FCC SAR TEST REPORT Report No: STS1611144H01 Issued for XTR S.A.C. Av. Camino Real 1225 Of 201-A San Isidro, Lima, Perú | Product Name: | Feature phone | |----------------|-----------------------------| | Brand Name: | EKS | | Model Name: | Cobra F2U | | Series Model: | N/A | | FCC ID: | 2AGAK-F2U | | | ANSI/IEEE Std. C95.1 | | Test Standard: | FCC 47 CFR Part 2 (2.1093) | | | IEEE 1528: 2013 | | Max. Report | Head:0.717 W/kg | | SAR (1g): | Body:1.078 W/kg | Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test Sample. Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com # **Test Report Certification** Applicant's name: XTR S.A.C. Address : Av. Camino Real 1225 Of 201-A San Isidro, Lima, Perú Manufacture's Name.....: Encorp Limited Tech Park, Nanshan District, Shenzhen, China **Product description** Product name: Feature phone Trademark: EKS Model and/or type reference : Cobra F2U Series Model: N/A ANSI/IEEE Std. C95.1-1992 **Standards** FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013 The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. Date of Test Date (s) of performance of tests 02 Dec. 2016 Test Result..... Pass Testing Engineer : Jan 13 u (Aaron Bu) Technical Manager: (Vita Li) Authorized Signatory: (Bovey Yang) # **Table of Contents** | 1.General Information | 4 # | |---|-------------| | 1.1 EUT Description | 4# | | 1.2 Test Environment | 5# | | 1.3 Test Factory | 5# | | 2.Test Standards And Limits | 6# | | 3. SAR Measurement System | 7 # | | 3.1 Definition Of Specific Absorption Rate (SAR) | 7# | | 3.2 SAR System | 7# | | 4. Tissue Simulating Liquids | 10# | | 4.1 Simulating Liquids Parameter Check | 10# | | 5. SAR System Validation | 12# | | 5.1 Validation System | 12# | | 5.2 Validation Result | 12# | | 6. SAR Evaluation Procedures | 13# | | 7. EUT Test Position | 14# | | 7.1 Define Two Imaginary Lines On The Handset | 14# | | 8. Uncertainty | 16# | | 8.1 Measurement Uncertainty | 16# | | 8.2 System validation Uncertainty | 18# | | 9. Conducted Power Measurement | 20# | | 9.1 Test Result | 20# | | 9.2 Tune-up Power | 23# | | 9.3 SAR Test Exclusions Applied | 24# | | 10. EUT And Test Setup Photo | 25 # | | 10.1 EUT Photo | 25# | | 10.2 Setup Photo | 28# | | 11. SAR Result Summary | 32 # | | 11.1 Head SAR | 32# | | 11.2 Body SAR | 33# | | 11.3 repeated SAR measurement | 33# | | 12. Equipment List | 36# | | Appendix A. System Validation Plots | 37 # | | Appendix B. SAR Test Plots | 45# | | Appendix C. Probe Calibration And Dipole Calibration Report | 53 # | # 1.General Information Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC). 1.1 EUT Description | 1.1 LOT Description | <i>7</i> 11 | | | | | | | | | |---------------------|---------------------------------------|----------------------------------|--------|---|--|--|--|--|--| | Equipment | Feature | e phone | | | | | | | | | Brand Name | EKS | EKS | | | | | | | | | Model No. | Cobra I | Cobra F2U | | | | | | | | | Series Model | N/A | N/A | | | | | | | | | FCC ID | 2AGAK | 2AGAK-F2U | | | | | | | | | Model Difference | N/A | N/A | | | | | | | | | Adaptar | Input: A | nput: AC100-240V,150mA, 50/60 Hz | | | | | | | | | Adapter | Output: | Output: DC 5V, 500mA | | | | | | | | | | | Voltage: 3.7V; | | | | | | | | | Battery | | Charge Limit: 4.2V; | | | | | | | | | | | ty: 800mAh | | | | | | | | | Device Category | Portable | | | | | | | | | | Product stage | Product | tion unit | | | | | | | | | RF Exposure | Conera | l Population / Uncontro | alled | | | | | | | | Environment | Genera | i Fopulation / Oncontro | ліец | | | | | | | | IMEI | | 030449950 | | | | | | | | | Hardware Version | | MB_V1_2 | | | | | | | | | Software Version | N/A | | | | | | | | | | | | 50:824.2~848.8MHz | | | | | | | | | | | 00:1850.2~1909.8MH | | | | | | | | | Frequency Range | | A Band II:1852.4~190 | | | | | | | | | | | A Band V:826.4~846 | .6MHz | | | | | | | | | Bluetoc | oth:2402~ 2480MHz | | | | | | | | | | Band | Mode | Head | Body Worn (W/kg) | | | | | | | | | | (W/kg) | ` | | | | | | | Max. Reported | PCE | GSM 850 | 0.717 | 0.997 | | | | | | | SAR(1g): | PCE | GSM 1900 | 0.502 | 1.078 | | | | | | | (Limit:1.6W/kg) | PCE | WCDMA Band II | 0.247 | 0.797 | | | | | | | | PCE | WCDMA Band V | 0.436 | 0.609 | | | | | | | | DSS | Bluetooth ^{Note} | 0.067 | 0.033 | | | | | | | 1-g Sum SAR | | | 0.784 | 1.111 | | | | | | | FCC Equipment | | ed Portable Transmitte | | | | | | | | | Class | | Spread Spectrum Tr | | | | | | | | | | GSM: GSM Voice; GPRS; EGPRS Class 12; | | | | | | | | | | Operating Mode: | WCDMA:RMC,HSDPA,HSUPA Release 6; | | | | | | | | | | | | oth: V2.1 | | | | | | | | | Antenna | | VCDMA: PIFA Antenn | а | | | | | | | | Specification: | | oole Antenna | | | | | | | | | SIM Card | | t single card | | | | | | | | | Hotspot Mode: | Not Su | | | | | | | | | | DTM Mode: | Not Su | pport | | | | | | | | | Note: | | <u> </u> | | · | | | | | | ### Note: - 1. Bluetooth SAR was estimated - 2. The dual SIM card mobile has 2 SIM slots and supports dual SIM dual standby. The WWAN radio transmission will be enabled by either one SIM at a time (Single active) - 3. After pre-scan two SIM cards power, we found test result of the SIM1 was the worse, so we chose SIM1 card to perform all tests. - 4. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power # 1.2 Test Environment Ambient conditions in the SAR laboratory: | Items | Required | Actual | |-----------------|----------|--------| | Temperature (℃) | 18-25 | 22~23 | | Humidity (%RH) | 30-70 | 55~65 | # 1.3 Test Factory Shenzhen STS Test Services Co., Ltd. Add.: 1/F, Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong, Baoan District, Shenzhen, Guangdong, China FCC Registration No.: 842334; IC Registration No.: 12108A-1 # 2.Test Standards And Limits | No. | Identity | Document Title | |-----|---------------------------|--| | 1 | 47 CFR Part 2 | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations | | 2 | ANSI/IEEE Std. C95.1-1992 | IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz | | 3 | IEEE Std. 1528-2013 | Recommended Practice for Determining the Peak
