

TEST REPORT

Client Information:

Shenzhen Chunhong Technology Co., Ltd Applicant:

1209U8, International Chamber of Commerce Center, 168 Fuhua 3rd Road,

Report No.: AiTDG-250120005W9

Applicant add.: Futian District, Shenzhen, China

Manufacturer: Shenzhen Chunhong Technology Co., Ltd

1209U8, International Chamber of Commerce Center, 168 Fuhua 3rd Road,

Manufacturer add.: Futian District, Shenzhen, China

Product Information:

Product Name: Mini PC

Model No: H30

Brand Name: Huidun

FCC ID: 2BMHA-H30

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Prepared By:

Dongguan Yaxu (AiT) Technology Limited

No.22, Jingianling 3rd Street, Jitigang, Huangjiang, Dongguan,

Guangdong, China

Tel.: +86-769-8202 0499 Fax.: +86-769-8202 0495

Date of Test: Jan. 20, 2025~Feb. 13, 2025 Date of Receipt: Jan. 20, 2025

Date of Issue: Feb. 14, 2025 Test Result: Pass

This device described above has been tested by Dongguan Yaxu (AiT) Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Dongguan Yaxu (AiT) Technology Limited, this document may be altered or revised by Dongguan Yaxu (AiT) Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by: Emiya Lin Approved by: 4imba Huah

1 Contents

СО	VER PAGE		Page
1	CONTENT	TS	2
2	TEST SUN	MMARY	5
		tatement of the Measurement Uncertaintyleasurement Uncertainty	
3	TEST FAC	CILITY	6
	3.1 De	eviation from standard	6
		bnormalities from standard conditions	
		est Location	
4	GENERAL	_ INFORMATION	7
	4.1 Te	est Frequencies	8
		UT Peripheral List	
		est Peripheral List	
	4.4 TE	EST METHODOLOGY	g
	4.5 De	escription of Test Modes	10
5	EQUIPME	NT USED DURING TEST	12
6	TEST RES	SULTS AND MEASUREMENT DATA	14
	6.1 Ar	ntenna requirement	14
	6.1.1	Standard requirement	14
	6.1.2	EUT Antenna	14
	6.2 O	n Time and Duty Cycle	15
	6.2.1	Standard requirement	15
	6.2.2	Measuring Instruments and Setting:	15
	6.2.3	Test Procedures	15
	6.2.4	Test Setup Layout	15
	6.2.5	EUT Operation During Test	15
	6.2.6	Test Result	15
	6.3 M	laximum Conducted Output Power Measurement	16
	6.3.1	Standard requirement	16
	6.3.2	Measuring Instruments	17
	6.3.3	Test Procedures	17
	6.3.4	Test Setup Layout	17
	6.3.5	EUT Operation During Test	17
	6.3.6	Test Result	17
	6.4 26	6dB Bandwidth Measurement	18
	6.4.1	Standard requirement	
	6.4.2	Measuring Instruments	
	6.4.3	Test Procedures	18
	6.4.4	Test Setup Layout	18

A			Page 3 of 45 Report No.: AiTDG-250120005W9	
		6.4.5	EUT Operation During Test	. 18
		6.4.6	Test Result	18
	6.5	6dB	Bandwidth Measurement	. 19
		6.5.1	Standard requirement	. 19
		6.5.2	Measuring Instruments	19
		6.5.3	Test Procedures	. 19
		6.5.4	Test Setup Layout	19
		6.5.5	EUT Operation During Test	. 19
		6.5.6	Test Result	19
	6.6	99%	Occupied Bandwidth Measurement	.20
		6.6.1	Standard requirement	. 20
		6.6.2	Measuring Instruments	20
		6.6.3	Test Procedures	. 20
		6.6.4	Test Setup Layout	20
		6.6.5	EUT Operation During Test	. 20
		6.6.6	Test Result	20
	6.7	Pow	er Spectral Density	. 22
		6.7.1	Standard requirement	. 22
		6.7.2	Measuring Instruments and Setting	. 22
		6.7.3	Test Procedures	
		6.7.4	Test Setup Layout	
		6.7.5	EUT Operation during Test	
		6.7.6	Test result	. 23
	6.8	Rad	iated Emissions and Radiation Restricted band Measurement	24
		6.8.1	Standard requirement	. 24
		6.8.2	Measuring Instruments and Setting:	.25
		6.8.3	Test Procedures	. 25
		6.8.4	Test Setup Layout	28
		6.8.5	EUT Operation During Test	. 29
		6.8.6	Test Result	
	6.9	Pow	er Line Conducted Emissions	. 39
		6.9.1	Standard requirement	. 39
		6.9.2	Test Setup Layout	39
		6.9.3	Test Procedures	. 39
		6.9.4	EUT Operation during Test	39
		6.9.5	Test result	. 39
	6.10) Fred	juency Stability	. 44
		6.10.1	Standard requirement	. 44
		6.10.2	Measuring Instruments and Setting:	.44
		6.10.3	Test Procedures	
		6.10.4	Test Setup Layout	
		6.10.5	EUT Operation during Test	
		6.10.6	Test result	
7	TES	T CETUE	P PHOTOGRAPHS OF EUT	A
8	EXT	ERNAL I	PHOTOGRAPHS OF EUT	45
9	INTI	ERNAL P	PHOTOGRAPHS OF EUT	45

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	Feb. 14, 2025	Valid	Initial release

2 Test Summary

Test Item	Section in CFR 47	Result
1	On Time and Duty Cycle	1
§15.407(a)	Maximum Conducted Output Power	Pass
§15.407(a)	Power Spectral Density	Pass
§15.407(a)	26dB Bandwidth	Pass
§15.407(a)	6dB Bandwidth	Pass
§15.209 §15.407(b)	Radiated Emissions	Pass
§15.205	Emissions at Restricted Band	Pass
§15.407(g)	Frequency Stability	Pass
§15.207(a)	Power Line Conducted Emissions	Pass
§15.203	Antenna Requirements	Pass
§2.1091	RF Exposure	Pass*

