N/A	N/A
5150.000	27.98	PK	Н	38.64	60.60	74.00	13.40
5150.000	13.77	AV	Н	38.64	46.39	54.00	7.61
10360.000	34.05	PK	Н	19.18	47.21	68.20	20.99
15540.000	34.48	PK	Н	22.44	50.90	74.00	23.10
15540.000	22.74	AV	Н	22.44	39.16	54.00	14.84
]	Middle Ch	annel: 5200 M	Hz		
5200.000	74.24	PK	Н	38.70	106.92	N/A	N/A
5200.000	69.04	AV	Н	38.70	101.72	N/A	N/A
5200.000	71.90	PK	V	38.70	104.58	N/A	N/A
5200.000	67.05	AV	V	38.70	99.73	N/A	N/A
10400.000	34.37	PK	Н	19.16	47.51	68.20	20.69
15600.000	34.64	PK	Н	22.41	51.03	74.00	22.97
15600.000	22.73	AV	Н	22.41	39.12	54.00	14.88
			High Cha	nnel: 5240 MH	z		
5240.000	73.95	PK	Н	38.85	106.78	N/A	N/A
5240.000	68.58	AV	Н	38.85	101.41	N/A	N/A
5240.000	71.61	PK	V	38.85	104.44	N/A	N/A
5240.000	66.76	AV	V	38.85	99.59	N/A	N/A
5350.000	26.14	PK	Н	39.03	59.15	74.00	14.85
5350.000	12.87	AV	Н	39.03	45.88	54.00	8.12
10480.000	33.95	PK	Н	18.86	46.79	68.20	21.41
15720.000	34.42	PK	Н	22.28	50.68	74.00	23.32
15720.000	23.45	AV	Н	22.28	39.71	54.00	14.29

802.11n	ht40:
---------	-------

	Receiver			Б (T • •/	
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Cl	nannel: 5190 M	IHz		
5190.000	69.70	PK	Н	38.69	102.37	N/A	N/A
5190.000	65.29	AV	Н	38.69	97.96	N/A	N/A
5190.000	68.71	PK	V	38.69	101.38	N/A	N/A
5190.000	64.35	AV	V	38.69	97.02	N/A	N/A
5150.000	28.29	PK	Н	38.64	60.91	74.00	13.09
5150.000	14.60	AV	Н	38.64	47.22	54.00	6.78
10380.000	34.08	PK	Н	19.17	47.23	68.20	20.97
15570.000	34.56	PK	Н	22.43	50.97	74.00	23.03
15570.000	22.91	AV	Н	22.43	39.32	54.00	14.68
			High Cha	nnel: 5230 MH	Z		
5230.000	72.25	PK	Н	38.81	105.04	N/A	N/A
5230.000	67.98	AV	Н	38.81	100.77	N/A	N/A
5230.000	68.52	PK	V	38.81	101.31	N/A	N/A
5230.000	64.90	AV	V	38.81	97.69	N/A	N/A
5350.000	26.61	PK	Н	39.03	59.62	74.00	14.38
5350.000	13.98	AV	Н	39.03	46.99	54.00	7.01
10460.000	34.68	РК	Н	18.94	47.60	68.20	20.60
15690.000	34.79	PK	Н	22.29	51.06	74.00	22.94
15690.000	23.41	AV	Н	22.29	39.68	54.00	14.32

802.11ac vht80:

Frequency (MHz)	Receiver		Dalan	Feeter	D	Limit	Manada
	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	(dBµV/m)	Margin (dB)
5210.000	67.77	PK	Н	38.74	100.49	N/A	N/A
5210.000	61.43	AV	Н	38.74	94.15	N/A	N/A
5210.000	65.66	РК	V	38.74	98.38	N/A	N/A
5210.000	59.90	AV	V	38.74	92.62	N/A	N/A
5150.000	28.39	РК	Н	38.64	61.01	74.00	12.99
5150.000	13.47	AV	Н	38.64	46.09	54.00	7.91
5350.000	25.43	РК	Н	39.03	58.44	74.00	15.56
5350.000	12.58	AV	Н	39.03	45.59	54.00	8.41
10420.000	35.14	РК	Н	19.09	48.21	68.20	19.99
15630.000	34.64	РК	Н	22.37	50.99	74.00	23.01
15630.000	22.25	AV	Н	22.37	38.60	54.00	15.40

Note:

Result = Reading + Factor-Distance extrapolation FactorDistance extrapolation Factor =20 log (specific distance [3m]/test distance [1.5m]) dB= 6.02 dB

5725-5850MHz:

802.11a:

