

FCC Test Report

Report No.: AGC00737180406FE03

FCC ID : 2AMH2-BH205A

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: WIRELESS HEADSET

BRAND NAME: Mpow

MODEL NAME : BH205A

CLIENT: MPOW TECHNOLOGY CO., LIMITED

DATE OF ISSUE : May 17, 2018

STANDARD(S)

TEST PROCEDURE(S)

: FCC Part 15 Subpart C Section 15.249

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

AGC 3

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spowed this jest eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a transfer o

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 60

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	pliance / ® ##	May 17, 2018	Valid	Initial release

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	
2.1. PRODUCT DESCRIPTION	5
2.2. TABLE OF CARRIER FREQUENCYS	5
3. MEASUREMENT UNCERTAINTY	
4. DESCRIPTION OF TEST MODES	
5. SYSTEM TEST CONFIGURATION	
5.1. CONFIGURATION OF EUT SYSTEM5.2. EQUIPMENT USED IN EUT SYSTEM5.3. SUMMARY OF TEST RESULTS	8 8
6. TEST FACILITY	10
7. TEST METHOD	11
8. TEST EQUIPMENT LIST	
9. RADIATED EMISSION	12
9.1. TEST LIMIT 9.2. MEASUREMENT PROCEDURE 9.3. TEST SETUP 9.4. TEST RESULT	12
10. BAND EDGE EMISSION	39
10.1. MEASUREMENT PROCEDURE 10.2 TEST SETUP 10.3 RADIATED TEST RESULT	39 40
11. 20DB BANDWIDTH	44
11.1. MEASUREMENT PROCEDURE	44
12. FCC LINE CONDUCTED EMISSION TEST	51
12.1. LIMITS OF LINE CONDUCTED EMISSION TEST	52 52
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	
APPENDIX B. PHOTOGRAPHS OF FUT	55

age 4 of 60

1. VERIFICATION OF CONFORMITY

Applicant	MPOW TECHNOLOGY CO., LIMITED
Address	RM 603, 6/F, HANG PONT COMM BLDG 31 TONKIN ST, CHEUNG SHA WAN KL, HK, CHINA
Manufacturer	MPOW TECHNOLOGY CO., LIMITED
Address	RM 603, 6/F, HANG PONT COMM BLDG 31 TONKIN ST, CHEUNG SHA WAN KL, HK, CHINA
Product Designation	WIRELESS HEADSET
Brand Name	Mpow
Test Model	BH205A
Date of test	Apr. 18, 2018 to Apr. 27, 2018
Deviation	None
Condition of Test Sample	Normal Normal
Report Template	AGCRT-US-BR/RF

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.249. The test results of this report relate only to the tested sample identified in this report.

Tested By	Jorden Wang	
To the plants	Jonhen Wang(Wang Yonghuan)	Apr. 27, 2018
Reviewed By	and change	
	Cool Cheng(Cheng Mengguo)	May 17, 2018
Approved By	Forest cen	
	Forrest Lei(Lei Yonggang) Authorized Officer	May 17, 2018

Page 5 of 60

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
RF Output Power	1.49dBm(Max EIRP Power=Max radiation field-95.2)
Bluetooth Version	V4.1 @
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE □GFSK
Number of channels	79
Hardware Version	V1.0
Software Version	V1.0
Antenna Designation	Ceramic Antenna
Antenna Gain	2.66dBi
Power Supply	DC 3.7V by battery
Note:	

- 1. The BT function of EUT isn't work when charging.
- 2. The USB port only used for charging and can't be used to transfer data with PC.

2.2. TABLE OF CARRIER FREQUENCYS

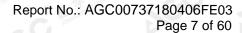
BR/EDR Channel List

Frequency Band	Channel Number	Frequency
超過	0 0	2402MHz
		2403MHz
		The state of the s
	38	2440 MHz
2400~2483.5MHz	39	2441 MHz
	40	2442 MHz
		A Barrier C Marine
	T. 177	2479 MHz
	78	2480 MHz