Page 5 of 45

Note

- 1. Test according to ANSI C63.10:2013.
- 2. The measurement uncertainty is not included in the test result.
- 3. "*" Test results in other test report (RF Exposure Evaluation Report)

2.1 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the AiT quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.2 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	0.009MHz-30MHz	3.10dB	(1)
Radiated Emission	30MHz-1GHz	3.75dB	(1)
Radiated Emission	1GHz-18GHz	3.88dB	(1)
Radiated Emission	18GHz-40GHz	3.88dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	1.20dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Report No.: AiTDG-250120005W9

3 Test Facility

The test facility is recognized, certified or accredited by the following organizations: .CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2017 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on April 18, 2022

FCC-Registration No.: 703111 Designation Number: CN1313

Dongguan Yaxu (AiT) technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 6819A CAB identifier: CN0122

The 3m Semi-anechoic chamber of Dongguan Yaxu (AiT) technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 6819A

A2LA-Lab Cert. No.: 6317.01

Dongguan Yaxu (AiT) technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

3.1 Deviation from standard

None

3.2 Abnormalities from standard conditions

None

3.3 Test Location

Dongguan Yaxu (AiT) Technology Limited

Address: No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan, Guangdong, China

Tel.: +86-769-8202 0499 Fax.: +86-769-8202 0495 Page 7 of 45

General Information

EUT Name:	UT Name: Mini PC							
Model No:	H30							
Serial Model:	N/A							
Test sample(s) ID:	AiTDG-250120005-1							
Sample(s) Status:	Engineer sample							
	Band	Mode	Frequency Range(MHz)	Number of channels				
		IEEE 802.11a	5180-5240	4				
	U-NII Band I	IEEE 802.11n/ac 20MHz	5180-5240	4				
Operation frequency:		IEEE 802.11n/ac 40MHz	5190-5230	2				
Operation frequency.		IEEE 802.11ac 80MHz	5210	1				
		IEEE 802.11a	5745-5825	5				
	│	IEEE 802.11n/ac 20MHz	5745-5825	5				
	O-MII Ballu III	IEEE 802.11n/ac 40MHz	5755-5795	2				
		IEEE 802.11ac 80MHz	5775	1				
Modulation Technology:	OFDM							
Modulation Type	IEEE 802.11a/n/a	ac: OFDM(64QAM, 16QAM,	QPSK, BPSK)					
Antenna Type:	FPC Antenna							
Antenna gain:	ANT1: 3.28dBi for 5150 3.29dBi for 5725							
Hardware version.:	AK1PLUS_V1							
Software version.:	win 11 pro 23H2							
Power Supply:	DC12V from ada	pter						
Adapter:	Adapter1: MODEL: AD0301-1202500UB INPUT:100-240V~ 50-60Hz 0.8A Max OUTPUT:12.0V2.5A 30.0W Adapter2: MODEL: KA3601A-1202500US INPUT:100-240V~ 50/60Hz 1.0A Max OUTPUT:12.0V2500mA							
Battery	N/A							
Model different:	Model different: N/A							

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Test Frequencies

EUT channels and frequencies list:

Channel list for 802.11a/n(HT20)/ac(HT20)										
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz			
149	5745MHz	157	5785MHz	165	5825MHz					

Page 8 of 45

Channel list for 802.11n(HT40)/ac(HT40)										
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
38	5190MHz	46	5230MHz							
151	5755MHz	159	5795MHz							

Channel list for 802.11ac(HT80)										
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
42	5210MHz									
155	5775MHz									

4.2 EUT Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	Remark
1	Adapter	Shenzhen ABP Technology	AD0301-120250	N/A	N/A	N/A
'		Co.,Ltd.	0UB	IN/A	IV/A	IN/A
2	Adapter	Shenzhen Keyu Power Supply Technology Co., Ltd.	KA3601A-120 2500US	N/A	N/A	N/A

4.3 Test Peripheral List

No	. Equipment	Manufacturer	Model No.	Serial No.	Power cord	Remark
1	N/A	N/A	N/A	N/A	N/A	N/A

4.4 TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Dongguan Yaxu (AiT) Technology Limited

4.4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.4.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure 789033 D02 General UNII Test Procedures New Rules v01r03 and KDB 662911 D01 Multiple Transmitter Output v02r01 is required to be used for this kind of FCC 15.407 UII device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E

4.4.3 General Test Procedures

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

4.5 Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

AC main conducted emission pre-test voltage at both AC 120V/60Hz and AC 240V/50Hz, recorded worst case;

AC main conducted emission pre-test at charge from power adapter modes, recorded worst case;

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 802.11a mode (MCH).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

IEEE 802.11a Mode: 6 Mbps, OFDM.
IEEE 802.11ac VHT20 Mode: MCS0
IEEE 802.11n HT20 Mode: MCS0, OFDM.
IEEE 802.11ac VHT40 Mode: MCS0, OFDM.
IEEE 802.11n HT40 Mode: MCS0, OFDM.
IEEE 802.11ac VHT80 Mode: MCS0, OFDM.

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Transmitting mode		Keep the EUT in continuously transmitting mode.					
Test software:			REALTEK	11ac 8821			
Frequency	5180 MHz	5200 MHz	5240 MHz	5745 MHz	5785 MHz	5825 MHz	
Parameters(802.11a)	39	39	39	34	34	34	
Parameters(802.11n20)	38	38	38	34	34	34	
Parameters(802.11ac20)	38	38	38	34	43	34	
Frequency	5190 MHz	5230 MHz	5755 MHz	5795 MHz			
Parameters(802.11n40)	35	35	33	33			
Parameters(802.11ac40)	35	35	33	33			
Frequency	5210 MHz	5775 MHz					
Parameters(802.11ac80)	34	32					

Antenna & Bandwidth

/ ditoring & Danawight							
Antenna	Chain 1 (ANT1)			Chain 2 (ANT2)			Simultaneously
Bandwidth Mode	20MHz	40MHz	80MHz	20MHz	40MHz	80MHz	1
IEEE 802.11a	\square						
IEEE 802.11n	☑	\square					
IEEE 802.11ac	Ø	Ø	Ø				

