

RADIO TEST REPORT FCC ID: OMC421914E

Product: Tablet

Trade Mark: iFIT

Model No.: MP22-Argon2-E MP22-Argon2X-E,MP22-Argon-CHP-E, MP22-Argon-E,MP22-Argon2-Alexa-E, MP22-Argon3-E,MP22-ARGON3-TV-OT-E, MP22-Argon3-TV-E Report No.: S22042102605001 Issue Date: Jun 17, 2022

Prepared for

iFIT Health and Fitness, Inc. 1500 S 1000 W Logan UT United States 84321 United States Of America

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED Certificate #4298.01

1	TEST RESULT CERTIFICATION	3
2	SUMMARY OF TEST RESULTS	4
3	FACILITIES AND ACCREDITATIONS	5
3 3 3	2 LABORATORY ACCREDITATIONS AND LISTINGS	5
4	GENERAL DESCRIPTION OF EUT	6
5	DESCRIPTION OF TEST MODES	8
6	SETUP OF EQUIPMENT UNDER TEST	9
6 6 6	 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS 	9
7	TEST REQUIREMENTS	13
7	 RADIATED SPURIOUS EMISSION	15 24 25 26 28 29 30 31 31 32 33
8	TEST RESULTS	34
8 8 8 8 8 8 8	 MAXIMUM CONDUCTED OUTPUT POWER	

1 TEST RESULT CERTIFICATION

Applicant's name:	iFIT Health and Fitness, Inc.	
Address	1500 S 1000 W Logan UT United States 84321 United States Of America	
Manufacturer's Name	ELectronic Way Technology Co., Ltd	
Address	No.268, South Jiguang Rd ShiPu Town, KunShan, JiangSu china 215342	
Product description		
Product name:	Tablet	
Trademark	IFIT	
Model and/or type reference:	MP22-Argon2-E	
Family Model	MP22-Argon2X-E,MP22-Argon-CHP-E,MP22-Argon-E,	
	MP22-Argon2-Alexa-E,MP22-Argon3-E,MP22-ARGON3-TV-OT-E,	
	MP22-Argon3-TV-E	
Test Sample Number	S220421026006	

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	: Apr 21. 2022 ~ Jun 17. 2022	
Testing Engineer	:	Muhzi Lee	
		(Mukzi Lee)	
Authorized Signatory	:	Alex	
		(Alex Li)	

	Certificate #4298.01		52204210200300
2 SUMMARY OF TE	ST RESULTS		
	FCC Part15 (15.247), Subpart	C	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	N/A	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

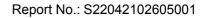
Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT


Product Feature and Specification				
Equipment	Tablet			
Trade Mark iFIT				
FCC ID	OMC421914E			
Model No.	MP22-Argon2-E			
Family Model	MP22-Argon2X-E,MP22-Argon-CHP-E,MP22-Argon-E, MP22-Argon2-Alexa-E,MP22-Argon3-E,MP22-ARGON3-TV-OT-E, MP22-Argon3-TV-E			
Model Difference	All the model are the same circuit and RF module, except the different countries of export, the software display language is different, resulting in different naming.			
Operating Frequency	2402MHz~2480MHz			
Modulation GFSK, π/4-DQPSK, 8-DPSK				
Number of Channels 79 Channels				
Antenna Type	FPC Antenna			
Antenna Gain	1.5 dBi			
Adapter	N/A			
Battery	N/A			
Power supply	DC 12V			
HW Version	MT8163-21.5TG-A0			
SW Version Android 9				

ACCREDITED Certificate #4298.01

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History				
Report No.	Version	Description	Issued Date	
S22042102605001	Rev.01	Initial issue of report	Jun 17, 2022	

ACCREDITED Certificate #4298.01

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

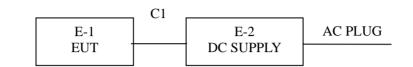
For AC Conducted Emission			
Final Test Mode	Description		
N/A	N/A		

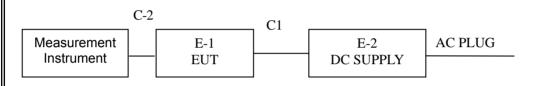
Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

	For Conducted Test Cases			
Final Test Mode Description				
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			
Mode 5	Hopping mode			


Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.


6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

For Radiated Test Cases

For Conducted Test Cases

Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

2. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note		
E-1	Tablet	MP22-Argon2-E	N/A	EUT		
E-2	DC SUPPLY	N/A	N/A	Peripherals		

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	POWER Cable	YES	YES	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

laulau		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.01	2023.03.31	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.01	2023.03.31	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.01	2023.03.31	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.03.31	2023.03.30	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

ACCREDITED Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

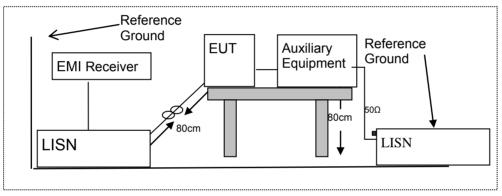
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

EUT:	Tablet	Model Name :	MP22-Argon2-E
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

not applicable

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOOT art 13.203, Restricted bands			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

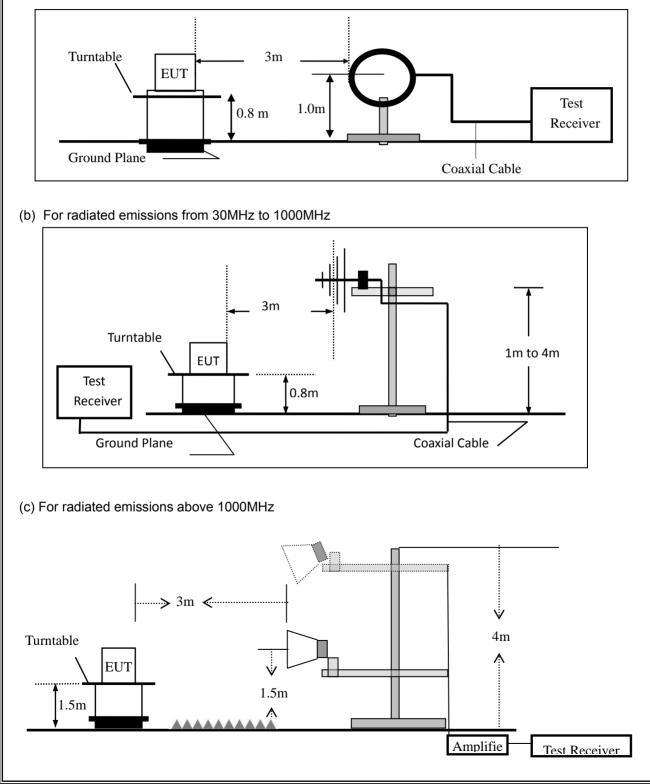
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

ACCREDITED Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth						
30 to 1000	QP	120 kHz	300 kHz						
Ah awa 4000	Peak	1 MHz	1 MHz						
Above 1000	Average	1 MHz	1 MHz						

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

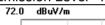
Spurious Emission below 30MHz (9KHz to 30MHz)

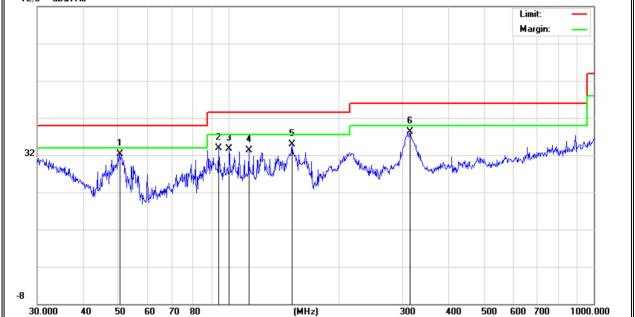
EUT:	Tablet	Model No.:	MP22-Argon2-E
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz)
All the modulation modes have been tested, and the


All the modulation	on modes have been tested	, and the worst result was	report as below:


EUT:	Tablet	Model Name :	MP22-Argon2-E
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 12V		

Polar	Frequency	Meter Reading	Factor	Factor Emission Level		Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	50.4089	16.97	15.26	32.23	40.00	-7.77	QP
V	94.0978	16.68	17.24	33.92	43.50	-9.58	QP
V	100.5806	16.10	17.61	33.71	43.50	-9.79	QP
V	113.7142	14.78	18.49	33.27	43.50	-10.23	QP
V	149.4857	16.54	18.38	34.92	43.50	-8.58	QP
V	314.3765	18.16	20.18	38.34	46.00	-7.66	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Report No.: S22042102605001

Polar	Frequenc	y	Meter Reading	Factor	Emission Level	Limits	Margin	Remarl
(H/V)	(MHz)		(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	100.5806	;	15.46	17.61	33.07	43.50	-10.43	QP
Н	113.7142	2	15.21	18.49	33.70	43.50	-9.80	QP
Н	149.4857	,	14.49	18.38	32.87	43.50	-10.63	QP
Н	219.0749)	17.30	16.92	34.22	46.00	-11.78	QP
Н	308.9125	;	19.56	19.77	39.33	46.00	-6.67	QP
Н	663.4728	5	10.41	26.59	37.00	46.00	-9.00	QP
72.0 dB	uV/m						Limit:	—
							Margin:	_
						5	<u> </u>	
32	may with wy	Johnstell	Whenkerthally		When my Multimer	and have and the		and an and a second