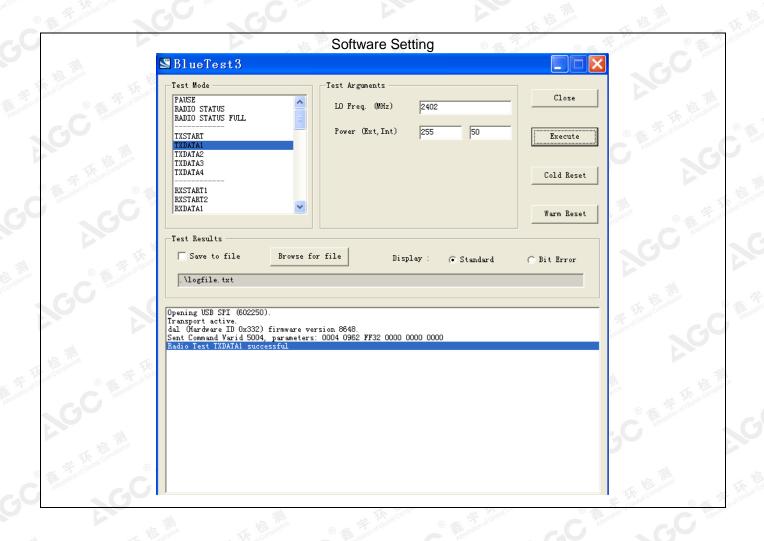
Page 6 of 60

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.


- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

4. DESCRIPTION OF TEST MODES


NO.	TEST MODE DESCRIPTION				
1 K to companie	Low channel GFSK				
© 2 2 · · · · · · · · · · · · · · · · ·	Middle channel GFSK				
3	High channel GFSK				
4	Low channel π /4-DQPSK				
5 K 1000000	Middle channel π /4-DQPSK				
6	High channel π /4-DQPSK				
7	Low channel 8DPSK				
8	Middle channel 8DPSK				
The state of the s	High channel 8DPSK				
10	BT Link				

Note:

- 1. All the test modes can be supply by battery, only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. The EUT used fully-charged battery when tested.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 8 of 60

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configure 1: (Normal hopping)

EUT

Configure 2: (Control continuous TX)

			KEL.	
EUT	station o	Control box	Da.	PC

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Mfr/Brand	Model/Type No.	Remark	
1	WIRELESS HEADSET	Mpow	BH205A	EUT	
2	Battery	SP	SP10100	Accessory	
3	PC PC	APPLE	A1465	A.E	
4	Control box	CSR	USB_SPI_TOOLS	A.E	
5	USB Cable	N/A	1m unshielded	A.E	
6	IPOD	APPLE	A1367	A.E	

Page 9 of 60

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.249(a) §15.209	Radiated Emission	Compliant
§15.249(d)	Band Edges	Compliant
§15.207	Conduction Emission	N/A
§15.215	Bandwidth	Compliant

Note: N/A means it's not applicable to this item.

Page 10 of 60

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Bldg.12, Baoan Bldg Materials Center, No.1 of Xixiang Inner Ring Road, Baoan District, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

age 11 of 60

7. TEST METHOD

All measurements contained in this report were conducted with ANSI C63.10-2013

8. TEST EQUIPMENT LIST

TEST EQUIPMENT OF RADIATED EMISSION TEST

		1000	2000	735 7011	10 202
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun.20, 2017	Jun.19, 2018
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec.08, 2017	Dec.07, 2018
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.20, 2017	Sep.19, 2018
preamplifier	ChengYi	EMC184045SE	980508	Sep.15, 2017	Sep.14, 2018
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 18, 2017	May 17, 2019
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun.20, 2017	Jun.19, 2018
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.28, 2017	Sep.27, 2018
Radiation Cable 1	MXT	RS1	R005	June 6, 2017	June 5, 2018
Radiation Cable 2	MXT	RS1	R006	June 6, 2017	June 5, 2018
Loop Antenna	A.H.Systems,Inc	SAS-562B	station of Country	Mar. 01, 2018	Feb. 28, 2019
Filter (2.4-2.483GHz)	Micro-tronics	087		Jun.20, 2017	Jun.19, 2018

Page 12 of 60

9. RADIATED EMISSION

9.1. TEST LIMIT

Standard FCC15.249

Fundamental	Field Strength of Fundamental	Field Strength of Harmonics
Frequency	(millivolts/meter)	(microvolts/meter)
900-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Standard FCC 15.209

Frequency	Distance	Field St	rengths Limit
(MHz)	Meters	μ V/m	dB(μV)/m
0.009 ~ 0.490	300	2400/F(kHz)	2
0.490 ~ 1.705	30	24000/F(kHz)	电测 乐意
1.705 ~ 30	30	30	See The second of the second o
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3 All Market Committee Co	Other:74.0 dB(µV)/m (Average)	(Peak) 54.0 dB(μV)/m

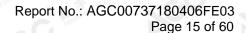
Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Page 13 of 60

