Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D750V3-1107_Jun22 Client Sporton ## **CALIBRATION CERTIFICATE** Object D750V3 - SN:1107 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: June 22, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | Miller | | Approved by: | Sven Kühn | Technical Manager | | Issued: June 24, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1107_Jun22 Page 1 of 6 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1107_Jun22 Page 2 of 6 Appendix C Report No.: FA4D1633 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.6 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.54 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1,40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.57 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1107_Jun22 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.1 Ω - 0.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.2 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.031 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: D750V3-1107_Jun22 Page 4 of 6 ### DASY5 Validation Report for Head TSL Date: 22.06.2022 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1107 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.31 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.29 W/kg #### SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.4 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm) Ratio of SAR at M2 to SAR at M1 = 64.9% Maximum value of SAR (measured) = 2.90 W/kg 0 dB = 2.90 W/kg = 4.62 dBW/kg Certificate No: D750V3-1107_Jun22 ## Impedance Measurement Plot for Head TSL #### D750V3, serial no. 1107 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D750V3 – serial no. 1107 | | | | | | | | |-----------------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------|--| | | | | 750 | OMHZ | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | | 06.22.2022
(Cal. Report) | -26.225 | | 55.101 | | -0.57078 | | | |
06.21.2023
(extended) | -27.043 | 3.12 | 55.002 | -0.099 | 1.8842 | 2.45498 | | | 06.20.2024
(extended) | -27.838 | 6.15 | 53.437 | -1.664 | -1.4792 | -0.90842 | | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. SPORTON INTERNATIONAL INC. # <Dipole Verification Data> - D750 V3, serial no. 1107(Data of Measurement : 06.21.2023) 750MHz - Head SPORTON INTERNATIONAL INC. 1 Start 550 MHz TEL: 886-3-327-3456 FAX: 886-3-328-4978 Stop 950 MHz Cor # <Dipole Verification Data> - D750 V3, serial no. 1107 (Data of Measurement : 06.20.2024) 750MHz - Head SPORTON INTERNATIONAL INC. Report No.: FA4D1633 Calibration Laboratory of Schmid & Partner Engineering AG Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City Certificate No. D835V2-499 Aug24 #### CALIBRATION CERTIFICATE Object D835V2 - SN: 499 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date August 22, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 21-Mar-24 (No. 4030A315007801) | Mar-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 05-Oct-23 (No. OCP-DAK12-1016_Oct23) | Oct-24 | | OCP DAK-3.5 | SN: 1249 | 05-Oct-23 (No. OCP-DAK3.5-1249_Oct23) | Oct-24 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 10-Jan-24 (No. DAE4ip-1836 Jan24) | Jan-25 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 0001-300719404) | May-25 | | Mismatch: SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch SMA-240522) | May-25 | Name Function Calibrated by Krešimir Franjić Laboratory Technician Approved by Sven Kühn Technical Manager Issued: August 22, 2024 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-499_Aug24 Page 1 of 6 Appendix C Report No.: FA4D1633 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation** · DASY System Handbook #### Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-499_Aug24 Page 2 of 6 Appendix C Report No.: FA4D1633 D835V2 - SN: 499 August 22, 2024 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|-------------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with spacer | | Zoom Scan Resolution | dx, $dy = 6mm$, $dz = 1.5mm$ | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 835MHz ±1MHz | | #### Head TSL parameters at 835 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.900 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 41.9 ±6% | 0.930 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 835 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.44 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 1.52 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.05 W/kg ±16.5% (k = 2) | Certificate No: D835V2-499_Aug24 Page 3 of 6 Page12/287 D835V2 - SN: 499 August 22, 2024 ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 835 MHz | Impedance | 50.9 Ω – 5.8 jΩ | |-------------|-----------------| | Return Loss | -24.8 dB | #### General Antenna Parameters and Design | A CONTRACTOR OF THE PROPERTY O | 1 201 no |