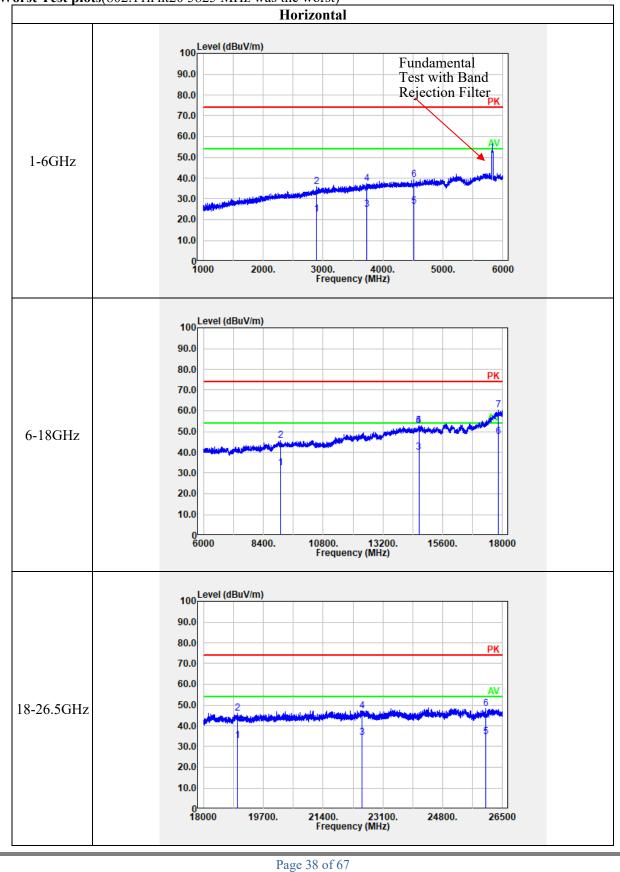
Frequency (MHz)	Receiver		Del	Factor	Result	Limit	Manala
	Reading (dBµV)	Detector	- Polar (H/V)	(dB/m)	(dBµV/m)	(dBµV/m)	Margin (dB)
			Low C	hannel: 5745M	Hz		
5745.000	70.49	PK	Н	39.46	103.93	N/A	N/A
5745.000	61.48	AV	Н	39.46	94.92	N/A	N/A
5745.000	67.71	PK	V	39.46	101.15	N/A	N/A
5745.000	58.90	AV	V	39.46	92.34	N/A	N/A
5725.000	39.37	PK	Н	39.48	72.83	122.20	49.37
5720.000	30.87	PK	Н	39.49	64.34	110.80	46.46
5700.000	26.04	PK	Н	39.51	59.53	105.20	45.67
5650.000	25.53	PK	Н	39.49	59.00	68.20	9.20
11490.000	35.04	PK	Н	20.67	49.69	74.00	24.31
11490.000	23.49	AV	Н	20.67	38.14	54.00	15.86
17235.000	33.14	PK	Н	26.76	53.88	68.20	14.32
			Middle (Channel: 5785 I	MHz		
5785.000	71.06	PK	Н	39.44	104.48	N/A	N/A
5785.000	61.69	AV	Н	39.44	95.11	N/A	N/A
5785.000	67.92	PK	V	39.44	101.34	N/A	N/A
5785.000	59.10	AV	V	39.44	92.52	N/A	N/A
11570.000	34.86	PK	Н	20.83	49.67	74.00	24.33
11570.000	23.21	AV	Н	20.83	38.02	54.00	15.98
17355.000	32.96	PK	Н	27.74	54.68	68.20	13.52
			High Cl	nannel: 5825 M	ÍHz		
5825.000	71.02	PK	H	39.46	104.46	N/A	N/A
5825.000	62.09	AV	Н	39.46	95.53	N/A	N/A
5825.000	68.05	PK	V	39.46	101.49	N/A	N/A
5825.000	59.66	AV	V	39.46	93.10	N/A	N/A
5850.000	36.45	PK	Н	39.49	69.92	122.20	52.28
5855.000	30.78	PK	Н	39.51	64.27	110.80	46.53
5875.000	26.01	PK	Н	39.60	59.59	105.20	45.61
5925.000	25.47	PK	Н	39.68	59.13	68.20	9.07
11650.000	35.15	PK	Н	21.07	50.20	74.00	23.80
11650.000	23.40	AV	Н	21.07	38.45	54.00	15.55
17475.000	32.97	РК	Н	28.61	55.56	68.20	12.64

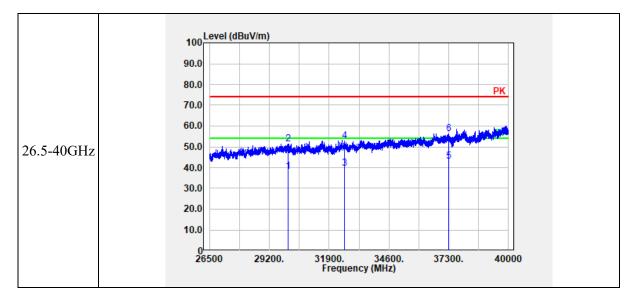
802.11n ht20:

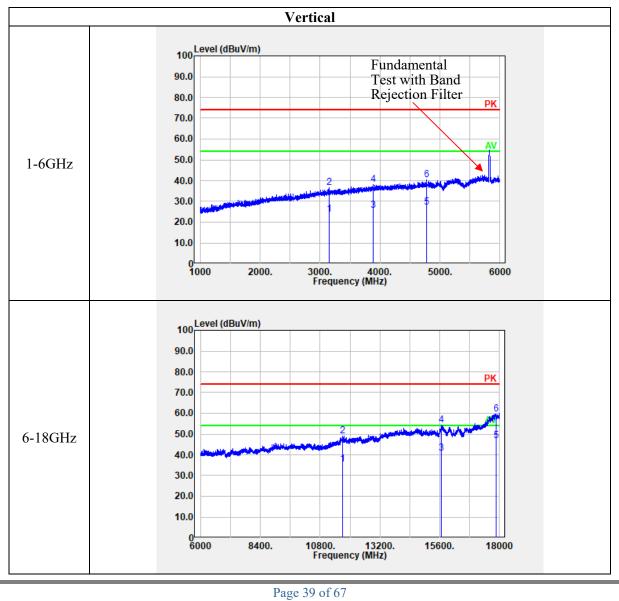
F	Receiver		D.1	F (T	Manala
Frequency (MHz)	Reading (dBµV)	Detector	– Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
		_	Low Cl	hannel: 5745M	IHz		
5745.000	70.67	PK	Н	39.46	104.11	N/A	N/A
5745.000	61.72	AV	Н	39.46	95.16	N/A	N/A
5745.000	67.89	PK	V	39.46	101.33	N/A	N/A
5745.000	59.08	AV	V	39.46	92.52	N/A	N/A
5725.000	39.63	PK	Н	39.48	73.09	122.20	49.11
5720.000	31.05	PK	Н	39.49	64.52	110.80	46.28
5700.000	26.22	PK	Н	39.51	59.71	105.20	45.49
5650.000	25.71	PK	Н	39.49	59.18	68.20	9.02
11490.000	35.14	PK	Н	20.67	49.79	74.00	24.21
11490.000	22.42	AV	Н	20.67	37.07	54.00	16.93
17235.000	32.89	PK	Н	26.76	53.63	68.20	14.57
			Middle Ch	annel: 5785 M	Hz		
5785.000	71.12	PK	Н	39.44	104.54	N/A	N/A
5785.000	61.75	AV	Н	39.44	95.17	N/A	N/A
5785.000	68.02	PK	V	39.44	101.44	N/A	N/A
5785.000	59.16	AV	V	39.44	92.58	N/A	N/A
11570.000	34.30	PK	Н	20.83	49.11	74.00	24.89
11570.000	23.38	AV	Н	20.83	38.19	54.00	15.81
17355.000	33.72	PK	Н	27.74	55.44	68.20	12.76
			High Cha	nnel: 5825 MH	İz		
5825.000	71.20	PK	Н	39.46	104.64	N/A	N/A
5825.000	62.28	AV	Н	39.46	95.72	N/A	N/A
5825.000	68.23	PK	Н	39.46	101.67	N/A	N/A
5825.000	59.84	AV	V	39.46	93.28	N/A	N/A
5850.000	36.63	PK	Н	39.49	70.10	122.20	52.10
5855.000	30.92	PK	Н	39.51	64.41	110.80	46.39
5875.000	26.19	PK	Н	39.60	59.77	105.20	45.43
5925.000	26.35	PK	Н	39.68	60.01	68.20	8.19
11650.000	34.88	PK	Н	21.07	49.93	74.00	24.07
11650.000	22.16	AV	Н	21.07	37.21	54.00	16.79
17475.000	33.37	PK	Н	28.61	55.96	68.20	12.24