Spatial-Average Specific Absorption Rate (SAR) in the
Human Head from Wireless Communications Devices:
Measurement Techniques | | 4 | FCC KDB 447498 D01 v06 | Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies | | 5 | FCC KDB 865664 D01 v01r04 | SAR Measurement 100 MHz to 6 GHz | | 6 | FCC KDB 865664 D02 v01r02 | RF Exposure Reporting | | 7 | FCC KDB 941225 D01 v03r01 | SAR Measurement Procedures for 3G Devices | | 8 | FCC KDB 648474 D04 v01r03 | SAR Evaluation Considerations for Wireless Handsets | (A). Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | (B). Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. # **Population/Uncontrolled Environments:** are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. # Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation). # NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg # 3. SAR Measurement System # 3.1 Definition Of Specific Absorption Rate (SAR) SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass
(dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma E^2}{\rho}$$ Where: σ is the conductivity of the tissue, $\boldsymbol{\rho}$ is the mass density of the tissue and E is the RMS electrical field strength. # 3.2 SAR System SATIMO SAR System Diagram: Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items: - Main computer to control all the system - 6 axis robot - Data acquisition system - Miniature E-field probe - Phone holder - Head simulating tissue The following figure shows the system. The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass. ### 3.2.1 Probe For the measurements the Specific Dosimetric E-Field Probe SN 45/15 EPGO281 with following specifications is used - Dynamic range: 0.01-100 W/kg - Tip Diameter: 2.5 mm - Length of Individual Dipoles: 2 mm - Maximum external diameter: 8 mm - Distance between dipoles / probe extremity: 2.7 mm (repeatability better than +/- 1mm) - Probe linearity: 0±2.60%(±0.11 dB) - Axial Isotropy: < 0.25 dB - Spherical Isotropy: < 0.25 dB - Calibration range: 450MHz to 6GHz for head & body simulating liquid. Angle between probe axis (evaluation axis) and surface normal line: less than 30° ### 3.2.2 Phantom For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid. Figure-SN 32/14 SAM115 Figure-SN 32/14 SAM116 # 3.2.3 Device Holder The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. # 4. Tissue Simulating Liquids # 4.1 Simulating Liquids Parameter Check The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528. | Frequency | Bactericide | DGBE | HEC | NaCl | Sucrose | 1,2-Propan
ediol | X100 | Water | Conductivity | Permittivity | |-----------|-------------|-------|-----|------|---------|---------------------|-------|-------|--------------|--------------| | (MHz) | % | % | % | % | % | % | % | % | σ | εr | | 750 | 1 | 1 | 1 | 0.79 | / | 64.81 | 1 | 34.40 | 0.97 | 41.8 | | 835 | 1 | 1 | 1 | 0.79 | / | 64.81 | 1 | 34.40 | 0.97 | 41.8 | | 900 | 1 | / | 1 | 0.79 | 1 | 64.81 | 1 | 34.40 | 0.97 | 41.8 | | 1800 | 1 | 13.84 | 1 | 0.35 | 1 | 1 | 30.45 | 55.36 | 1.38 | 41.0 | | 1900 | 1 | 13.84 | 1 | 0.35 | 1 | 1 | 30.45 | 55.36 | 1.38 | 41.0 | | 2000 | 1 | 7.99 | 1 | 0.16 | 1 | 1 | 19.97 | 71.88 | 1.55 | 41.1 | | 2450 | 1 | 7.99 | 1 | 0.16 | 1 | 1 | 19.97 | 71.88 | 1.88 | 40.3 | | 2600 | 1 | 7.99 | 1 | 0.16 | 1 | 1 | 19.97 | 71.88 | 1.88 | 40.3 | | Tissue dielectric parameters for head and body phantoms | | | | | | | | |---|------|------|----------|------|--|--|--| | Frequency | 3 | r | σ
S/m | | | | | | rioquonoy | Head | Body | Head | Body | | | | | 300 | 45.3 | 58.2 | 0.87 | 0.92 | | | | | 450 | 43.5 | 58.7 | 0.87 | 0.94 | | | | | 900 | 41.5 | 55.0 | 0.97 | 1.05 | | | | | 1450 | 40.5 | 54.0 | 1.20 | 1.30 | | | | | 1800 | 40.0 | 53.3 | 1.40 | 1.52 | | | | | 2450 | 39.2 | 52.7 | 1.80 | 1.95 | | | | | 3000 | 38.5 | 52.0 | 2.40 | 2.73 | | | | | 5800 | 35.3 | 48.2 | 5.27 | 6.00 | | | | # **LIQUID MEASUREMENT RESULTS** Date: 02 Dec. 2016 Ambient condition: Temperature 22.7°C Relative humidity: 49% | Head Simulating Liquid | | Parameters | Target | Measured | Deviation[%] | Limited[%] | |------------------------|---------------|---------------|--------|----------|--------------|------------| | Frequency | Temp.
[°C] | | | | | | | 835 MHz | 22.30 | Permitivity: | 41.50 | 42.31 | 1.95 | ±5 | | 033 IVITZ | | Conductivity: | 0.90 | 0.94 | 4.44 | ± 5 | | 1000 MH- | 22.20 | Permitivity: | 40.00 | 41.20 | 3.00 | ± 5 | | 1900 MHz 22.30 | Conductivity: | 1.40 | 1.45 | 3.57 | ± 5 | | | Body Simulating Liquid | | Danamatana | - . | | D : 1: F0/1 | 1 : '(150/3 | |------------------------|---------------|---------------|------------|----------|--------------|--------------| | Frequency | Temp.