--|-----------------| | Electrical Delay (one direction) | 1.391 ns | | Electrical Delay (one discount) | V. 201. V. 101. | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D835V2-499_Aug24 Page 4 of 6 D835V2 - SN: 499 August 22, 2024 #### System Performance Check Report | -21 | 211 | | 1484 | γ | |-----|-----|---|------|---| | - | | _ | _ | ÷ | | Dipole | Frequency (MHz) | TSL | Power (dRm) | | |----------------|-----------------|-----|-------------|--| | D835V2 - SN499 | 835 | HSL | 24 | | #### **Exposure Conditions** | Phantom Section, TSL | Test Distance [mm] | Band | Group, GID | Frequency [MHz], Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | |----------------------|--------------------|------|------------|---------------------------------|-------------------|------------------------|------------------| | Flat | 15 | | CW, 0- | 835, 0 | 9.61 | 0.93 | 41,9 | #### Hardware Setup | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE_Calibration Date | | |---------------|--------------------|-----------------------------|---------------------------|--| | Flat V4.9 mod | HSL, 2024-08-22 | EX3DV4 - SN7349, 2024-06-03 | DAE4ip Sn1836, 2024-01-10 | | #### Scans Setup | cario scrap | | | |---------------------|-----------------|--| | | Zoom Scan | | | Grid Extents (mm) | 30 × 30 × 30 | | | Grid Steps [mm] | 6.0 x 6.0 x 1.5 | | | Sensor Surface (mm) | (6) | | | Graded Grid | Yes | | | Grading Ratio | 163 | | | MAIA | N/A | | | Surface Detection | VMS + 6p | | | Scan Method | Measured | | #### Measurement Results | | Zoom Scan | |---------------------|---------------------| | Date | 2024-08-22 | | psSAR1g [W/Kg] | 2,37 | | psSAR10g [W/Kg] | 1.52 | | Power Drift [d8] | 0.01 | | Power Scaling | Disabled | | Scaling Factor [d8] | | | TSL Correction | Positive / Negative | 0 dB = 3.80 W/Kg D835V2 - SN: 499 August 22, 2024 ## Impedance Measurement Plot for Head TSL Certificate No: D835V2-499_Aug24 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D835V2-4d167 Nov22/2 ## CALIBRATION CERTIFICATE (Replacement of No: D835V2-4d167_Nov22) Object D835V2 - SN:4d167 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: November 24, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 31-Aug-22 (No. DAE4-601_Aug22) | Aug-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 2/4 | | Approved by: | Sven Kühn | Technical Manager | C/= | Issued: January 18, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d167_Nov22/2 Page 1 of 7 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d167_Nov22/2 Page 2 of 7 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 |
|------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | *7** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.80 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.38 W/kg ± 16.5 % (k=2) | Page 3 of 7 Certificate No: D835V2-4d167_Nov22/2 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.9 Ω - 2.8 Ω | |--------------------------------------|-----------------| | Return Loss | - 29.5 dB | #### General Antenna Parameters and Design | | · · · · | |----------------------------------|----------| | Electrical Delay (one direction) | 1.392 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | | " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' | |-----------------|---| | | CDEAC | | Manufactured by | SPEAG | Certificate No: D835V2-4d167_Nov22/2 Page 4 of 7 #### **DASY5 Validation Report for Head TSL** Date: 24.11.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d167 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 31.08.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.02 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.61 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 3.28 W/kg 0 dB = 3.28 W/kg = 5.16 dBW/kg ## Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d167_Nov22/2 Page 6 of 7 Appendix C Report No.: FA4D1633 ## Appendix: Transfer Calibration at Four Validation Locations on SAM Head1 #### **Evaluation Condition** | | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | | |--|---------|------------------|-----------------------------|--| |--|---------|------------------|-----------------------------|--| #### SAR result with SAM Head (Top ≅ C0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 9.31 W/kg ± 17.5 % (k=2) | | | | | | | | | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | #### SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm ² (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 9.77 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAR for nominal Head TSL parameters | normalized to 1W | 6.57 W/kg ± 16.9 % (k=2) | #### SAR result with SAM Head (Neck ≅ H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 9.29 W/kg ± 17.5 % (k=2) | | | T | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAR for nominal Head TSL parameters | normalized to 1W | 6.28 W/kg ± 16.9 % (k=2) | #### SAR result with SAM Head (Ear ≅ D90) | SAR averaged over 1 cm ² (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 7.98 W/kg ± 17.5 % (k=2) | | | 1 | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAB for nominal Head TSI parameters | normalized to 1W | 5.38 W/ke + 16.9 % (k=2) | Certificate No: D835V2-4d167_Nov22/2 Additional assessments outside the current scope of SCS 0108 #### D835V2, serial no. 4D167 Extended Dipole Calibrations if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D835V2 – serial no. 4D167 | | | | | | | | |-----------------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------|--| | | | 835MHZ | | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | | 11.24.2022
(Cal. Report) | -29.5 | | 51.9 | | -2.8 | | | | 11.23.2023
(extended) | -28.4 | 3.73 | 51.5 | -0.4 | -3.7 | -0.9 | | | 11.22.2024
(extended) | -25.503 | 13.55 | 49.352 | -2.548 | -6.3661 | -3.5661 | | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. SPORTON INTERNATIONAL INC. ## <Dipole Verification Data> - D835 V2, serial no. 4d167 (Data of Measurement : 11.23.2023) 835MHz - Head IFBW 70 kHz SPORTON INTERNATIONAL INC. 1 Start 635 MHz TEL: 886-3-327-3456 FAX: 886-3-328-4978 Stop 1.035 GHz Cor # <Dipole Verification Data> - D835 V2, serial no. 4D167 (Data of Measurement : 11.22.2024) 835 MHz - Head Report No.: FA4D1633 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Sporton Certificate No: D1750V2-1112_Jun22 ## **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1112 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: June 22, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|---|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator
