

FCC Test Report

Equipment	:	Wireless Interactive Whiteboard System - IW2
Brand Name	:	IPEVO
Model No.	:	CSW2-01IP, CSW2-01IP-A2
FCC ID	:	WKP-CSW2-01IP-A2
Standard	:	47 CFR FCC Part 15.249
Operating Band	:	2400 MHz – 2483.5 MHz
FCC Classification	:	DXX
Applicant Manufacturer	:	IPEVO Corp. 3F, No.53, Bo-ai Road, Taipei 100, Taiwan

The product sample received on Jan. 22, 2015 and completely tested on Mar. 10, 2015. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Vic Hsiao / Supervisor

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	
1.3	Testing Applied Standards	
1.4	Testing Location Information	
1.5	Measurement Uncertainty	
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	Test Channel Frequencies Configuration	9
2.3	The Worst Case Measurement Configuration	9
2.4	Test Setup Diagram	10
3	TRANSMITTER TEST RESULT	12
3.1	AC Power-line Conducted Emissions	12
3.2	Emission Bandwidth	15
3.3	Fundamental Emissions	17
3.4	Transmitter Radiated Unwanted Emissions	19
4	TEST EQUIPMENT AND CALIBRATION DATA	30

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result			
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 17.570MHz 40.21 (Margin 19.79dB) - QP 34.01 (Margin 15.99dB) - AV	FCC 15.207	Complied			
3.2	15.215(c)	Emission Bandwidth	1.2373 MHz; fall in band	Information only	Complied			
3.3	15.249(a)	Fundamental Emissions	[dBuV/m at 3m]: 80.37 (Margin 13.63dB) average	[dBuV/m at 3m]: average: 94	Complied			
3.4	15.249 (a)/(d)	Transmitter Radiated Unwanted Emissions	[dBuV/m at 3m]: 30MHz 32.06 (Margin 7.94dB) - PK	Harmonics: 54 dBuV/m@3m Other band: 50 dB or FCC 15.209, whichever is the lesser attenuation.	Complied			

Revision History

Report No.	Version	Description	Issued Date
FR4D3129-01	Rev. 01	Initial issue of report	Mar. 30, 2015
FR4D3129-01	Rev. 02	Add one model name	Apr. 07, 2015

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information							
Frequency Range (MHz) Modulation Ch. Frequency (MHz) Channel Number Fundamental Figure							
2400-2483.5	FSK	2405, 2440, 2475	71	80.37			
Note 1: Field strength	Note 1: Field strength performed average level at 3m.						

1.1.2 Antenna Information

	Antenna Category					
	Equipment placed on the market without antennas					
\square	Integral antenna (antenna permanently attached)					
	External antenna (dedicated antennas)					

1.1.3 Type of EUT

	Identify EUT				
EUT	Serial Number	N/A			
Pres	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle				
Operated normally mode for worst duty cycle				
Operated test mode for worst duty cycle				
Test Signal Duty Cycle (x)Duty Cycle Correction Factor [dB] – (20 log x)				
☑ 14.76% 16.61				
If worst duty < 100%, average emission = peak emission + 20 log x				

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	\square	DC	-	-
Type of DC Source	Internal DC supply		From Adapter	\boxtimes	System

1.2 Support Equipment

Support Equipment – RF Conducted						
No. Equipment Brand Name Model Name FCC ID						
1	Notebook	DELL	E5540	DoC		

Support Equipment – AC Conduction and Radiation Emission							
No.	No. Equipment Brand Name Model Name FCC ID						
1	Notebook	DELL	E5530	DoC			

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013

1.4 Testing Location Information

	Testing Location								
\square	HWA YA	ADD	:	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.					
		TEL	: 886-3-327-3456 FAX : 886-3-327-0973						
	Test Site Registration Number: FCC 636805								
	Test Condition Test Site No. Test Engineer Test Environment							Test Environment	
	AC Condu	ction		CO04-HY		Zeus		25°C / 40%	
	RF Condu	cted		TH01-HY		lan		23.4°C / 62%	
I	Radiated Err	nission		03CH03-HY			Daniel	22.8°C / 48%	

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Test Item		Uncertainty			
AC power-line conducted emissions		±2.2 dB			
Emission bandwidth, 20dB bandwidth		±1.4 %			
RF output power, conducted		±0.6 dB			
All emissions, radiated	9 – 150 kHz	±2.4 dB			
	0.15 – 30 MHz	±2.2 dB			
	30 – 1000 MHz	±2.5 dB			
	1 – 18 GHz	±3.5 dB			
	18 – 40 GHz	±3.8 dB			
	40 – 200 GHz	N/A			
Temperature		±0.8 °C			
Humidity		±3 %			
DC and low frequency voltages		±3 %			
Time		±1.4 %			
Duty Cycle		±1.4 %			

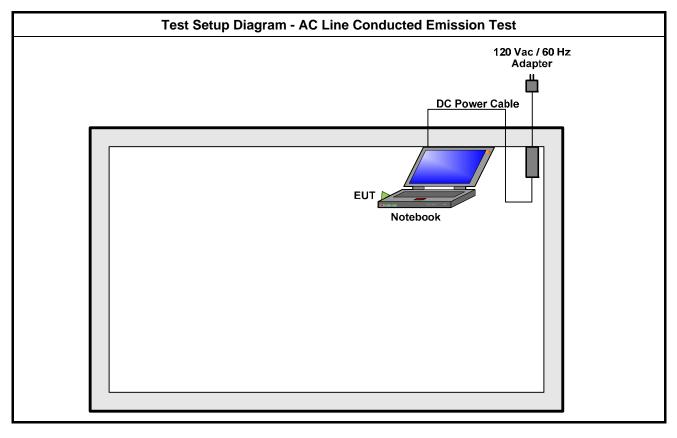
2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