802.11n ht40:

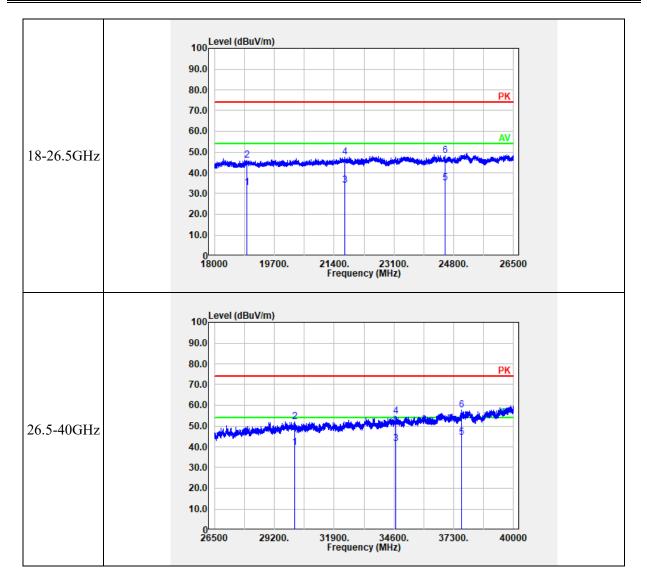
F	Receiver		Dalan	Fastar	D	T ::4	Manain			
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
	Low Channel: 5755 MHz									
5755.000	68.92	PK	Н	39.45	102.35	N/A	N/A			
5755.000	59.89	AV	Н	39.45	93.32	N/A	N/A			
5755.000	67.19	PK	V	39.45	100.62	N/A	N/A			
5755.000	57.71	AV	V	39.45	91.14	N/A	N/A			
5725.000	44.92	РК	Н	39.48	78.38	122.20	43.82			
5720.000	43.53	РК	Н	39.49	77.00	110.80	33.80			
5700.000	32.71	РК	Н	39.51	66.20	105.20	39.00			
5650.000	25.62	РК	Н	39.49	59.09	68.20	9.11			
11510.000	34.60	РК	Н	20.67	49.25	74.00	24.75			
11510.000	22.82	AV	Н	20.67	37.47	54.00	16.53			
17265.000	32.79	РК	Н	26.94	53.71	68.20	14.49			
			High Cha	nnel: 5795 MH	Z					
5795.000	69.13	PK	Н	39.43	102.54	N/A	N/A			
5795.000	60.09	AV	Н	39.43	93.50	N/A	N/A			
5795.000	67.40	РК	V	39.43	100.81	N/A	N/A			
5795.000	57.92	AV	V	39.43	91.33	N/A	N/A			
5850.000	33.02	РК	Н	39.49	66.49	122.20	55.71			
5855.000	30.79	РК	Н	39.51	64.28	110.80	46.52			
5875.000	27.04	РК	Н	39.60	60.62	105.20	44.58			
5925.000	25.49	РК	Н	39.68	59.15	68.20	9.05			
11590.000	35.48	РК	Н	20.88	50.34	74.00	23.66			
11590.000	23.56	AV	Н	20.88	38.42	54.00	15.58			
17385.000	32.87	РК	Н	28.07	54.92	68.20	13.28			


802.11ac vht80:


E	Rec	eiver	Dalan	Fastar	Result	T instit	Manain
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
5775.000	66.49	PK	Н	39.44	99.91	N/A	N/A
5775.000	56.03	AV	Н	39.44	89.45	N/A	N/A
5775.000	64.68	PK	V	39.44	98.10	N/A	N/A
5775.000	52.71	AV	V	39.44	86.13	N/A	N/A
5725.000	45.65	PK	Н	39.48	79.11	122.20	43.09
5720.000	44.91	PK	Н	39.49	78.38	110.80	32.42
5700.000	39.60	PK	Н	39.51	73.09	105.20	32.11
5650.000	27.82	PK	Н	39.49	61.29	68.20	6.91
5850.000	33.61	PK	Н	39.49	67.08	122.20	55.12
5855.000	31.48	PK	Н	39.51	64.97	110.80	45.83
5875.000	27.68	PK	Н	39.60	61.26	105.20	43.94
5925.000	26.13	PK	Н	39.68	59.79	68.20	8.41
11550.000	34.99	PK	Н	20.78	49.75	74.00	24.25
11550.000	23.32	AV	Н	20.78	38.08	54.00	15.92
17325.000	32.87	PK	Н	27.41	54.26	68.20	13.94


Note:

 $Result = Reading + Factor-Distance\ extrapolation\ Factor$ Distance\ extrapolation\ Factor = 20 log (specific distance\ [3m]/test distance\ [1.5m])\ dB = 6.02\ dB


Worst Test plots(802.11n ht20 5825 MHz was the worst)

Report No.: CR230204666-00E

4.3 Emission Bandwidth:

Serial Number:	1ZO9	Test Date:	2023/2/13~2023/3/6
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rinka Li	Test Result:	Pass

Environmental Conditions:								
Temperature: (℃)	22.5~25.9	Relative Humidity: (%)	47.5~60	ATM Pressure: (kPa)	100.2~101.5			

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101943	2022/07/25	2023/07/24
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
HuiXunDa	DC Block	SMA-JK 18G	DCB181108042	Each time	N/A