Page 11 of 45

5 Equipment Used during Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	101470	2024.09.23	2025.09.22
2	EMI Measuring Receiver	R&S	ESR	101660	2024.09.23	2025.09.22
3	Low Noise Pre Amplifier	HP	HP8447E	1937A01855	2024.09.23	2025.09.22
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02- 34	2648A04738	2024.09.23	2025.09.22
5	Passive Loop	ETS	6512	00165355	2024.09.04	2026.09.03
6	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2024.08.29	2026.08.28
7	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2024.08.29	2026.08.28
8	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA917036 7d	2023.09.12	2026.09.11
9	EMI Test Receiver	R&S	ESCI	100124	2024.09.23	2025.09.22
10	LISN	Kyoritsu	KNW-242	8-837-4	2024.09.23	2025.09.22
11	LISN	R&S	ESH3-Z5	892785/016	2024.09.23	2025.09.22
12	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA0811250 1	2024.09.23	2025.09.22
13	RF Automatic Test system	MW	MW100-RFCB	21033016	2024.09.23	2025.09.22
14	Signal Generator	Agilent	N5182A	MY50143009	2024.09.23	2025.09.22
15	Wideband Radio communication tester	R&S	CMW500	1201.0002K5 0	2024.09.23	2025.09.22
16	RF Automatic Test system	MW	MW100-RFCB	21033016	2024.09.23	2025.09.22
17	Pulse Limiter	R&S	ESH3-Z2	03578810.54	2024.09.23	2025.09.22
18	Switch	MFJ Rhinos	MFJ-2702	CZ3457	2024.09.23	2025.09.22
19	DC power supply	ZHAOXIN	RXN-305D-2	2807000255 9	N/A	N/A
20	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
21	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A
22	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A
23	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A

Page 13 of 45

Report No.: AiTDG-250120005W9 Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6 Test results and Measurement Data

6.1 Antenna requirement

6.1.1 Standard requirement

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

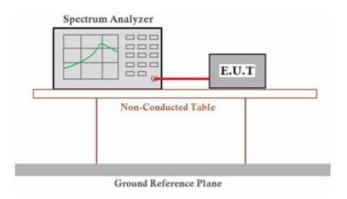
6.1.2 EUT Antenna

Refer to Section 4(General Information), reference to the Internal photos for details

6.2 On Time and Duty Cycle

6.2.1 Standard requirement

None; for reporting purpose only


6.2.2 Measuring Instruments and Setting:

Please refer to equipments list in this report. The following table is the setting of the spectrum analyser.

6.2.3 Test Procedures

- 1). Set the Centre frequency of the spectrum analyzer to the transmitting frequency;
- 2). Set the span=0MHz, RBW=1MHz, VBW=3MHz, Sweep time=100ms;
- 3). Detector = peak;
- 4). Trace mode = Single hold.

6.2.4 Test Setup Layout

6.2.5 EUT Operation During Test

The EUT was programmed to be in continuously transmitting mode.

6.2.6 Test Result

For reporting purpose only.

Please refer to Appendix D.1 (5150-5250MHz) and Appendix E.1(5725-5850MHz)

6.3 Maximum Conducted Output Power Measurement

6.3.1 Standard requirement

(1) For the band 5.15~5.25GHz

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the band 5.25-5.35 GHz and 5.47-5.725 GHz

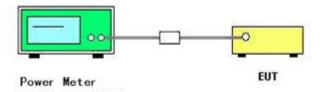
The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For 5725~5850MHz

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

6.3.2 Measuring Instruments

Please refer to equipment's list in this report.


6.3.3 Test Procedures

The transmitter output (antenna port) was connected to the power meter.

According to KDB 789033 D02 v02r01 Section 3 (a) Method PM (Measurement using an RF average power meter):

- (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
 - The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
 - At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.
- (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- (iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25%).

6.3.4 Test Setup Layout

6.3.5 EUT Operation During Test

The EUT was programmed to be in continuously transmitting mode.

6.3.6 Test Result

PASS

Please refer to Appendix D.2 (5150-5250MHz) and Appendix E.2(5725-5850MHz)

- Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;.
- 4. Report conducted power = Measured conducted average power + Duty Cycle factor;
- 5. For power measurements on IEEE 802.11 devices;

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any NANT;

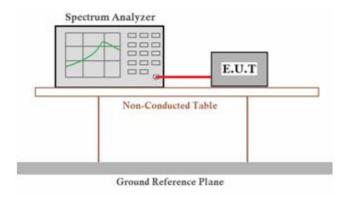
Array Gain = 5 log (NANT/NSS) dB or 3 dB, whichever is less, for 20-MHz channel widths with NANT ≥ 5

6.4 26dB Bandwidth Measurement

6.4.1 Standard requirement

No restriction limits. But resolution bandwidth within band edge measurement is 1% of the 99% occupied bandwidth.

6.4.2 Measuring Instruments


Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.

٠.	141,72011	
	Spectrum Parameter	Setting
	Attenuation	Auto
Span > 26dB Bandwidth		> 26dB Bandwidth
	Detector	Peak
	Trace	Max Hold
	Sweep Time	100ms
- 1	omoop mine	1001110

6.4.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The RBW = 1% 3% of occupied bandwidth, VBW = 3*RBW;
- 3. Measured the spectrum width with power higher than 26dB below carrier.

6.4.4 Test Setup Layout

6.4.5 EUT Operation During Test

The EUT was programmed to be in continuously transmitting mode.

6.4.6 Test Result

PASS

Please refer to Appendix D.3 (5150-5250MHz)

Remark:

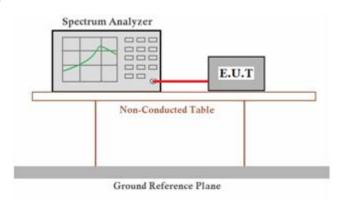
- 1. Measured 26dB bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;

6.5 6dB Bandwidth Measurement

6.5.1 Standard requirement

No restriction limits. But resolution bandwidth within band edge measurement is 1% of the 99% occupied bandwidth.

