FCC TEST REPORT

FCC ID: 2BM88-W8A

Report No. : SSP25040343-1E

Dongguan Yicheng Shengda Information

Applicant: Technology Co., Ltd.

Product Name : ELECTRIC SCOOTER

Model Name : W8

Test Standard: FCC Part 15.247

Date of Issue : 2025-04-24

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 33

Test Report Basic Information

Applicant..... Dongguan Yicheng Shengda Information Technology Co., Ltd. Room 301, No. 28, Houshan Road, Nanchongkou, Humen Town, Dongguan City, Address of Applicant..... Guangdong Province, China Manufacturer..... Dongguan Yicheng Shengda Information Technology Co., Ltd. Room 301, No. 28, Houshan Road, Nanchongkou, Humen Town, Dongguan City, Address of Manufacturer....: Guangdong Province, China Product Name..... ELECTRIC SCOOTER Brand Name..... Main Model..... W8 Series Models..... FCC Part 15 Subpart C KDB 558074 D01 15.247 Meas Guidance v05r02 **Test Standard**.....: ANSI C63.10-2013 Test Result..... PASS (Lorzix Luo) (Lieber Ouyang) Authorized Signatory..... (Lahm Peng)

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

FCC Test Report Page 2 of 33

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	6
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	11
3.1 Standard and Limit	11
3.2 Test Result	11
4. Conducted Emissions	12
4.1 Standard and Limit	12
4.2 Test Procedure	12
4.3 Test Data and Results	
5. Radiated Emissions	16
5.1 Standard and Limit	16
5.2 Test Procedure	
5.3 Test Data and Results	18
6. Band-edge Emissions(Radiated)	22
6.1 Standard and Limit	
6.2 Test Procedure	22
6.3 Test Data and Results	22
7. Maximum Peak Conducted Output Power	24
7.1 Standard and Limit	24
7.2 Test Procedure	24
7.3 Test Data and Results	24
8. Occupied Bandwidth	26
8.1 Standard and Limit	26
8.2 Test Procedure	26
8.3 Test Data and Results	26
9. Maximum Power Spectral Density	28
9.1 Standard and Limit	28
9.2 Test Procedure	28
9.3 Test Data and Results	28
10. Band-edge Emission(Conducted)	30
10.1 Standard and Limit	30
10.2 Test Procedure	30
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	32
11.1 Standard and Limit	32
11.2 Test Procedure	
11.3 Test Data and Results	

Report No: SSP25040343-1E

Revision	Issue Date	Description	Revised By
V1.0	2025-04-24	Initial Release	Lahm Peng

FCC Test Report Page 4 of 33

1. General Information

1.1 Product Information

Product Name:	ELECTRIC SCOOTER	
Trade Name:	/	
Main Model:	W8	
Series Models:	/	
Rated Voltage:	Nominal Voltage:DC 48V for Battery	
nateu voltage.	Charging Voltage:DC 54.6V for Adapter	
	Manufacturer:Shenzhen Fuyuandian Power Co.,Ltd	
Power Adapter:	Model:FY1505462000	
rower Adapter.	Input: 100-240V~ 50/60Hz 2.5A	
	Output: DC54.6V 2A	
Battery:	DC 48V, 14Ah/672Wh	
Test Sample No:	SSP25040343-1	
Hardware Version:	V1.0	
Software Version:	V1.0	

Report No: SSP25040343-1E

Note 1: The test data is gathered from a production sample, provided by the manufacturer.

Note 2: The color of appearance and model name of series models listed are different from the main model, but the circuit and the electronic construction are the same, declared by the manufacturer.

Wireless Specification			
Wireless Standard:	Bluetooth BLE		
Operating Frequency:	2402MHz ~ 2480MHz		
RF Output Power:	2.78dBm (Conducted)		
Number of Channel:	40		
Channel Separation:	2MHz		
Modulation:	GFSK		
Antenna Gain:	1.4dBi		
Type of Antenna:	PCB Antenna		
Type of Device:	□ Portable Device □ Mobile Device □ Modular Devi		

FCC Test Report Page 5 of 33

List of Test Mo	odes					
Test Mode	Description		Remark			
TM1	BI	LE_1Mbps		2402/2440/2480MHz		
		-				
List and Detail	ls of Auxiliary	y Cable				
Descrip	otion	Length (cm)		Shielded/Unshielded	With/Without Ferrite	
-		-		-	-	
-				-	-	
List and Detail	ls of Auxiliary	y Equipment				
Descrip	otion	Manufacture	r	Model	Serial Number	
		Shenzhen				
Adap	tor	Fuyuandian		FY1505462000	_	
Лиар	tc1	Power		111303402000		
		Co.,Ltd				
-		-		-	-	

Report No: SSP25040343-1E

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

FCC Test Report Page 6 of 33

1.3 Compliance Standards

Compliance Standards		
ECC Doub 15 Color and C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
All measurements contained	d in this report were conducted with all above standards	
According to standards for	or test methodology	
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
rcc rait 13 Subpart C	Intentional Radiators	
KDB 558074 D01 15.247	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM,	
Meas Guidance v05r02	FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES	
Meas Guidance vosi 02	OPERATING UNDER SECTION 15.247 OF THE FCC RULES	
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless	
ANSI 603.10-2013	Devices	
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which		

Report No: SSP25040343-1E

Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which result is lowering the emission, should be checked to ensure compliance has been maintained.