ACCREDITED Certificate #4298.01

Spurious Emission Above 1GHz (1GHz to 25GHz)										
EUT:	Tablet			N	lodel No.:		MP22-Argon2-E			
Temperatu	ire:	20 °C		F	Relative Humic	ative Humidity: 48%				
Test Mode	:	Mode2/Mo	ode3/Mode	4 T	est By:		Muł	czi Lee		
All the mod	lulation r	nodes hav	e been tes	ted, and	I the worst res	sult was			ow:	
Frequency	Read Level	Cable loss	Antenna Factor	Pream Factor		Limi	ts	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	′/m)	(dB)		
			Low Char	nel (240	2 MHz)(GFSK)	Above	1G			
4804	70.89	5.21	35.59	44.30	67.39	74.0	0	-6.61	Pk	Vertical
4804	47.39	5.21	35.59	44.30	43.89	54.0	0	-10.11	AV	Vertical
7206	70.9	6.48	36.27	44.60	69.05	74.0	0	-4.95	Pk	Vertical
7206	47.56	6.48	36.27	44.60	45.71	54.0	0	-8.29	AV	Vertical
4804	69.79	5.21	35.55	44.30	66.25	74.0	0	-7.75	Pk	Horizontal
4804	50.49	5.21	35.55	44.30	46.95	54.0	0	-7.05	AV	Horizontal
7206	69.41	6.48	36.27	44.52	67.64	74.0	0	-6.36	Pk	Horizontal
7206	50.65	6.48	36.27	44.52	48.88	54.0	0	-5.12	AV	Horizontal
Mid Channel (2441 MHz)(GFSK)Above 1G										
4882	70.89	5.21	35.66	44.20	67.56	74.0	0	-6.44	Pk	Vertical
4882	50.31	5.21	35.66	44.20	46.98	54.0	0	-7.02	AV	Vertical
7323	68.2	7.10	36.50	44.43	67.37	74.0	0	-6.63	Pk	Vertical
7323	47.09	7.10	36.50	44.43	46.26	54.0	0	-7.74	AV	Vertical
4882	69.84	5.21	35.66	44.20	66.51	74.0	0	-7.49	Pk	Horizontal
4882	48.97	5.21	35.66	44.20	45.64	54.0	0	-8.36	AV	Horizontal
7323	70.99	7.10	36.50	44.43	70.16	74.0	0	-3.84	Pk	Horizontal
7323	49.67	7.10	36.50	44.43	48.84	54.0	0	-5.16	AV	Horizontal
			High Char	nel (248	0 MHz)(GFSK)	Above	e 1G			
4960	69.84	5.21	35.52	44.21	66.36	74.0	0	-7.64	Pk	Vertical
4960	47.42	5.21	35.52	44.21	43.94	54.0	0	-10.06	AV	Vertical
7440	68.28	7.10	36.53	44.60	67.31	74.0	0	-6.69	Pk	Vertical
7440	45.83	7.10	36.53	44.60	44.86	54.0	0	-9.14	AV	Vertical
4960	70.15	5.21	35.52	44.21	66.67	74.0	0	-7.33	Pk	Horizontal
4960	48.04	5.21	35.52	44.21	44.56	54.0	0	-9.44	AV	Horizontal
7440	70.92	7.10	36.53	44.60	69.95	74.0	0	-4.05	Pk	Horizontal
7440	50.13	7.10	36.53	44.60	49.16	54.0	0	-4.84	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

		in Restr	icted Band			90MHz and		1			
EUT:	Tablet				Mod	lel No.:		MP2	22-Argon	2-E	
Temperature:	: 20 ℃				Rela	ative Humid	ity:	48%	18%		
Test Mode:	Mode2/ M	vlode4			Test	: By:		Muk	zi Lee		
All the modu	lation moc	les have	e been tes	ted, a	and t	he worst re	sult wa	is rej	oort as be	elow:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Prea Fac	amp ctor	Emission Level	Limi	ts	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(d	B)	(dBµV/m)	(dBµ∖	//m)	(dB)	Туре	
			1	Mbps	GFS	SK)-Non-hop	ping				
2310.00	68.25	2.97	27.80	43.	.80	55.22	74		-18.78	Pk	Horizontal
2310.00	50.42	2.97	27.80	43.	.80	37.39	54		-16.61	AV	Horizontal
2310.00	68.67	2.97	27.80	43.	.80	55.64	74		-18.36	Pk	Vertical
2310.00	50.73	2.97	27.80	43.	.80	37.70	54	ŀ	-16.30	AV	Vertical
2390.00	68.51	3.14	27.21	43.	.80	55.06	74		-18.94	Pk	Vertical
2390.00	47.96	3.14	27.21	43.	.80	34.51	54		-19.49	AV	Vertical
2390.00	70.45	3.14	27.21	43.	.80	57.00	74		-17.00	Pk	Horizontal
2390.00	49.98	3.14	27.21	43.	.80	36.53	54		-17.47	AV	Horizontal
2483.50	69.31	3.58	27.70	44.	.00	56.59	74	•	-17.41	Pk	Vertical
2483.50	50.27	3.58	27.70	44.	.00	37.55	54	•	-16.45	AV	Vertical
2483.50	70.02	3.58	27.70	44.	.00	57.30	74	•	-16.70	Pk	Horizontal
2483.50	50.67	3.58	27.70	44.	.00	37.95	54	•	-16.05	AV	Horizontal
				1Mt	ps(G	FSK)-hoppin	ng				
2310.00	68.66	2.97	27.80	43.		55.63	74		-18.37	Pk	Horizontal
2310.00	49.36	2.97	27.80	43.	.80	36.33	54	Ļ	-17.67	AV	Horizontal
2310.00	68.38	2.97	27.80	43.	.80	55.35	74		-18.65	Pk	Vertical
2310.00	45.66	2.97	27.80	43.	.80	32.63	54	ļ	-21.37	AV	Vertical
2390.00	69.91	3.14	27.21	43.	.80	56.46	74	Ļ	-17.54	Pk	Vertical
2390.00	50.71	3.14	27.21	43.	.80	37.26	54		-16.74	AV	Vertical
2390.00	68.3	3.14	27.21	43.	.80	54.85	74		-19.15	Pk	Horizontal
2390.00	49.63	3.14	27.21	43.	.80	36.18	54	ļ	-17.82	AV	Horizontal
2483.50	69.89	3.58	27.70	44.	.00	57.17	74	ŀ	-16.83	Pk	Vertical
2483.50	49.72	3.58	27.70	44.	.00	37.00	54		-17.00	AV	Vertical
2483.50	70.55	3.58	27.70	44.	.00	57.83	74		-16.17	Pk	Horizontal
2483.50	48.38	3.58	27.70	44.	.00	35.66	54	ŀ	-18.34	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

UT:	Tabl	et			Model No.: MP2			22-Argon2-E			
emperature:	20 °	2			Rela	tive Humidi [.]	ty:	48%			
est Mode:	Mod	Mode2/ Mode4			Test	By:		Muk	zi Lee		
All the modul	ation mod	les have	been test	ed, a	ind th	e worst res	ult wa	is rep	ort as be	low:	
Frequency	Reading Level	Cable Loss	Antenna Factor		amp ctor	Emission Level	Lim	iits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(d	IB)	(dBµV/m)	(dBµ'	V/m)	(dB)	Туре	
3260	68.41	4.04	29.57	44	.70	57.32	74	4	-16.68	Pk	Vertical
3260	49.49	4.04	29.57	44	.70	38.40	54	4	-15.60	AV	Vertical
3260	70.68	4.04	29.57	44	.70	59.59	74	4	-14.41	Pk	Horizontal
3260	50.35	4.04	29.57	44	.70	39.26	54	4	-14.74	AV	Horizontal
3332	69.36	4.26	29.87	44	.40	59.09	74	4	-14.91	Pk	Vertical
3332	47.61	4.26	29.87	44	.40	37.34	54	4	-16.66	AV	Vertical
3332	69.76	4.26	29.87	44	.40	59.49	74	4	-14.51	Pk	Horizontal
3332	48.03	4.26	29.87	44	.40	37.76	54	4	-16.24	AV	Horizontal
17797	52.63	10.99	43.95	43	.50	64.07	74	4	-9.93	Pk	Vertical
17797	30.51	10.99	43.95	43	.50	41.95	54	4	-12.05	AV	Vertical
17788	60.87	11.81	43.69	44	.60	71.77	74	4	-2.23	Pk	Horizontal
17788	32.58	11.81	43.69	44	.60	43.48	54	4	-10.52	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Tablet	Model No.:	MP22-Argon2-E
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mukzi Lee

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Tablet	Model No.:	MP22-Argon2-E
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Tablet	Model No.:	MP22-Argon2-E	
Temperature:	20 ℃	Relative Humidity:	48%	
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee	

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Tablet	Model No.:	MP22-Argon2-E
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Tablet	Model No.:	MP22-Argon2-E
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

- RBW = 100KHz
- VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Tablet	Model No.:	MP22-Argon2-E
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mukzi Lee

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached FPC antenna (Gain: 1.5dBi). It comply with the standard requirement.

NTEK 北测[®]

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298 01

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

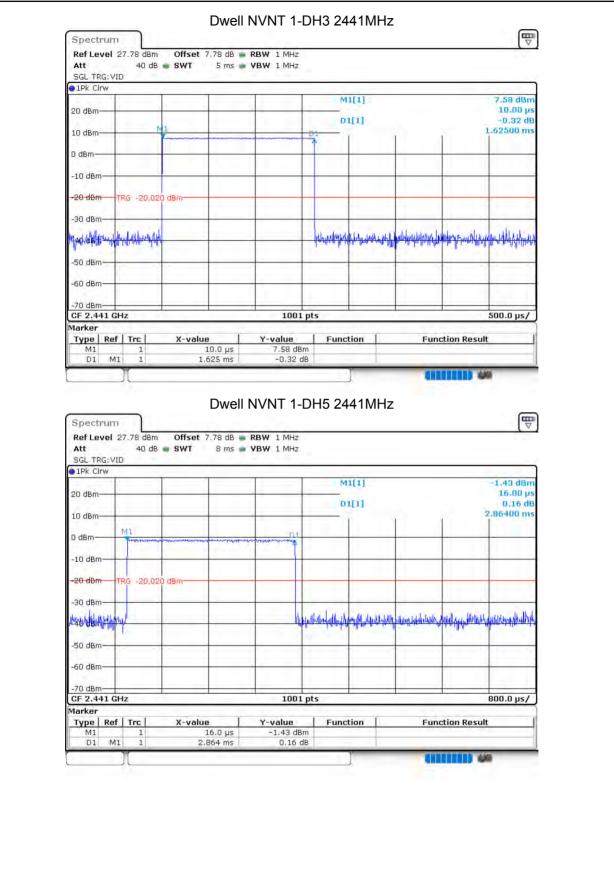
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

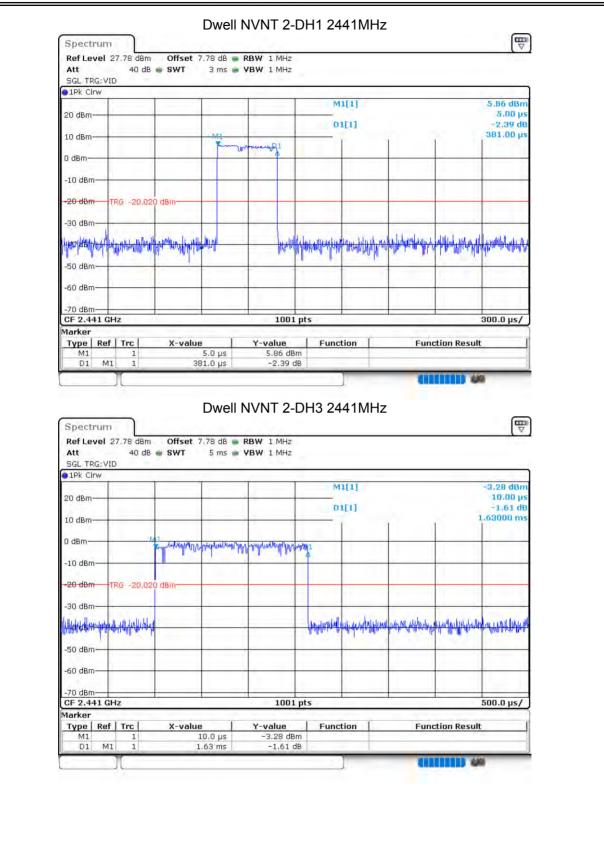
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