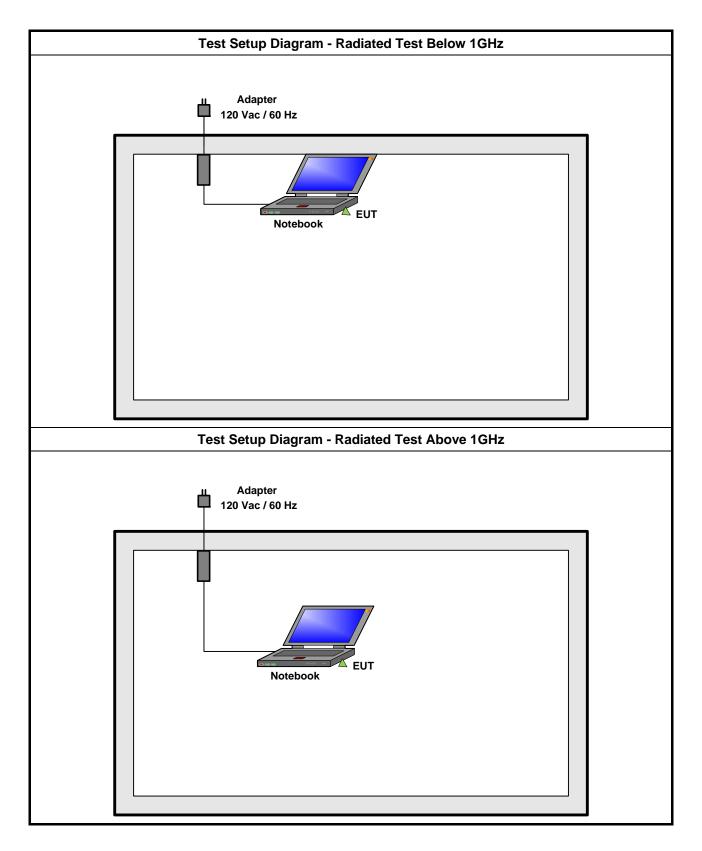
Modulation Used for Conformance Testing				
Test Mode Field Strength (dBuV/m at 3 m)				
Transmit	80.37			

2.2 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration				
Test Mode Test Channel Frequencies (MHz)				
Transmit	2405, 2440, 2475			


2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests					
Tests Item	AC power-line conducted emissions				
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz				
Operating Mode	Operating Mode Description				
Operating Mode	1. USB mode				


Th	The Worst Case Mode for Following Conformance Tests					
Tests Item	Emission Bandwidth, Fundamental Emissions, Radiated Unwanted Emissions					
Test Condition	Radiated measurement	Radiated measurement				
	EUT will be placed in	fixed position.				
	EUT will be placed in	mobile position and operati	ng multiple positions.			
User Position	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed three orthogonal planes.					
On anotin a Mada	Operating Mode Description					
Operating Mode	1. USB mode					
Modulation Mode	Transmit					
	X Plane	Y Plane	Z Plane			
Orthogonal Planes of EUT						
Worst Planes of EUT	V					

2.4 Test Setup Diagram

Transmitter Test Result 3

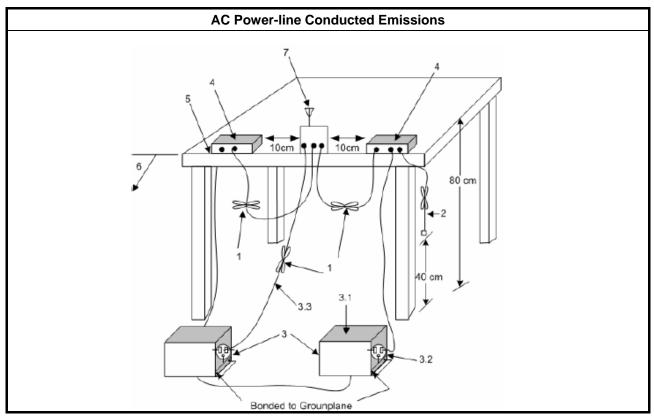
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz)	Quasi-Peak	Average			
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30	60	50			
Note 1: * Decreases with the logarithm of	of the frequency.	•			

