

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200807205

FCC REPORT

Applicant: G-TOUCH LLC

Address of Applicant: 1750 NW 107TH AVENUE, STE P-411, MIAMI, FLORIDA,

UNITED STATES

Equipment Under Test (EUT)

Product Name: 3G Smart Phone

Model No.: Stella Omega Plus

Trade mark: G Touch

FCC ID: 2AJDZSTELLAOMEGAP

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 21 Aug., 2020

Date of Test: 21 Aug., to 16 Sep., 2020

Date of report issued: 17 Sep., 2020

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	17 Sep., 2020	Original

Tested by: 17 Sep., 2020 Date:

Winner Thang

Project Engineer Reviewed by: Date: 17 Sep., 2020

3 Contents

			Page
1	С	OVER PAGE	1
2	V	ERSION	2
3	С	ONTENTS	3
4		EST SUMMARY	
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	5
	5.4	Measurement Uncertainty	6
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	Related Submittal(s) / Grant (s)	
	5.7	DESCRIPTION OF CABLE USED	6
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.9	LABORATORY FACILITY	
	5.10	LABORATORY LOCATION	6
	5.11	TEST INSTRUMENTS LIST	7
6	T	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	T	EST SETUP PHOTO	17
8	E	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	G-TOUCH LLC
Address:	1750 NW 107TH AVENUE, STE P-411, MIAMI, FLORIDA, UNITED STATES
Manufacturer:	G-Touch Devices Limited
Address:	Building 40 11C floor Wanghai RD, Rose Garden 2 Shekou Nahshan District Shenzhen City, Guangdong China
Factory:	Shenzhen Topwell Technology Co., LTD
Address:	15/F, Building A1, Qiaode Science & Technology Park, No.7 Road, Hi-Tech Industry Park ,Guangming new district, Shenzhen, China.

5.2 General Description of E.U.T.

Product Name:	3G Smart Phone
Model No.:	Stella Omega Plus
Power supply:	Rechargeable Li-ion Battery DC3.7V, 2000mAh
AC adapter:	Model: Stella Omega Plus
	Input: AC100-220V, 50/60Hz, 015A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Report No: CCISE200807205

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

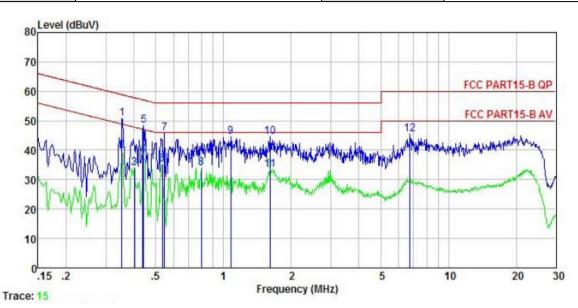
Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

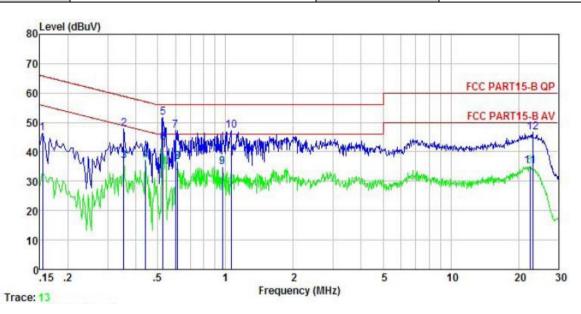
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107				
Test Frequency Range:	150kHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Frequency range (MHz)	Limit	(dBµV)		
	Quasi-peak Average				
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	0.5-30	60	50		
	* Decreases with the logarithm	of the frequency.			
Test precedure	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark: EUT Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0 8m				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 				
Test Instruments:	Refer to section 5.11 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:

Product name:	3G Smart Phone	Product model:	Stella Omega Plus
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5°C Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	dB	dB	dBu₹	₫₿uѶ	<u>dB</u>	
1	0.354	40.33	-0.51	0.14	10.73	50.69	58.87	-8.18	QP
2	0.354	29.47	-0.51	0.14	10.73	39.83	48.87	-9.04	Average
3	0.402	23.25	-0.48	0.42	10.72	33.91	47.81	-13.90	Average
4	0.437	27.99	-0.46	0.11	10.74	38.38	47.11	-8.73	Average
1 2 3 4 5 6 7 8 9	0.442	38.02	-0.46	0.08	10.74	48.38	57.02	-8.64	QP
6	0.535	25.16	-0.45	-0.36	10.76	35.11	46.00	-10.89	Average
7	0.546	35.84	-0.46	-0.36	10.76	45.78	56.00	-10.22	QP
8	0.796	23.84	-0.56	-0.09	10.81	34.00	46.00	-12.00	Average
9	1.077	34.02	-0.61	0.38	10.88	44.67	56.00	-11.33	QP
10	1.610	34.20	-0.54	-0.07	10.93	44.52	56.00	-11.48	QP
11	1.610	23.07	-0.54	-0.07	10.93	33.39	46.00	-12.61	Average
12	6.733	33.91	-0.54	1.18	10.81	45.36	60.00	-14.64	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	3G Smart Phone	Product model:	Stella Omega Plus		
Test by:	Mike	Test mode:	PC mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%		