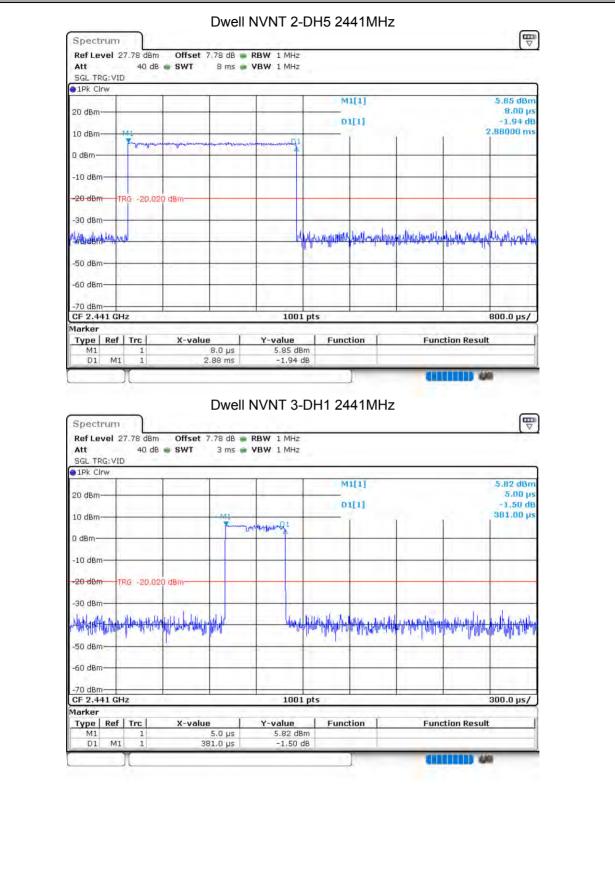
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8 TEST RESULTS

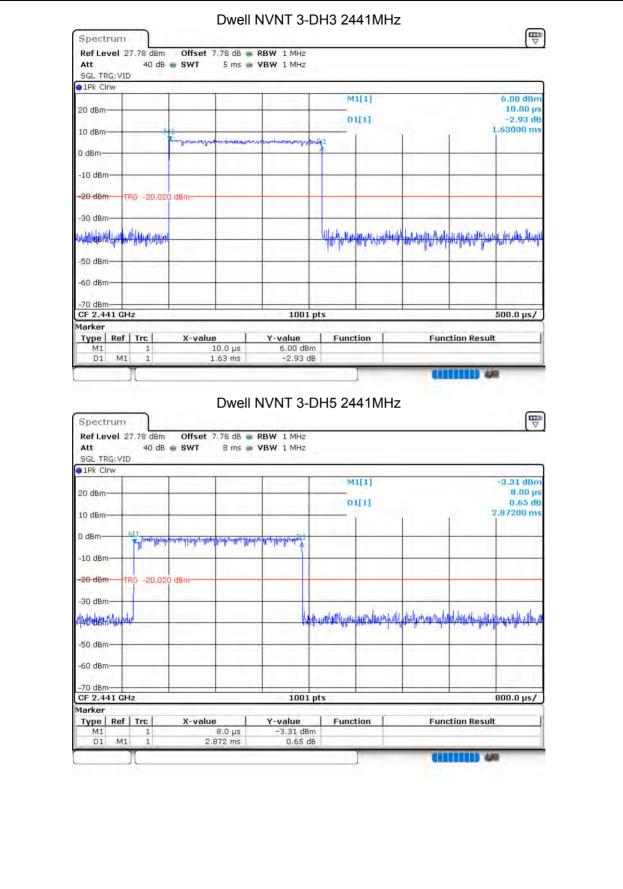

8.1 **DWELL TIME**

Condition	Mode	Frequency	Pulse	Total Dwell	Period	Limit	Verdict
		(MHz)	Time (ms)	Time (ms)	Time (ms)	(ms)	
NVNT	1-DH1	2441	0.372	119.04	31600	400	Pass
NVNT	1-DH3	2441	1.625	260	31600	400	Pass
NVNT	1-DH5	2441	2.864	305.493	31600	400	Pass
NVNT	2-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	2-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	3-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	3-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	3-DH5	2441	2.872	306.347	31600	400	Pass

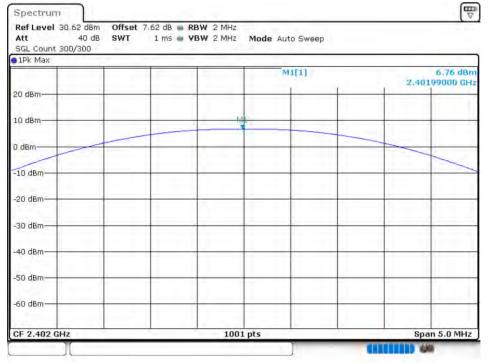


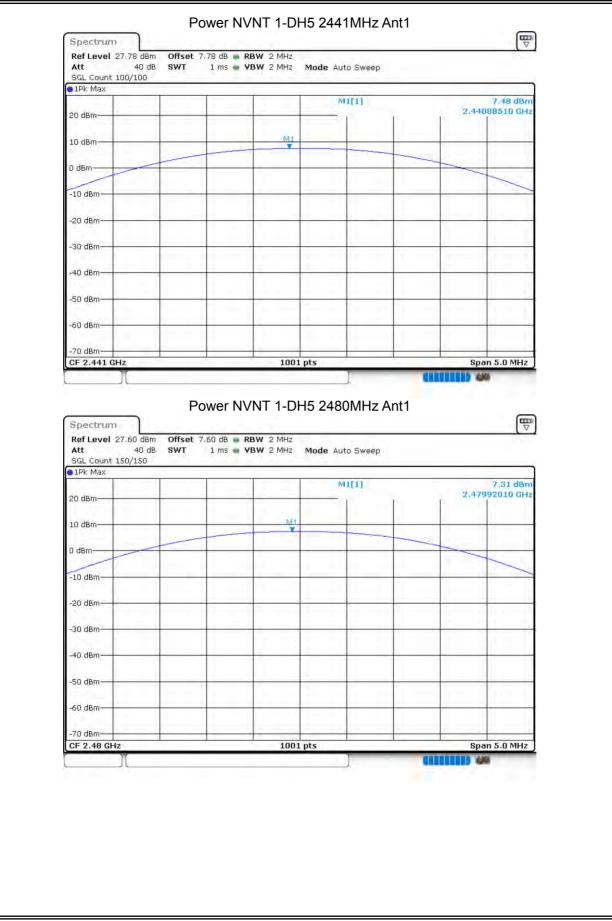


ACCREDITED Certificate #4298.01



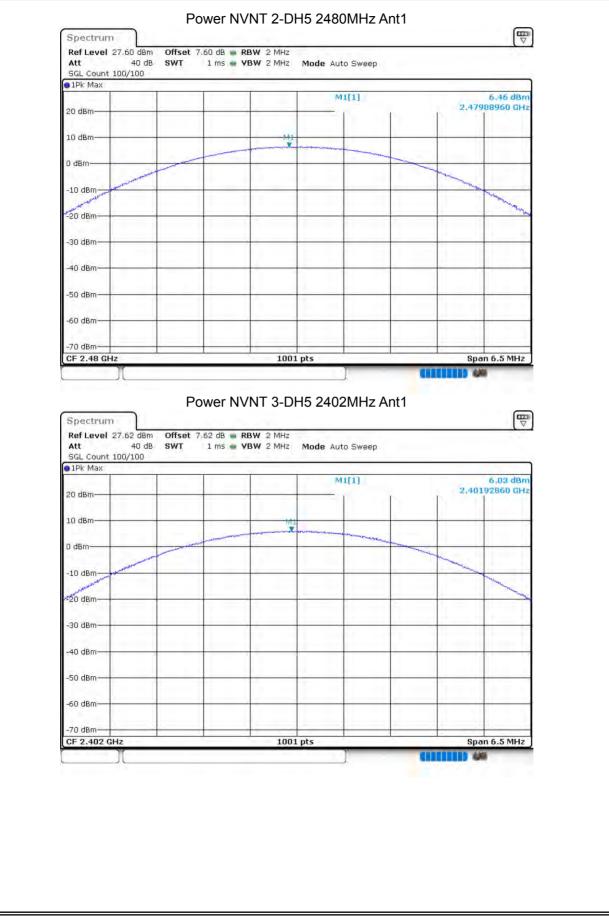
ACCREDITED Certificate #4298.01


ACCREDITED Certificate #4298.01


8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	6.759	30	Pass
NVNT	1-DH5	2441	Ant 1	7.476	30	Pass
NVNT	1-DH5	2480	Ant 1	7.312	30	Pass
NVNT	2-DH5	2402	Ant 1	5.849	21	Pass
NVNT	2-DH5	2441	Ant 1	6.568	21	Pass
NVNT	2-DH5	2480	Ant 1	6.462	21	Pass
NVNT	3-DH5	2402	Ant 1	6.03	21	Pass
NVNT	3-DH5	2441	Ant 1	6.699	21	Pass
NVNT	3-DH5	2480	Ant 1	6.641	21	Pass


