

SAR EVALUATION REPORT

IEEE Std 1528-2013

For **Extremity Worn Digital Transceiver**

FCC ID: IPH-04911 Model Name: A04911

Report Number: R15605213-S1 Issue Date: 2025-03-25

Prepared for Garmin International Inc. 1200 E 151st St Olathe, KS 66062-3426, USA

> Prepared by UL LLC 12 LABORATORY DR RTP, NC 27709, U.S.A. TEL: (919) 549-1400

Report No.: R15605213-S1 Revision History

	,, ,		
Rev.	Date	Revisions	Revised By
V1	2025-03-04	Initial Issue	
V2	2025-03-18	Updated NFC operating modes in §6.2 and ANT/ANT+ tune- up in §9.3.	Lindsay Ryan
V3	2025-03-21	Added Class II Permissive Change note to §1.	Lindsay Ryan
V4	2025-03-25	Updated BLE tune-up for Ch 36, 37, and 39.	Lindsay Ryan

1.	Attestation of Test Results	. 4			
2.	Test Specification, Methods and Procedures	. 5			
3.	Facilities and Accreditation	. 5			
4.	SAR Measurement System & Test Equipment	. 6			
4.1.	SAR Measurement System	. 6			
4.2.	SAR Scan Procedures	. 7			
4.3.	Test Equipment	. 9			
5.	Measurement Uncertainty	. 9			
6.	Device Under Test (DUT) Information	10			
6.1.	DUT Description	10			
6.2.	Wireless Technologies	10			
7.	RF Exposure Conditions (Test Configurations)	11			
8.	Dielectric Property Measurements & System Check	12			
8.1.	Dielectric Property Measurements	12			
8.2.	System Check	13			
9.	Conducted Output Power Measurements	14			
9.1.	Wi-Fi 2.4GHz (DTS Band)	14			
9.2.	Bluetooth	16			
9.3.	ANT/ANT+	16			
9.4.	NFC	17			
10.	Measured and Reported (Scaled) SAR Results	18			
10.1	. Wi-Fi (DTS Band)	19			
10.2	2. NFC	19			
10.3	3. Standalone SAR Test Exclusion Considerations & Estimated SAR	19			
11.	SAR Measurement Variability	20			
12.	Simultaneous Transmission Conditions	20			
Apper	ndixes	21			
Арр	endix A: SAR Setup Photos	21			
Арр	endix B: SAR System Check Plots	21			
Арр	endix C: SAR Highest Test Plots	21			
Арр	endix D: SAR Tissue Ingredients	21			
Арр	endix E: SAR Probe Certificates	21			
Арр	Appendix F: SAR Dipole Certificates				

1. Attestation of Test Results

Applicant Name	Garmin International Inc.			
FCC ID	IPH-04911			
Model Name	A04911			
Applicable Standards	Published RF exposure KDB procedures IEEE Std 1528-2013			
		SAR Limits (W/Kg)		
Exposure Category	Extremities (hands, wrists, ankles, etc.)			
		(10g of tissue)		
General population / Uncontrolled exposure	4.0			
PE Eveneure Conditions	Equipment Class - Highest Reported SAR (W/kg)			
RF Exposure Conditions	DTS	DSS	DXX	
Extremity	0.149 0.168 0.000			
Date Tested	2025-01-13 to 2025-01-17			
Test Results	Pass			

Class II Permissive Change Note:

The intent of the Class II Permissive Change is to cover SAR testing on A04911, a depopulated version of a certified model A0490 (please reference R15607127-S1 FCC SAR Report); model A04911 is otherwise electrically identical to A04907. Conducted output power was therefore referenced from A04907 in R15607127-S1; however, A04911 was utilized for all radiated SAR testing. It is the responsibility of the end product manufacturer to provide the certification reports to show full compliance, including ensuring that the A04911 power never exceeds that which was declared in the original certification grant.

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

This report contains data provided by the customer which can impact the validity of results. UL LLC is only responsible for the validity of results after the integration of the data provided by the customer.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the U.S. Government.

Approved & Released By:	Prepared By:
JenCary	Jundsay Ryan
Devin Chang	Lindsay Ryan
Senior Test Engineer	Engineer
UL Verification Services Inc.	UL LLC

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE Std 1528-2013the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- \circ $\,$ 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 $\,$
- 865664 D02 RF Exposure Reporting v01r02

In addition to the above, the following information was used:

- <u>TCB Workshop</u> October 2016; RF Exposure Procedures (Bluetooth Duty Factor)
- <u>TCB Workshop</u> October 2016; RF Exposure Procedures (DUT Holder Perturbations)
- o <u>TCB Workshop</u> April 2019; RF Exposure Procedures (Tissue Simulating Liquids (TSL))

3. Facilities and Accreditation

UL LLC is accredited by A2LA, cert. # 0751.06 for all testing performed within the scope of this report. Testing was performed at the locations noted below.