6.5.2 Measuring Instruments


Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span	> 6dB Bandwidth
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

6.5.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The RBW = 1% 3% of occupied bandwidth, VBW = 3*RBW;
- 3. Measured the spectrum width with power higher than 6dB below carrier.

6.5.4 Test Setup Layout

6.5.5 EUT Operation During Test

The EUT was programmed to be in continuously transmitting mode.

6.5.6 Test Result

PASS

Please refer to Appendix E.3(5725-5850MHz)

Remark:

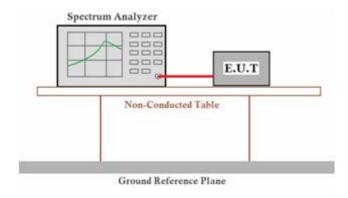
- 4. Measured 6dB bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 5. Test results including cable loss;
- 6. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;

6.6 99% Occupied Bandwidth Measurement

6.6.1 Standard requirement

According to §2.1049: The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable.

6.6.2 Measuring Instruments


Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
RBW	> RBW
VBW	Peak
Span Frequency	Max Hold
Detector	100ms

6.6.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. Set RBW = 1%~5% OBW; VBW≥3*RBW;
- 3. Measured the 99% occupied bandwidth by related function of the spectrum analyzer.

6.6.4 Test Setup Layout

6.6.5 EUT Operation During Test

The EUT was programmed to be in continuously transmitting mode.

6.6.6 Test Result

PASS

Please refer to Appendix D.4 (5150-5250MHz) and Appendix E.4(5725-5850MHz)

Remark:

- 1. Measured 99% bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;.

6.7 Power Spectral Density

6.7.1 Standard requirement

For 5.15~5.25GHz

- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.note1
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.note1
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.25-5.35 GHz and 5.47-5.725 GHz

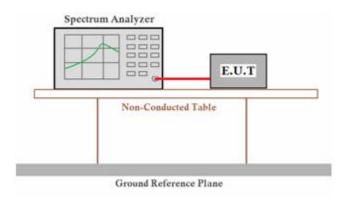
The maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For 5725~5850MHz

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

6.7.2 Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.


6.7.3 Test Procedures

- 1. Use this procedure when the maximum peak conducted output power in the fundamental 1). The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2). The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3). Set the RBW = 1MHz.
- 4). Set the VBW ≥ 3MHz
- 5). Span=Encompass the entire emissions bandwidth (EBW) of the signal (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- 6). Number of points in sweep ≥ 2 × span / RBW. (This ensures that bin-to-bin spacing is ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- 7). Manually set sweep time ≥ 10 × (number of points in sweep) × (total on/off period of the transmitted signal).
- 8). Set detector = power averaging (rms).

- 9). Sweep time = auto couple.
- 10). Trace mode = max hold.
- 11). Allow trace to fully stabilize.
- 12). Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively.
- 13). Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is 25%.
- 14). Use the peak marker function to determine the maximum power level in any 1MHz band segment within the fundamental EBW.

6.7.4 Test Setup Layout

6.7.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.7.6 Test result

PASS

Please refer to Appendix D.5 (5150-5250MHz) and Appendix E.5(5725-5850MHz)

Remark:

- 1. Measured power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;.

Report conducted PSD = Measured conducted average power + Duty Cycle factor;

Report No.: AiTDG-250120005W9

6.8 **Radiated Emissions and Radiation Restricted band Measurement**

6.8.1 Standard requirement

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

^{\1\} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

I

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Dongguan Yaxu (AiT) Technology Limited No.22, Jingianling 3rd Street, Jitigang, Huangjiang, Dongguan, Guangdong, China.

^{\2\} Above 38.6

6.8.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

6.8.3 Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.5 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

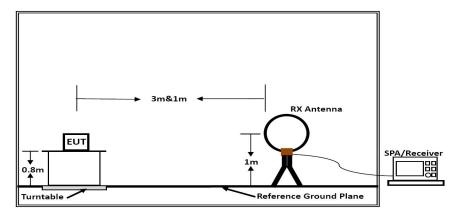
- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

45 Report No.: AiTDG-250120005W9

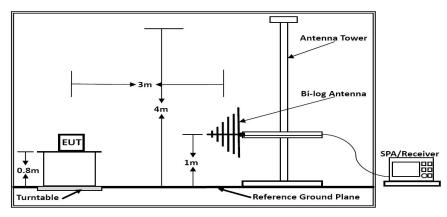
4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

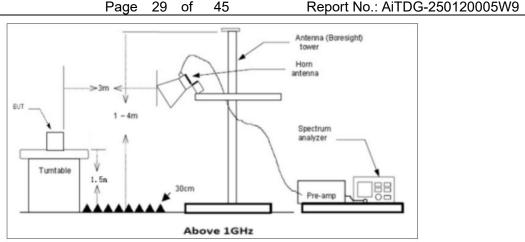

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.


Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Test Setup Layout 6.8.4



Below 30MHz

Below 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

6.8.5 **EUT Operation During Test**

The EUT was programmed to be in continuously transmitting mode.

Test Result 6.8.6

Temperature	25.5℃	Humidity	52.2%
Test Engineer	Emiya Lin	Configurations	IEEE 802.11a/n/ac

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

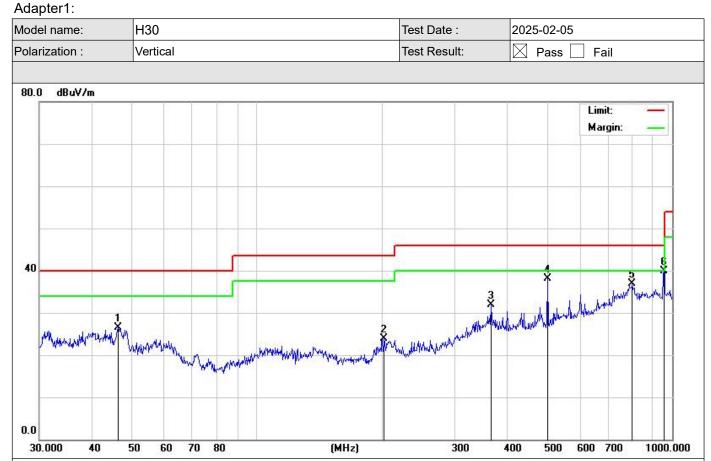
Results of Radiated Emissions (9 KHz~30MHz)

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);


Limit line = specific limits (dBuV) + distance extrapolation factor.