Power NVNT 1-DH5 2402MHz Ant1

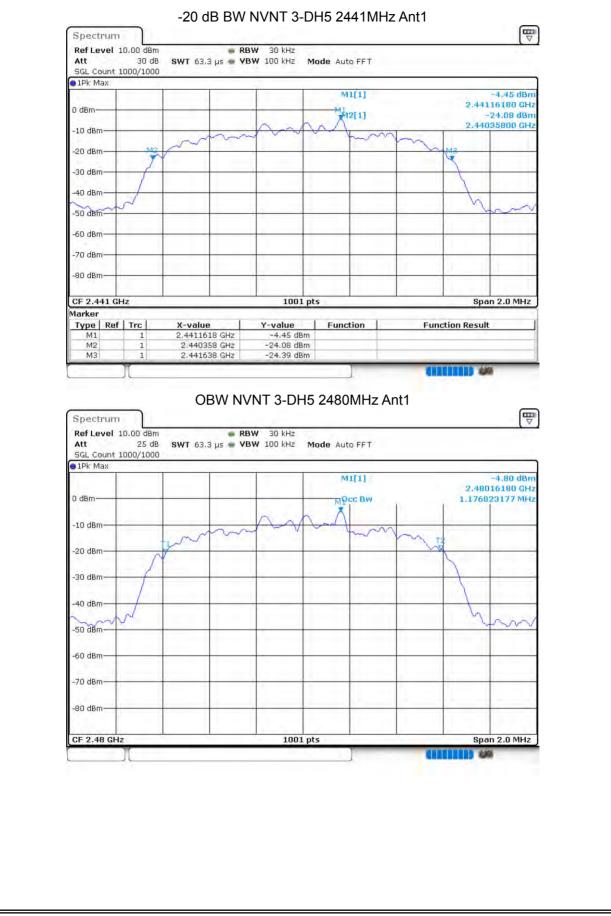


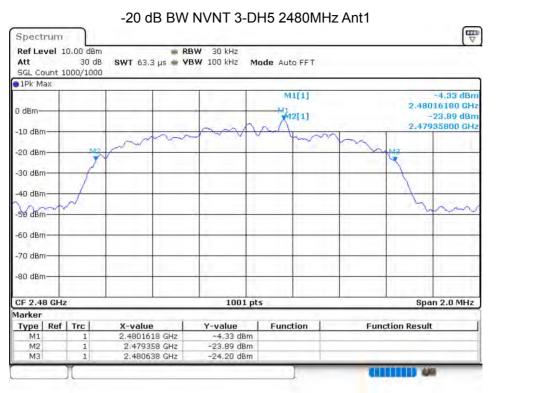
8.3 OCCUPIED CHANNEL BANDWIDTH

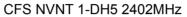
		••••••					
	Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-20 dB Bandwidth (MHz)	Verdict
-						· · · /	
	NVNT	1-DH5	2402	Ant 1	0.9151	0.94	Pass
	NVNT	1-DH5	2441	Ant 1	0.9031	0.992	Pass
ſ	NVNT	1-DH5	2480	Ant 1	0.9211	0.954	Pass
ſ	NVNT	2-DH5	2402	Ant 1	1.1768	1.288	Pass
	NVNT	2-DH5	2441	Ant 1	1.1748	1.28	Pass
	NVNT	2-DH5	2480	Ant 1	1.1668	1.282	Pass
ſ	NVNT	3-DH5	2402	Ant 1	1.1768	1.292	Pass
	NVNT	3-DH5	2441	Ant 1	1.1728	1.28	Pass
Ī	NVNT	3-DH5	2480	Ant 1	1.1768	1.28	Pass

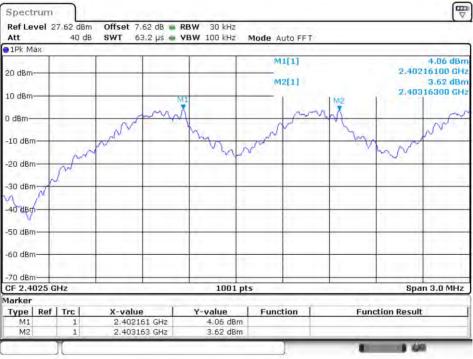
OBW NVNT 1-DH5 2402MHz Ant1

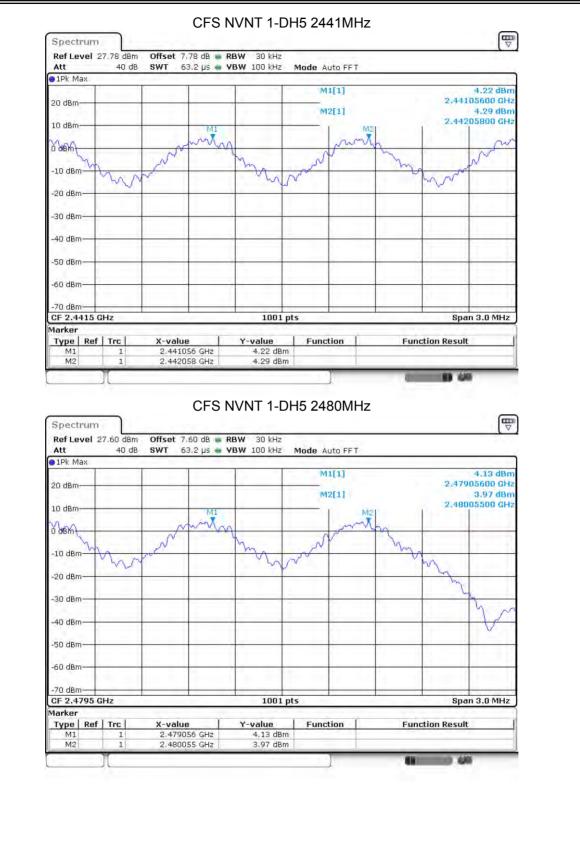




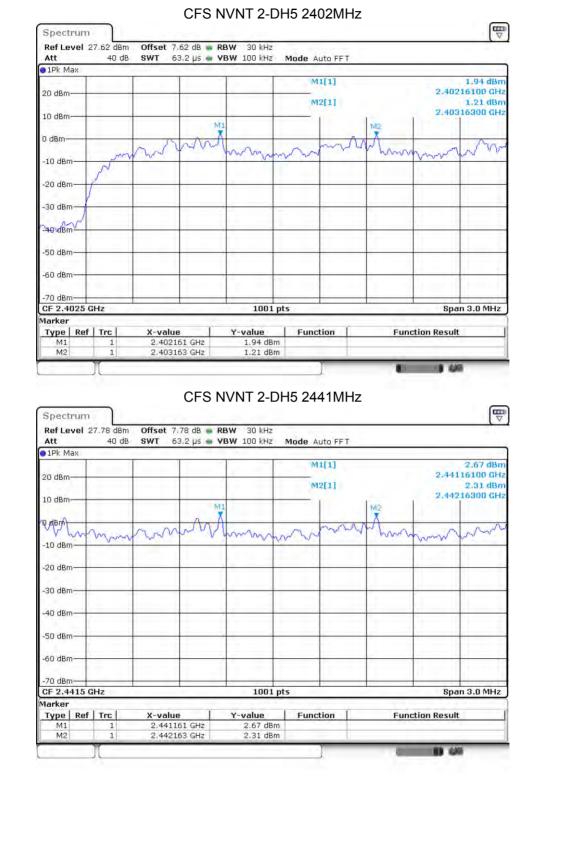


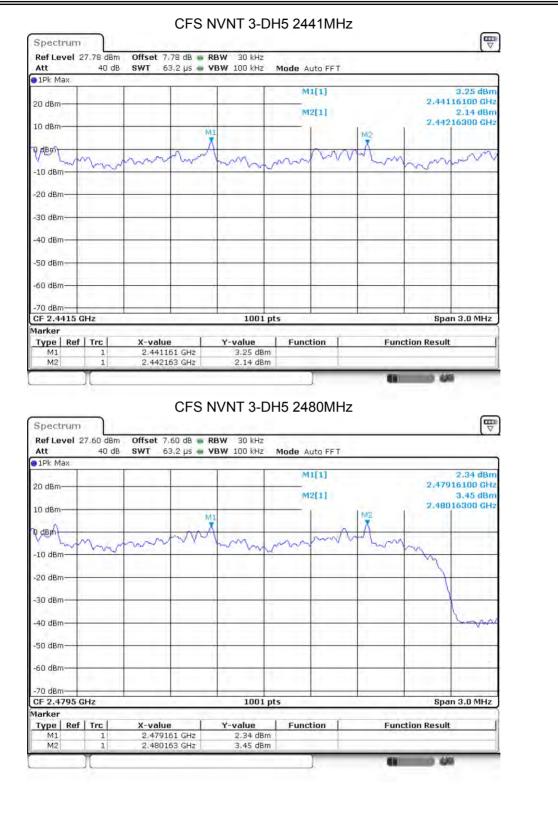


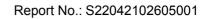



8.4 CARRIER FREQUENCIES SEPARATION

Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
Condition	mode	(MHz)	(MHz)	(MHz)	(MHz)	Voraiot
NVNT	1-DH5	2402.161	2403.163	1.002	0.94	Pass
NVNT	1-DH5	2441.056	2442.058	1.002	0.992	Pass
NVNT	1-DH5	2479.056	2480.055	0.999	0.954	Pass
NVNT	2-DH5	2402.161	2403.163	1.002	0.859	Pass
NVNT	2-DH5	2441.161	2442.163	1.002	0.853	Pass
NVNT	2-DH5	2479.164	2480.163	0.999	0.855	Pass
NVNT	3-DH5	2402.161	2403.163	1.002	0.861	Pass
NVNT	3-DH5	2441.161	2442.163	1.002	0.853	Pass
NVNT	3-DH5	2479.161	2480.163	1.002	0.853	Pass