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.		
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,		
	Guangming District, Shenzhen, Guangdong, China		
CNAS Laboratory No.:	L18863		
A2LA Certificate No.:	6893.01		
FCC Registration No:	583813		
ISED Registration No.:	CN0164		
All management facilities used	to collect the management data are legated at 1E Duilding 2E Changeing		

All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 33

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Conducted Emissions					
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A
		Radiated Emission	ıs		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A
Conducted RF Testing					
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A
Laptop	Lenovo	ThinkPad E15 Gen 3	SPPOZ22485	N/A	N/A
DUT Test Software	VanDyke Software	SecureCRT	N/A	N/A	N/A

Report No: SSP25040343-1E

FCC Test Report Page 8 of 33

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Dadieted Emissions	30MHz ~ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB

Report No: SSP25040343-1E

FCC Test Report Page 9 of 33

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209,15.205,15.247(d)	Radiated Emissions	Passed
FCC Part 15.209,15.205,15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed

Report No: SSP25040343-1E

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 10 of 33

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP25040343-1E

3.2 Test Result

This product has an PCB antenna, fulfill the requirement of this section.

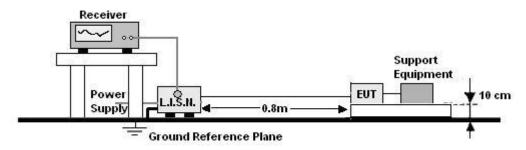
FCC Test Report Page 11 of 33

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	


Report No: SSP25040343-1E

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver

Attenuation: 10dB

Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

FCC Test Report Page 12 of 33

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No: SSP25040343-1E

- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case BLE_1Mbps 2402MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 13 of 33