45 Report No.: AiTDG-250120005W9 Page 30 of

Results of Radiated Emissions (30MHz~1GHz)

Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11a Middle Channel)...

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		46.5030	25.74	0.86	26.60	40.00	-13.40	QP
2		202.8104	23.87	0.07	23.94	43.50	-19.56	QP
3	,	366.8231	26.40	5.44	31.84	46.00	-14.16	QP
4	ļ	501.1790	33.21	4.89	38.10	46.00	-7.90	QP
5	(801.7863	23.95	12.87	36.82	46.00	-9.18	QP
6	*	955.4381	28.99	10.90	39.89	46.00	-6.11	QP

lodel name:	H30	Test	t Date :	2025-02-05	
olarization :	Horizontal	Test	Fail		
RUNNING SECTION OF WAR					
0.0 dBuV/m					Limit: — Margin: —
1	2	620	المدار	A Albah	A MARINE MARINE
W Mandyonnya dhir waliya	2 Manuser of the American State of the Ameri	ingstyphilitely and head from the second	enerological and a delivery that have been a		
.0 30.000 40	50 60 70 80	(MHz)	300 4	00 500	600 700 1000.0

45

Page 31 of

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		31.5095	27.74	2.00	29.74	40.00	-10.26	QP
2		48.6719	26.02	2.75	28.77	40.00	-11.23	QP
3		183.2005	22.90	0.70	23.60	43.50	-19.90	QP
4	*	501.1790	32.89	8.44	41.33	46.00	-4.67	QP
5		787.8513	23.84	12.84	36.68	46.00	-9.32	QP
6		955.4381	27.14	12.66	39.80	46.00	-6.20	QP

Adapter2:

/lodel name:	H30	Test Date :	2025-02-05			
Polarization :	Vertical	Test Result:				
80.0 dBuV/m						
			Limit: — Margin: —			
40						
	1		. × ×			
	The same of the sa	×	and Market War War War			
Medonal	Many Abandra Managam	bywidthodogaethalyganthologaethalyganthologaethal	ANTO TORY WHOLE IN			
A. McKillo	July medate is a wald had medial	Here Hall when the fall the transfer of the tr				
0.0						

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	44.7433	34.89	1.35	36.24	40.00	-3.76	QP
2		89.2764	29.36	-4.60	24.76	43.50	-18.74	QP
3	à	252.9482	23.00	-0.25	22.75	46.00	-23.25	QP
4		366.8231	25.61	5.44	31.05	46.00	-14.95	QP
5	į.	501.1790	32.73	4.89	37.62	46.00	-8.38	QP
6		955.4381	27.15	10.90	38.05	46.00	-7.95	QP

(MHz)

300

Report No.: AiTDG-250120005W9

600 700

1000.000

Mode	el name:	H30						Test Date	e :	2025	-02-05	5		
Polar	rization :	Horize	ontal					Test Res	ult:		Pass	F	ail	
80.0) dBuV/m													
												Lin Ma	nit: Irgin:	
40											4 *	_	5	- 6 X
8	1 2 * *									1 1/4/	Marine	hallyane"	A WAYN	homethodal
_	Magazine	wanny		8			3	physical property law for for	Humblynd	Mor				
			MANAMA	manage of spect	MAN	and the second second by	Yer Votrilly A 1	Mandagetter free free .						
											-			
0.0	.000 40 !	50 6	0 70	80			(MHz)		300	400	500	600	700	1000.00

Page 33 of 45

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		31.5095	27.94	2.00	29.94	40.00	-10.06	QP
2		48.6719	26.69	2.75	29.44	40.00	-10.56	QP
3		172.5988	23.99	-1.51	22.48	43.50	-21.02	QP
4	*	501.1790	32.86	8.44	41.30	46.00	-4.70	QP
5		706.6999	27.58	12.36	39.94	46.00	-6.06	QP
6	1	955.4381	28.03	12.66	40.69	46.00	-5.31	QP

Results for Radiated Emissions (1-40 GHz)

Note: All the modes have been tested and recorded worst mode in the report.

IEEE 802.11a

Channel 36 / 5180 MHz

Freq GHz	Read Level dBuV	Correct Factor	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
10360	33.58	12.56	46.14	68.20	-22.06	Peak	Horizontal
15540	20.11	16.45	36.56	54.00	-17.44	Average	Horizontal
10360	32.16	12.56	44.72	68.20	-23.48	Peak	Vertical
15540	20.49	16.45	36.94	54.00	-17.06	Average	Vertical

Channel 48 / 5240 MHz

Freq GHz	Read Level dBuV	Correct Factor	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
10480	34.66	12.68	47.34	68.20	-20.86	Peak	Horizontal
15720	21.31	16.54	37.85	54.00	-16.15	Average	Horizontal
10480	32.16	12.68	44.84	68.20	-23.36	Peak	Vertical
15720	19.76	16.54	36.30	54.00	-17.70	Average	Vertical

Channel 149 / 5745 MHz

Freq GHz	Read Level dBuV	Correct Factor dB/m	Measured Level dBuV/m	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11490	30.63	16.82	47.45	68.20	-20.75	Peak	Horizontal
17235	19.57	22.93	42.50	54.00	-11.50	Average	Horizontal
11490	29.02	16.71	45.73	68.20	-22.47	Peak	Vertical
17235	19.08	22.93	42.01	54.00	-11.99	Average	Vertical

Channel 157 / 5785 MHz

Freq GHz	Read Level dBuV	Correct Factor dB/m	Measured Level dBuV/m	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11570	31.47	16.71	48.18	68.20	-20.02	Peak	Horizontal
17355	19.13	24.37	43.50	54.00	-10.50	Average	Horizontal
11570	30.72	16.71	47.43	68.20	-20.77	Peak	Vertical
17355	20.32	24.37	44.69	54.00	-9.31	Average	Vertical