[°C] | Parameters | Target | Measured | Deviation[%] | Limited[%] | | 025 MH- | 835 MHz 22.30 | Permitivity: | 55.20 | 54.12 | -1.96 | ± 5 | | 033 WITZ | | Conductivity: | 0.97 | 0.95 | -2.06 | ± 5 | | 4000 MH- | 00.00 | Permitivity: | 53.30 | 53.21 | -0.17 | ± 5 | | 1900 MHz 22.30 | Conductivity: | 1.52 | 1.50 | -1.32 | ± 5 | | # 5. SAR System Validation # 5.1 Validation System Each SATIMO system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder. The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below. # 5.2 Validation Result Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %. Ambient condition: Temperature 22.7°C Relative humidity: 49% | Freq.(MHz) | Power(mW) | Tested
Value
(W/Kg) | Normalized
SAR
(W/kg) | Target(W/Kg) | Tolerance(%) | Date | |------------|-----------|---------------------------|-----------------------------|--------------|--------------|------------| | 835 Head | 100 | 0.968 | 9.68 | 9.56 | 1.27 | 2016-12-02 | | 835 Body | 100 | 0.941 | 9.41 | 9.56 | -1.62 | 2016-12-02 | | 1900 Head | 100 | 4.007 | 40.07 | 39.7 | 0.92 | 2016-12-02 | | 1900 Body | 100 | 4.161 | 41.61 | 39.7 | 4.81 | 2016-12-02 | Note: The tolerance limit of System validation ±10%. ### 6. SAR Evaluation Procedures The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position - Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface - Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift. - Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. - Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. Area Scan& Zoom Scan: First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. # 7. EUT Test Position This EUT was tested in Right Cheek, Right Titled, Left Cheek, Left Titled, Front Face and Rear Face. # 7.1 Define Two Imaginary Lines On The Handset - (1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset. - (2)The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A. - (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of
the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets. ### Cheek Position - 1)To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE. - 2)To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost ### Title Position - (1)To position the device in the "cheek" position described above. - (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost. Page 15 of 53 Report No.: STS1611144H01 # **Body-worn Position Conditions:** Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset. # 8. Uncertainty # 8.1 Measurement Uncertainty The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. | арргол | cimately the 95% o | onnuence | level using | a coverag | e laciol ol | K-Z. | 1 | | | |--------|---|----------|----------------|-----------|-----------------------|-----------------------|------|-------|------| | NO | Source | Tol(%) | Prob.
Dist. | Div.
k | ci
(1g) | ci
(10g) | 1gUi | 10gUi | Veff | | Measi | urement System | | | | | | | | | | 1 | Probe calibration | 5.8 | Ν | 1 | 1 | 1 | 5.8 | 5.8 | 8 | | 2 | Axial isotropy | 3.5 | R | √3 | (1-cp) ^{1/2} | (1-cp) ^{1/2} | 1.43 | 1.43 | 8 | | 3 | Hemispherical isotropy | 5.9 | R | √3 | $\sqrt{C_p}$ | $\sqrt{C_p}$ | 2.41 | 2.41 | 8 | | 4 | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | 8 | | 5 | Linearity | 4.7 | R | √3 | 1 | 1 | 2.71 | 2.71 | 8 | | 6 | System Detection limits | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | 8 | | 7 | Readout
electronics | 0.5 | N | 1 | 1 | 1 | 0.50 | 0.50 | 8 | | 8 | Response time | 0 | R | √3 | 1 | 1 | 0 | 0 | 8 | | 9 | Integration time | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | 8 | | 10 | Ambient noise | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | 8 | | 11 | Ambient reflections | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | 8 | | 12 | Probe positioner mech. restrictions | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | 8 | | 13 | Probe positioning
with respect to
phantom shell | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | 8 | | 14 | Max.SAR
evaluation | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | 8 | | Test s | ample related | | | | | | | | | | 15 | Device positioning | 2.6 | N | 1 | 1 | 1 | 2.6 | 2.6 | 11 | | | | | Page 17 of 53 Repo | | | ort No.: S1S1611144H01 | | | | |----------------|------------------------------|---------------------------------|--------------------|----------|--|------------------------|----------|--------|---| | | | | | <u> </u> | | Ī | <u> </u> | | | | 16 | Device holder | 3 | N | 1 | 1 | 1 | 3.0 | 3.0 | 7 | | 17 | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.89 | 2.89 | 8 | | Phant | om and set-up | | | | | | | | | | 18 | Phantom
uncertainty | 4.0 | R | √3 | 1 | 1 | 2.31 | 2.31 | 8 | | 19 | Liquid conductivity (target) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | 5 | | 20 | Liquid conductivity (meas) | 4 | N | 1 | 0.23 | 0.26 | 0.92 | 1.04 | 5 | | 21 | Liquid Permittivity (target) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | 8 | | 22 | Liquid Permittivity (meas) | 5.0 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | 8 | | Comb | ined standard | 2 | RSS | U | $_{C} = \sqrt{\sum_{i=1}^{n} C_{i}^{2} U}$ | 2
i | 10.63% | 10.54% | | | Expar
(P=95 | nded uncertainty
5%) | $U = k U_C$, k=2 21.26% 21.08% | | | | | | | | # 8.2 System validation Uncertainty | | | | | | | | 1 | | | |--------|---|--------|----------------|-----------|-----------------------|-----------------------|------|-------|------| | NO | Source | Tol(%) | Prob.
Dist. | Div.
k | ci
(1g) | ci