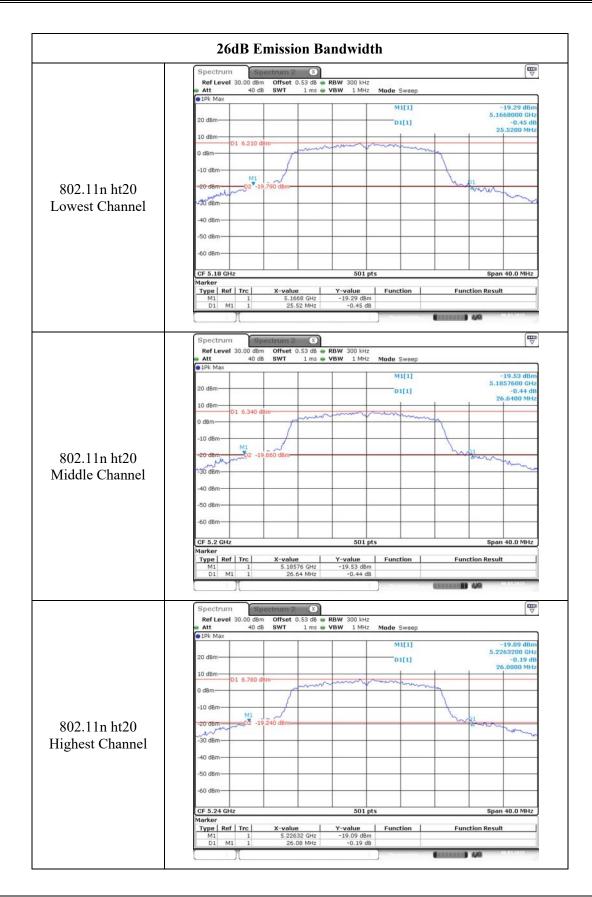
* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

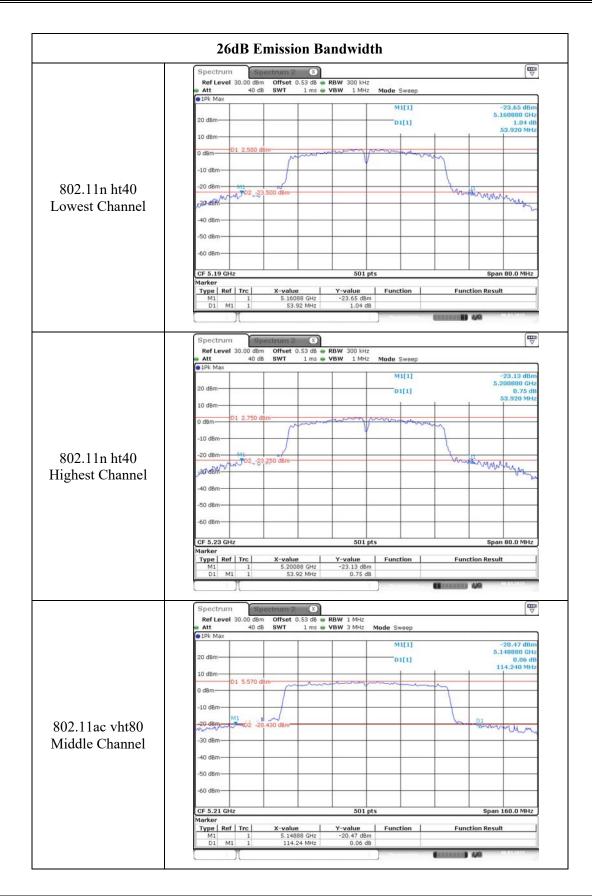
Test Data:

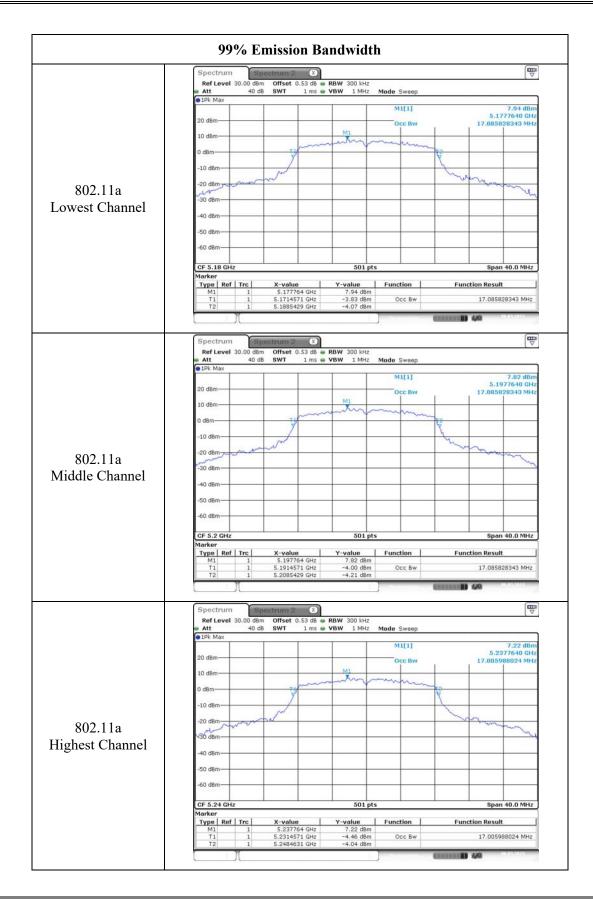
5150-5250 MHz:

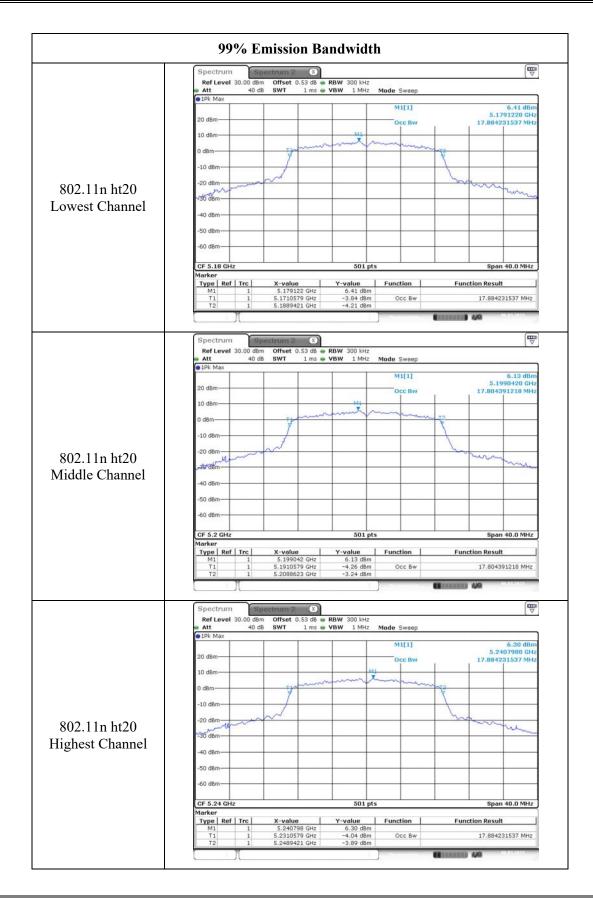
Test Modes	Test Frequency (MHz)	26 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)			
	5180	26.64	17.086			
802.11a	5200	25.52	17.086			
	5240	26.96	17.006			
	5180	25.52	17.884			
802.11n ht20	5200	26.64	17.804			
	5240	26.08	17.884			
902 11 a h440	5190	53.92	37.046			
802.11n ht40	5230	53.92	37.046			
802.11ac vht80	5210	114.24	76.647			
Note: the 99% Occupied Bandwidth have not fall into the band 5250-5350MHz, please refer to the test plots of 99% Occupied Bandwidth.						

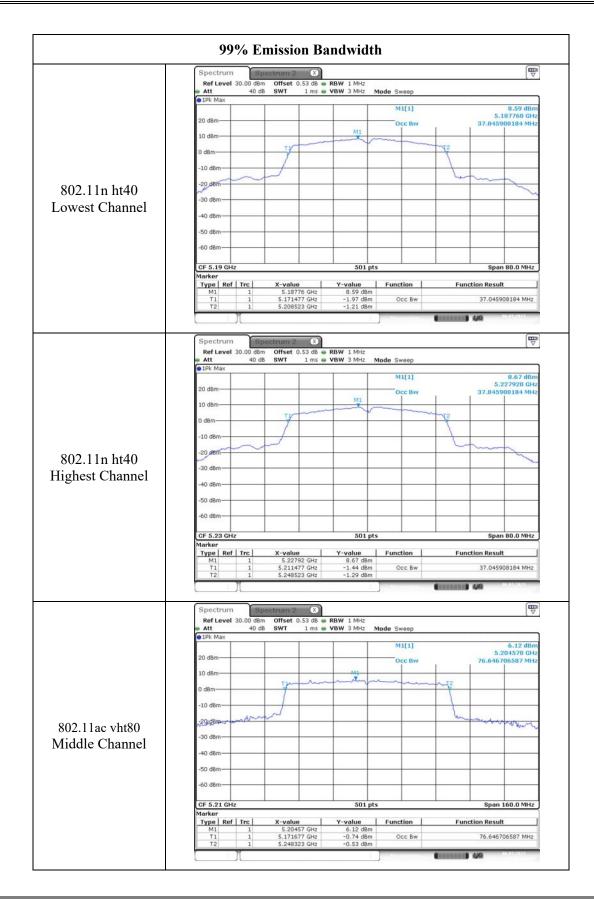
5725-5850 MHz:

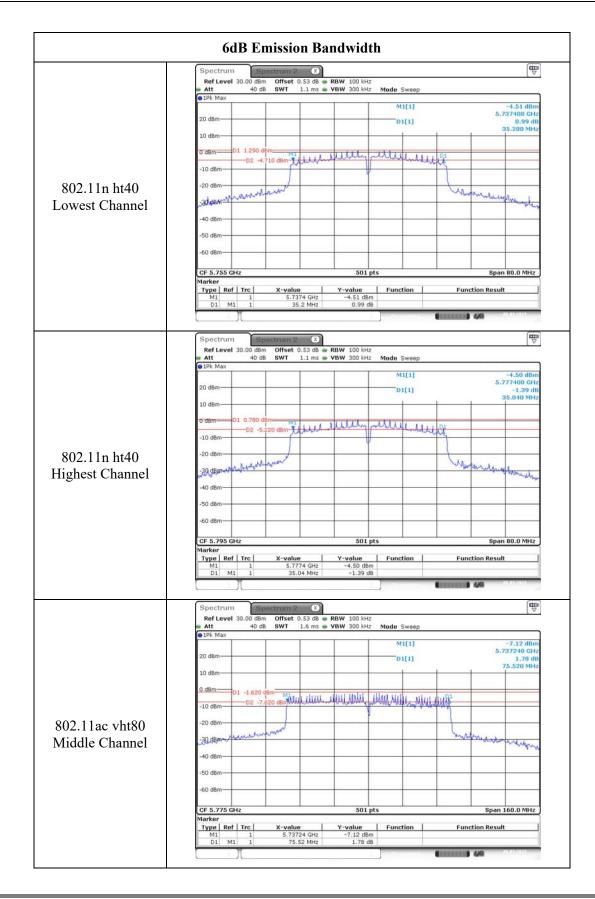

Test Modes	Test Frequency (MHz)	6 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	5745	15.2	17.804
802.11a	5785	15.2	17.884
	5825	15.2	17.246
	5745	15.2	18.683
802.11n ht20	5785	15.2	18.044
	5825	15.2	18.124
202 11- 1-40	5755	35.2	37.685
802.11n ht40	5795	35.04	37.206
802.11ac vht80	5775	75.52	76.647
Note:		TT	•


6dB Emission Bandwidth Limit: ≥0.5 MHz


The 99% Occupied Bandwidth have not fall into the band 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.