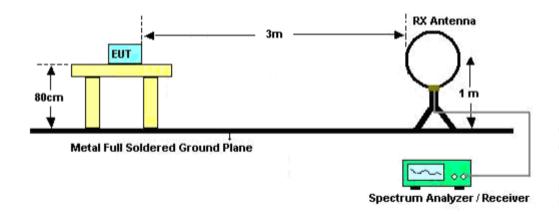
9.2. MEASUREMENT PROCEDURE

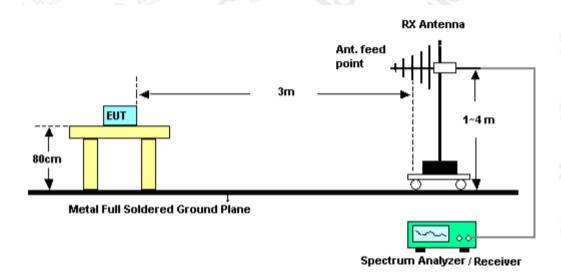
- 1. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- 2. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak & AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 14 of 60

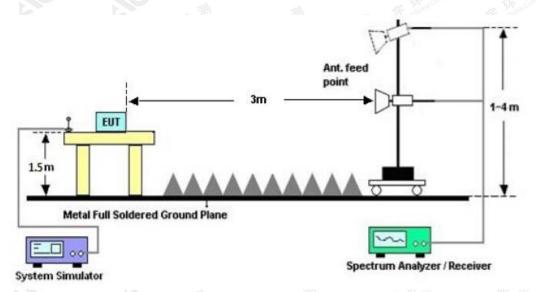
The following table is the setting of spectrum analyzer and receiver.


Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	Fundamental: 2.4~2.483GHz RBW 2MHz/ VBW 6MHz for Peak, RBW 2MHz/ VBW 10Hz for Average Harmonics: 1GHz~25GHz RBW 1MHz/ VBW 3MHz for Peak, RBW 1MHz/ VBW 10Hz for Average
Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



9.3. TEST SETUP

RADIATED EMISSION TEST-SETUP FREQUENCY BELOW 30MHz


RADIATED EMISSION TEST SETUP 30MHz-1000MHz

Page 16 of 60

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

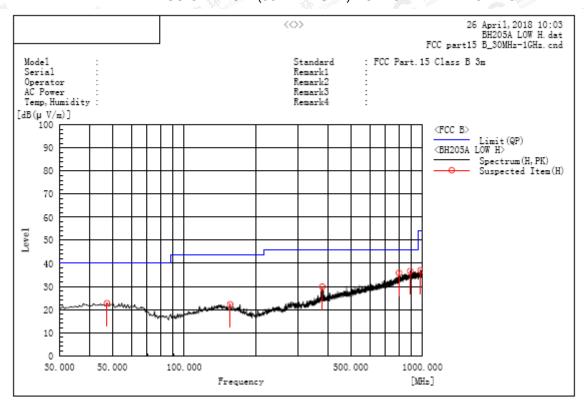
Page 17 of 60

9.4. TEST RESULT

(Worst modulation: GFSK)

RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

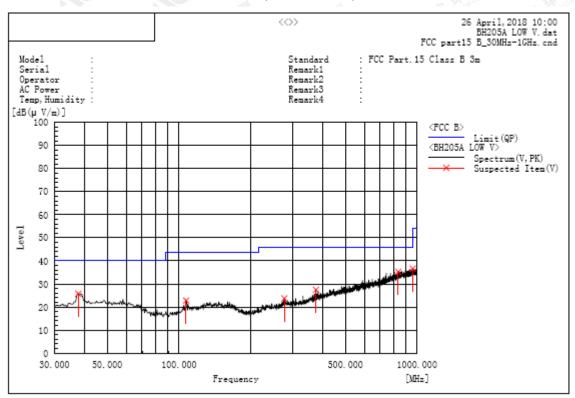

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 18 of 60

RADIATED EMISSION BELOW 1GHz

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL-HORIZONTAL

A. Suspected List:


Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(u√/m) PK	Limit dB(u√/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
47.460	Н	5.6	17.2	22.8	40.0	17.2	Pass	200.0	79.4
156.100	Н	5.6	16.6	22.2	43.5	21.3	Pass	200.0	348.8
380.170	H	9.8	20.1	29.9	46.0	16.1	Pass	150.0	340.3
796.785	Н	7.2	28.7	35.9	46.0	10.1	Pass	100.0	55.4
887.965	Н	6.7	30.0	36.7	46.0	9.3	Pass	150.0	203.4
982.055	Н	6.0	31.0	37.0	54.0	17.0	Pass	150.0	216.5