Channel 163 / 5825 MHz

Freq GHz	Read Level dBuV	Correct Factor dB/m	Measured Level dBuV/m	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11650	31.38	16.61	47.99	68.20	-20.21	Peak	Horizontal
17475	20.42	25.01	45.43	54.00	-8.57	Average	Horizontal
11650	30.27	16.61	46.88	68.20	-21.32	Peak	Vertical
17475	18.14	25.01	43.15	54.00	-10.85	Average	Vertical

IEEE 802.11n HT40

Channel 38 / 5190 MHz

Freq GHz	Read Level dBuV	Correct Factor	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
10380	30.24	12.58	42.82	68.20	-25.38	Peak	Horizontal
15570	19.70	16.48	36.18	54.00	-17.82	Average	Horizontal
10380	29.22	12.58	41.80	68.20	-26.40	Peak	Vertical
15570	20.53	16.48	37.01	54.00	-16.99	Average	Vertical

Channel 151 / 5755 MHz

Freq GHz	Read Level dBuV	Correct Factor dB/m	Measured Level dBuV/m	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11510	30.80	16.78	47.58	68.20	-20.62	Peak	Horizontal
17265	19.08	23.29	42.37	54.00	-11.63	Average	Horizontal
11510	29.22	16.78	46.00	68.20	-22.20	Peak	Vertical
17265	18.68	23.29	41.97	54.00	-12.03	Average	Vertical

Channel 159 / 5795 MHz

Freq GHz	Read Level dBuV	Correct Factor dB/m	Measured Level dBuV/m	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11590	29.69	16.69	46.38	68.20	-21.82	Peak	Horizontal
17385	19.51	24.73	44.24	54.00	-9.76	Average	Horizontal
11590	29.24	16.69	45.93	68.20	-22.27	Peak	Vertical
17385	17.92	24.73	42.65	54.00	-11.35	Average	Vertical

45

Page 36 of

Report No.: AiTDG-250120005W9

IEEE 802.11ac VHT80

Channel 42 / 5210 MHz

Freq GHz	Read Level dBuV	Correct Factor	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
10420	27.57	12.62	40.19	68.20	-28.01	Peak	Horizontal
15630	17.44	16.52	33.96	54.00	-20.04	Average	Horizontal
10420	27.15	12.62	39.77	68.20	-28.43	Peak	Vertical
15630	18.00	16.52	34.52	54.00	-19.48	Average	Vertical

Channel 155 / 5775 MHz

Freq GHz	Read Level dBuV	Correct Factor dB/m	Measured Level dBuV/m	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
11550	28.59	16.73	45.32	68.20	-22.88	Peak	Horizontal
17325	18.41	24.01	42.42	54.00	-11.58	Average	Horizontal
11550	27.85	16.73	44.58	68.20	-23.62	Peak	Vertical
17325	18.13	24.01	42.14	54.00	-11.86	Average	Vertical

Notes:

- 1). Measuring frequencies from 9 KHz ~ 40GHz, No emission found between lowest internal used/generated frequency to 30MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz ~ 40GHz were made with an instrument using Peak detector mode.
- 3). 18~40GHz at least have 20dB margin. No recording in the test report.
- 4). Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80, IEEE 802.11ax HE20, IEEE 802.11ax HE40, IEEE 802.11ax HE80;.
- 5). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 6). Margin=Reading level + Factor Limit

Report No.: AiTDG-250120005W9

Results for Radiation Restricted band

Note: All the modes have been tested and recorded worst mode in the report.

5180MHz-5240MHz:

IEEE 802.11a Lowest

Freq GHz	Read Level dBuV	Correct Factor dB/m	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
5150.000	45.43	7.18	52.61	68.20	-15.59	Peak	Horizontal
5150.000	44.72	7.18	51.90	68.20	-16.30	Peak	Vertical
5350.000	43.16	7.20	50.36	68.20	-17.84	Peak	Horizontal
5350.000	42.54	7.20	49.74	68.20	-18.46	Peak	Vertical

IEEE 802.11n HT40 Lowest

Freq GHz	Read Level dBuV	Correct Factor dB/m	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
5150.000	43.48	7.18	50.66	68.20	-17.54	Peak	Horizontal
5150.000	42.24	7.18	49.42	68.20	-18.78	Peak	Vertical
5350.000	45.93	7.20	53.13	68.20	-15.07	Peak	Horizontal
5350.000	44.76	7.20	51.96	68.20	-16.24	Peak	Vertical

IEEE 802.11ac VHT80 Lowest

Freq GHz	Read Level dBuV	Correct Factor dB/m	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
5150.000	47.41	7.18	54.59	68.20	-13.61	Peak	Horizontal
5150.000	45.14	7.18	52.32	68.20	-15.88	Peak	Vertical
5350.000	47.63	7.20	54.83	68.20	-13.37	Peak	Horizontal
5350.000	45.47	7.20	52.67	68.20	-15.53	Peak	Vertical

Report No.: AiTDG-250120005W9

5745MHz-5825MHz:

All modes are tested, IEEE 802.11a is the worst mode, and the report only records the worst data IEEE 802.11a Lowest

Erog	Read Level	Correct	Measured	Limit	Over limit		
Freq		Factor	Level	Line		Remark	Pol/Phase
GHz	dBuV	dB/m	dBuV	dBuV/m	dB		
5650	36.06	3.94	40.00	68.23	-28.23	Peak	Horizontal
5700	74.02	3.95	77.97	105.23	-27.26	Peak	Horizontal
5720	77.56	3.95	81.51	110.83	-29.32	Peak	Horizontal
5725	89.36	3.95	93.31	122.23	-28.92	Peak	Horizontal
5650	36.83	3.94	40.77	68.23	-27.46	Peak	Vertical
5700	72.99	3.95	76.94	105.23	-28.29	Peak	Vertical
5720	78.42	3.95	82.37	110.83	-28.46	Peak	Vertical
5725	88.72	3.95	92.67	122.23	-29.56	Peak	Vertical