(10g) | 1gUi | 10gUi | Veff | | Measi | Measurement System | | | | | | | | | | 1 | Probe calibration | 5.8 | N | 1 | 1 | 1 | 5.8 | 5.8 | ∞ | | 2 | Axial isotropy | 3.5 | R | √3 | (1-cp) ^{1/2} | (1-cp) ^{1/2} | 1.43 | 1.43 | ∞ | | 3 | Hemispherical isotropy | 5.9 | R | √3 | $\sqrt{C_p}$ | $\sqrt{C_p}$ | 2.41 | 2.41 | ∞ | | 4 | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | 5 | Linearity | 4.7 | R | √3 | 1 | 1 | 2.71 | 2.71 | ∞ | | 6 | System Detection limits | 1.0 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | 7 | Modulation response | 0 | N | 1 | 1 | 1 | 0 | 0 | ∞ | | 8 | Readout
electronics | 0.5 | N | 1 | 1 | 1 | 0.50 | 0.50 | ∞ | | 9 | Response time | 0 | R | √3 | 1 | 1 | 0 | 0 | ∞ | | 10 | Integration time | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | 11 | Ambient noise | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | 12 | Ambient reflections | 3.0 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | 13 | Probe positioner mech. restrictions | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | 14 | Probe positioning with respect to phantom shell | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | 15 | Max.SAR
evaluation | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | ∞ | | Dipole | 9 | | | | | | | | | | 16 | Deviation of experimental source from | 4 | N | 1 | 1 | 1 | 4.00 | 4.00 | ∞ | | 0 | | | | Page 19 | of 53 | Repo | ort No.: S | STS16111 | 44H01 | |--------------------|---|-----|-----|---------|-------------------------------------|------|------------|----------|-------| | 17 | Input power and
SAR drit
measurement | 5 | R | √3 | 1 | 1 | 2.89 | 2.89 | 8 | | 18 | Dipole Axis to liquid Distance | 2 | R | √3 | 1 | 1 | | | ∞ | | Phantom and set-up | | | | | | | | | | | 19 | Phantom
uncertainty | 4.0 | R | √3 | 1 | 1 | 2.31 | 2.31 | ∞ | | 20 | Uncertainty in SAR correction for deviation(in | 2.0 | N | 1 | 1 | 0.84 | 2 | 1.68 | 8 | | 21 | Liquid conductivity (target) | 2 | N | 1 | 1 | 0.84 | 2.00 | 1.68 | 8 | | 22 | Liquid conductivity (temperature uncertainty) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | 5 | | 23 | Liquid conductivity (meas) | 4 | N | 1 | 0.23 | 0.26 | 0.92 | 1.04 | 5 | | 24 | Liquid Permittivity
(target) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | 80 | | 25 | Liquid Permittivity
(temperature
uncertainty) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | 5 | | 26 | Liquid Permittivity
(meas) | 5.0 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | 8 | | Comb | ined standard | | RSS | U | $C_C = \sqrt{\sum_{i=1}^n C_i^2 U}$ | 2 | 10.15% | 10.05% | | U = k $U_{\scriptscriptstyle C}$,k=2 20.29% 20.10% Expanded uncertainty (P=95%) # 9. Conducted Power Measurement # 9.1 Test Result | | Burst Average Power (dBm) | | | | | | | | |---------------------|---------------------------|---------|-------|----------|--------|--------|--|--| | Band | | GSM 850 | | PCS 1900 | | | | | | Channel | 128 | 190 | 251 | 512 | 661 | 810 | | | | Frequency (MHz) | 824.2 | 836.6 | 848.8 | 1850.2 | 1880.0 | 1909.8 | | | | GSM(GMSK, 1-Slot) | 32.31 | 32.09 | 32.25 | 27.89 | 26.75 | 26.23 | | | | GPRS (GMSK, 1-Slot) | 32.33 | 32.10 | 32.26 | 27.87 | 26.78 | 26.26 | | | | GPRS (GMSK, 2-Slot) | 31.87 | 31.64 | 31.78 | 27.49 | 26.33 | 26.13 | | | | GPRS (GMSK, 3-Slot) | 30.41 | 30.20 | 30.30 | 26.06 | 25.87 | 25.34 | | | | GPRS (GMSK, 4-Slot) | 29.99 | 29.77 | 29.88 | 25.60 | 24.45 | 24.84 | | | | EGPRS(8PSK, 1-Slot) | 32.32 | 32.10 | 32.26 | 27.84 | 26.76 | 26.26 | | | | EGPRS(8PSK, 2-Slot) | 31.90 | 31.66 | 31.77 | 27.42 | 26.31 | 26.26 | | | | EGPRS(8PSK, 3-Slot) | 30.44 | 30.21 | 30.30 | 25.97 | 24.83 | 24.36 | | | | EGPRS(8PSK, 4-Slot) | 29.99 | 29.77 | 29.90 | 25.55 | 24.39 | 24.33 | | | Remark: GPRS, CS4 coding scheme. EGPRS, MCS9 coding scheme. Multi-Slot Class 8, Support Max 4 downlink, 1 uplink, 5 working link Multi-Slot Class 10, Support Max 4 downlink, 2 uplink, 5 working link Multi-Slot Class 12, Support Max 4 downlink, 4 uplink, 5 working link | Band GSM 850 PCS 1900 Channel 128 190 251 512 661 Frequency (MHz) 824.2 836.6 848.8 1850.2 1880.0 GSM(GMSK, 1-Slot) 23.28 23.06 23.22 18.86 17.72 GPRS (GMSK, 1-Slot) 23.30 23.07 23.23 18.84 17.75 GPRS (GMSK, 2-Slot) 25.85 25.62 25.76 21.47 20.31 GPRS (GMSK, 3-Slot) 26.15 25.94 26.04 21.80 21.61 | |
---|--------| | Frequency (MHz) 824.2 836.6 848.8 1850.2 1880.0 GSM(GMSK, 1-Slot) 23.28 23.06 23.22 18.86 17.72 GPRS (GMSK, 1-Slot) 23.30 23.07 23.23 18.84 17.75 GPRS (GMSK, 2-Slot) 25.85 25.62 25.76 21.47 20.31 | | | GSM(GMSK, 1-Slot) 23.28 23.06 23.22 18.86 17.72 GPRS (GMSK, 1-Slot) 23.30 23.07 23.23 18.84 17.75 GPRS (GMSK, 2-Slot) 25.85 25.62 25.76 21.47 20.31 | 810 | | GPRS (GMSK, 1-Slot) 23.30 23.07 23.23 18.84 17.75 GPRS (GMSK, 2-Slot) 25.85 25.62 25.76 21.47 20.31 | 1909.8 | | GPRS (GMSK, 2-Slot) 25.85 25.62 25.76 21.47 20.31 | 17.20 | | | 17.23 | | GPRS (GMSK, 3-Slot) 26.15 25.94 26.04 21.80 21.61 | 20.11 | | | 21.08 | | GPRS (GMSK, 4-Slot) 26.98 26.76 26.87 22.59 21.44 | 21.83 | | EGPRS(8PSK, 1-Slot) 23.29 23.07 23.23 18.81 17.73 | 17.23 | | EGPRS(8PSK, 2-Slot) 25.88 25.64 25.75 21.40 20.29 | 20.24 | | EGPRS(8PSK, 3-Slot) 26.18 25.95 26.04 21.71 20.57 | 20.10 | | EGPRS(8PSK, 4-Slot) 26.98 26.76 26.89 22.54 21.38 | 21.32 | ### Remark - 1. SAR testing was performed on the maximum frame-averaged power mode. - 2. The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = Burst averaged power (1 Tx Slot) – 9.03 dB Frame-averaged power = Burst averaged power (2 Tx Slots) – 6.02 dB Frame-averaged power = Burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Burst averaged power (4 Tx Slots) – 3.01 dB ### **WCDMA** | Band | WC | DMA Bar | nd V | W | CDMA Ban | d II | |-----------------|-------|---------|-------|--------|----------|--------| | Channel | 4132 | 4183 | 4233 | 9262 | 9400 | 9538 | | Frequency (MHz) | 826.4 | 836.6 | 846.6 | 1852.4 | 1880.0 | 1907.6 | | AMR 12.2Kbps | 21.91 | 21.23 | 21.90 | 20.53 | 20.60 | 20.52 | | RMC 12.2Kbps | 22.23 | 22.01 | 22.32 | 20.88 | 21.07 | 20.96 | | HSDPA Subtest-1 | 22.28 | 21.99 | 22.21 | 20.98 | 20.98 | 20.85 | | HSDPA Subtest-2 | 21.88 | 21.57 | 21.86 | 20.58 | 20.58 | 20.55 | | HSDPA Subtest-3 | 21.49 | 21.12 | 21.48 | 20.24 | 20.16 | 20.05 | | HSDPA Subtest-4 | 21.12 | 20.64 | 20.99 | 19.78 | 19.73 | 19.57 | | HSUPA Subtest-1 | 22.20 | 21.92 | 21.90 | 20.98 | 21.01 | 20.50 | | HSUPA Subtest-2 | 21.33 | 20.92 | 20.96 | 20.06 | 20.10 | 19.52 | | HSUPA Subtest-3 | 21.21 | 20.46 | 20.54 | 19.92 | 19.61 | 19.17 | | HSUPA Subtest-4 | 20.89 | 20.07 | 20.09 | 19.61 | 19.18 | 18.86 | | HSUPA Subtest-5 | 19.42 | 18.60 | 18.63 | 18.16 | 17.74 | 17.45 | According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table. Table 6.1A: UE maximum output power with HS-DPCCH and E-DCH | UE Transmit Channel Configuration | CM(db) | MPR(db) | |---|-----------|-------------| | For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH | 0≤ CM≤3.5 | MAX(CM-1,0) | Note: CM=1 for $\beta c/\beta d=12/15$, $\beta hs/\beta c=24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH). When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level. The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX AGC in the transceiver (PA) device. The end effect is that the DUT output power is identical to the case where there is no MPR in the device. # **Bluetooth** | Mode | Channel Number | Frequency (MHz) | Average Power
(dBm) | |-------------|----------------|-----------------|------------------------| | | 0 | 2402 | 1.035 | | GFSK(1Mbps) | 39 | 2441 | 1.322 | | | 78 | 2480 | 1.647 | # 9.2 Tune-up Power | Mode | GSM850(AVG) | GSM1900(AVG) | |---------------|-------------|--------------| | GSM/PCS | 32±1dBm | 27±1dBm | | GPRS (1 Slot) | 32±1dBm | 27±1dBm | | GPRS (2 Slot) | 31±1dBm | 27±1dBm | | GPRS (3 Slot) | 30±1dBm | 26±1dBm | | GPRS (4 Slot) | 29±1dBm | 25±1dBm | | EDGE (1 Slot) | 32±1dBm | 27±1dBm | | EDGE (2 Slot) | 31±1dBm | 27±1dBm | | EDGE (3 Slot) | 30±1dBm | 25±1dBm | | EDGE (4 Slot) | 29±1dBm | 25±1dBm | | Mode | WCDMA Band | WCDMA Band | |-----------------|------------|------------| | iviode | V(AVG) | II(AVG) | | AMR | 21±1dBm | 20±1dBm | | RMC | 22±1dBm | 21±1dBm | | HSDPA Subtest-1 | 22±1dBm | 20±1dBm | | HSDPA Subtest-2 | 21±1dBm | 20±1dBm | | HSDPA Subtest-3 | 21±1dBm | 20±1dBm | | HSDPA Subtest-4 | 21±1dBm | 19±1dBm | | HSUPA Subtest-1 | 22±1dBm | 21±1dBm | | HSUPA Subtest-2 | 21±1dBm | 20±1dBm | | HSUPA Subtest-3 | 21±1dBm | 19±1dBm | | HSUPA Subtest-4 | 20±1dBm | 19±1dBm | | HSUPA Subtest-5 | 19±1dBm | 18±1dBm | | Mode | BT(AVG) | |------|---------| | GFSK | 1±1dBm | # 9.3 SAR Test Exclusions Applied Per FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHZ)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where: - f(GHZ) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. $$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$ Based on the maximum conducted power of **Bluetooth Head** (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth Head SAR was not required; $[(1.585/5)^* \sqrt{2.480}] = 0.50 < 3.0$. Based on the maximum conducted power of **Bluetooth Body** (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth Body SAR was not required; $[(1.585/10)^* \sqrt{2.480}] = 0.25 < 3.0$. # 10. EUT And Test Setup Photo # 10.1 EUT Photo Back side Top side Bottom side # Left side Right side Right Touch Right Tilt # Left Touch Left Tilt # Body Front side(separation distance is 10mm) Body Back side(separation distance is 10mm) # 11. SAR Result Summary # 11.1 Head SAR | Band | Mode | Test Position | Ch. | Result 1g
(W/Kg) | Power
Drift(%) | Max.Turn-up
Power(dBm) | Meas.Output
Power(dBm) | Scaled
SAR
(W/Kg) | Meas.
No. | |---------|-------|---------------|------|---------------------|-------------------|---------------------------|---------------------------|--|--------------------| | | | Right Cheek | 128 | 0.612 | -3.75 | 33 | 32.31 | 0.717 | 1 | | CCM 050 | Vaina | Right Tilt | 128 | 0.307 | -3.52 | 33 | 32.31 | 0.360 | / | | GSM 850 | Voice | Left Cheek | 128 | 0.523 | -4.92 | 33 | 32.31 | 0.613 | 1 | | | | Left Tilt | 128 | 0.307 | -4.35 | 33 | 32.31 | 0.360 | / | | | | Right Cheek | 512 | 0.489 | -2.92 | 28 | 27.89 | 0.502 | 3 | | GSM1900 | Voice | Right Tilt | 512 | 0.322 | 0.32 | 28 | 27.89 | 0.330 | / | | GSW1900 | voice | Left Cheek | 512 | 0.464 | 0.29 | 28 | 27.89 | 0.476 | No. 1 / / / 3 | | | | Left Tilt | 512 | 0.377 | -4.39 | 28 | 27.89 | 0.387 | / | | | | Right Cheek | 9400 | 0.118 | -3.86 | 22 | 21.07 | 0.146 | / | | WCDMA | RMC | Right Tilt | 9400 | 0.040 | -3.08 | 22 | 21.07 | (W/Kg) No. 0.717 1 0.360 / 0.613 / 0.360 / 0.502 3 0.330 / 0.476 / 0.387 / 0.146 / 0.050 / 0.247 5 0.043 / 0.436 7 0.234 / 0.393 / | / | | Band II | RIVIC | Left Cheek | 9400 | 0.199 | -3.63 | 22 | 21.07 | 0.247 | 5 | | | | Left Tilt | 9400 | 0.035 | -1.50 | 22 | 21.07 | 0.043 | / | | | | Right Cheek | 4183 | 0.373 | -3.29 | 23 | 22.32 | 0.436 | 7 | | WCDMA | RMC | Right Tilt | 4183 | 0.200 | -2.63 | 23 | 22.32 | 0.234 | / | | Band V | KIVIC | Left Cheek | 4183 | 0.336 | -3.06 | 23 | 22.32 | 0.393 | / | | | | Left Tilt | 4183 | 0.173 | -0.71 | 23 | 22.32 | 0.202 | / | # Note: ^{1.} Per KDB865664 D01, Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg 11.2 Body SAR | Band | Mode | Test Position | Ch. | Result 1g
(W/Kg) | Power
Drift(%) | Max.Turn-up
Power(dBm) | Meas.Output
Power(dBm) | Scaled
SAR
(W/Kg) | Meas.