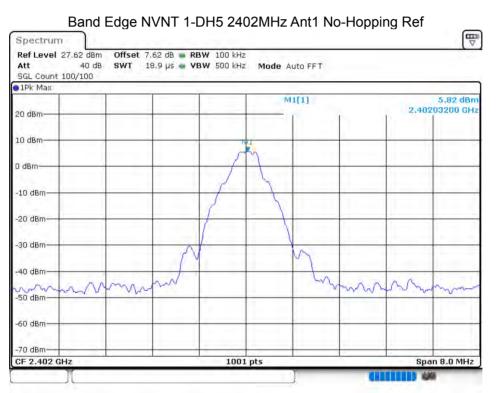




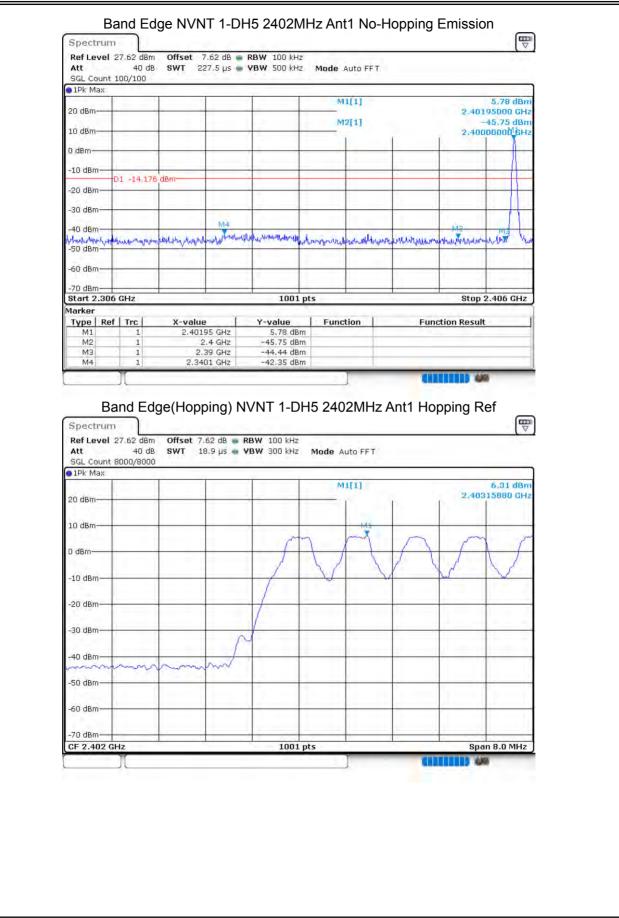


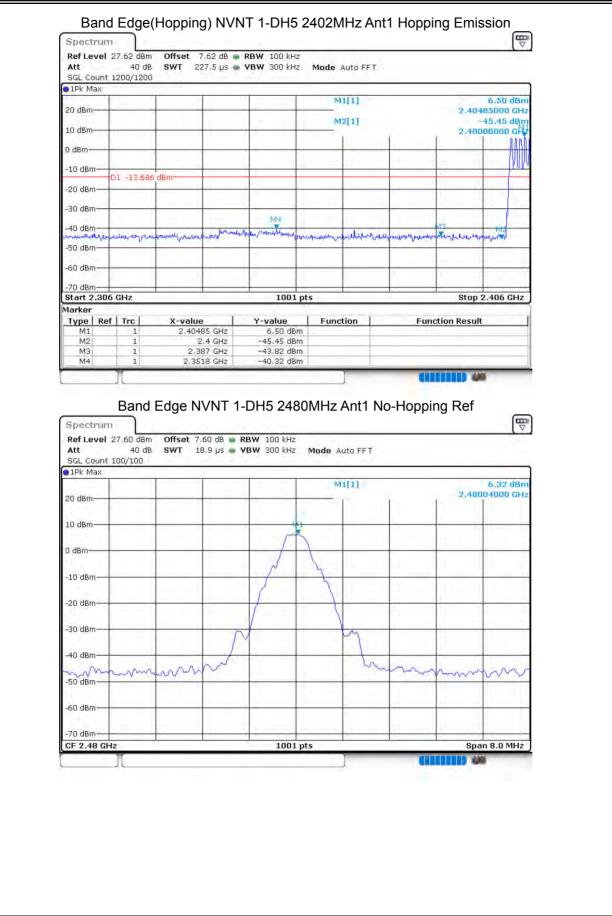
ACCREDITED

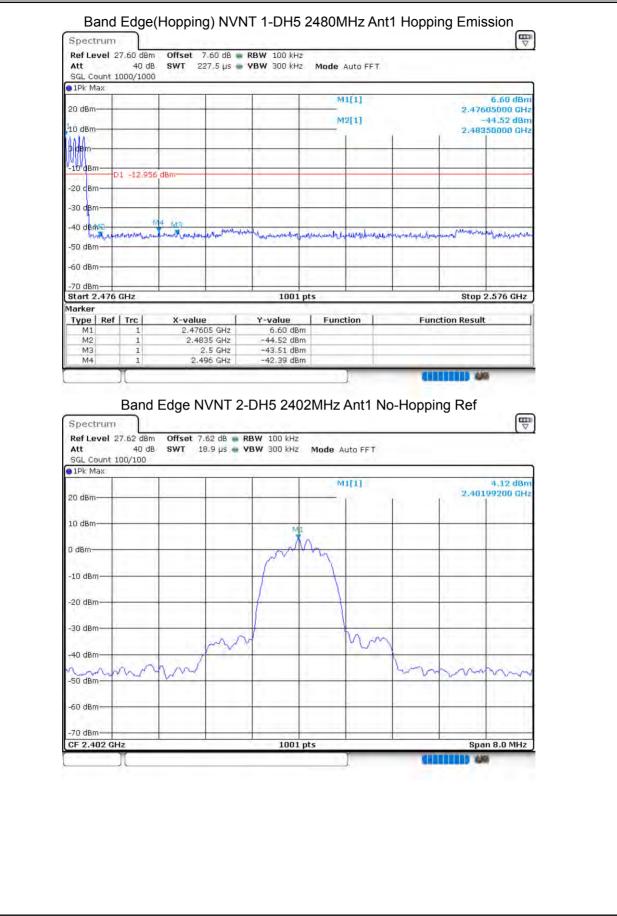
ACCREDITED Certificate #4298.01


NTEK 北视

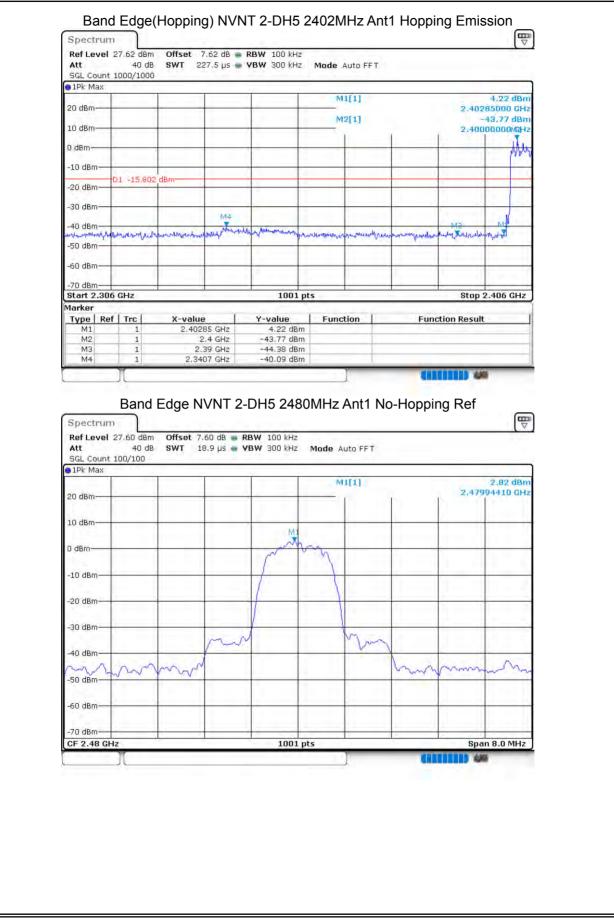
dition	Mode	Hopping	Number	Limit	Verdict				
/NT	1-DH5	79)	15	Pass				
			Hoppi	ng No. I	NVNT 1-L	DH5 2402I	MHz		
	Spectru	and the second sec			100 100-				
	Att	40 dB 5	Offset 7.62 di SWT 1 m			le Auto Sweep			
	SGL Cour 1Pk Max	nt 7000/7000							
	100					M1[1]			.68 dBm
	20 dBm					M2[1]			205 GHz .85 dBm
	101dBm-		0000000000			anadananand	ala anna a sal	2.4802	435/GHz
		ANANANANA	IAMANA IAN	DARAGAD	HARAMAAA	<u>kan na kana ka</u> u	HALADAN	<u>YRADARAAR</u>	AHAA
	-10 dBm-	A MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAA	AAAAAAAA	NANANANANAN	IANAMAAAAAAAA	AT A A A A A A A A A A A A A A A A A A	NANANANANA	1411
	-20 dBm-				2.1				
	-30 dBm								
	-40 dBm-								1.190
	-50 dBm-								
	-60 dBm-			_					
				11					1.00
	-70 dBm-			1	1001		1	Stop 2.48	35 GHz
	Start 2.4	GHz			1001 pts			3tup 2.40	oo unit
	Marker	2011 - T					1 × cho		
		2011 - T	X-value 2.4019205 GF			-unction	Func	tion Result	
	Marker Type F	ef Trc		Ηz	value F	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	unction	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	unction	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	-unction	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Function	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Eunction	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	-unction	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Eunction	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Eunction	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Eunction	Func		
	Marker Type R M1	tef Trc	2.4019205 GH	Ηz	value F 5.68 dBm	Eunction	Func		



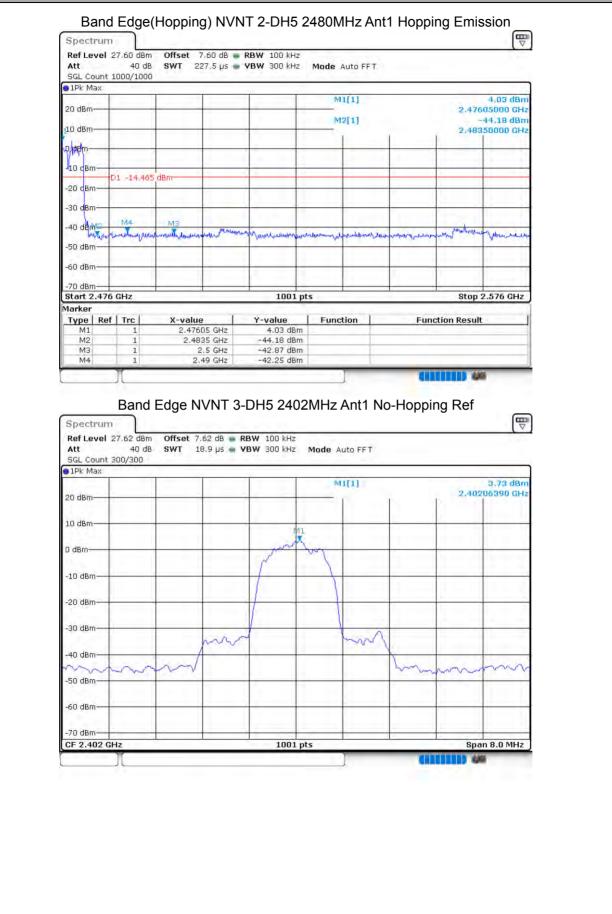

8.6 BANDED	GE						
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	No-Hopping	-48.17	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-46.62	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-49.95	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-49.42	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-45.23	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-44.29	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-45.85	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-47.77	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-44.5	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-45.48	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-46.38	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-48.25	-20	Pass



• 1Pk Max	0	1 1	503513		dDays
20 dBm	-		M1[1]	2.47995000	
10 diam-			M2[1]	-45.81 2.4835000	
0 d8m					
-10 cBm					
-20 cBm-	.685 dBm				
-30 dβm					= <u>5</u>
-40 dBmr2	Ma Mis made	A			
-50 dBm	were week the of him to be a contracted	and we all and a second	www.michaenallerungedoub	Mitroparporner riter has spaced and	Alphanes
-60 dBm					
-70 dBm					
Start 2.476 GHz Marker		1001 pts		Stop 2.576	GHz
Type Ref Trc			unction	Function Result	
M1 1 M2 1 M2 1	2.4835 GHz	6.52 dBm -45.81 dBm			
M3 1 M4 1	2.5 GHz 2.4957 GHz	-45.70 dBm -43.64 dBm			
an lan			M1[1]	7.04 2.48015980	dBm) GHz
20 dBm					
10 dBm	and and	M2		1	
	VV	XX	C		1
-10 dBm	1				- 17
-20 dBm	-				
			h		
-30 dBm					
-30 dBm			mann	mount	m
-40 dBm		i de la constante de la consta			
-40 dBm					
-40 dBm					
-40 dBm		1001 pts		Span 8.0	MHz
-40 dBm		1001 pts		Span 8.0	MHz
-40 dBm		1001 pts		Span 8.0	MHz)
-40 dBm		1001 pts		Span 8.0	MHz