creases with the logarithm of the frequency

3.1.2 Measuring Instruments

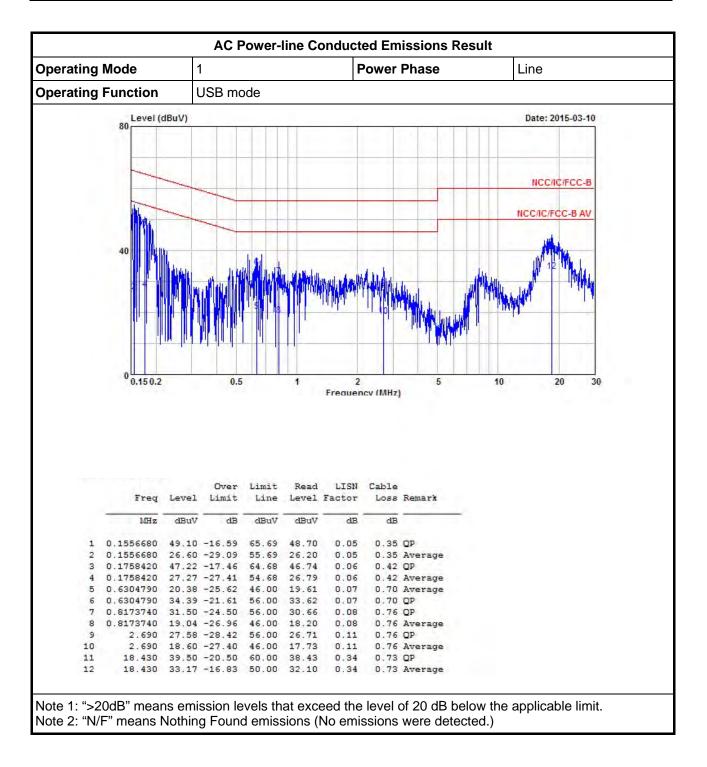

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



rating Mod	е	1			F	ower	Phase		Neutra	al
rating Fund	ction	USB m	ode							
80	Level (dBuV)								Date: 1	2015-03-10
				_		_				
										INTOO D
									NCC	/IC/FCC-B
									NCCACA	FCC-B AV
	ha.									
40					_					
40	and the following of the		dian .		and the	5.0			. 42	
		Le ale Mal		A MARKE	and shale with	ANA IN		Ma.	- M	THUR.
		A afalan	MATHER	L Malla	all of the last of		AN. In	/ WAS	. With	110
					1.1		Thurst	ALT P	un l	
			6							
							al, halldad			
	and the second		11 1 1							
0	0.150.2	0.5	-					10 To 10		
	0.150.2	0.3	0	1	2		5	10		20 30
	0.150.2	0.5	0	1	2 Frequen	cy (MHz)		10		20 30
	0.130.2	0.3	5	1	and the second se	cy (MHz)		10		20 30
	0.150.2	0.3	5	1	and the second se	cy (MHz)		10		20 30
	0.130.2	0.:	5	1	and the second se	cy (MHz)		10		20 30
	0.130.2	0.5		1	and the second se	cy (MHz)		10		20 30
	0.130.2	0.8		1	and the second se	cy (MHz)		10		20 30
		Over	Limit	Read	Frequen	Cable		10		20 30
	Freq Leve	Over		Read	Frequen	Cable		10		20 30
		Over 1 Limit	Limit	Read	Frequen	Cable		10		20 30
1 0.15	Freq Leve MHz dBu	Over 1 Limit	Limit Line dBuV	Read Level	LISN Factor dB	Cable Loss	Remark	10		20 30
2 0.15	Freq Leve MHz dB 15980 48.4 15980 27.2	Over 21 Limit 37 dB 46 -17.45 29 -28.62	Limit Line dBuV 65.91 55.91	Read Level dBuV 48.05 26.88	LISN Factor dB 0.07 0.07	Cable Loss dB 0.34 0.34	Remark OP Average	10		20 30
2 0.15 3 0.17	Freq Leve MHz dB 15980 48. 15980 27.3 86590 45.3	Over 1 Limit 10 dB 16 -17.45 29 -28.62 17 -18.58	Limit Line dBuV 65.91 55.91 64.55	Read Level dBuV 48.05 26.88 45.47	LISN Factor dB 0.07 0.07 0.07	Cable Loss dB 0.34 0.34	Remark OP Average OP	10		20 30
2 0.15 3 0.17 4 0.17	Freq Leve MHz dB 15980 48. 15980 27.3 86590 45.3 86590 29.3	Over 1 Limit 10 dB 16 -17.45 29 -28.62 17 -18.58	Limit Line dBuV 65.91 55.91 64.55 54.55	Read Level dBuV 48.05 26.88 45.47	LISN Factor dB 0.07 0.07 0.07 0.07	Cable Loss dB 0.34 0.34 0.43 0.43	Remark OP Average OP Average	10		20 30
2 0.15 3 0.17 4 0.17 5 0.58	Freq Leva MHz dBa 15980 48 15980 27.: 86590 45.: 86590 29.: 23110 30.:	Over 1 Limit 10 dB 16 -17.45 19 -28.62 17 -18.58 15 -24.70	Limit Line dBuV 65.91 55.91 64.55 54.55 54.55 56.00	Read Level dBuV 48.05 26.88 45.47 29.35	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.08	Cable Loss dB 0.34 0.43 0.43 0.43 0.43	Remark OP Average OP Average	10		20 30
2 0.15 3 0.17 4 0.17 5 0.58 6 0.58 7 0.88	Freq Leve MHz dBt 15980 48.4 15980 27.3 86590 45.3 86590 29.3 23110 30.3 23110 15.1 49860 19.3	Over 1 Limit 0 dB 16 -17.45 29 -28.62 17 -18.58 25 -24.70 17 -25.23 19 -30.91 25 -26.05	Limit Line dBuV 65.91 55.91 64.55 54.55 56.00 46.00 46.00	Read Level dBuV 48.05 26.88 45.47 29.35 30.01 14.33 19.09	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.34 0.43 0.43 0.43 0.43 0.68 0.68	Remark OP Average OP Average OP Average Average	10		20 30
2 0.15 3 0.17 4 0.17 5 0.58 6 0.58 7 0.88 8 0.88	Freq Leve MHz dBs 15980 48.4 15980 27.2 86590 45.3 86590 29.3 23110 30.2 23110 15.4 49860 19.3	Over 1 Limit 0 dB 16 -17.45 29 -28.62 17 -18.58 15 -24.70 19 -30.91 19 -30.91 10 -24.79	Limit Line dBuV 65.91 55.91 64.55 54.55 56.00 46.00 46.00 56.00	Read Level dBuV 48.05 26.88 45.47 29.35 30.01 14.33 19.09 30.35	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.34 0.43 0.43 0.43 0.68 0.68 0.77 0.77	Remark OP Average OP Average OP Average Average QP	10		20 30