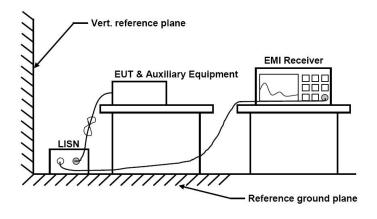
IEEE 802.11a Highest

Freq GHz	Read Level dBuV	Correct Factor dB/m	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
5850	88.74	3.96	92.70	122.23	-29.53	Peak	Horizontal
5855	79.89	3.96	83.85	110.83	-26.98	Peak	Horizontal
5875	71.86	3.97	75.83	105.23	-29.40	Peak	Horizontal
5925	36.07	3.97	40.04	68.23	-28.19	Peak	Horizontal
5850	85.97	3.96	89.93	122.23	-32.30	Peak	Vertical
5855	76.35	3.96	80.31	110.83	-30.52	Peak	Vertical
5875	70.27	3.97	74.24	105.23	-30.99	Peak	Vertical
5925	37.85	3.97	41.82	68.23	-26.41	Peak	Vertical

Remarks:

- 1). Margin= Emission Level Limit
- 2). Emission Level = Reading + Factor
- 3). Factor = Antenna Factor + Cable Loss Pre-amplifie
- 4). The PEAK value is less than the AVG limit, the AVG result no need be show in this report.

6.9 Power Line Conducted Emissions


6.9.1 Standard requirement

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

6.9.2 Test Setup Layout

6.9.3 Test Procedures

The transmitter output is connected to EMI receiver. The resolution bandwidth is set to 9 kHz. The video bandwidth is set to 30 kHz, Sweep time=Auto

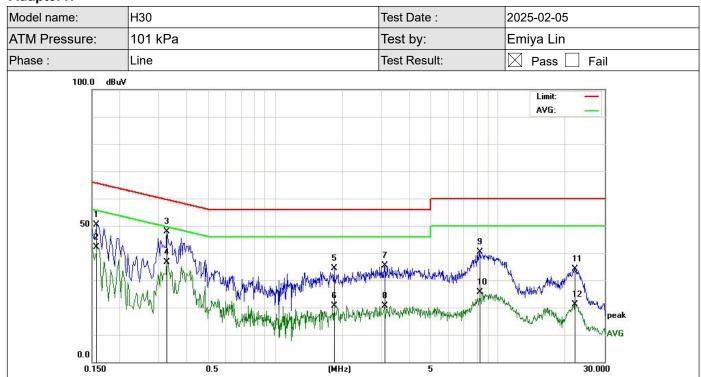
The spectrum from 150 kHz to 30MHz is investigated with the transmitter set to the lowest, middle, and highest channels.

6.9.4 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

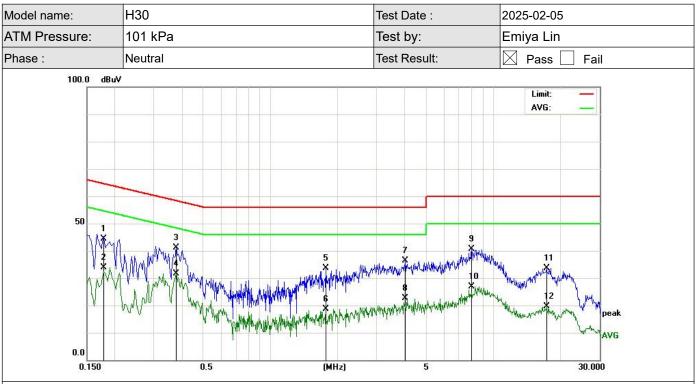
6.9.5 Test result

PASS


The test data please refer to following page.

Temperature	25.5℃	Humidity	52.2%
Test Engineer	Emiya Lin	Configurations	IEEE 802.11a/n/ac

Measurement data:


AC Conducted Emission of charge from IEEE 802.11a (MCH) mode @ AC 120V/60Hz (worst case) Adapter1:

Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch. Measurement Result=Reading Level +Correct Factor;

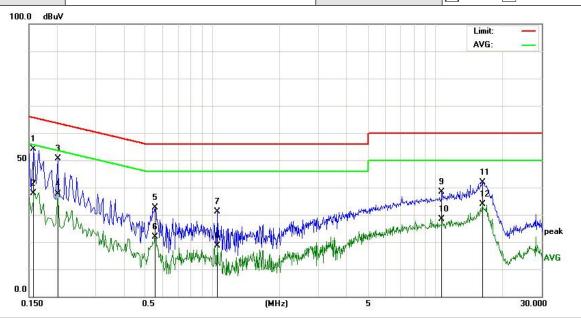
Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1580	38.69	11.75	50.44	65.56	-15.12	QP
2		0.1580	30.37	11.75	42.12	55.56	-13.44	AVG
3	×	0.3260	37.69	10.15	47.84	59.55	-11.71	QP
4		0.3260	26.50	10.15	36.65	49.55	-12.90	AVG
5		1.8300	24.45	9.95	34.40	56.00	-21.60	QP
6		1.8300	10.80	9.95	20.75	46.00	-25.25	AVG
7		3.1020	25.37	9.98	35.35	56.00	-20.65	QP
8		3.1020	10.60	9.98	20.58	46.00	-25.42	AVG
9		8.2660	30.24	10.13	40.37	60.00	-19.63	QP
10		8.2660	15.42	10.13	25.55	50.00	-24.45	AVG
11		22.1420	32.28	1.91	34.19	60.00	-25.81	QP
12		22.1420	19.28	1.91	21.19	50.00	-28.81	AVG

45

Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch.