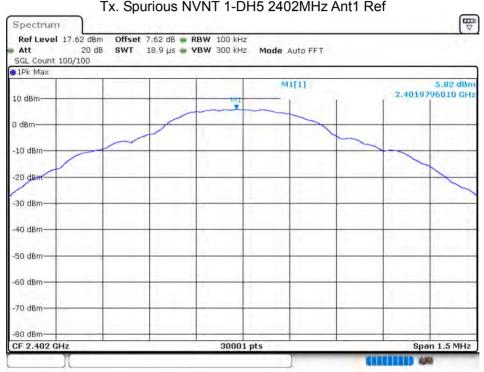


SGL Count 11 91Pk Max	JU/100								
20 dBm-				2	M1[[1]	-	2,402	4.03 dBm 05000 GHz
10 dBm	1. E.		1		M2[[1]			45.98 dBm
0 dBm							Í.	2.400	10000 ginz
-10 dBm						1 1	1		
	1 -15,883	dBm							
-30 dBm									
-40 dBm	1	11	M4	0			1		14
-50 dBm	normativity when	alladharyodaadha	rebuilt Malinus	and the second second	quillermention	adabarrana	in a hill want way way	Mathrus	when the
-60 dBm	_		T						1
-70 dBm		-		1					
Start 2.306	GHz		1	1001	pts	1		Stop	2.406 GHz
Marker Type Ref		X-valu		Y-value	Functio	on	Func	tion Result	
M1 M2	1		205 GHz 2.4 GHz	4.03 dB -45.98 dB					
M3 M4	1	2	.39 GHz 397 GHz	-46.14 dB -41.11 dB	m				
L mer		2,00	on and	11.11 00	1				
Bal Spectrum Ref Level 2' Att SGL Count Bi PIPk Max	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	VNT 2-D	Mode Aut	© FFT	nt1 Hop	pping R	V
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	1.0.2.	© FFT	nt1 Hop		
Spectrum Ref Level 2 Att SGL Count 80 1Pk Max 20 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	Mode Aut	© FFT	nt1 Hop		4,20 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	Mode Aut	© FFT	nt1 Hop		4,20 dBm
Spectrum Ref Level 2 Att SGL Count 80 1Pk Max 20 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	Mode Aut	© FFT			4,20 dBm
Spectrum Ref Level 2' Att SGL Count 81 1Pk Max 20 dBm 10 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	Mode Aut	:0 FFT			4,20 dBm 06190 GHz
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	Mode Aut	:0 FFT			4,20 dBm 06190 GHz
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm 0 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	Mode Aut	:0 FFT			4,20 dBm 06190 GHz
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm	7.62 dBm 40 dB	Offset 7	,62 dB • • • 8.9 μs • • •	RBW 100 kHz	Mode Aut	:0 FFT			4,20 dBm 06190 GHz
Spectrum Ref Level 2' Att SGL Count 81 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	7.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	Mode Aut	:0 FFT			4,20 dBm 06190 GHz
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	7.62 dBm 40 dB	Offset 7	,62 dB • • • 8.9 μs • • •	RBW 100 kHz	Mode Aut	:0 FFT			4,20 dBm 06190 GHz
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	7.62 dBm 40 dB	Offset 7	,62 dB • • • 8.9 μs • • •	RBW 100 kHz	Mode Aut	:0 FFT			4,20 dBm 06190 GHz
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7.62 dBm 40 dB	Offset 7	,62 dB • • • 8.9 μs • • •	RBW 100 kHz	Mode Aut	:0 FFT			4,20 dBm 06190 GHz
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.62 dBm 40 dB 000/8000	Offset 7	,62 dB • • • 8.9 μs • • •		Mode Aut	:0 FFT		2,404	4,20 dBm 06190 GHz
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -60 dBm	7.62 dBm 40 dB 000/8000	Offset 7	,62 dB • • • 8.9 μs • • •	RBW 100 kHz	Mode Aut	:0 FFT		2,404	4,20 dBm 06190 GH2
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.62 dBm 40 dB 000/8000	Offset 7	,62 dB • • • 8.9 μs • • •		Mode Aut	:0 FFT		2.404	4,20 dBm 06190 GH2
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.62 dBm 40 dB 000/8000	Offset 7	,62 dB • • • 8.9 μs • • •		Mode Aut	:0 FFT		2.404	4,20 dBm 06190 GH2
Spectrum Ref Level 2' Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	7.62 dBm 40 dB 000/8000	Offset 7	,62 dB • • • 8.9 μs • • •		Mode Aut	:0 FFT		2.404	4,20 dBm 06190 GH2

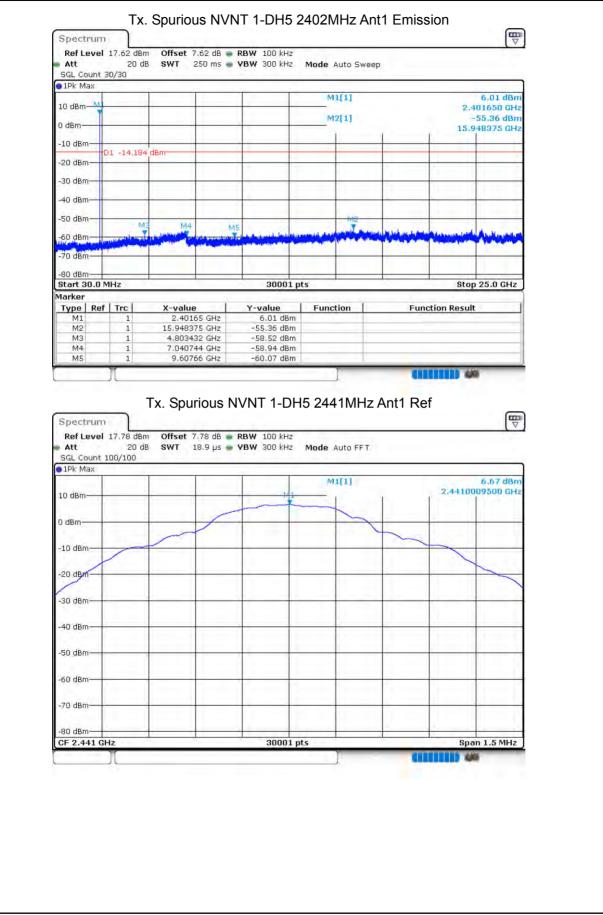


20 dim 0.96 r/s 0.400 s000 dHz 10 dim 0.96 r/s 0.480 s000 dHz 0.96 r/s 0.96 r/s 0.96 r/s 0.96 r/s 0.97 r/s 0.97 r/s 10 dim 0.97 r/s 0.97 r/s 10 dim 0.97 r/s 0.97 r/s 10 dim 0.97 r/s 0.97 r/s 20 dim 10.2490 r/s 30 r/s 80 r/s 20 dim 11 2.4900 r/s 30 r/s 80 r/s 20 dim 0.97 r/s 30 r/s 80 r/s 80 r/s 20 dim 0.97 r/s 9.95 s 9.97 r/s 80 r/s 20 dim 0.97 r/s 9.95 s 9.97 r/s	SGL Count	100/100									
10 dgm	20 dBm					M	1[1]	-	2,480		
0 d\$p						M	2[1]		-	43.85 dBm	
-10 dsm -17,177 dsm -10 dsm <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th>2.400</th> <th>130000 GHZ</th>							1		2.400	130000 GHZ	
20 dem 01 17 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1. 11</td><td>1</td><td></td><td>1</td><td></td></t<>						1. 11	1		1		
		D1 -17,177	dBm								
-b0 dBm					-					1	
Sind Grand and Sind and Si	15	M4			1	1	1		1 2.1	1	
-60 dBm -10 -10 -10 <	and white	handhahan	Allyment Musica	appublished	Man Man Har Mar Mar	anornamillach	manderhowstruct	Mithayusta	Herrichtennen	and anon house	
Type Ref Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 3.67 dbm Function Function Result M2 1 2.4835 GHz -43.65 dbm Function Function Result M3 1 2.4905 GHz -43.65 dbm Function Function Result M4 1 2.4905 GHz -43.04 dbm Function Function Result M4 1 2.4906 GHz -43.04 dbm Function Function Result M3 1 2.4906 GHz -43.04 dbm Function Function Result M4 1 2.4906 GHz -43.04 dbm Function Function Ref Level 27.60 dbm Offset 7.60 db & RBW 100 kHz Made Auto FFT Scionna 8000/8000 Scionna 800/8000 PIP Max					•	E	1::				
Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker 3.67 dbm Function Function Result M1 1 2.4935 GHz 45.63 dbm M3 1 2.4935 GHz -43.04 dbm M4 1 2.4906 GHz -43.04 dbm M5 Spectrum V V Ref Level 27.60 db Offset 7.60 db RBW 100 kHz Att 40 db SWT 18.9 µ5 VBW 300 kHz Marker M1(1) 5.53 dBm 20 dBm 0 M1(1) 5.53 dBm -10 dBm - - - - -30 dBm - - - - -30 dBm - - - - - -50 dBm - - - - <td< td=""><td></td><td>1</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td>· · · · · · · · ·</td><td></td><td></td><td></td><td>1,</td><td>1</td></td<>		1	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·				1,	1	
Type Ref Trc X-value Y-value Function Function Result M1 1 2.48015 GHz -3.67 dBm		6 GHz	1	1	1001	pts			Stop :	2.576 GHz	
M1 1 2.48015 GHz 3.67 dBm M2 1 2.4803 GHz -43.85 dBm M3 1 2.5 GHz -43.85 dBm M4 1 2.4905 GHz -43.85 dBm M4 1 2.4905 GHz -43.04 dBm M4 1 2.4905 GHz -43.04 dBm M4 1 2.4905 GHz -43.04 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Image: Common and the system of the sys	Marker Type Re	f Trc	X-valu	e (Y-value	Func	tion	Fun	ction Result		
Mai 1 2.5 GHz -45.63 dBm Mai 1 2.4906 GHz -43.04 dBm Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att a 800/8000 Image: Switch 18.9 µS YBW 300 kHz Mode Auto FFT SGL Count 800/8000 Image: Switch 18.9 µS YBW 300 kHz Mode Auto FFT SGL Count 800/8000 Image: Switch 18.9 µS YBW 300 kHz Mode Auto FFT SGL Count 800/8000 Image: Switch 18.9 µS YBW 300 kHz Mode Auto FFT SGL Count 800/8000 Image: Switch 18.9 µS YBW 300 kHz Image: Switch 18.9 µS Image: Switch 18.9 µS <td c<="" td=""><td>M1</td><td>1</td><td>2.480</td><td>15 GHz</td><td>3.67 dBn</td><td>n</td><td></td><td></td><td></td><td></td></td>	<td>M1</td> <td>1</td> <td>2.480</td> <td>15 GHz</td> <td>3.67 dBn</td> <td>n</td> <td></td> <td></td> <td></td> <td></td>	M1	1	2.480	15 GHz	3.67 dBn	n				
Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs YBW 300 kHz SGL Count 8000/8000 Offset 7.60 dB RBW 100 kHz Mode Auto FFT SGL Count 8000/8000 Offset 7.60 dB RBW 100 kHz Mode Auto FFT 20 dBm	M3	1	2	2.5 GHz	-45.63 dBn	n					
Spectrum Image: Control of the sector of the s	1 10141	TY AL	6,79		-3.04 abii	3.1	1				
0 dBm -10 dBm	Att SGL Count	27.60 dBm 40 dB									
0 dBm -10 dBm	Att SGL Count 1Pk Max	27.60 dBm 40 dB							2.478	5,53 dBm	
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Att SGL Count 1Pk Max	27.60 dBm 40 dB							2,478	5,53 dBm	
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	Att SGL Count 1Pk Max 20 dBm	27.60 dBm 40 dB	SWT 1						2.478	5,53 dBm	
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	Att SGL Count 1Pk Max 20 dBm	27.60 dBm 40 dB	SWT 1						2.478	5,53 dBm	
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	27.60 dBm 40 dB	SWT 1						2,479	5,53 dBm	
-40 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Att SGL Count 1Pk Max 20 dBm	27.60 dBm 40 dB	SWT 1						2.478	5,53 dBm	
-40 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Att SGL Count 1Pk Max 20 dBm	27.60 dBm 40 dB	SWT 1						2,479	5,53 dBm	
-60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Att SGL Count 1Pk Max 20 dBm	27.60 dBm 40 dB	SWT 1				1[1]		2.479	5,53 dBm	
-60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Att SGL Count 1Pk Max 20 dBm	27.60 dBm 40 dB	SWT 1						2.479	5,53 dBm	
-70 dBm 1001 pts Span 8.0 MHz	Att SGL Count 1Pk Max 20 dBm	27.60 dBm 40 dB	SWT 1						2,478	5,53 dBm	
CF 2.48 GHz 1001 pts Span 8.0 MHz	Att SGL Count 1Pk Max 20 dBm	27.60 dBm 40 dB	SWT 1						2.479	5,53 dBm	
	Att SGL Count I SGL Count I Pk Max 20 dBm	27.60 dBm 40 dB	SWT 1						2.478	5,53 dBm	
	Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	27.60 dBm 40 dB 8000/8000	SWT 1							5,53 dBm 116180 GHz	
	Att SGL Count SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	27.60 dBm 40 dB 8000/8000	SWT 1						Spa	5,53 dBm H6180 GHz	
	Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	27.60 dBm 40 dB 8000/8000	SWT 1						Spa	5,53 dBm H6180 GHz	
	Att SGL Count SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	27.60 dBm 40 dB 8000/8000	SWT 1						Spa	5,53 dBm H6180 GHz	