2 0.15 3 0.17 4 0.17 5 0.58 6 0.58 7 0.88 8 0.88 9	Freq Leve MHz dB 15980 48.4 15980 27.2 86590 45.9 86590 29.1 23110 15.0 49860 19.4 49860 31.2 2.080 30.4	Over Limit dB 46 -17.45 29 -28.62 97 -18.58 85 -24.70 77 -25.23 99 -30.91 55 -26.05 21 -24.79 39 -25.31	Limit Line dBuV 65.91 55.91 64.55 54.55 56.00 46.00 46.00 56.00 56.00	Read Level dBuV 48.05 26.88 45.47 29.35 30.01 14.33 19.09 30.35 29.80	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08	Cable Loss dB 0.34 0.43 0.43 0.43 0.43 0.68 0.68 0.67 7 0.77 0.77	Remark OP Average OP Average OP Average OP OP OP OP OP	10		20 30
2 0.15 3 0.17 4 0.17 5 0.58 6 0.58 7 0.88 8 0.88 9 10	Freq Leva MHz dB 15980 48. 15980 27. 86590 45. 86590 29. 23110 30. 23110 15. 49860 19. 49860 31. 2.080 30. 2.080 21.	Over Limit dB 46 -17.45 29 -28.62 27 -18.58 35 -24.70 77 -25.23 39 -30.91 5 -26.05 51 -24.79 39 -25.31 28 -24.72	Limit Line dBuV 65.91 55.91 64.55 54.55 56.00 46.00 46.00 56.00 56.00 46.00	Read Level dBuV 48.05 26.88 45.47 29.35 30.01 14.33 19.09 30.35 29.80 20.39	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.34 0.43 0.43 0.68 0.68 0.68 0.77 0.79 0.79	Remark OP Average OP Average OP Average OP OP OP Average	10		20 30
2 0.15 3 0.17 4 0.17 5 0.58 6 0.58 7 0.88 8 0.88 9 10 11 1	Freq Leve MHz dBa 15980 48. 15980 27. 86590 45. 23110 30. 23110 15.0 49860 19. 49860 31.2 2.080 30. 2.080 21.2	Over Limit dB 46 -17.45 29 -28.62 97 -18.58 85 -24.70 77 -25.23 99 -30.91 55 -26.05 21 -24.79 39 -25.31	Limit Line dBuV 65.91 55.91 64.55 54.55 54.55 56.00 46.00 46.00 56.00 46.00 60.00	Read Level dBuV 48.05 26.88 45.47 29.35 30.01 14.33 19.09 30.35 29.80	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.34 0.43 0.43 0.43 0.68 0.68 0.77 0.79 0.79 0.79 0.75	Remark OP Average OP Average OP Average OP OP OP Average	10		20 30
2 0.15 3 0.17 4 0.17 5 0.58 6 0.58 7 0.88 8 0.88 9 10 11 1	Freq Leve MHz dBa 15980 48. 15980 27. 86590 45. 23110 30. 23110 15.0 49860 19. 49860 31.2 2.080 30. 2.080 21.2	Over Limit de -17.45 29 -28.62 27 -18.58 55 -24.70 27 -25.23 29 -30.91 25 -26.05 21 -24.79 29 -25.31 28 -24.72 21 -19.79	Limit Line dBuV 65.91 55.91 64.55 54.55 54.55 56.00 46.00 46.00 56.00 46.00 60.00	Read Level dBuV 48.05 26.88 45.47 29.35 30.01 14.33 19.09 30.35 29.80 20.39 39.09	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.34 0.43 0.43 0.43 0.68 0.68 0.77 0.79 0.79 0.79 0.75	Remark OP Average OP Average OP Average OP Average OP Average OP	10		20 30
2 0.15 3 0.17 4 0.17 5 0.58 6 0.58 7 0.88 8 0.88 9 10 11 1	Freq Leve MHz dBa 15980 48. 15980 27. 86590 45. 23110 30. 23110 15.0 49860 19. 49860 31.2 2.080 30. 2.080 21.2	Over Limit 000000000000000000000000000000000000	Limit Line dBuV 65.91 55.91 64.55 54.55 54.55 56.00 46.00 46.00 56.00 46.00 60.00	Read Level dBuV 48.05 26.88 45.47 29.35 30.01 14.33 19.09 30.35 29.80 20.39 39.09	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.34 0.43 0.43 0.43 0.68 0.68 0.77 0.79 0.79 0.79 0.75	Remark OP Average OP Average OP Average OP Average OP Average OP	10		20 30

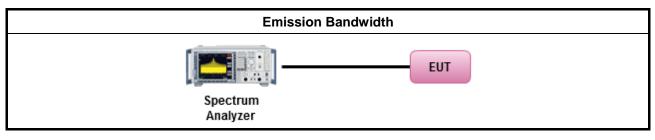
3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth Limit