oatad.	Mada	TM 1							
	Mode:	TM1							
est Vo	ltage:	AC 12	20V/60H:	Z					
est Po	wer Line:	Neuti	ral						
Remarl	k:								
80.0	dBuV								
				-					
70									
΄ υ									
60									FCC Part15 CE-Class B_QP
60	3								
50	5								FCC Part15 CE-Class B_AVG
*	1 1								n
40	7 1								i i i i i i i i i i i i i i i i i i i
	* *		Z			9			💉 \
30		my	Mymm	N. MANUE A	An all Me	il de	Mark Section		with a
						1.0" 101.			
5575				441	101 414	A INDIA	The think		12
	VY	(1	101 414	A MANAGE	The who	4VVvapo	12
20	1					10 N	The state	4V vapo	The state of the s
20	1	While		white war	Jan John Mary	10 ************************************	Market Market	4V haps	and the same of th
20		M		add Million	July All	1.2	malen.	Wago	
20	1			a de la	Mahah	1.2	Markethia Markethia	W years	pe Av
20		0.50		a de la	MH2)	1.2	Market S.O.	وهوالمها	30.000
20	1			a fallow	(MHz)	10	m Men	وهوالمها	pe Av
20	Frequency	Reading	Factor	Level	(MHz)	Margin	m Men	وهوالمها	pe Av
20 10 0.0 0.150 No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	(dBuV)	(MHz) Limit (dBuV)	Margin (dB)	5.0 Detector	00 P/F	30.000
20 10 0.0 0.150 No.	Frequency (MHz) 0.1602	Reading (dBuV) 52.76	Factor (dB) 9.55	(dBuV) 62.31	(MHz) Limit (dBuV) 65.45	Margin (dB)	5.0 Detector	00 P/F	30.000
20 10 0.0 0.150 No.	Frequency (MHz) 0.1602 0.1602	Reading (dBuV) 52.76 37.18	Factor (dB) 9.55 9.55	(dBuV) 62.31 46.73	(MHz) Limit (dBuV) 65.45 55.45	Margin (dB) -3.14 -8.72	5.0 Detector QP AVG	00 P/F P	30.000
20 10 0.0 0.150 No.	Frequency (MHz) 0.1602 0.1602 0.2085	Reading (dBuV) 52.76 37.18 45.07	Factor (dB) 9.55 9.55 9.71	(dBuV) 62.31 46.73 54.78	(MHz) Limit (dBuV) 65.45 55.45 63.26	Margin (dB) -3.14 -8.72 -8.48	5.0 Detector QP AVG QP	P/F P P	30.000
20 0.0 0.150 No. 1 * 2 3 4	Frequency (MHz) 0.1602 0.1602 0.2085 0.2085	Reading (dBuV) 52.76 37.18 45.07 25.25	Factor (dB) 9.55 9.55 9.71 9.71	(dBuV) 62.31 46.73 54.78 34.96	(MHz) Limit (dBuV) 65.45 55.45 63.26	Margin (dB) -3.14 -8.72 -8.48 -18.30	5.0 Detector QP AVG QP AVG	00 P/F P	30.000
20 0.0 0.150 No. 1 * 2 3 4 5	Frequency (MHz) 0.1602 0.1602 0.2085 0.2085 0.2445	Reading (dBuV) 52.76 37.18 45.07 25.25 41.41	Factor (dB) 9.55 9.55 9.71 9.71	(dBuV) 62.31 46.73 54.78 34.96 51.10	(MHz) Limit (dBuV) 65.45 55.45 63.26	Margin (dB) -3.14 -8.72 -8.48 -18.30 -10.84	Detector QP AVG QP AVG QP	P/F P P	30.000
20 0.0 0.150 No. 1 * 2 3 4	Frequency (MHz) 0.1602 0.1602 0.2085 0.2085 0.2445	Reading (dBuV) 52.76 37.18 45.07 25.25 41.41 26.17	Factor (dB) 9.55 9.55 9.71 9.71 9.69 9.69	(dBuV) 62.31 46.73 54.78 34.96 51.10 35.86	(MHz) Limit (dBuV) 65.45 55.45 63.26 53.26 61.94 51.94	Margin (dB) -3.14 -8.72 -8.48 -18.30 -10.84 -16.08	Detector QP AVG QP AVG QP AVG	P/F P P P	30.000
20 10 0.0 0.150 No. 1 * 2 3 4 5 6 7	Frequency (MHz) 0.1602 0.1602 0.2085 0.2085 0.2445 0.2445	Reading (dBuV) 52.76 37.18 45.07 25.25 41.41 26.17 25.26	Factor (dB) 9.55 9.55 9.71 9.71 9.69 9.69	(dBuV) 62.31 46.73 54.78 34.96 51.10 35.86 34.92	(MHz) Limit (dBuV) 65.45 55.45 63.26 53.26 61.94 51.94 56.00	Margin (dB) -3.14 -8.72 -8.48 -18.30 -10.84 -16.08 -21.08	Detector QP AVG QP AVG QP AVG QP AVG	P/F P P P P	30.000
20 0.0 0.150 No. 1 * 2 3 4 5 6 7 8	Frequency (MHz) 0.1602 0.1602 0.2085 0.2085 0.2445 0.5730 0.5730	Reading (dBuV) 52.76 37.18 45.07 25.25 41.41 26.17 25.26 6.61	Factor (dB) 9.55 9.55 9.71 9.71 9.69 9.69 9.66 9.66	(dBuV) 62.31 46.73 54.78 34.96 51.10 35.86 34.92 16.27	(MHz) Limit (dBuV) 65.45 55.45 63.26 61.94 51.94 56.00 46.00	Margin (dB) -3.14 -8.72 -8.48 -18.30 -10.84 -16.08 -21.08 -29.73	Detector QP AVG QP AVG QP AVG QP AVG	P/F P P P P P	30.000
20 0.0 0.150 No. 1 * 2 3 4 5 6 7 8 9	Frequency (MHz) 0.1602 0.1602 0.2085 0.2085 0.2445 0.5730 0.5730 2.5845	Reading (dBuV) 52.76 37.18 45.07 25.25 41.41 26.17 25.26 6.61 23.55	Factor (dB) 9.55 9.55 9.71 9.71 9.69 9.66 9.66	(dBuV) 62.31 46.73 54.78 34.96 51.10 35.86 34.92 16.27 33.21	(MHz) Limit (dBuV) 65.45 55.45 63.26 53.26 61.94 51.94 56.00 46.00 56.00	Margin (dB) -3.14 -8.72 -8.48 -18.30 -10.84 -16.08 -21.08 -29.73 -22.79	Detector QP AVG QP AVG QP AVG QP AVG QP AVG QP	P/F P P P P P P P P P P	30.000
20 0.0 0.150 No. 1 * 2 3 4 5 6 7 8	Frequency (MHz) 0.1602 0.1602 0.2085 0.2085 0.2445 0.5730 0.5730	Reading (dBuV) 52.76 37.18 45.07 25.25 41.41 26.17 25.26 6.61	Factor (dB) 9.55 9.55 9.71 9.71 9.69 9.69 9.66 9.66	(dBuV) 62.31 46.73 54.78 34.96 51.10 35.86 34.92 16.27	(MHz) Limit (dBuV) 65.45 55.45 63.26 61.94 51.94 56.00 46.00	Margin (dB) -3.14 -8.72 -8.48 -18.30 -10.84 -16.08 -21.08 -29.73	Detector QP AVG QP AVG QP AVG QP AVG	P/F P P P P P P	30.000