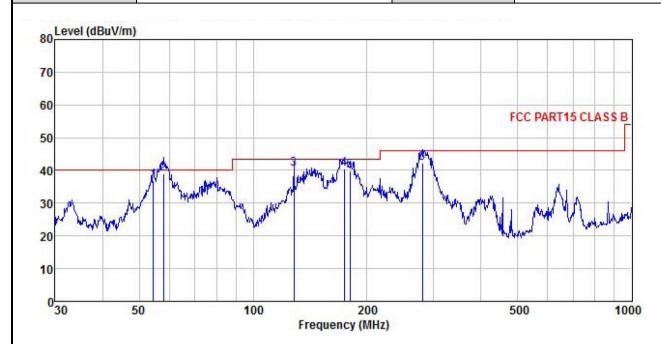
	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	₫B	dB	dB	dBu⊽	dBu∜	<u>d</u> B	
1	0.154	36.36	-0.69	0.01	10.78	46.46		-19.32	
1 2 3 4 5 6 7 8 9	0.354 0.354	37.66 26.86	-0.65 -0.65	-0.03 -0.03	10.73 10.73	47.71 36.91	48.87		Average
4	0.442 0.527	27.13 41.47	-0.64 -0.65	-0.02 0.03	10.74 10.76	37.21 51.61	47.02 56.00		Average OP
6	0.527 0.601	32.97 37.10	-0.65 -0.64		10.76 10.77	43.11	46.00 56.00	-2.89	Average
8	0.614	26.52	-0.64	0.04	10.77	36.69	46.00	-9.31	Average
9 10	0.968 1.060	24. 62 36. 86	-0.68 -0.68	0.08	10.86 10.88	34.88 47.15	46.00 56.00		Average QP
11 12	22.416 23.018	24.93 36.56	-1.31 -1.31	0.48 0.54	10.90 10.89	35.00 46.68	50.00		Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.2 Radiated Emission

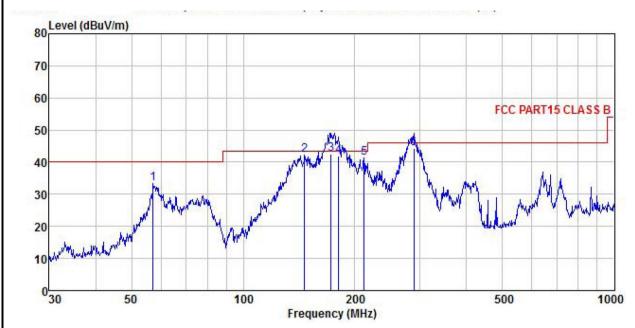
Test Requirement:	FCC Part 15 B Se	ection 15.10	9			
Test Frequency Range:	30MHz to 6000MI	Hz				
Test site:	Measurement Dis	stance: 3m (Sem	i-Anechoic (Chamber)	
Receiver setup:	Frequency	Detecto	r	RBW	VBW	Remark
l reserver secup.	30MHz-1GHz	Quasi-pe		120kHz	300kHz	Quasi-peak Value
	Ab 21 2 4 CH	Peak		1MHz	3MHz	Peak Value
	Above 1GHz	RMS		1MHz	3MHz	Average Value
Limit:	Frequenc	у	Lim	nit (dBuV/m	@3m)	Remark
	30MHz-88N			40.0		Quasi-peak Value
	88MHz-216			43.5		Quasi-peak Value
	216MHz-960			46.0		Quasi-peak Value
	960MHz-1G	3Hz		54.0		Quasi-peak Value
	Above 1GI	Hz		54.0		Average Value
Test setup:				74.0		Peak Value
	Tum Osm Table Osm A A A A A A A A A A A A A A A A A A A	4m		RFT		
	AE (Turnt	IV V V	3m	Pro	Antenna Towe	
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 					


	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Below 1GHz:

Product Name:	3G Smart Phone	Product Model:	Stella Omega Plus
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