Emission Bandwidth Limit

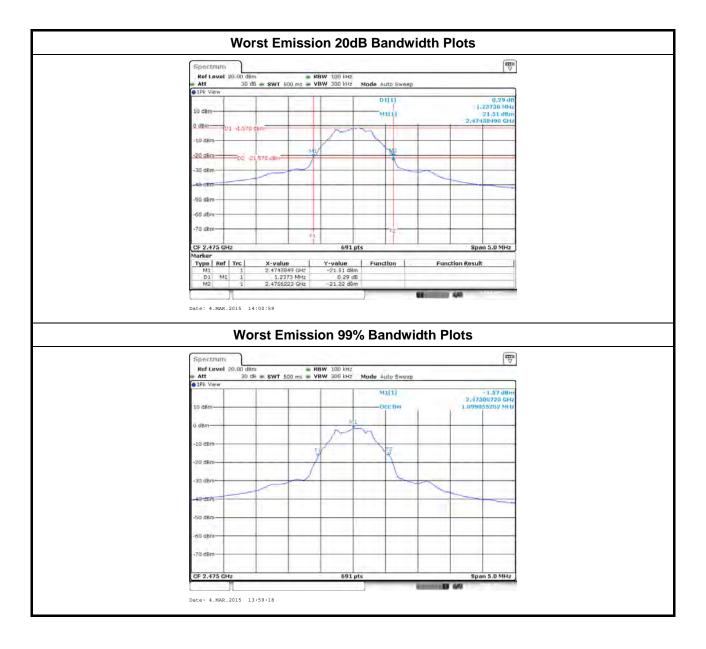
Emission bandwidth falls completely within authorized band.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

Test Method Refer as ANSI C63.10, clause 6.9.2for 20 dB emission bandwidth and 99% occupied bandwidth measurement.


3.2.4 Test Setup

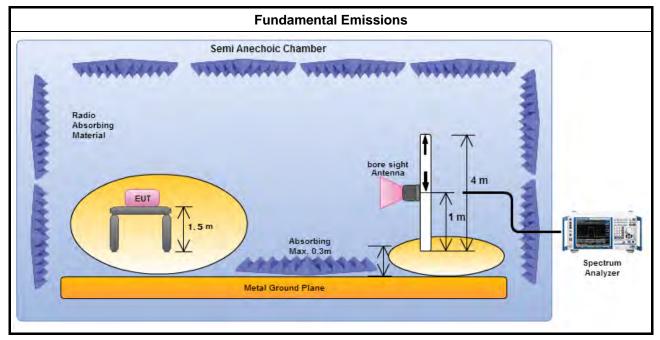
3.2.5 Test Result of Emission Bandwidth

Occupied Channel Bandwidth Result							
Modulation Mode	Frequency (MHz)	20dB Bandwidth (kHz)	F _∟ at 20dB BW (MHz)	F _H at 20dB BW (MHz)	99% Bandwidth (kHz)		
Transmit	2405	1.2229	2404.3849	-	1.0926		
Transmit	2440	1.2301	-	-	1.0998		
Transmit	2475	1.2373	-	2475.6223	1.0998		
Liı	nit	N/A	2400	2483.5	N/A		
Re	sult		Complied				

3.3 Fundamental Emissions

3.3.1 Fundamental Emissions Limit

	Fundamental Emissions E-Field Strength Limit (3m)
	902-928 MHz Band: 94 dBuV/m (quasi peak)
\boxtimes	2400-2483.5 MHz Band: 94 dBuV/m (average)
	5725-5785 MHz Band: 94 dBuV/m (average)


3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

☑ The average emission levels shall be measured in [duty cycle ≥ 100 or by duty cycle correction factor].
 ☑ For the transmitter emissions shall be measured using following options below:
 ☑ Refer as ANSI C63.10, clause 4.1.2.3 (Reduced VBW) – Duty cycle ≥ 100%.
 ☑ Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions. Adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms). Average emission = peak emission + 20 log (duty cycle).
 ☑ Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
 ☑ Refer as ANSI C63.10, clause 6.5 for radiated emissions and test distance is 3m.

3.3.4 Test Setup

3.3.5 Test Result of Fundamental Emissions

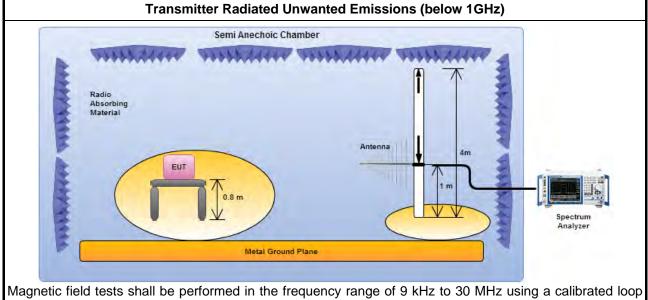
Field Strength of Fundamental Emissions Result						
Modulation Mode	Frequency (MHz)	Fundamental (dBuV/m)@3m	Margin (dB)	Limit (dBuV/m)@3m	Туре	
Transmit	2405	96.98	17.02	114	PK	
Transmit	2405	80.37	13.63	94	AV	
Transmit	2475	94.83	19.17	114	PK	
Transmit	2475	78.22	15.78	94	AV	
Result Complied						
Note 1: Measuremer	nt worst emissio	ons of receive ante	nna polarization: I	Horizontal		