No. | |-----------
-------------|---------------|------|---------------------|-------------------|---------------------------|---------------------------|-------------------------|--------------| | | | Front side | 128 | 0.415 | -1.80 | 30 | 29.99 | 0.416 | 1 | | GSM 850 | GPRS | Back side | 128 | 0.733 | -1.98 | 30 | 29.99 | 0.735 | 1 | | G3IVI 630 | Data-4 Slot | Back side | 190 | 0.827 | -2.45 | 30 | 29.99 | 0.829 | 1 | | | | Back side | 251 | 0.995 | -3.73 | 30 | 29.99 | 0.997 | 2 | | | | Front side | 512 | 0.480 | 1.60 | 26 | 25.60 | 0.526 | 1 | | GSM1900 | GPRS | Back side | 512 | 0.914 | -1.53 | 26 | 25.60 | 1.002 | 1 | | GSW1900 | Data-4 Slot | Back side | 661 | 0.983 | -0.52 | 26 | 25.60 | 1.078 | 2 | | | | Back side | 810 | 0.946 | 1.00 | 26 | 25.60 | 1.037 | 1 | | WCDMA | RMC | Front side | 9400 | 0.136 | -1.66 | 22 | 21.07 | 0.168 | 1 | | Band II | RIVIC | Back side | 9400 | 0.643 | -2.48 | 22 | 21.07 | 0.797 | 6 | | WCDMA | RMC | Front side | 4233 | 0.275 | -0.61 | 23 | 22.32 | 0.322 | 1 | | Band V | NIVIC | Back side | 4233 | 0.521 | -1.37 | 23 | 22.32 | 0.609 | 8 | ### Note: - 1. The test separation of all above table is 10mm. - 2. Per KDB865664 D01, Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg. Repeated SAR | Band | Test
Position | Ch. | Result
1g
(W/Kg) | Power
Drift(%) | Max.Turn-up
Power(dBm) | Meas.Output
Power(dBm) | Scaled
SAR
(W/Kg) | Meas.
No. | |----------|------------------|-----|------------------------|-------------------|---------------------------|---------------------------|-------------------------|--------------| | GSM 850 | Back
Side | 251 | 0.937 | -2.58 | 30 | 29.99 | 0.939 | 1 | | GSM 1900 | Back
Side | 661 | 0.921 | -1.46 | 26 | 25.60 | 1.010 | 1 | # 11.3 repeated SAR measurement | Band | Test
Position | Ch. | Original
Measured
SAR
1g(mW/g) | 1 st
Repeated
SAR 1g | Ratio | Original
Measured
SAR
1g(mW/g) | 2nd
Repeated
SAR 1g | Ratio | |----------|------------------|-----|---|----------------------------|-------|---|---------------------------|-------| | GSM 850 | Back
Side | 251 | 0.995 | 0.937 | 1.06 | - | - | - | | GSM 1900 | Back
Side | 661 | 0.983 | 0.921 | 1.07 | | | | ### Note: - 1. Per KDB 865664 D01V01,for each frequency band ,repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg. - 2. Per KDB 865664 D01V01,if the ratio of largest to smallest SAR for the original and first repeated measurement is ≤1.2and the measured SAR<1.45W/Kg, only one repeated measurement is required. - 3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is ≥ 1.20 or when the original or repeated measurement is ≥ 1.45W/Kg - 4. The ratio is the difference in percentage between original and repeated measured SAR. ### **Simultaneous Multi-band Transmission Evaluation:** Application Simultaneous Transmission information: | Position | Simultaneous state | |----------|----------------------| | | 1. GSM + Bluetooth | | Head | 2. WCDMA + Bluetooth | | | 1. GSM + Bluetooth | | Body | 2. WCDMA + Bluetooth | ### NOTE: - 1. For simultaneous transmission at head and body exposure position, 2 transmitters simultaneous transmission was the worst state. - 2. Based upon KDB 447498 D01 v05, BT SAR is excluded as below table. - 3. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation. - 4. For minimum test separation distance \leq 50mm,Bluetooth standalone SAR is excluded according to [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm) $\cdot [\sqrt{f} (GHz)/x] \leq 3.0$ for 1-g SAR and \leq 7.5 for 10-g extremity SAR - 5. The reported SAR summation is calculated based on the same configuration and test position. - 6. KDB 447498 / 4.3.2 (2) when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: - a) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[\sqrt{f} (GHz) /x] W/kg for test separation distances 50 mm; Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - b) 0.4W/Kg for 1-g SAR and 1.0W/Kg for 10-g SAR, when the separation distance is >50mm. | Estimated SAR | | Maximum Power | | Antenna | Frequency(GHz) | Stand alone | | |---------------|------|---------------|-------|-------------|----------------|----------------|--| | | | dBm | mW | to user(mm) | , | SAR(1g) [W/kg] | | | DT | Head | | 1 505 | 5 | 2.480 | 0.067 | | | ВТ | Body | 2 | 1.585 | 10 | 2.480 | 0.033 | | Report No.: STS1611144H01 | Simultaneous Mode | Position | Mode | Max. 1-g SAR
(W/kg) | 1-g Sum SAR
(W/kg) | | | | |------------------------------------|-----------------|-----------|------------------------|-----------------------|--|--|--| | | Head | GSM Voice | 0.717 | 0.784 | | | | | GSM + Bluetooth WCDMA + Bluetooth | пеац | Bluetooth | 0.067 | 0.764 | | | | | | Dody | GSM Data | | | | | | | | Body | Bluetooth | 0.033 | 0.503 | | | | | | WCDMA RMC 0.436 | | 0.436 | 0.500 | | | | | | пеац | Bluetooth | Bluetooth 0.067 0.503 | | | | | | | Pody | WCDMA RMC | 0.797 | 0.930 | | | | | | Body | Bluetooth | 0.033 | 0.830 | | | | Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR-1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR-1g 1.6 W/kg), SAR test exclusion is determined by the SPLSR. # 12. Equipment List | Kind of Equipment | Manufacturer | Type No. | Serial No. | Last Calibration | Calibrated Until | |-----------------------------|--------------|---|--------------------------|------------------|------------------| | 835MHz Dipole | SATIMO | SID835 | SN 30/14
DIP0G835-332 | 2014.09.01 | 2017.08.31 | | 1900MHz Dipole | SATIMO | SID1900 | SN 30/14
DIP1G900-333 | 2014.09.01 | 2017.08.31 | | E-Field Probe | MVG | SSE2 | SN 45/15