FCC Test Report Page 14 of 33

. 11	v. r. 1	TD3 44							
ested I	Mode:	TM1							
est Vol	ltage:	AC 12	20V/60Hz	Z					
est Pov	wer Line:	Live							
emark	:								
80.0	dBuV	I							
80.0	ubuv								
70				4				_	
×	3								FCC Part15 CE-Class B_QP
60	X								100 100 00 0000 0_01
1	5								FCC Part15 CE-Class B_AVG
50	NA			8					
[[A A A								
40		7							Å
/	1	mon	mount	una d	h also the	9			I I I I I I I I I I I I I I I I I I I
30	1 18 (1)	1000000	W W Y	ALPON TO THE PARTY.	A CHARLES	MANAGE .	tou		
	1100			ALC: NO.		1 1 1 1	THE PARTY LAND	400	J ^a \
	1 V V	4		,			. Antonialist	MANUTO	12
20	N. W			-		2000	rancedout	Milyro	mand 12
	- V	A Augus	MI	www	Mallange	10	WAR A	Mayer	The state of the s
20	1	h Anger	MM	nym	white	2000	and the	Myro	The state of the s
	7	h Augh	MM	robbon	www	2000	" MANA	Mario	De Maria Maria
10		0.50	L	h	MHz)	2000	*****	WW. 400	De Maria Maria
0.0		0.50	4MA	h	MMZ)	100 TO	*****	يسرم بالمبران	AV AV
0.0	Frequency	Reading	Factor	Level	Limit	Margin	*****	يسرم بالمبران	AV AV
0.0 0.150 No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	(dBuV)	Limit (dBuV)	Margin (dB)	5.0	000 P/F	30.000
0.0 0.150 No.	Frequency (MHz) 0.1611	Reading (dBuV) 52.73	Factor (dB)	(dBuV) 62.28	Limit (dBuV) 65.41	Margin (dB)	5.0 Detector	P/F	30.000
0.0 0.150 No.	Frequency (MHz) 0.1611 0.1611	Reading (dBuV) 52.73 37.55	Factor (dB) 9.55 9.55	(dBuV) 62.28 47.10	Limit (dBuV) 65.41 55.41	Margin (dB) -3.13	5.0 Detector QP AVG	P/F P	30.000
No. 1 * 2 3	Frequency (MHz) 0.1611 0.1611 0.1796	Reading (dBuV) 52.73 37.55 50.57	Factor (dB) 9.55 9.63	(dBuV) 62.28 47.10 60.20	Limit (dBuV) 65.41 55.41 64.50	Margin (dB) -3.13 -8.31 -4.30	5.0 Detector QP AVG QP	P/F P P	30.000
No. 1 * 2 3 4	Frequency (MHz) 0.1611 0.1611 0.1796 0.1796	Reading (dBuV) 52.73 37.55 50.57 31.56	Factor (dB) 9.55 9.55 9.63 9.63	(dBuV) 62.28 47.10 60.20 41.19	Limit (dBuV) 65.41 55.41 64.50 54.50	Margin (dB) -3.13 -8.31 -4.30 -13.31	Detector QP AVG QP AVG	P/F P P	30.000
No. 1 * 2 3 4 5	Frequency (MHz) 0.1611 0.1611 0.1796 0.1796 0.2444	Reading (dBuV) 52.73 37.55 50.57 31.56 41.38	Factor (dB) 9.55 9.55 9.63 9.63 9.69	(dBuV) 62.28 47.10 60.20 41.19 51.07	Limit (dBuV) 65.41 55.41 64.50 54.50 61.95	Margin (dB) -3.13 -8.31 -4.30 -13.31 -10.88	Detector QP AVG QP AVG QP	P/F P P P	30.000
No. 1 * 2 3 4 5 6	Frequency (MHz) 0.1611 0.1611 0.1796 0.1796 0.2444 0.2444	Reading (dBuV) 52.73 37.55 50.57 31.56 41.38 23.41	Factor (dB) 9.55 9.55 9.63 9.63 9.69	(dBuV) 62.28 47.10 60.20 41.19 51.07 33.10	Limit (dBuV) 65.41 55.41 64.50 54.50 61.95 51.95	Margin (dB) -3.13 -8.31 -4.30 -13.31 -10.88 -18.85	Detector QP AVG QP AVG QP AVG	P/F P P P P	30.000
No. 1 * 2 3 4 5 6 7	Frequency (MHz) 0.1611 0.1611 0.1796 0.1796 0.2444 0.2444	Reading (dBuV) 52.73 37.55 50.57 31.56 41.38 23.41 25.00	Factor (dB) 9.55 9.55 9.63 9.63 9.69 9.69 9.62	(dBuV) 62.28 47.10 60.20 41.19 51.07 33.10 34.62	Limit (dBuV) 65.41 55.41 64.50 54.50 61.95 51.95 56.00	Margin (dB) -3.13 -8.31 -4.30 -13.31 -10.88 -18.85 -21.38	Detector QP AVG QP AVG QP AVG QP	P/F P P P P	30.000
No. 1 * 2 3 4 5 6 7 8	Frequency (MHz) 0.1611 0.1611 0.1796 0.1796 0.2444 0.2444 0.5054	Reading (dBuV) 52.73 37.55 50.57 31.56 41.38 23.41 25.00 4.44	Factor (dB) 9.55 9.55 9.63 9.63 9.69 9.69 9.62	(dBuV) 62.28 47.10 60.20 41.19 51.07 33.10 34.62 14.06	Limit (dBuV) 65.41 55.41 64.50 54.50 61.95 51.95 56.00 46.00	Margin (dB) -3.13 -8.31 -4.30 -13.31 -10.88 -18.85 -21.38 -31.94	Detector QP AVG QP AVG QP AVG QP AVG	P/F P P P P	30.000
No. 1 * 2 3 4 5 6 7 8 9	Frequency (MHz) 0.1611 0.1611 0.1796 0.1796 0.2444 0.2444 0.5054 0.5054	Reading (dBuV) 52.73 37.55 50.57 31.56 41.38 23.41 25.00 4.44 21.25	Factor (dB) 9.55 9.55 9.63 9.63 9.69 9.69 9.62 9.62 9.61	(dBuV) 62.28 47.10 60.20 41.19 51.07 33.10 34.62 14.06 30.86	Limit (dBuV) 65.41 55.41 64.50 54.50 61.95 51.95 56.00 46.00	Margin (dB) -3.13 -8.31 -4.30 -13.31 -10.88 -18.85 -21.38 -31.94 -25.14	Detector QP AVG QP AVG QP AVG QP AVG QP AVG	P/F P P P P P P P P P P	30.000
No. 1 * 2 3 4 5 6 7 8	Frequency (MHz) 0.1611 0.1611 0.1796 0.1796 0.2444 0.2444 0.5054	Reading (dBuV) 52.73 37.55 50.57 31.56 41.38 23.41 25.00 4.44	Factor (dB) 9.55 9.55 9.63 9.63 9.69 9.69 9.62	(dBuV) 62.28 47.10 60.20 41.19 51.07 33.10 34.62 14.06	Limit (dBuV) 65.41 55.41 64.50 54.50 61.95 51.95 56.00 46.00	Margin (dB) -3.13 -8.31 -4.30 -13.31 -10.88 -18.85 -21.38 -31.94	Detector QP AVG QP AVG QP AVG QP AVG	P/F P P P P P P P	30.000