3.4 Transmitter Radiated Unwanted Emissions

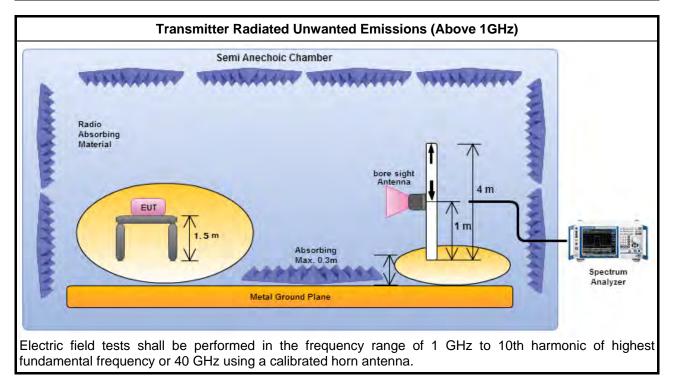
3.4.1 Transmitter Radiated Unwanted Emissions Limit

	Transmitter Radiated Unwanted Emissions Limit
Harmonics	s:
🛛 54 dB	uV/m (average)
Other Unw	vanted Emissions:
🛛 50 dB	below the level of the fundamental or FCC 15.209, whichever is the lesser attenuation.
⊠ 50 dB	below the level of the fundamental or FCC 15.209, whichever is the lesser attenuation.

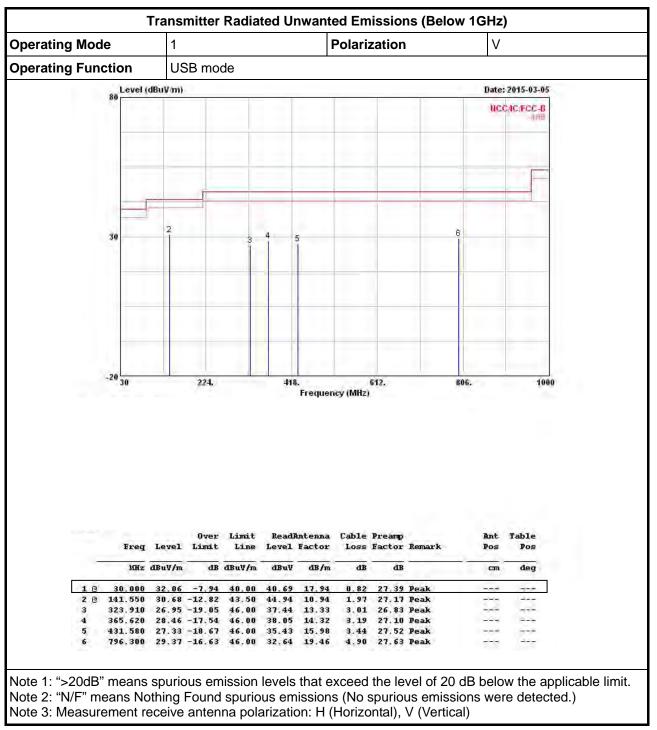
3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

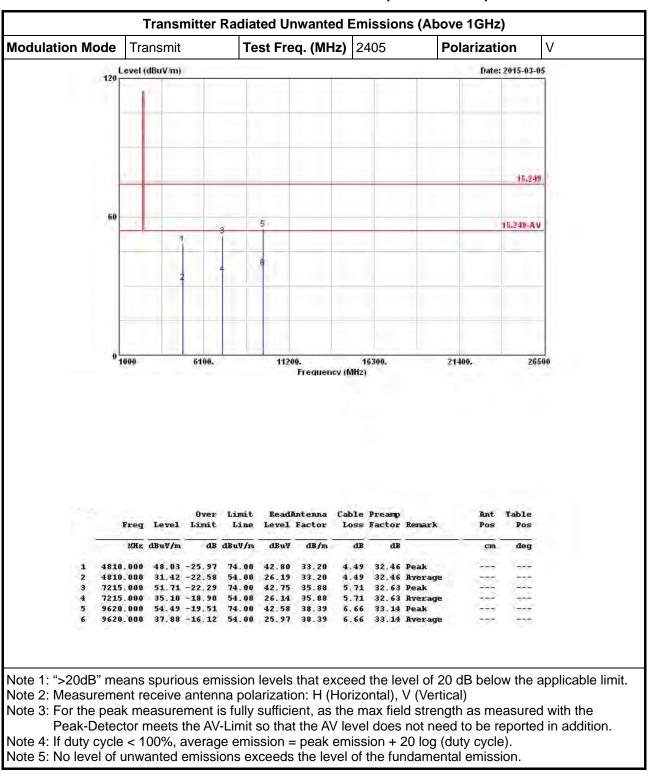

	Test Method – General Information
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
\square	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	Refer as ANSI C63.10, clause 6.10.3 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
\square	For the transmitter unwanted emissions shall be measured using following options below:
	☐ Refer as ANSI C63.10, clause 4.1.2.3 (Reduced VBW) – Duty cycle ≥ 100%.
	Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions. Adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms). Average emission = peak emission + 20 log (duty cycle).
	Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
\boxtimes	For the transmitter bandedge emissions shall be measured using following options below:
	Refer as ANSI C63.10, clause 6.10 for band-edge testing.
	Refer as ANSI C63.10, clause 6.10.6 for marker-delta method for band-edge measurements.
\boxtimes	For radiated measurement.
	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.
\square	The any unwanted emissions level shall not exceed the fundamental emission level.
	All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