The test sites and measurement facilities used to collect data are located at 2800 Perimeter Park Dr, Morrisville, NC, USA.

- SAR Lab 1A
- SAR Lab 2B

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building: 12 Laboratory Dr RTP, NC 27709, U.S.A	US0067	2180C	825374
\boxtimes	Building: 2800 Perimeter Park Dr. Suite B Morrisville, NC 27560, U.S.A	US0067	27265	825374

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 and the DASY8¹ software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

¹ DASY8 software used: DASY16.4.0.5005 and older generations.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEC/IEEE 62209-1528, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$	
	$\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$ When the x or x dimension of	$3 - 4 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	when the x of y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

		\leq 3 GHz > 3 GHz		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}				
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm
		∆z _{Zoom} (n>1): between subsequent points	≤1.5·∆z	_{Zoom} (n-1)
Minimum zoom scan volume x, y, z		≥ 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$	
Note: δ is the penetration	on depth o	f a plane-wave at norma	l incidence to the tissue mediu	m: see draft standard IEEE

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Date	Cal. Due Date
Network Analyzer	Keysight	E5063A	MY54100681	2024-07-31	2025-07-31
Dielectric Probe	SPEAG	DAKS-3.5	1147	2024-03-11	2025-03-11
Shorting Block	SPEAG	DAK-3.5 Short	SM DAK 200 DB	2024-03-11	2025-03-11
Dielectric Probe	SPEAG	DAKS-12	1037	2024-03-11	2025-03-11
Shorting Block	SPEAG	DAK-12 Short	2044	2024-03-11	2025-03-11
Thermometer	Fisher Scientific	15-078-181	1817705017	2023-03-30	2025-03-30

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Date	Cal. Due Date
Signal Generator	Keysight	N5181A	MY50140788	2024-08-01	2025-08-01
3-Path Diode Power Sensor	Rohde & Schwarz	NRP8S	112236	2024-07-12	2025-07-12
3-Path Diode Power Sensor	Rohde & Schwarz	NRP8S	112237	2024-07-12	2025-07-12
RF Power Meter	Keysight	N1912A	MY55136012	2024-08-02	2025-08-02
RF Power Sensor	Keysight	N1921A	MY55090025	2024-08-16	2025-08-16
RF Power Sensor	Keysight	N1921A	MY55090030	2024-07-09	2025-07-09
Amplifier	Mini-Circuits	ZVA-183WA-S+	S C484802241	N/A	N/A
Directional Coupler	Mini-Circuits	ZUDC10-183+	2214	NA	NA
Dual Directional Coupler	Werlatone	C5100-10	92249	N/A	N/A
DC Power Supply	Miteq	PS 15V1	1990186	N/A	N/A

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Date	Cal. Due Date
E-Field Probe	SPEAG	EX3DV4	7709	2024-11-11	2025-11-11
Data Acquisition Electronics	SPEAG	DAE4	1714	2024-11-06	2025-11-06
System Validation Dipole	SPEAG	CLA13	1017	2024-03-07	2025-03-07
System Validation Dipole	SPEAG	D2450V2	963	2024-10-11	2025-10-11
Environmental Indicator	Fisher Scientific	Traceable	240072452	2024-01-24	2026-01-24

Other

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Date	Cal. Due Date
RF Power Meter	Boonton Electronics	RTP5000	211058	2024-08-01	2025-08-01

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	This is an extremity wrist-worn wearable device.				
Back Cover	The Back Cover is not remov	rable			
Battery Options	The rechargeable battery is not user accessible.				
Test sample information	S/N Notes				
	497652312 Conducted Sample #1				
	497995528 Radiated Sample #1				
Hardware Version	Rev V3				
Software Version	3.95				

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
Wi-Fi	2.4 GHz	802.11b 802.11g 802.11n (HT20)	100.0% (802.11b) ¹
Bluetooth	2.4 GHz	BR, EDR, LE	N/A ²
ANT/ANT+	2.4 GHz	GFSK	N/A ²
NFC	13.56 MHz	Type A, B, AB, F, AF	100% (Type A) ¹

Notes:

1.

Duty cycle for Wi-Fi and NFC is referenced from §9. Measured Duty Cycle is not required due to SAR test exemption 2.