R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Aldonia Georgiadou | Laboratory Technician | Tel | | #22541201-#450A | 250000000000000000000000000000000000000 | | 1 | | Approved by: | Sven Kühn | Technical Manager | 62 | Issued: June 24, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - · Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Appendix C Report No.: FA4D1633 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.6 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 2022 | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.83 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.4 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.4 Ω + 0.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 37.3 dB | | ## General Antenna Parameters and Design | 1.216 ns | |----------| | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Monufactured by | | _ | |-----------------|--------|-----| | Manufactured by | SPEAG | | | // | OI LAG | - 1 | Certificate No: D1750V2-1112_Jun22 Page 4 of 6 ## DASY5 Validation Report for Head TSL Date: 22.06.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1112 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34$ S/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.3 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.18 W/kg; SAR(10 g) = 4.83 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.6% Maximum value of SAR (measured) = 14.3 W/kg ## Impedance Measurement Plot for Head TSL #### D1750V2, serial no. 1112 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D1750V2 – serial no. 1112 | | | | | | | |-----------------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | | 1750MHZ | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 06.22.2022
(Cal. Report) | -37.297 | | 51.384 | | 5.9661 | | | 06.21.2023
(extended) | -36.659 | -1.71 | 52.830 | 1.446 | 4.1453 | -1.8208 | | 06.20.2024
(extended) | -36.326 | -2.60 | 52.365 | 0.981 | 2.775 | -3.1911 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. SPORTON INTERNATIONAL INC. ## <Dipole Verification Data> - D1750 V2, serial no. 1112(Data of Measurement : 06.21.2023) 1750MHz - Head SPORTON INTERNATIONAL INC. # <Dipole Verification Data> - D1750 V2, serial no. 1112 (Data of Measurement : 06.20.2024) 1750MHz - Head SPORTON INTERNATIONAL INC. Report No.: FA4D1633 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sp Sporton Certificate No: D1900V2-5d093_Mar22 ## CALIBRATION CERTIFICATE Object D1900V2 - SN:5d093 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: March 25, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# |
Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Aldonia Georgiadou | Laboratory Technician | New | | Approved by: | Niele Koore |) | | | приочен бу. | Niels Kuster | Quality Manager | 1 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d093_Mar22 Page 1 of 6 Issued: March 28, 2022 #### Calibration Laboratory of Schmid & Partner Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d093_Mar22 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 12722 | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d093_Mar22 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.3 Ω + 6.4 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 23.6 dB | | | ### General Antenna Parameters and Design | 1.201 ns | - 1 | |----------|----------| | | 1.201 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D1900V2-5d093_Mar22 Page 4 of 6 ## DASY5 Validation Report for Head TSL Date: 25.03.2022 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d093 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.9 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.5 W/kg ## SAR(1 g) = 10 W/kg; SAR(10 g) = 5.19 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.4% Maximum value of SAR (measured) = 15.6 W/kg Certificate No: D1900V2-5d093 Mar22 Page 5 of 6 Appendix C ## Impedance Measurement Plot for Head TSL #### D1900V2, serial no. 5D093 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D 1900 V2 – serial no. 5D093 | | | | | | | |--|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | 1900MHZ | | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 03.25.2022
(Cal. Report) | -23.606 | | 52.313 | | 6.3605 | | | 03.24.2023
(extended) | -23.631 | 0.11 | 48.171 | -4.142 | 7.0409 | 0.6804 | | 03.23.2024
(extended) | -24.371 | 3.241 | 47.469 | -4.84 | 3.1708 | -3.1897 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. SPORTON INTERNATIONAL INC. # <Dipole Verification Data> - D1900 V2, serial no. 5D093 (Data of Measurement : 03.24.2023) 1900 MHz - Head SPORTON INTERNATIONAL INC. <Dipole Verification Data> - D1900 V2, serial no. 5D093 (Data of Measurement : 03.23.2024) 1900 MHz - Head #### SPORTON INTERNATIONAL INC. Report No.: FA4D1633 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Accreditation No.: SCS 0108 **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton #### Certificate No: D2300V2-1006 Jan22 CALIBRATION CERTIFICATE Object D2300V2 - SN:1006 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: January 18, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Scheduled Calibration Cal Date (Certificate No.) Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) **Apr-22** Power sensor
NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 Type-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 7349 31-Dec-21 (No. EX3-7349_Dec21) Dec-22 DAE4 SN: 601 01-Nov-21 (No. DAE4-601 Nov21) Nov-22 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature Calibrated by: Aidonia Georgiadou Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: January 19, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2300V2-1006 Jan22 Page 1 of 6