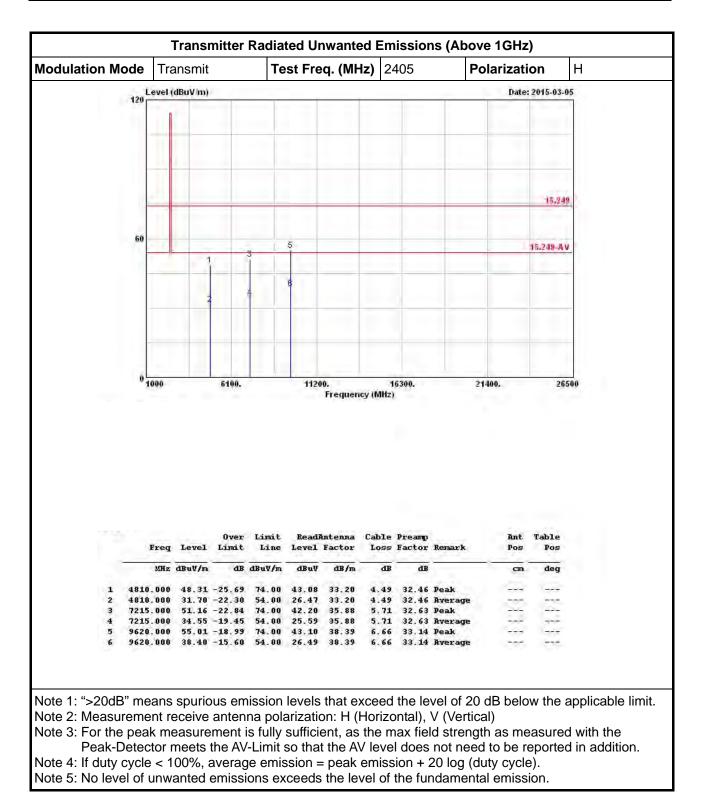
3.4.4 Test Setup

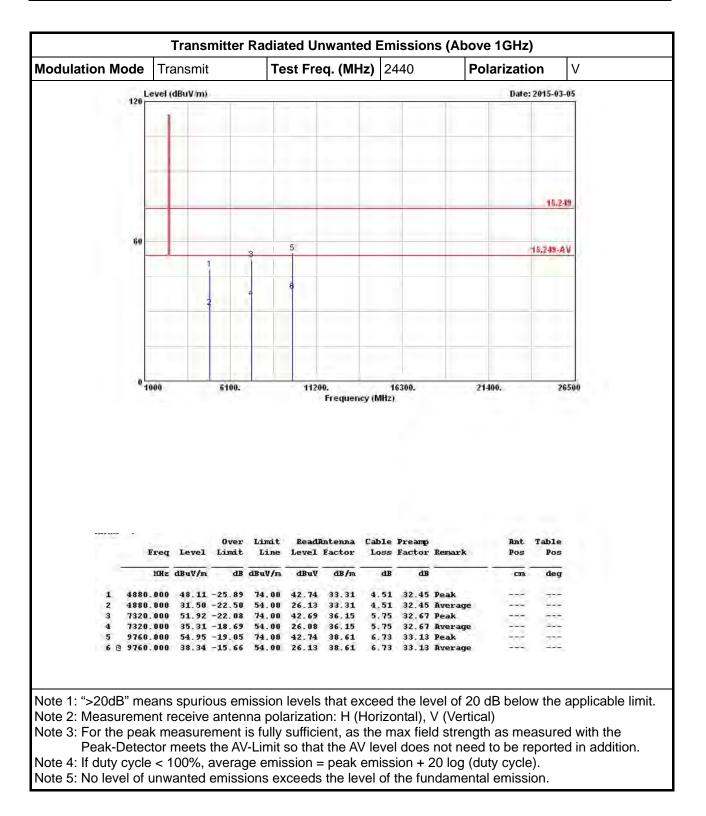

antenna. Electric field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna.

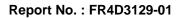
3.4.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

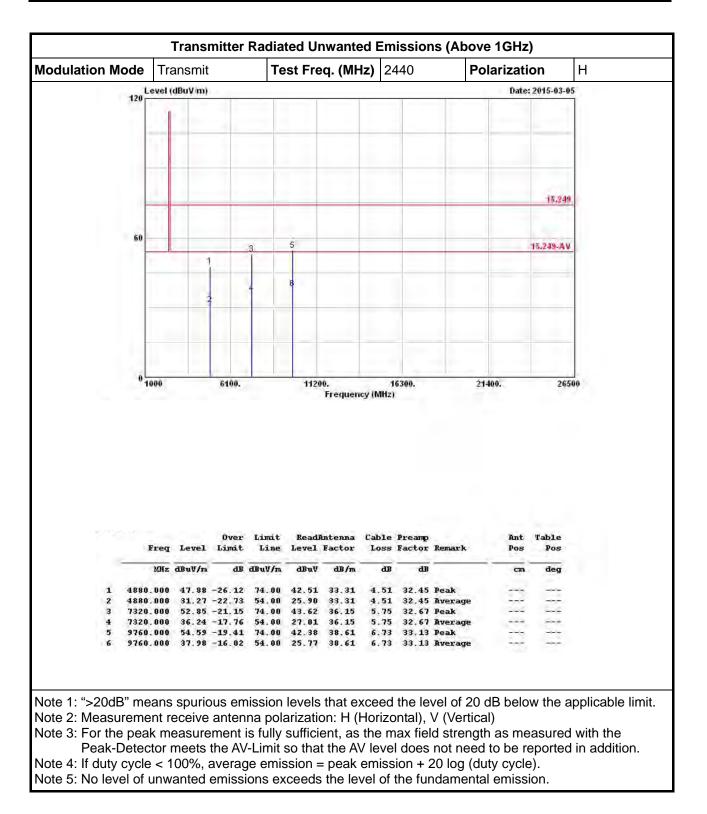
All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