7. RF Exposure Conditions (Test Configurations)

Wireless	RF Exposure	DUT-to-User	Test	Antenna-to-	SAR
technologies	Conditions	Separation	Position	edge/surface	Required
WLAN	Extremity (Hand/Wrist)	0	Back	N/A	Yes
ВТ	Extremity (Hand/Wrist)	0	Back	N/A	No ¹
ANT/ANT+	Extremity (Hand/Wrist)	0	Back	N/A	No ¹
NFC	Extremity (Hand/Wrist)	0	Back	N/A	Yes

Note(s):

1. Exempt from SAR testing

SAR Test Exclusion Calculations for WLAN

Antennas < 50mm to adjacent edges

Tx	Frequency	Output	Power	Separation Distances (mm)	Calculated Threshold Value
Interface	(MHZ)	dBm	mW	Back	Back
Bluetooth	2480	10.00	10.00	5	3.1 -EXEMPT-
ANT/ANT+	2478	5.00	3.16	5	1 -EXEMPT-

Note(s):

According to KDB 447498, if the calculated threshold value is >7.5 then SAR testing is required.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The methodology used to determine the SAR correction is described in IEEE Std 1528-2013. The methodology was conducted over a frequency range of 30 MHz to 6000 MHz, but it is implemented over the 300 MHz to 6000 MHz frequency range. The methodology was also studied for permittivity (ϵ r) and conductivity (σ) ranges of ± 20%, but ranges of ± 10% have been chosen. Given that the change in dielectric parameters influences the conversion factor of the probe, this influence will be small if a ± 10% range is used.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Torget Frequency (MHz)	He	ead	Body		
	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

Dielectric Property Results:

	Liquid Check											
SAR		Tissue	Band	Freq	Relati	ve Permittivi	ity (єr)	C	onductivity (σ)		
Lab	Date	Туре	(MHz)	(MHz)	Measured	Target	Delta	Measured	Target	Delta		
				13	54.2	55.0	-1.47%	0.72	0.75	-4.67%		
SAR 1A	2025-01-14	Head	Head	Head	Head 13	12	54.2	55.0	-1.45%	0.71	0.75	-4.68%
				14	54.2	55.0	-1.53%	0.72	0.75	-4.65%		
				2450	40.1	39.2	2.40%	1.73	1.80	-3.83%		
SAR 2B	2B 2025-01-15 Head	2450	2400	40.2	39.3	2.30%	1.69	1.75	-3.52%			
				2500	40.1	39.1	2.38%	1.77	1.85	-4.70%		

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was recorded and the results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 10\%$ of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

	System Check												
SAR Lab	Date	Dipole Type & Serial Number	Dipole Cal. Due Date	Input Power (dBm)	Meas. Zoom Scan	easured result Normalize to 1 W	s for 1-g SAR Target (Ref. Value)	Delta ±10%	Meas. Zoom Scan	easured results Normalize to 1 W	for 10-g SAR Target (Ref. Value)	Delta ±10%	Plot No.
SAR 1A	2025-01-14	CLA13 SN: 1017	2025-03-07	16.0	0.021	0.527	0.551	-4.27%	0.013	0.327	0.344	-5.07%	1
SAR 2B	2025-01-15	D2450V2 SN: 963	2025-10-11	17.0	2.550	50.879	52.600	-3.27%	1.210	24.143	24.400	-1.05%	2

9. Conducted Output Power Measurements

Tune-Up Power Limits provided by the manufacturer are used to scale measured SAR values.

9.1. Wi-Fi 2.4GHz (DTS Band)

Maximum Output Power (Tune-up Limit) for Wi-Fi 2.4 GHz

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11b/g/n mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 3 W/kg.

			Frequency	Tune-up PowerLimit (dBm)
Mode	Bandwidth	Channel	(MHz)	Main Antenna
		1	2412	14.00
		2	2417	14.00
		3	2422	14.00
		4	2427	14.00
		5	2432	14.00
		6	2437	14.00
802.11b	20 MHz	7	2442	14.00
		8	2447	14.00
		9	2452	14.00
		10	2457	14.00
		11	2462	14.00
		12	2467	14.00
		13	2472	14.00
		1	2412	17.00
	20 MHz	2	2417	17.00
		3	2422	17.00
		4	2427	17.00
		5	2432	17.00
		6	2437	17.00
802.11g		7	2442	17.00
		8	2447	17.00
		9	2452	17.00
		10	2457	17.00
		11	2462	17.00
		12	2467	15.00
		13	2472	13.00
		1	2412	15.50
		2	2417	15.50
		3	2422	15.50
		4	2427	15.50
		5	2432	15.50
		6	2437	15.50
802.11n	20 MHz	7	2442	15.50
		8	2447	15.50
		9	2452	15.50
		10	2457	15.50
		11	2462	15.50
		12	2467	15.50
		13	2472	12.50

Wi-Fi 2.4GHz Measured Results

			Freq	Main Anten	na Average Po	ower (dBm)
Band	Mode	Ch#	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)
		1	2412	12.8	14.0	
DSSS	902 11h	6	2437	13.5	14.0	Vaa
2.4 GHz	002.110	11	2462	13.5	14.0	165
		13	2472	12.6	14.0	

Note(s):

Conducted output power data is referenced from R15607127-S1.