FCC Test Report Page 15 of 33

5. Radiated Emissions

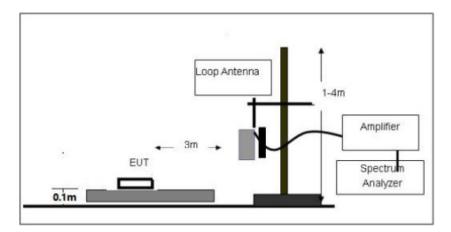
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

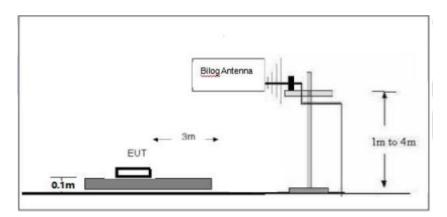
Report No: SSP25040343-1E

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

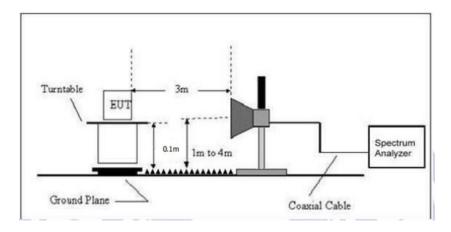
Frequency of Emission	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3
Note: The more stringent limit applies	at transition frequencies.	


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 16 of 33

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 17 of 33

a) The EUT is placed on a turntable, which is 0.1m above ground plane for test frequency range blew 1GHz, and 0.1m above ground plane for test frequency range above 1GHz.