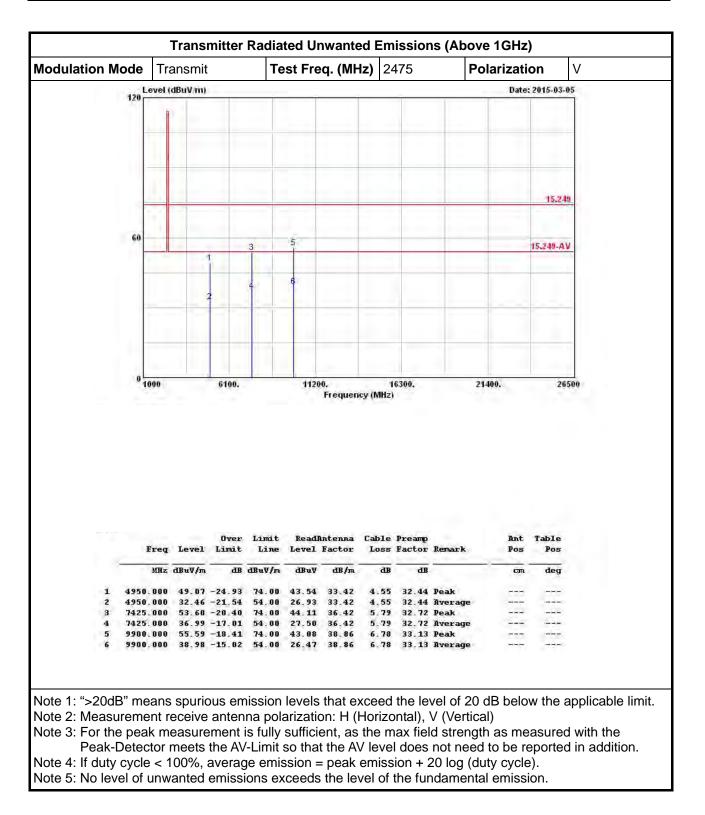

3.4.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

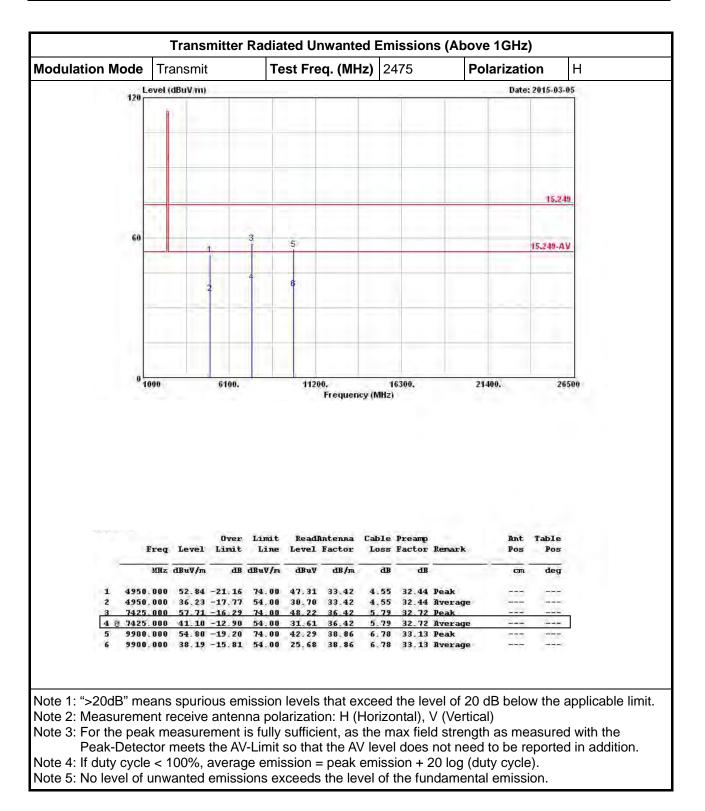



3.4.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)









3.4.8 Transmitter Radiated Bandedge Emissions

2400-2483.5 MHz Transmitter Radiated Bandedge Emissions									
Modulation Mode	Test Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) QPK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
Transmit	2405	3	2399.820	71.03	74	2399.940	44.54	54	н
Transmit	2475	3	2483.530	65.81	74	2490.820	45.04	54	н
Note 1: Measurement worst emissions of receive antenna polarization.									

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Apr. 14. 2014	AC Conduction
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 22, 2015	AC Conduction
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 31, 2014	AC Conduction
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	AC Conduction

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101500	9kHz ~ 40GHz	Apr. 28, 2014	RF Conducted
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 31, 2014	RF Conducted

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic SIDT Chamber FRANKO		SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 29, 2014	Radiation
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May 05, 2014	Radiation
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	Sep. 01, 2014	Radiation
Spectrum	R&S	FSP40	100004	9kHz ~ 40GHz	Mar. 27, 2014	Radiation
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 20, 2014	Radiation
Horn Antenna	ETS · LINDGREN	3115	6741	1GHz ~ 18GHz	Jul. 11, 2014	Radiation
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	18GHz ~ 40GHz	Jan. 27, 2015	Radiation
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 15, 2014	Radiation
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec. 12, 2014	Radiation
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiation
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiation

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9kHz ~ 30MHz	Jul. 28, 2014	Radiation

Note: Calibration Interval of instruments listed above is two years.