5150-5250MHz:


		ion Bandwidt	.11		
	Spectrum Spectrum				
	Att 40 dB SWT	1 ms • VBW 1 MHz	Mode Sweep		
	IPk Max		M1[1]		18.20 dBm
	20 dBm		D1[1]		70400 GHz 0.08 dB
	10 dBm 01 7.990 dBm		where a second	26	5.6400 MHz
	0 dBm-	Junio P	mon		
	-10 dBm	/		1	
802.11a	-20 dBm			my Rindy	
Lowest Channel	-30 dBm				- m
Lowest Channel	-40 dBm				
	-50 dBm				
	-60 dBm				•
	CF 5.18 GHz	501 pt	s	Span	40.0 MHz
	Marker Type Ref Trc X-val	ue Y-value	Function	Function Result	
		6704 GHz -18.20 dBm 6.64 MHz 0.08 dB			
				4/4	1012021
	Spectrum Spectrum	2 (X)			
		: 0.53 dB • RBW 300 kHz 1 ms • VBW 1 MHz	Mode Sweep		
	e 1Pk Max		M1[1]		18.61 dBm
	20 dBm-		D1[1]		0.01 dB
	10 dBm		04(4)	25	5.5200 MHz
	0 dBm-	hannen	mann		
	-10 dBmM1			P1	
802.11a	-20 dBm 02 -18.770 dBm			mount	m.
Middle Channel	430 dBm-				ny
	-40 dBm				
	-50 dBm				
	-60 dBm				
	CF 5.2 GHz	501 pt	s	Span	40.0 MHz
	Marker Type Ref Trc X-val		Function	Function Result	
	M1 1 5.18	8752 GHz -18.61 dBm 5.52 MHz 0.01 dB		r and on Result	
		0.01 UB	1	44	1012020
	Construct			0/25/80	
		: 0.53 dB 🖷 RBW 300 kHz	V25220 - 14		
	Att 40 dB SWT IPk Max	1 ms 🖝 VBW 1 MHz	Mode Sweep		
			M1[1]	5.22	18.90 dBm 68000 GHz
	20 dBm-		D1[1]		0.85 dB 5.9600 MHz
	10 dBm D1 8.010 dBm	mount	mm		
	0 dBm				
	-10 dBm			h	
802.11a	-20 dBm			- Pin	m
Highest Channel	-30 dBm	+ + +			~
inghost Challict	~40 dBm				
	-50 d8m-				
	-60 dBm				¢
	CF 5.24 GHz Marker	501 pt	s	Span	40.0 MHz
	Type Ref Trc X-val	ue Y-value 2268 GHz -18.90 dBm	Function	Function Result	
	M1 1 5.3				

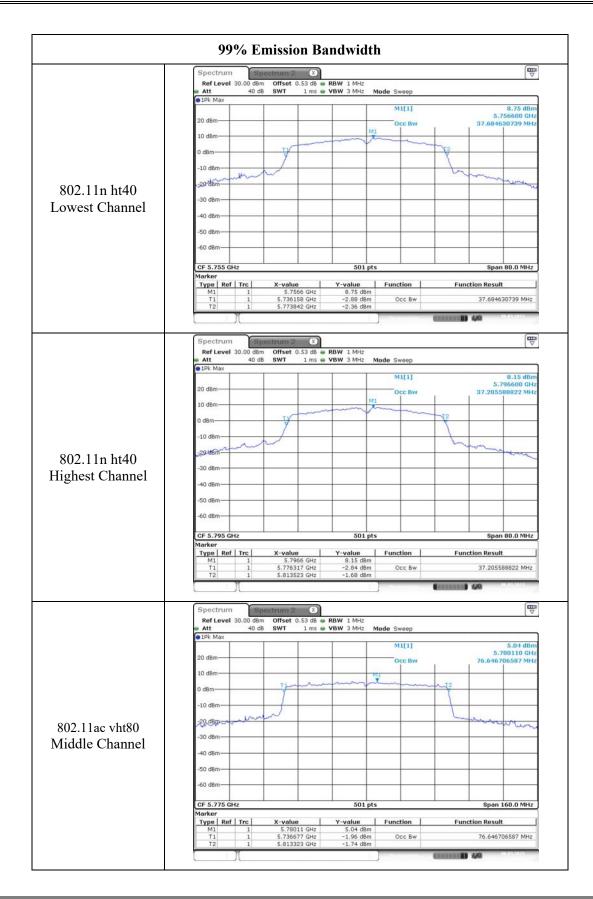


5725-5850MHz:

	Spectrum Spectrum S Ref Level 30.00 dBm Offset 0.53 dB RBW 100 kHz	
	Att 40 dB SWT 1 ms VBW 300 kHz Mode Sweep	
	M1[1]	-1.98 dBn 5.7374000 GH
	20 dBm D1[1]	1.56 dE 15.2000 MH
	10 dBm-01 5.520 dBm-01 5.5200 dBm-01 5.5200 dBm-01 5.5200 dBm-01 5.52000 dBm-01 5.52000 dBm-01 5.5200000000000000000000000000000000000	
	odem 02-0.480 dem Hindraha hade by wheele balance	
	-10 dBm	
802.11a	-10 dem-	strunger .
Lowest Channel	1/36 dBm	MA
	-40 dBm-	-
	-50 dBm-	
	-60 dBm	-
		pan 40.0 MHz
	Marker Type Ref Trc X-value Y-value Function Function Re	sult
	M1 1 5.7374 GHz -1.98 dBm D1 M1 1 15.2 MHz 1.56 dB	
	Spectrum 2 X	E
	Att 40 dB SWT 1 ms VBW 300 kHz Mode Sweep	
	1Pk Max M1[1]	-1.31 dBn
	20 d8mD1[1]	5.7774000 GH: 0.33 dE 15.2000 MH:
	10 dBm 01 4.480 dBm 01 4.480 dBm	13.2000 MH
	0 dBm 02 -1.520 dBm Dutwhat when have been been been been been been been be	_
	-10 dBm-	
802.11a	-20 dem	Ana
Middle Channel	-zaneth	1 Journ My
	-40 dBm-	_
	-50 dBm-	
	-60 dBm-	-
	CF 5.785 GHz 501 pts Sy Marker	pan 40.0 MHz
	Type Ref Trc X-value Y-value Function Function Res M1 1 5.7774 GHz -1.31 dBm	sult
	D1 M1 1 15.2 MHz 0.33 dB	20.012021
	Spectrum Spectrum 2 (X)	(₩ V
	Ref Level 30.00 dBm Offset 0.53 dB ■ RBW 100 kHz ● Att 40 dB SWT 1 ms ■ VBW 300 kHz Mode Sweep ● IPI: Max <td></td>	
	M1[1]	-0.44 dBn 5.8174000 GH
	20 dBm D1[1]	-0.31 dE 15.2000 MH
	10 dBm 01 5.030 dBm 11 0 01 5.030 dBm 11 0 01 5.030 dBm 11 0 01 5.030 dBm	
		-
	-10 dBm	
802.11a	-20 dem	Munny
Highest Channel		SW
	-40 dBm	
	-50 dBm-	
	-60 dBm	
	CF 5.825 GHz 501 pts St Marker	pan 40.0 MHz
	Marker Type Ref Trc X-value Y-value Function Function Res M1 1 5.8174 GHz -0.44 dBm Function Function Function	sult
	M1 1 5.8174 GHz -0.44 dBm D1 M1 1 15.2 MHz -0.31 dB	