Report No: SSP25040343-1E

- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

VBW ≥ RBW, Sweep = auto

Detector function = peak

Trace = max hold

- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

5.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case BLE_1Mbps 2402MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 18 of 33

Radiated E	Emission T	est Da	ta (30MH	Iz to	1GHz	2)							
ested Mo	de:			TM1										
est Voltag	ge:			AC 12	20V/	60Hz	1							
est Anten	na Polariz	zation:		Horiz	rizontal									
Remark:														
80.0 dBu	V/m	_	_	_	-								_	
70				_				S						
60						3								
50						3			FEE	Part15	RE-Class E	_30-1000M	Hz	ſ
40					_			<u>-</u> -						
30					1			Ľ						
20			- 1		0.	5			3	1		ardin.	de la constante	l _u luw pea
10 mm	Hardwarden	i-parte of pare	adapa	man		al de la constitución de la cons	Anna Marther and	3	Water Control of the	m/V	Sharen a	A BULLING CHAIN		
0.0 30.000		60.0	00	4			(MHz)		300.	00				1000.000
No.	Frequ (M	ueno Hz)	у		adi Bu\		Factor (dB/m)	1	vel ıV/m)		mit uV/m)	Margi (dB)		Detector
1	372.	0045		3	3.0	7	-14.25	18	.82	46	6.00	-27.1	8	QP
2	301.	4224		3	3.4	0	-15.62	17	.78	46	6.00	-28.2	2	QP
3	207.	1226		3	3.9	8	-19.12	14	.86	43	3.50	-28.6	4	QP
4	114.	9169		3	0.4	5	-18.59	11	.86	43	3.50	-31.6	4	QP
5	400.	4319		3	1.0	7	-13.20	17	.87	46	00.6	-28.1	3	QP
6 *	700	1823		2	0.8	6	-6.54	77.500	.32	97777	6.00	-21.6	-	QP

FCC Test Report Page 19 of 33

ested Mo	de:	TM1					
est Voltag	ge:	AC 120V/60Hz	Z				
est Anten	na Polarization:	Vertical					
emark:							
80.0 dB	ıV/m				- 11 -		
70							
60							- V V (A
				FCC	Part15 RE-Class B	_30-1000MHz	
50				Mer	gin -6 dl		
40							
30			a				nea
20	6	1	N	2	W. William	the Markey looks	manusco
10 Aug			No No Market Market	A. A. A.	My Mary	,,,,,	
200000	and of the same of the same	hard my way	10,0	1			
30.000	60.00		(MHz)	300.	00		1000.000
							CI.
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.			112000000000000000000000000000000000000			_	Detector
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	- 200 CVX 625
1 *	(MHz) 115.3205	(dBuV) 39.79	(dB/m) -18.55	(dBuV/m) 21.24	(dBuV/m) 43.50	(dB) -22.26	QP
1 *	(MHz) 115.3205 207.8501	(dBuV) 39.79 34.22	(dB/m) -18.55 -19.14	(dBuV/m) 21.24 15.08	(dBuV/m) 43.50 43.50	(dB) -22.26 -28.42	QP QP
1 * 2 3	(MHz) 115.3205 207.8501 397.6334	(dBuV) 39.79 34.22 33.77	(dB/m) -18.55 -19.14 -13.30	(dBuV/m) 21.24 15.08 20.47	(dBuV/m) 43.50 43.50 46.00	(dB) -22.26 -28.42 -25.53	QP QP QP

FCC Test Report Page 20 of 33

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
		Lowes	st Channel (BL	E_1Mbps_2402	2MHz)		
4804	77.63	-14.72	62.91	74	-11.09	Н	PK
4804	62.66	-14.72	47.94	54	-6.06	Н	AV
7206	62.28	-8.41	53.87	74	-20.13	Н	PK
7206	48.62	-8.41	40.21	54	-13.79	Н	AV
4804	76.76	-14.72	62.04	74	-11.96	V	PK
4804	59.17	-14.72	44.45	54	-9.55	V	AV
7206	62.13	-8.41	53.72	74	-20.28	V	PK
7206	48.96	-8.41	40.55	54	-13.45	V	AV
		Middl	e Channel (BL	E_1Mbps_2440	OMHz)		
4880	74.25	-14.64	59.61	74	-14.39	Н	PK
4880	61.74	-14.64	47.1	54	-6.9	Н	AV
7320	63.34	-8.28	55.06	74	-18.94	Н	PK
7320	49.63	-8.28	41.35	54	-12.65	Н	AV
4880	73.4	-14.64	58.76	74	-15.24	V	PK
4880	60.43	-14.64	45.79	54	-8.21	V	AV
7320	65.86	-8.28	57.58	74	-16.42	V	PK
7320	46.84	-8.28	38.56	54	-15.44	V	AV
		Highes	st Channel (BL	E_1Mbps_248	OMHz)		
4960	79.55	-14.53	65.02	74	-8.98	Н	PK
4960	59.87	-14.53	45.34	54	-8.66	Н	AV
7440	64.53	-8.13	56.4	74	-17.6	Н	PK
7440	45.38	-8.13	37.25	54	-16.75	Н	AV
4960	76.24	-14.53	61.71	74	-12.29	V	PK
4960	58.44	-14.53	43.91	54	-10.09	V	AV
7440	65.03	-8.13	56.9	74	-17.1	V	PK
7440	47.45	-8.13	39.32	54	-14.68	V	AV

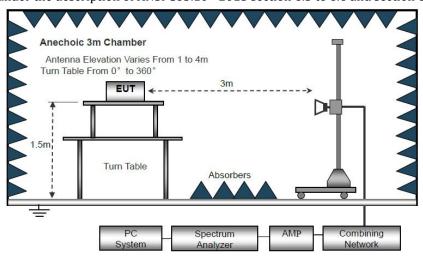
Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 20 dB with respect to the limits.