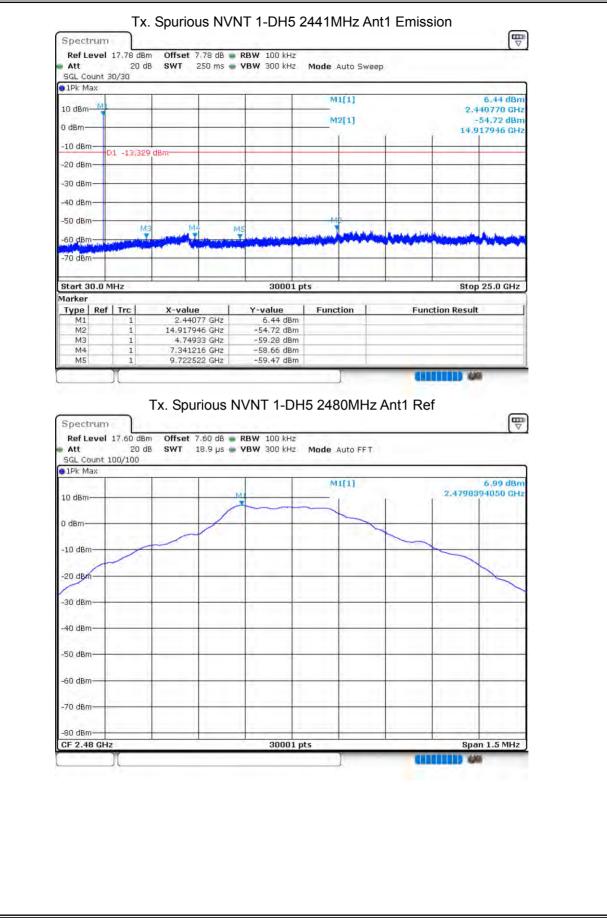
●1Pk Max	1		1	M	1[1]		_	3.93 dBm
20 dBm					2[1]			995000 GHz -44.41 dBm
10 ₁ d&m			1	M	el 11			350000 GHz
0 døm						-	-	
-10 cBm-	6,296 dBm							
-20 dBm	0,220 00///	-	-			-	1	11
-30 dBm	M4			- 11	1 2 3 1			
-40 dBm	hall served and served and	havenuttors	all and a stand and a stand	hundrandita	warden warded	name alle publication	mur twenty as	and when here
-50 dBm								
-00 dBm	-		1			· · · · ·		1
Start 2.476 GHz Marker	1 1		1001	pts			Stop	2.576 GHz
Type Ref Tro	2 X-value 1 2.4799		Y-value 3.93 dBr	Funct	tion	Fund	tion Resul	t [
M2	1 2.483	5 GHz	-44.41 dBr -45.78 dBr	m				
	1 2. 1 2.498	5 GHz 8 GHz	-45.78 dBr -42.68 dBr					
Spectrum Ref Level 27.60	40 dB SWT 18.	50 dB 🐞 R	VNT 3-D	13.21		ant1 Ho	pping R	ef
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/ 1Pk Max	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A		ant1 Hoj		5,95 dBm
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Hoj		
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/ 1Pk Max	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Hoj		5,95 dBm
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/ 1Pk Max 20 dBm-	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Hoj		5,95 dBm
Spectrum Ref Level 27.60 Att SGL Count 8000/ 1Pk Max 20 dBm- BQ dBm- A model A model	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,95 dBm
Spectrum Ref Level 27.60 Att SGL Count 8000/ IPk Max 20 dBm dBm -10 dBm	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,95 dBm
Spectrum Ref Level 27.60 Att	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,95 dBm
Spectrum Ref Level 27.60 Att SGL Count 8000/ IPk Max 20 dBm dBm -10 dBm	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,95 dBm
Spectrum Ref Level 27.60 Att	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,95 dBm
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/ IPk Max 20 dBm Ad Bm -10 dBm -20 dBm -30 dBm	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Hop		5,95 dBm
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/ IPk Max 20 dBm Ad Bm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Ho		5,95 dBm
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 40 dBm -20 dBm -30 dBm -50 dBm	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Hop		5,95 dBm
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 20 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -60 dBm	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode Ar	uto FFT	ant1 Ho	2.470	5,95 dBm
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 20 dBm 20 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode Ar	uto FFT	ant1 Ho	2.470	5.95 dBm 515580 GHz
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 20 dBm 20 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode Ar	uto FFT		2.470	5.95 dBm 515580 GHz
Spectrum Ref Level 27.60 Att 2 SGL Count 8000/ IPk Max 20 dBm 20 dBm 40 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	dBm Offset 7.6 40 dB SWT 18.	50 dB 🐞 R	BW 100 kHz	Mode Ar	uto FFT	ant1 Ho	2.470	5.95 dBm 515580 GHz



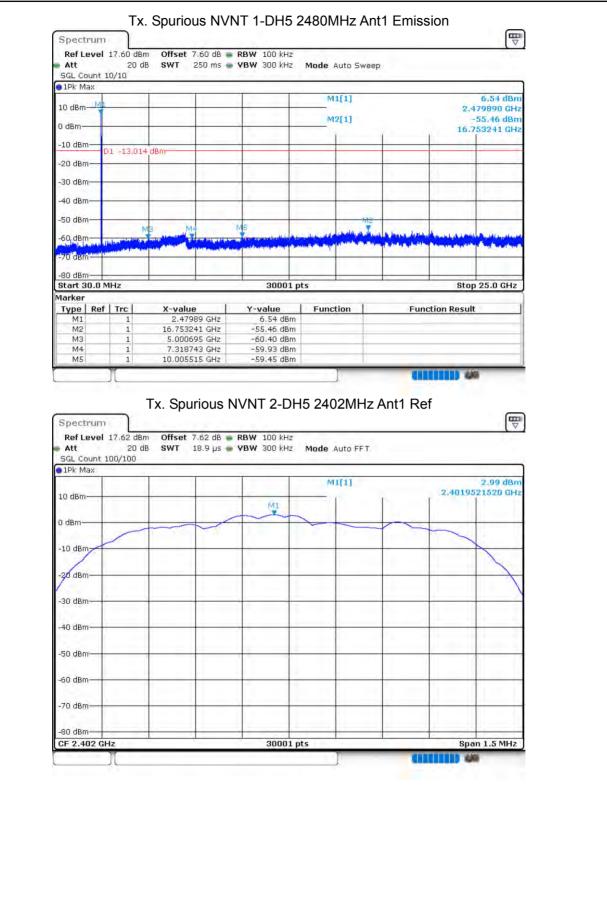
		You was and	BW 100 kHz	A CALCER AND CONTRACT		7.60 dBm		
		Mode Auto FFT	BW 300 kHz	227.5 µs 🎃	SWT 22	40 dB		Att
						000/1000		1Pk M
4.98 dBm		M1[1]						
2.47605000 GHz							-	20 dBm
-44.54 dBm 2.48350000 GHz		M2[1]					_	10 dBm
2140030000 0112	1							20 00111
			-					a/dam-
			_				n	-10 cBm
	-				dBm	1 -14,051		10 001
				-	-	_	n-	20 cBm
							n	-30 dBm
Alexing and a second					MB	M4	MR	40 den
mouth the line of which which is	nalestentisticitati	alwaynablesyn	monorcampolitication	whilever	under annanci	multipane	manut	
							n	50 dBm
	· · · · · · · · · · · · · · · · · · ·						n	-60 dBm
			· · · · · · · ·					44 AL.
								-70 dBm
							2.476	Start 2
Stop 2.576 GHz	1	s	1001 pts	_	_	3112		Sec. 14. 19. 5
	+ +	the set of the set		7				
Stop 2.576 GHz	Funct	s Function	Y-value		X-value	Trc		Type
	Funct	the set of the set	Y-value 4.98 dBm	505 GHz	2.476	Trc 1		Type M1
	Funct	the set of the set	Y-value		2.4760 2.483	Trc		Marker Type M1 M2 M3