Page 49 of 67





Page 51 of 67

Page 52 of 67

4.4 Maximum Conducted Output Power:

Serial Number:	1ZO9	Test Date:	2023/2/13~2023/3/6
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rinka Li	Test Result:	Pass

Environmental Conditions:								
	Temperature: (°C)	22.5~25.9	Relative Humidity: (%)	47.5~60	ATM Pressure: (kPa)	100.2~101.5		

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	USB Wideband Power Sensor	U2021XA	MY54080015	2022/07/15	2023/07/14
eastsheep	Coaxial Attenuator	2W-SMA-JK- 18G	21060301	Each time	N/A
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
HuiXunDa	DC Block	SMA-JK 18G	DCB181108042	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

5150-5250 MHz:

Test Modes	Test Frequency (MHz)	Max. Conducted Average Output Power (dBm)				
		Result	Limit			
	5180	15.55	24			
802.11a	5200	15.42	24			
	5240	15.48	24			
	5180	14.81	24			
802.11n ht20	5200	14.58	24			
	5240	14.7	24			
802 11- 1440	5190	13.8	24			
802.11n ht40	5230	13.78	24			
802.11ac vht80	5210	13.87	24			
Note: The device is a client device.						

The duty cycle factor has been calculated into the test data.

5725-5850 MHz:

Test Modes	Test Frequency (MHz)	Max. Conducted Average Output Power (dBm)			
		Result	Limit		
	5745	14.61	30		
802.11a	5785	14.88	30		
	5825	14.51	30		
	5745	14.42	30		
802.11n ht20	5785	14.35	30		
	5825	14.6	30		
902 11 1440	5755	13.97	30		
802.11n ht40	5795	13.82	30		
802.11ac vht80	5775	13.88	30		
Note: The duty cycle factor has been calculated into the test data.					

4.5 Maximum power spectral density:

Serial Number:	1ZO9	Test Date:	2023/2/13~2023/3/6
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rinka Li	Test Result:	Pass

Environmental Conditions:							
Temperature: (℃)	22.5~25.9	Relative Humidity: (%)	47.5~60	ATM Pressure: (kPa)	100.2~101.5		

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101943	2022-07-25	2023-07-24
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
HuiXunDa	DC Block	SMA-JK 18G	DCB181108042	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

5150-5250 MHz:

Test Modes	Test Frequency	Maximum Power Spectral Density (dBm/MHz)		
	(MHz)	Result	Limit	
	5180	9.48	11	
802.11a	5200	8.89	11	
	5240	9.78	11	
802.11n ht20	5180	8.18	11	
	5200	8.24	11	
	5240	7.49	11	
000 11 1/40	5190	5.07	11	
802.11n ht40	5230	4.7	11	
802.11ac vht80 5210		1.69	11	
Note: The device is a cli		$\frac{1}{2}$ Method SA-3 in K		

The duty cycle variations is exceed $\pm 2\%$, Method SA-3 in KDB 789033 D02 General UNII Test Procedures New Rules v02r01was used for PSD test.

Test Modes	Test Frequency Reading (MHz) (dBm/300kH		Maximum Power Spectral Density (dBm/500kHz)		
			Result	Limit	
	5745	6.36	8.58	30	
802.11a	5785	5.34	7.56	30	
	5825	5.61	7.83	30	
802.11n ht20	5745	5.61	7.83	30	
	5785	4.91	7.13	30	
	5825	5.33	7.55	30	
802.11n ht40	5755	1.88	4.1	30	
	5795	2.25	4.47	30	
802.11ac vht80	5775	-1.47	0.75	30	

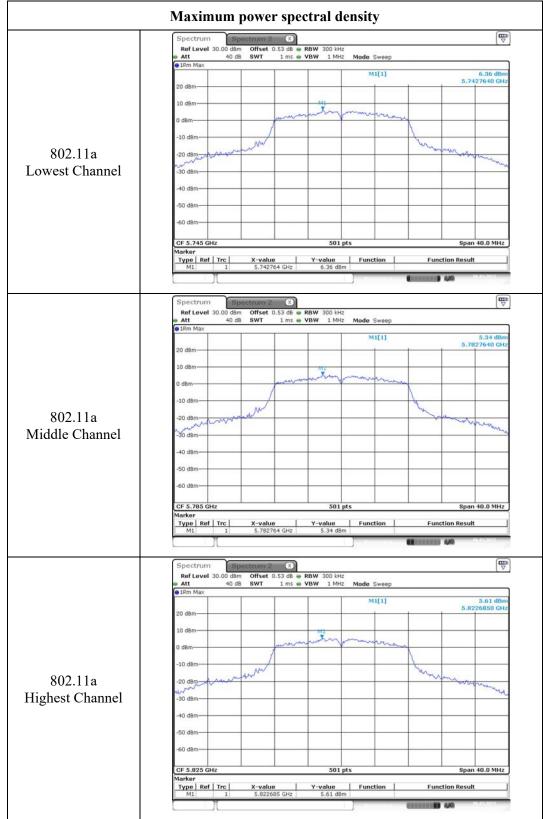
Note:

If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement

The duty cycle variations is exceed $\pm 2\%$, Method SA-3 in KDB 789033 D02 General UNII Test Procedures New Rules v02r01was used for PSD test.