FCC Test Report Page 21 of 33

6. Band-edge Emissions(Radiated)


6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP25040343-1E

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

FCC Test Report Page 22 of 33

Test Mode	Frequency	Limit	Result
rest Mode	MHz dBuV/m		Result
Lovvoot	2310.00	<54 dBuV	Pass
Lowest	2390.00	<54 dBuV	Pass
Highogs	2483.50	<54 dBuV	Pass
Highest	2500.00	<54 dBuV	Pass

Radiated Em	ission Test Dat	ta (Band edge	emissions)				
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
		BLE_1	Mbps Lowest	Channel (2402	2MHz)		
2310	65.72	-21.34	44.38	74	-29.62	Н	PK
2310	49.89	-21.34	28.55	54	-25.45	Н	AV
2390	64.68	-20.96	43.72	74	-30.28	Н	PK
2390	49.51	-20.96	28.55	54	-25.45	Н	AV
2310	67.05	-21.34	45.71	74	-28.29	V	PK
2310	51.76	-21.34	30.42	54	-23.58	V	AV
2390	64.32	-20.96	43.36	74	-30.64	V	PK
2390	49.12	-20.96	28.16	54	-25.84	V	AV
		BLE_1	Mbps Highest	Channel (2480	OMHz)		
2483.50	71.75	-20.51	51.24	74	-22.76	Н	PK
2483.50	54.11	-20.51	33.6	54	-20.4	Н	AV
2500	69.39	-20.43	48.96	74	-25.04	Н	PK
2500	51.63	-20.43	31.2	54	-22.8	Н	AV
2483.50	72.48	-20.51	51.97	74	-22.03	V	PK
2483.50	52.41	-20.51	31.9	54	-22.1	V	AV
2500	69.83	-20.43	49.4	74	-24.6	V	PK
2500	49.17	-20.43	28.74	54	-25.26	V	AV

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 23 of 33

7. Maximum Peak Conducted Output Power

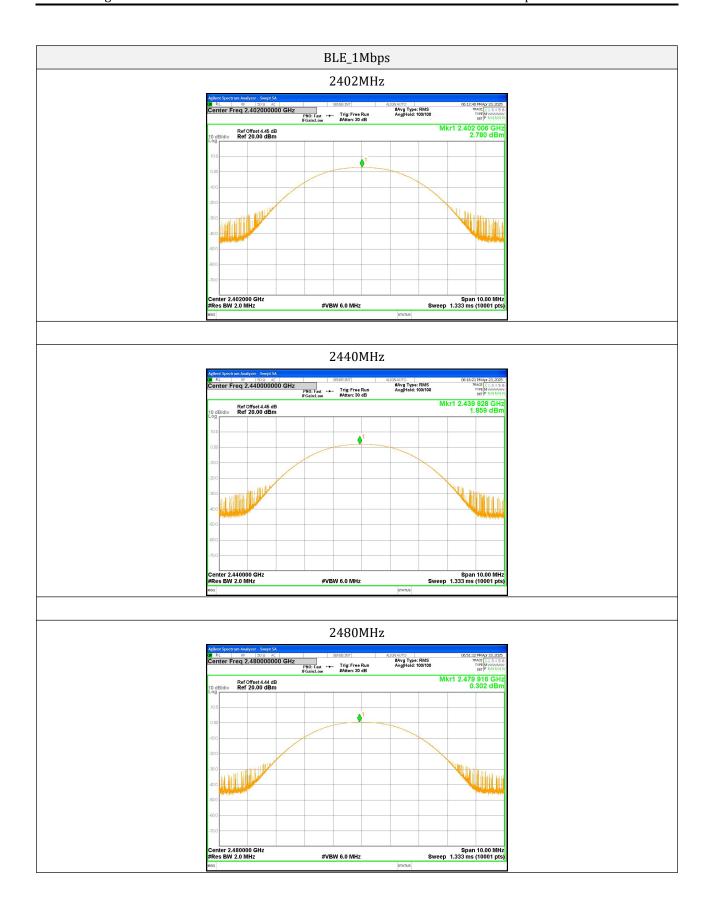
7.1 Standard and Limit

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

Report No: SSP25040343-1E

7.2 Test Procedure

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 2MHz, VBW = 6MHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat the above procedures until all frequencies measured were complete.