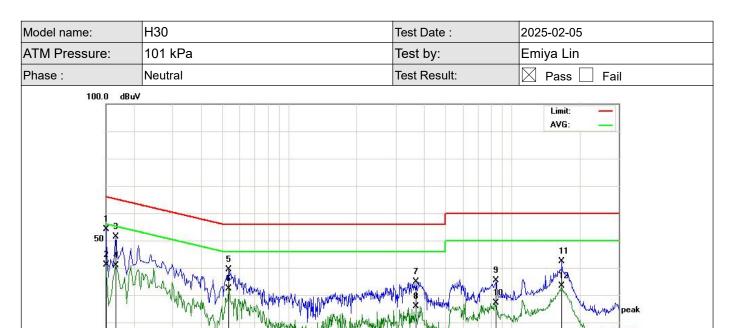
Measurement Result=Reading Level +Correct Factor;


Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1787	32.87	11.40	44.27	64.54	-20.27	QP
2		0.1787	22.60	11.40	34.00	54.54	-20.54	AVG
3		0.3780	31.11	10.11	41.22	58.32	-17.10	QP
4	*	0.3780	21.41	10.11	31.52	48.32	-16.80	AVG
5		1.7740	23.71	9.95	33.66	56.00	-22.34	QP
6		1.7740	8.71	9.95	18.66	46.00	-27.34	AVG
7		4.0460	26.36	10.00	36.36	56.00	-19.64	QP
8		4.0460	12.60	10.00	22.60	46.00	-23.40	AVG
9		7.9780	30.40	10.12	40.52	60.00	-19.48	QP
10		7.9780	16.78	10.12	26.90	50.00	-23.10	AVG
11		17.3620	32.21	1.45	33.66	60.00	-26.34	QP
12		17.3620	18.26	1.45	19.71	50.00	-30.29	AVG

Adapter2:

/ taapto. = .			
Model name:	H30	Test Date :	2025-02-05
ATM Pressure:	101 kPa	Test by:	Emiya Lin
Phase :	Line	Test Result:	⊠ Pass ☐ Fail


Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch. Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1580	42.37	11.75	54.12	65.56	-11.44	QP
2		0.1580	26.15	11.75	37.90	55.56	-17.66	AVG
3		0.2020	39.52	11.12	50.64	63.52	-12.88	QP
4		0.2020	26.60	11.12	37.72	53.52	-15.80	AVG
5		0.5540	22.61	9.97	32.58	56.00	-23.42	QP
6		0.5540	11.97	9.97	21.94	46.00	-24.06	AVG
7		1.0540	21.15	9.90	31.05	56.00	-24.95	QP
8		1.0540	8.78	9.90	18.68	46.00	-27.32	AVG
9		10.6860	28.28	10.20	38.48	60.00	-21.52	QP
10		10.6860	18.24	10.20	28.44	50.00	-21.56	AVG
11		16.2540	40.49	1.36	41.85	60.00	-18.15	QP
12		16.2540	32.44	1.36	33.80	50.00	-16.20	AVG

Report No.: AiTDG-250120005W9

30.000

Remark: Factor =insertion loss of LISN + Cable loss +insertion loss of Pulse Limiter +insertion loss of Switch. Measurement Result=Reading Level +Correct Factor;

(MHz)

Over Limit= Measurement Result- Limit;

0.0

	Over	Limit	Measure- ment	Correct Factor	Reading Level	Freq.	Mk.	No.
Detecto	dB	dBuV	dBuV	dB	dBuV	MHz		
QP	-11.75	65.99	54.24	11.94	42.30	0.1500	*	1
AVG	-14.77	55.99	41.22	11.94	29.28	0.1500		2
QP	-13.74	65.15	51.41	11.61	39.80	0.1660		3
AVG	-14.24	55.15	40.91	11.61	29.30	0.1660		4
QP	-16.71	56.00	39.29	9.97	29.32	0.5340		5
AVG	-13.55	46.00	32.45	9.97	22.48	0.5340		6
QP	-21.09	56.00	34.91	9.99	24.92	3.7020		7
AVG	-20.14	46.00	25.86	9.99	15.87	3.7020		8
QP	-24.64	60.00	35.36	10.13	25.23	8.4980		9
AVG	-22.83	50.00	27.17	10.13	17.04	8.4980		10
QP	-17.54	60.00	42.46	1.40	41.06	16.6900	18	11
AVG	-16.69	50.00	33.31	1.40	31.91	16.6900	38	12

Notes:

- 1. Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11n HT20 mode (HCH).
- 2. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 3. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

6.10 Frequency Stability

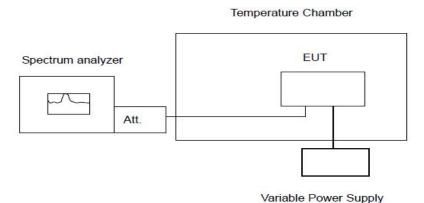
6.10.1 Standard requirement

According to FCC §15.407(g) "Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual."

According to FCC §2.1055(a) "The frequency stability shall be measured with variation of ambient temperature as follows:"

- (1) From −30° to + 50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (2) From -20° to + 50° centigrade for equipment to be licensed for use in the Maritime Services under part 80 of this chapter, except for Class A, B, and S Emergency Position Indicating Radiobeacons (EPIRBS), and equipment to be licensed for use above 952 MHz at operational fixed stations in all services, stations in the Local Television Transmission Service and Point-to-Point Microwave Radio Service under part 21 of this chapter, equipment licensed for use aboard aircraft in the Aviation Services under part 87 of this chapter, and equipment authorized for use in the Family Radio Service under part 95 of this chapter.

From 0° to + 50° centigrade for equipment to be licensed for use in the Radio Broadcast Services under part 73 of this chapter.


6.10.2 Measuring Instruments and Setting:

Please refer to equipment list in this report.

6.10.3 Test Procedures

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum anzlyer via feed through attenators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low engouh to obtain the desired frequency resoluation and measure EUT 20 degree operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30 degree. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure wuth 10 degree increased per stage until the highest temperature of +50 degree reached.

6.10.4 Test Setup Layout

6.10.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.10.6 Test result

PASS

Please refer to Appendix D.7 (5150-5250MHz) and Appendix E.7 (5725-5850MHz)

7 Test Setup Photographs of EUT

Please refer to separated files for Test Setup Photos of the EUT.

8 External Photographs of EUT

Please refer to separated files for External Photos of the EUT.

9 Internal Photographs of EUT

Please refer to separated files for Internal Photos of the EUT.

----End Of The Report----