EPGO281 | 2015.12.10 | 2016.12.09 | | Antenna | SATIMO | ANTA3 | SN 07/13
ZNTA52 | 2014.09.01 | 2017.08.31 | | Waveguide | SATIMO | SWG5500 | SN 13/14
WGA32 | 2014.09.01 | 2017.08.31 | | Phantom1 | SATIMO | SAM | SN 32/14
SAM115 | N/A | N/A | | Phantom2 | SATIMO | SAM | SN 32/14
SAM116 | N/A | N/A | | SAR TEST BENCH | SATIMO | GSM and
WCDMA
mobile phone
POSITIONNIN
G SYSTEM | SN 32/14
MSH97 | N/A | N/A | | SAR TEST BENCH | SATIMO | LAPTOP
POSITIONNIN
G SYSTEM | SN 32/14
LSH29 | N/A | N/A | | Dielectric Probe Kit | SATIMO | SCLMP | SN 32/14
OCPG52 | 2016.08.30 | 2017.08.29 | | Multi Meter | Keithley | Multi Meter
2000 | 4050073 | 2016.10.23 | 2017.10.22 | | Signal Generator | Agilent | N5182A | MY50140530 | 2016.10.23 | 2017.10.22 | | Power Meter | R&S | NRP | 100510 | 2016.10.23 | 2017.10.22 | | Power Meter | HP | EPM-442A | GB37170267 | 2016.10.23 | 2017.10.22 | | Power Sensor | R&S | NRP-Z11 | 101919 | 2016.10.09 | 2017.10.08 | | Power Sensor | HP | 8481A | 2702A65976 | 2016.10.09 | 2017.10.08 | | Network Analyzer | Agilent | 5071C | EMY46103472 | 2015.12.12 | 2016.12.11 | | Attenuator 1 | PE | PE7005-10 | N/A | 2016.10.23 | 2017.10.22 | | Attenuator 2 | PE | PE7005-3 | N/A | 2016.10.23 | 2017.10.22 | | Attenuator 3 | Woken | WK0602-XX | N/A | 2015.12.12 | 2016.12.11 | | Dual Directional
Coupler | Agilent | 778D | 50422 | 2016.10.23 | 2017.10.22 | ## **Appendix A. System Validation Plots** #### System Performance Check Data (835MHz Head) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2016-12-02 Measurement duration: 13 minutes 27 seconds #### **Experimental conditions** | Phantom | Validation plane | |-----------------------------------|------------------| | Device Position | - | | Band | 835MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 835MHz | | Relative permittivity (real part) | 41.00 | | Relative permittivity | 18.72 | | Conductivity (S/m) | 0.86 | | Power drift (%) | 0.45 | | Ambient Temperature: | 22.7°C | | Liquid Temperature: | 22.3°C | | Probe | SN 45/15 EPGO281 | | ConvF: | 1.78 | | Crest factor: | 1:1 | Maximum location: X=1.00, Y=0.00 SAR Peak: 1.40 W/kg | SAR 10g (W/Kg) | 0.655627 | |----------------|----------| | SAR 1g (W/Kg) | 0.967982 | ### System Performance Check Data (835MHz Body) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2016-12-02 Measurement duration: 14 minutes 13 seconds #### Experimental conditions. | Probe | | |-----------------------------------|------------------| | Phantom | Validation plane | | Device Position | - | | Band | 835MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 835MHz | | Relative permittivity (real part) | 54.70 | | Relative permittivity | 21.408187 | | Conductivity (S/m) | 0.98 | | Power drift (%) | 0.090000 | | Ambient Temperature: | 22.7°C | | Liquid Temperature: | 22.3°C | | Probe | SN 45/15 EPGO281 | | ConvF: | 1.85 | | Crest factor: | 1:1 | Maximum location: X=1.00, Y=0.00 SAR Peak: 1.45 W/kg | SAR 10g (W/Kg) | 0.613913 | |----------------|----------| | SAR 1g (W/Kg) | 0.941052 | #### System Performance Check Data (1900MHz Head) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2016-12-02 Measurement duration: 14
minutes 12 seconds ### Experimental conditions. | Phantom | Validation plane | |-----------------------------------|------------------| | Device Position | - | | Band | 1900MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 1900MHz | | Relative permittivity (real part) | 39.50 | | Relative permittivity | 13.26 | | Conductivity (S/m) | 1.43 | | Power drift (%) | 0.47 | | Ambient Temperature: | 22.7°C | | Liquid Temperature: | 22.3°C | | Probe | SN 45/15 EPGO281 | | ConvF: | 2.10 | | Crest factor: | 1:1 | Maximum location: X=1.00, Y=0.00 SAR Peak: 5.80 W/kg | SAR 10g (W/Kg) | 2.064515 | |----------------|----------| | SAR 1g (W/Kg) | 4.006632 | # System Performance Check Data (1900MHz Body) Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2016-12-02 Measurement duration: 14 minutes 46 seconds ### Experimental conditions. | Device Position | - | |-----------------------------------|------------------| | Band | 1900MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 1900 | | Relative permittivity (real part) | 52.31 | | Relative permittivity | 12.87531 | | Conductivity (S/m) | 1.5 | | Power drift (%) | 0.37 | | Ambient Temperature: | 22.7°C | | Liquid Temperature: | 22.3°C | | Probe | SN 45/15 EPGO281 | | ConvF: | 2.16 | | Crest factor: | 1:1 | Maximum location: X=2.00, Y=2.00 SAR Peak: 5.30 W/kg | SAR 10g (W/Kg) | 2.383383 | |----------------|----------| | SAR 1g (W/Kg) | 4.160721 | # **Appendix B. SAR Test Plots** # Plot 1: DUT: Feature phone; EUT Model: Cobra F2U | Test Date | 2016-12-02 | |-----------------------------------|--| | Ambient Temperature(°C) | 22.70 | | Liquid Temperature(°C) | 22.30 | | Probe | SN 45/15 EPGO281 | | ConvF | 1.78 | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | ZoomScan | 5x5x7,dx=8mm dy=8mm dz=5mm,
Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Phantom | Right head | | Device Position | Cheek | | Band | GSM850 | | Channels | Low | | Signal | TDMA (Crest factor: 8.32) | | Frequency (MHz) | 824.2 | | Relative permittivity (real part) | 41.5 | | Conductivity (S/m) | 0.90 | | Variation (%) | -3.75 | | | | Maximum location: X=-54.00, Y=-31.00 SAR Peak: 0.84 W/kg | SAR 10g (W/Kg) | 0.411012 | |----------------|----------| | SAR 1g (W/Kg) | 0.612270 | ## Plot 2: DUT: Feature phone; EUT Model: Cobra F2U | Test Date | 2016-12-02 | |-----------------------------------|--| | Ambient Temperature(°C) | 22.70 | | Liquid Temperature(°C) | 22.30 | | Probe | SN 45/15 EPGO281 | | ConvF | 1.85 | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | ZoomScan | 5x5x7,dx=8mm dy=8mm dz=5mm,
Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Body back side | | Band | GPRS 850 | | Channels | High | | Signal | Duty Cycle: 1:2.00 (Crest factor: 2.0) | | Frequency (MHz) | 848.8 | | Relative permittivity (real part) | 55.20 | | Conductivity (S/m) | 0.97 | | Variation (%) | -3.73 | Maximum location: X=-2.00, Y=-31.00 SAR Peak: 1.40 W/kg | SAR 10g (W/Kg) | 0.668604 | |----------------|----------| | SAR 1g (W/Kg) | 0.995421 | ### Plot 3: DUT: Feature phone; EUT Model: Cobra F2U | Test Date | 2016-12-02 | |-----------------------------------|-------------------------------------| | Ambient Temperature(°C) | 22.70 | | Liquid Temperature(°C) | 22.30 | | Probe | SN 45/15 EPGO281 | | ConvF | 2.10 | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | ZaamSaan | 5x5x7,dx=8mm dy=8mm dz=5mm, | | ZoomScan | Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Phantom | Right head | | Device Position | Cheek | | Band | GSM1900 | | Channels | Low | | Signal | TDMA (Crest factor: 8.32) | | Frequency (MHz) | 1850.2 | | Relative permittivity (real part) | 40.00 | | Conductivity (S/m) | 1.40 | | Variation (%) | -2.92 | | | | Maximum location: X=-57.00, Y=-32.00 SAR Peak: 0.74 W/kg | SAR 10g (W/Kg) | 0.280801 | |----------------|----------| | SAR 1g (W/Kg) | 0.489274 | Plot 4: DUT: Feature phone; EUT Model: Cobra F2U | Test Date | 2016-12-02 | |-----------------------------------|--| | Ambient Temperature(°C) | 22.70 | | Liquid Temperature(°C) | 22.30 | | Probe | SN 45/15 EPGO281 | | ConvF | 2.16 | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | ZoomScan | 5x5x7,dx=8mm dy=8mm dz=5mm,
Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Body back side | | Band | GPRS 1900 | | Channels | Middle | | Signal | Duty Cycle: 1:2.00 (Crest factor: 2.0) | | Frequency (MHz) | 1880.0 | | Relative permittivity (real part) | 53.30 | | Conductivity (S/m) | 1.52 | | Variation (%) | -0.52 | | | | Maximum location: X=-6.00, Y=-1.00 SAR Peak: 1.54 W/kg | | <u> </u> | |----------------|----------| | SAR 10g (W/Kg) | 0.537581 | | SAR 1g (W/Kg) | 0.982797 | Plot 5: DUT: Feature phone; EUT Model: Cobra F2U | Test Date | 2016-12-02 | |-----------------------------------|--| | Ambient Temperature(°C) | 22.70 | | Liquid Temperature(°C) | 22.30 | | Probe | SN 45/15 EPGO281 | | ConvF | 2.10 | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | ZoomScan | 5x5x7,dx=8mm dy=8mm dz=5mm,
Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Phantom | Left head | | Device Position | Cheek | | Band | WCDMA II | | Channels | Middle | | Signal | WCDMA (Crest factor: 1.0) | | Frequency (MHz) | 1880.0 | | Relative permittivity (real part) | 40.00 | | Conductivity (S/m) | 1.40 | | Variation (%) | -3.63 | Maximum location: X=-56.00, Y=-42.00 SAR Peak: 0.31 W/kg | SAR 10g (W/Kg) | 0.106115 | |----------------|----------| | SAR 1g (W/Kg) | 0.198859 | Plot 6: DUT: Feature phone; EUT Model: Cobra F2U | Test Date | 2016-12-02 | |-----------------------------------|-------------------------------------| | Ambient Temperature(°C) | 22.70 | | Liquid Temperature(°C) | 22.30 | | Probe | SN 45/15 EPGO281 | | ConvF | 2.16 | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | ZoomScan | 5x5x7,dx=8mm dy=8mm dz=5mm, | | Zoomscan | Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Body back side | | Band | WCDMA II | | Channels | Middle | | Signal | WCDMA (Crest factor: 1.0) | | Frequency (MHz) | 1880.0 | | Relative permittivity (real part) | 39.71 | | Conductivity (S/m) | 1.40 | | Variation (%) | -2.48 | Maximum location: X=-1.00, Y=-1.00 SAR Peak: 1.09 W/kg | SAR 10g (W/Kg) | 0.308115 | |----------------|----------| | SAR 1g (W/Kg) | 0.643088 | Plot 7: DUT: Feature phone; EUT Model: Cobra F2U | Test Date | 2016-12-02 | |-----------------------------------|--| | Ambient Temperature(°C) | 22.70 | | Liquid Temperature(°C) | 22.30 | | Probe | SN 45/15 EPGO281 | | ConvF | 1.78 | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | ZoomScan | 5x5x7,dx=8mm dy=8mm dz=5mm,
Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Phantom | Right head | | Device Position | Cheek | | Band | WCDMA V | | Channels | High | | Signal | WCDMA (Crest factor: 1.0) | | Frequency (MHz) | 846.6 | | Relative permittivity (real part) | 42.27 | | Conductivity (S/m) | 0.91 | | Variation (%) | -3.29 | Maximum location: X=-45.00, Y=-26.00 SAR Peak: 0.50 W/kg | SAR 10g (W/Kg) | 0.249708 | |----------------|----------| | SAR 1g (W/Kg) | 0.373217 | Plot 8: DUT: Feature phone; EUT Model: Cobra F2U | Test Date | 2016-12-02 | |-----------------------------------|-------------------------------------| | Ambient Temperature(°C) | 22.70 | | Liquid Temperature(°C) | 22.30 | | Probe | SN 45/15 EPGO281 | | ConvF | 1.85 | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | ZoomSoon | 5x5x7,dx=8mm dy=8mm dz=5mm, | | ZoomScan | Complete/ndx=8mm dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Body back side | | Band | WCDMA V | | Channels | High | | Signal | WCDMA (Crest factor: 1.0) | | Frequency (MHz) | 846.6 | | Relative permittivity (real part) | 55.5 | | Conductivity (S/m) | 0.96 | | Variation (%) | -1.37 | | | | Maximum location: X=-7.00, Y=-32.00 SAR Peak: 0.70 W/kg | 27 ii 1 | | | |---------|----------------|----------| | | SAR 10g (W/Kg) | 0.352005 | | | SAR 1g (W/Kg) | 0.520527 | # Appendix C. Probe Calibration And Dipole Calibration Report Refer the appendix Calibration Report.