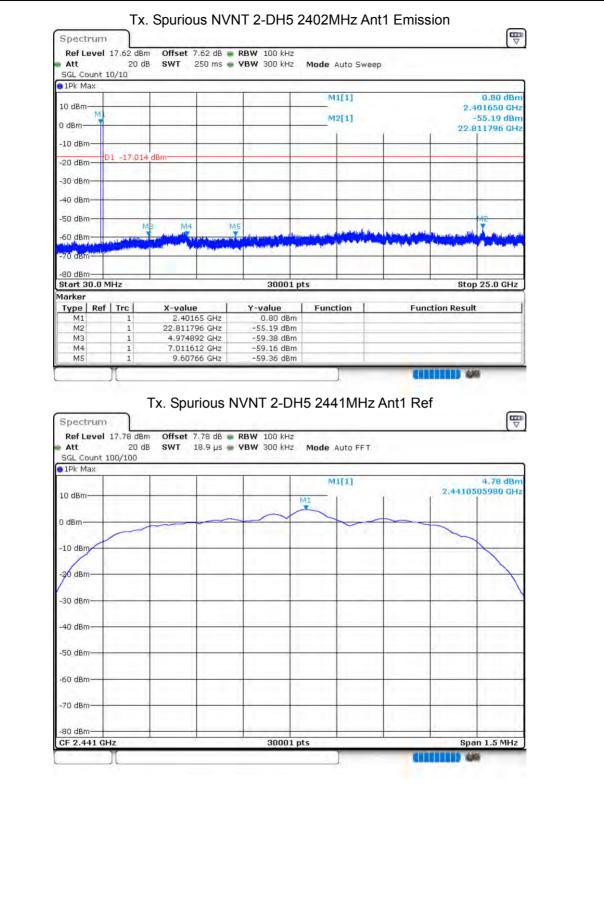

8.7 CONDUCTED RF SPURIOUS EMISSION

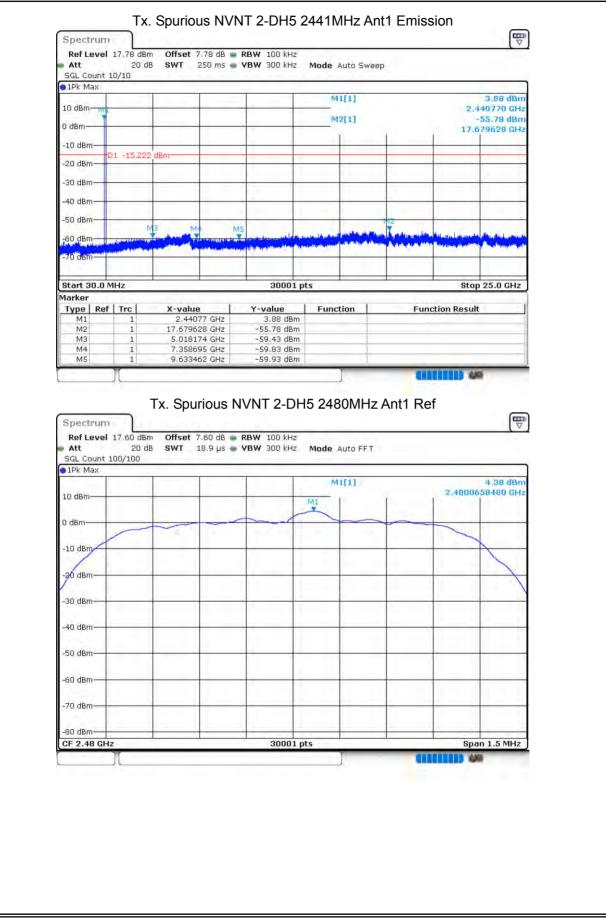
0.1 001100						
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-61.17	-20	Pass
NVNT	1-DH5	2441	Ant 1	-61.39	-20	Pass
NVNT	1-DH5	2480	Ant 1	-62.45	-20	Pass
NVNT	2-DH5	2402	Ant 1	-58.18	-20	Pass
NVNT	2-DH5	2441	Ant 1	-60.55	-20	Pass
NVNT	2-DH5	2480	Ant 1	-58.55	-20	Pass
NVNT	3-DH5	2402	Ant 1	-60.05	-20	Pass
NVNT	3-DH5	2441	Ant 1	-60.91	-20	Pass
NVNT	3-DH5	2480	Ant 1	-59.77	-20	Pass

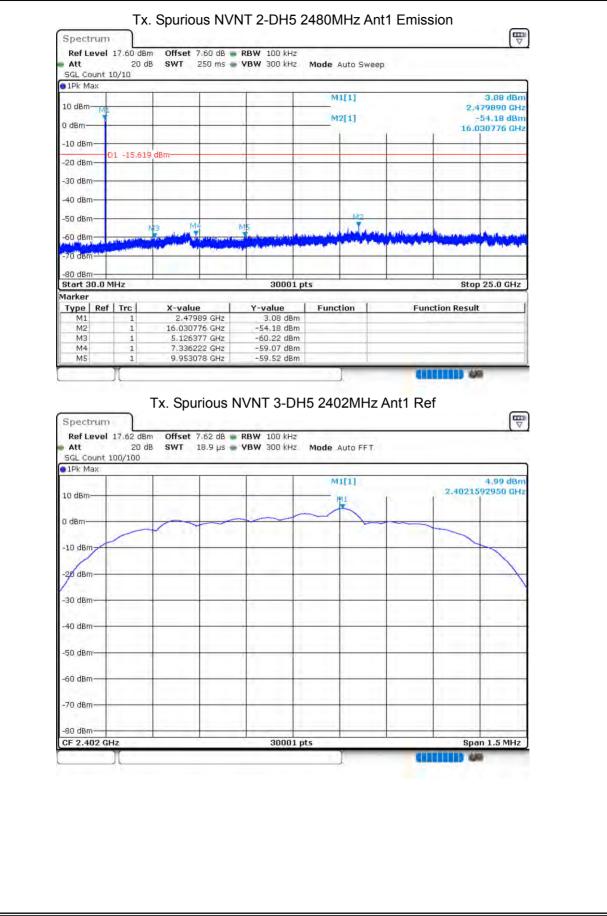


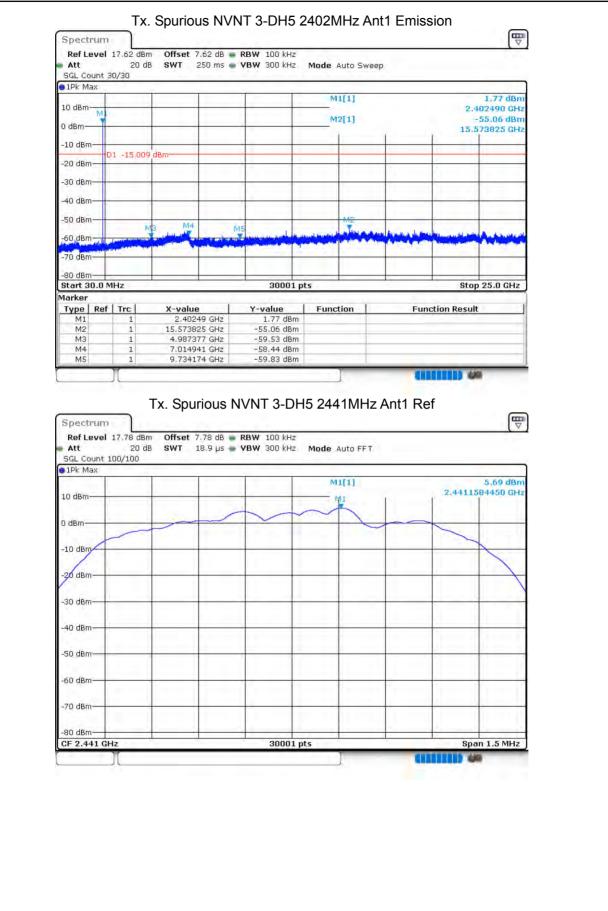
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

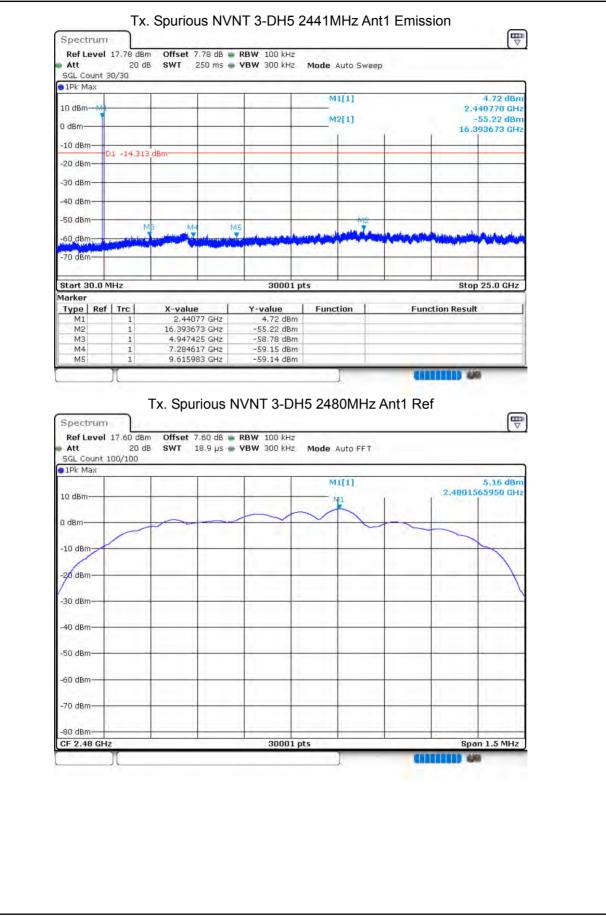


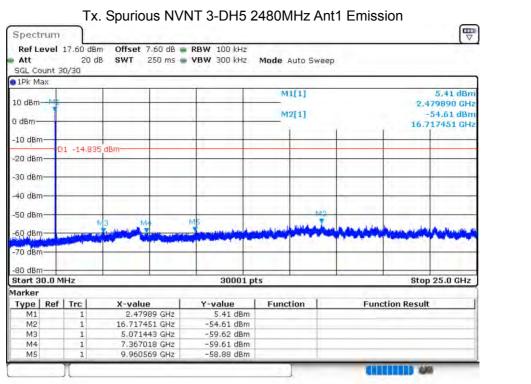












END OF REPORT