5150-5250MHz:

	Maximum power spectral density
	Spectrum Spectrum (TED) Ref Level 30.00 dBm Offset 0.53 dB ● RBW 1 MHz (∀)
	Att 40 dB SWT 1 ms • VBW 3 MHz Mode Sweep IRm Max
	20 dBm 41[1] 9-48 dBm 5.1792020 GHz
	MI
	10 dam
	0 dBm
902 11	-10 dBm
802.11a	20 start
owest Channel	-30 dBm-
	-40 dBm-
	-50 dBm-
	-60 dBm
	CF 5.18 GHz 501 pts Span 40.0 MHz
	Marker Type Ref Trc X-value Y-value Function Function Result
	M1 1 5.179202 GHz 9.48 dBm
	Spectrum 2 (2)
	Ref Level 30.00 dBm Offset 0.53 dB RBW 1 MHz
	lan Max
802.11a	20 dBm
	10 dBm
	0 dBm
	-10 dBm
	-20 dBm
iddle Channel	
	-40 dBm
	-50 dbm
	-50 dbm
	-ou gem-
	CF 5.2 GHz Span 40.0 MHz Marker
	Type Ref Trc X-value Y-value Function Function Result M1 1 5.197924 GHz 8.89 dBm
	Spectrum 2 3
	Ref Level 30.00 dBm Offset 0.53 dB RBW 1 MHz Att 40 dB SWT 1 ms VBW 3 MHz Mode Sweep
	IRm Max M1[1] 9.78 dBm
	20 dBm 5.2392810 GHz
	10 dBm
	0 dBm
	-10 dBm
802.11a	- Be semanut
ghest Channel	-30 dBm
0	-40 dBm
	-50 dBm
	-60 dBm
	CF 5.24 GHz 501 pts Span 40.0 MHz Marker
	Type Ref Trc X-value Y-value Function Function Result



Page 60 of 67

Page 61 of 67

5725-58<u>50MHz</u>

Page 62 of 67

Page 63 of 67

Page 64 of 67

4.6 Duty Cycle:

Serial Number:	1ZO9	Test Date:	2023/2/13~2023/3/6
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rinka Li	Test Result:	N/A

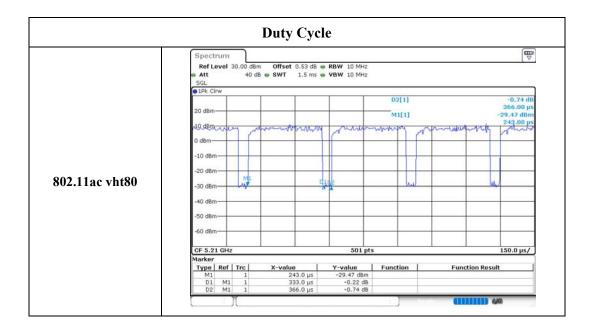
Environmental Conditions:							
Temperature: (°C)	22.5~25.9	Relative Humidity: (%)	47.5~60	ATM Pressure: (kPa)	100.2~101.5		

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101943	2022-07-25	2023-07-24
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
HuiXunDa	DC Block	SMA-JK 18G	DCB181108042	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:


Test Modes	Ton (ms)	Ton+off (ms)	Duty cycle (%)	1/T (Hz)	Duty Cycle Factor (dB)
802.11a	1.41	/	/	709	/
802.11n ht20	1.341	/	/	746	/
802.11n ht40	0.661	/	/	1513	/
802.11ac vht80	0.333	/	/	3003	/

Note:

The duty cycle variations is exceed $\pm 2\%$, Method SA-3 in KDB 789033 D02 General UNII Test Procedures New Rules v02r01was used for PSD test.

		uty Cycle		G			
	Spectrum Image: Comparison of the text of tex						
	Att 40 dB ■ SWT 5 ms ■ VBW 10 MHz SGL						
	1Pk Cirw		02[1]	-0.04 d			
	20 dBm-	and the second second	M1[1]	1.44000 n -28.62 dB			
	10 dBm	manufacture and	the second se	650:00)			
	0 dBm						
	-10 dBm						
802.11a	-20 dBm	90					
002.118	-30 dBm	*					
	-40 dBm						
	-50 dBm						
	CF 5.2 GHz Marker	501	1 pts	500.0 µs/			
	M1 1	-value Y-value 650.0 μs -28.62 d		Function Result			
	D1 M1 1 D2 M1 1	1.41 ms 0.20 1.44 ms -0.04					
			E - Hir				
	Spectrum			Ę			
	Ref Level 30.00 dBm Offset 0.53 dB RBW 10 MHz Att 40 dB SWT 5 ms VBW 10 MHz						
	SGL SGL		2.20125	(a)			
			D2[1]	-1.18 d 1.35600 m			
	20 dBm 10 dBm	monther provider	M1[1]	-28.29 dB			
	0 dBm						
	-10 dBm						
	-20 dBm						
802.11n ht20	-30 dBm	¥					
	-40 dBm						
	-50 dBm						
	-60 dBm						
	CF 5.2 GHz	50:	1 pts	500.0 µs/			
		-value Y-value 474.0 μs -28.29 d	Function	Function Result			
	M1 1 D1 M1 1 D2 M1 1	1.341 ms -0.37 1.356 ms -1.18	dB				
		1000 113					
	Spectrum			Ę			
	Ref Level 30.00 dBm Offset 0.53 dB 🖷 RBW 10 MHz						
	SGL	SWT 2.5 ms 🖷 VBW 10 M	Hz				
	e 1Pk Cirw		D2[1]	0.75 d			
	20 dBm		M1[1]	696.00 ; -29.27 dB Muhanna Jaka004			
	10 all march march	marcher prinderman	hanne announce	minning second			
	0 dBm						
	-10 dBm						
802.11n ht40	-20 dBm -20 dBm -30 dBm	D RP		L.			
	-40 dBm	Χ-					
	-50 dBm						
	-60 dBm						
	CF 5.19 GHz	50	L pts	250.0 µs/			
	Marker		206				
	Type Ref Trc X M1 1 1 1 D1 M1 1 1	-value Y-value 144.0 μs -29.27 d 661.0 μs -1.66	Bm	Function Result			
	D2 M1 1 D2 M1 1	696.0 µs 0.75	dB				

Page 66 of 67

==== END OF REPORT =====