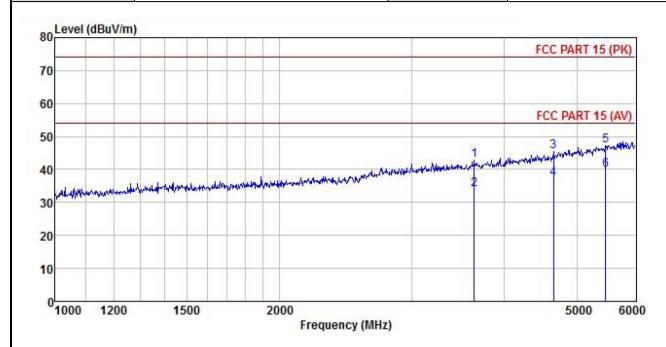

	Freq		Antenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹	dB/m		<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	54.452	54.86	11.51	0.41	0.00	29.80	36.98	40.00	-3.02	QP
2	57.999	57.25	11.00	0.42	0.00	29.78	38.89	40.00	-1.11	QP
3	128.113	57.67	11.65	0.58	0.00	29.34	40.56	43.50	-2.94	QP
4	173.814	52.01	16.72	0.67	0.00	29.02	40.38	43.50	-3.12	QP
5	180.017	51.20	16.90	0.68	0.00	28.97	39.81	43.50	-3.69	QP
6	280.024	51.38	18.62	0.84	0.00	28.48	42.36	46.00	-3.64	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	3G Smart Phone	Product Model:	Stella Omega Plus
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
	•	•	

	Freq					Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/π		<u>d</u> B	<u>ab</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	57.191	51.70	11.08	0.41	0.00	29.79	33.40	40.00	-6.60	QP
2	146.374	56.75	14.02	0.61	0.00	29.24	42.14	43.50	-1.36	QP
2	172.599	54.10	16.65	0.66	0.00	29.03	42.38	43.50	-1.12	QP
4	180.649	53.28	16.94	0.68	0.00	28.97	41.93	43.50	-1.57	QP
5	211.527	50.97	18.35	0.73	0.00	28.76	41.29	43.50	-2.21	QP
6	287.990	53.12	18.65	0.85	0.00	28.47	44.15	46.00	-1.85	QP


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	3G Smart Phone	Product Model:	Stella Omega Plus		
Test By:	Mike	Test mode:	PC mode		
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

1200			Antenna					Limit	Over	4 (
	Freq	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Kemark
2	MHz	₫₿u₹		₫B	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	3646.072	47.98	28.89	5.45	2.20	41.61	42.91	74.00	-31.09	Peak
2	3646.072	39.02	28.89	5.45	2.20	41.61	33.95	54.00	-20.05	Average
3	4652.151	48.35	30.46	6.27	2.40	42.05	45.43	74.00	-28.57	Peak
4	4652.151	40.21	30.46	6.27	2.40	42.05	37.29	54.00	-16.71	Average
5	5466.224	47.28	32.23	6.97	2.65	41.84	47.29	74.00	-26.71	Peak
6	5466.224	39.92	32.23	6.97	2.65	41.84	39.93	54.00	-14.07	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name: Test By:		3G Smart Phone Mike					Produ	Product Model: Test mode:		Stella Omega Plus PC mode		
							Test					
est Fre	equency:	1 GHz ~ 6 GHz AC 120/60Hz					Polar	Polarization: Environment:		Horizontal		
est Vo	oltage:						Envir			emp: 24℃	Huni: 57%	
80 ^L	evel (dBuV/n	1)										
00										FCC PART	15 (PK)	
70												
60										FCC PART	15 (NV)	
50											E	
200									1 Lateral Mark	Harpeton both white white	Market Strategy	
40		70 June 10 July 10 Jul		ophoposta and	material for particular	househouseld	all the standards and	(missenter and a	2	4		
30	and the same of th	Va. reserve										
20											13.5	
10												
01	000 1200		1500	20	000 Erogu	uoney (MI	1-1			500	0 6000	
					rieq	uency (Mi	12)					
	Freq		lAntenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark		
	MHz	dBuV	7 — dB/m		B	<u>ab</u>	dBuV/m	dBuV/m	B	7 -11-11-11-11-11-11-11-11-11-11-11-11-11	<u> </u>	
1 2 3 4 5	3772.333 3772.333 4392.917 4392.917 5665.659	39.77 47.59 39.89	29.03 29.94 29.94	5.56 5.56 6.06 6.06 7.08	2.20 2.32 2.32	41.75 41.96 41.96	42.92 34.81 43.95 36.25 48.58	54.00 74.00 54.00	-30.05	Average Peak Average		
6	5665.659			7.08			40.69			reak Average		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.