Test Setup Block Diagram

7.3 Test Data and Results

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
	2402	2.78	30	Pass
BLE_1Mbps	2440	1.86	30	Pass
	2480	0.3	30	Pass

FCC Test Report Page 24 of 33

FCC Test Report Page 25 of 33

8. Occupied Bandwidth

8.1 Standard and Limit

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No: SSP25040343-1E

8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) 6dB: Set RBW = 100kHz, VBW \geq [3 × RBW], Sweep = Auto. 99%: Set RBW = 20kHz, VBW \geq [3 × RBW], Sweep = Auto.
- 4) Set a reference level on the measuring instrument equal to the highest peak value.
- 5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.
- 6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

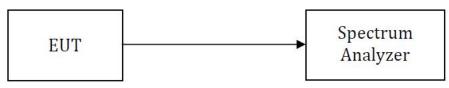
8.3 Test Data and Results

Test Mode	Test Channel	6dB Bandwidth	99% Bandwidth	6 dB Bandwidth Limit	Test Result
rest Mode	(MHz)	(MHz)	(MHz)	(MHz)	rest Result
	2402	0.653	1.013	0.5	Pass
BLE_1Mbps	2440	0.651	1.012	0.5	Pass
	2480	0.651	1.011	0.5	Pass

FCC Test Report Page 26 of 33

FCC Test Report Page 27 of 33

9. Maximum Power Spectral Density


9.1 Standard and Limit

According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No: SSP25040343-1E

9.2 Test Procedure

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = Peak.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

9.3 Test Data and Results

Test Mode	Test Channel	Power Spectral Density	Limit	Test Result
rest Mode	MHz	(dBm/3kHz)	(dBm/3kHz)	rest Result
	2402	-12.99	8	Pass
BLE_1Mbps	2440	-13.87	8	Pass
	2480	-15.39	8	Pass

FCC Test Report Page 28 of 33

FCC Test Report Page 29 of 33

10.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP25040343-1E

10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = No faster than coupled (auto) time.
- g) Trace mode = max-hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured. Note that the frequency range might need to be divided into multiple frequency ranges to retain frequency resolution.

NOTE—the number of points can also be increased for large spans to retain frequency resolution

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = No faster than coupled (auto) time.
- f) Trace mode = max-hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

FCC Test Report Page 30 of 33

10.3 Test Data and Results

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
DIE 1Mbra	Lowest	2402	-45.85	-20	Pass
BLE_1Mbps	Highest	2480	-52.1	-20	Pass

FCC Test Report Page 31 of 33

11.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP25040343-1E

11.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.

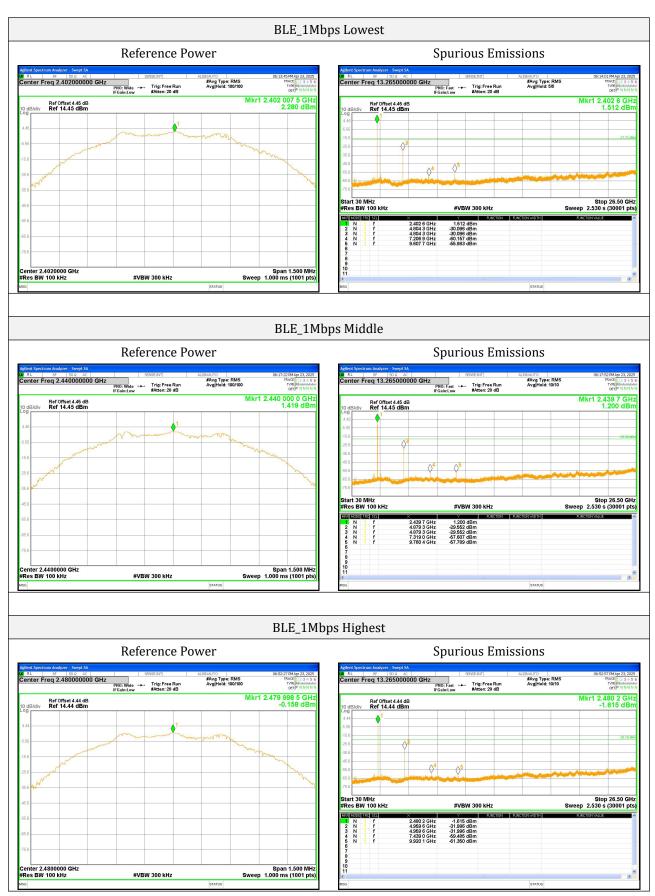
- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = No faster than coupled (auto) time.
- g) Trace mode = max-hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured. Note that the frequency range might need to be divided into multiple frequency ranges to retain frequency resolution.

NOTE—the number of points can also be increased for large spans to retain frequency resolution

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = No faster than coupled (auto) time.
- f) Trace mode = max-hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.


FCC Test Report Page 32 of 33

11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

Report No: SSP25040343-1E

FCC Test Report Page 33 of 33

***** END OF REPORT *****

FCC Test Report Page 34 of 33