Duty Factor Measured Results

Mode	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
802.11b	100	100	100.0%	1.00

Note(s):

Duty Cycle = (T on / period) * 100%

Duty Cycle plots

802.11b

22 dBm	2 dB /div	10 ms/div	Av
₹ International			
20 dBm			
18 dBm			
16 dBm			
			 ·····
14 dBm			
12 dBm			
10 dBm			
8 dBm			
6 d0m			
0 UBIII			
4 dBm			
2 dBm			
0 s			100 ms
Points 500			

9.2. Bluetooth

Maximum Output Power (Tune-up Limit) for Bluetooth

			Frequency	Tune-up PowerLimit (dBm)
Band	Mode	Channel	(MHz)	Main Antenna
		0	2402	10.0
	BR	39	2441	10.0
		78	2480	10.0
		0	2402	9.5
	EDR, π/4 DQPSK	39	2441	9.5
		78	2480	9.5
	EDR,	0	2402	9.0
2 4 GHz		39	2441	9.0
2.1 0112	o Bron	78	2480	9.0
		37	2402	0.0
		0	2404	5.0
		17	2440	5.0
	LE	35	2476	5.0
		36	2478	0.0
		39	2480	0.0

9.3. ANT/ANT+

Maximum Output Power (Tune-up Limit) for ANT/ANT+

		Frequency	Tune-up PowerLimit (dBm)
Band	Mode	(MHz)	Main Antenna
		2402	1.0
	GFSK	2404	5.0
ANT/ANT+		2440	5.0
		2478	5.0
		2480	1.0

9.4. NFC

Conducted output power cannot be measured for NFC, therefore a 2 dB scaling factor shall be used to account for potential variations between samples.

Duty Factor Measured Results

Mode	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
Туре А	100.000	100.000	100.0%	1.00

Note(s):

Duty Cycle = (T on / period) * 100%

Duty Cycle plots

Туре А

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for Wi-Fi = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR* (*measured*). The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

10.1. Wi-Fi (DTS Band)

When the 802.11b reported SAR of the highest measured maximum output power channel is \leq 2.0 W/kg, no further SAR testing is required. If SAR is > 2.0 W/kg and \leq 3.0 W/kg, SAR is required for the next highest measured output power channel. Finally, if SAR is > 3.0 W/kg, SAR is required for the third channel.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 3.0 W/kg.

RF Exposure Conditions Mode		ode Power State	State Dist. (mm)	Dist. (mm) Test Position	Ch #. Freq. (MHz		Area Scan Max. SAR (10g W/kg)		Power	(dBm)	10-g SAR (W/kg)		Plot
	Mode					Freq. (MHZ)		Duty Cycle	Tune-up Limit	Meas.	Meas.	Scaled	No.
Extremity	802.11b	Default	0	Back	6	2437	0.129	100.0%	14.0	13.5	0.133	0.149	1

Adjusted SAR for 802.11g mode

802.11b Max. Power		802.11g N	lax. Power	Worst SAR for 802 11b	Adjusted SAR for	
dBm	mW	dBm	mW	(W/kg)	(W/kg)	
14.0	25	17.0	50	0.133	0.265	

10.2. NFC

RF Exposure Conditions	Mode	Dist. (mm)	Freq. (MHz)	Duty Cycle	Tolerance Scaling ¹ (dB)	Test Position	10-g SAR (W/kg)		Plot
							Meas.	Scaled	No.
Extremity	Туре А	0	13.56	100%	2	Back	0.000	0.000	2

Note:

Conducted output power measurements for NFC are not practical, therefore a 2 dB scaling factor shall be used to account for potential variations between samples.

10.3. Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

RF Air interface	RF Exposure Conditions	Frequency (GHz)	Max. tune-up to	lerance Power	Min. test	SAR test	Estimated 10-g SAR (W/kg)	
			(dBm)	(mW)	distance (mm)	Result*		
Bluetooth	Extremity	2.480	10.00	10.00	5	3.1	0.168	
ANT/ANT+	Extremity	2.478	5.00	3.16	5	0.9	0.053	

Conclusion:

*: The computed value is \leq 7.5; therefore, this qualifies for Standalone SAR test exclusion.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note(s):

Repeated measurement is not required since the original highest measured SAR is <0.8 W/kg (1-g) or 2 W/kg (10-g).

12. Simultaneous Transmission Conditions

Simultaneous Transmission is not supported.

Appendixes

Refer to separated files for the following appendixes.

- Appendix A: SAR Setup Photos
- Appendix B: SAR System Check Plots
- **Appendix C: SAR Highest Test Plots**
- Appendix D: SAR Tissue Ingredients
- Appendix E: SAR Probe Certificates
- Appendix F: SAR Dipole Certificates

END OF REPORT