RESULT: PASS

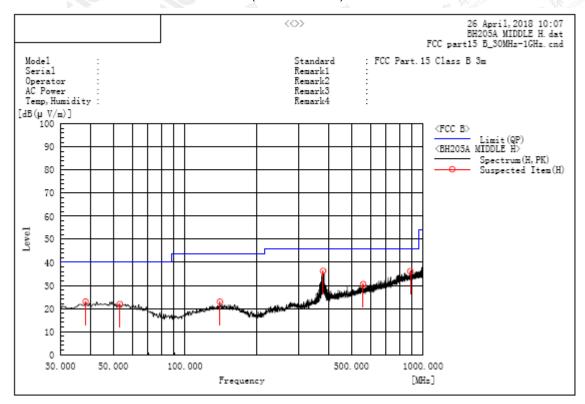
Page 19 of 60

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL -VERTICAL

A. Suspected List:

	Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
	37.760	V	8.7	17.1	25.8	40.0	14.2	Pass	100.0	30.1
	107.115	V	8.7	14.2	22.9	43.5	20.6	Pass	150.0	280.4
Г	276.865	V	6.2	17.6	23.8	46.0	22.2	Pass	150.0	293.4
í	375.805	V	7.6	19.9	27.5	46.0	18.5	Pass	150.0	288.0
3	833.645	V	6.0	29.3	35.3	46.0	10.7	Pass	200.0	166.3
Г	957.805	v	6.0	30.7	36.7	46.0	9.3	Pass	150.0	226.2

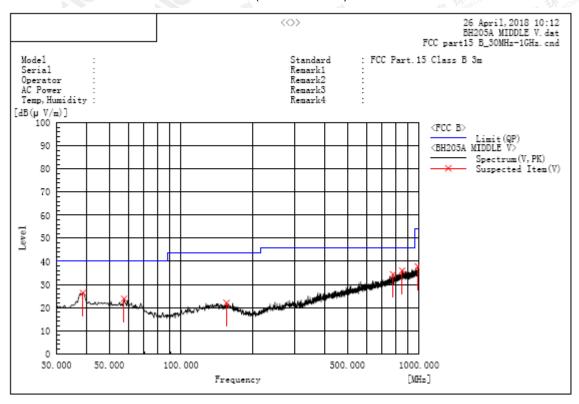
RESULT: PASS


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL-HORIZONTAL

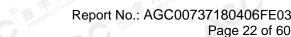
A. Suspected List:


	Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(u√/m) PK	Limit dB(uV/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
	38.245	H	5.8	17.2	23.0	40.0	17.0	Pass	100.0	99.6
	53.280	Н	5.1	16.8	21.9	40.0	18.1	Pass	100.0	97.6
	140.095	Н	6.3	16.6	22.9	43.5	20.6	Pass	100.0	188.5
K	380.170	Н	16.2	20.1	36.3	46.0	9.7	Pass	100.0	158.2
G	560.105	H	6.5	24.1	30.6	46.0	15.4	Pass	100.0	145.3
	883.600	Н	6.2	30.0	36.2	46.0	9.8	Pass	100.0	164.6

RESULT: PASS

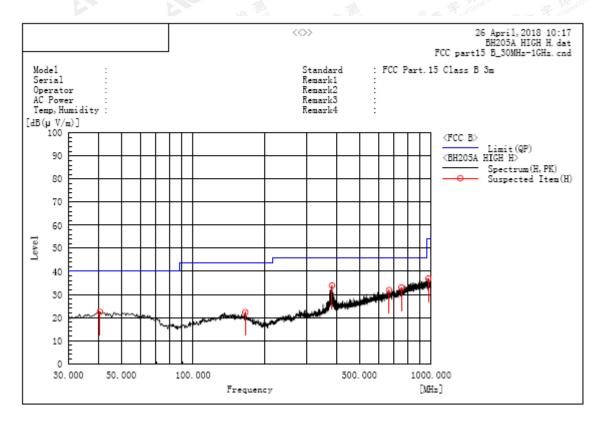
Page 21 of 60

RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL -VERTICAL


A. Suspected List:

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(u√/m) PK	Limit dB(u√/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
38.730	V	9.0	17.3	26.3	40.0	13.7	Pass	150.0	180.0
57.645	V	7.3	16.5	23.8	40.0	16.2	Pass	200.0	71.4
155.130	V	5.4	16.6	22.0	43.5	21.5	Pass	100.0	232.3
776.900	V	6.2	28.2	34.4	46.0	11.6	Pass	150.0	217.2
848.680	V	6.4	29.6	36.0	46.0	10.0	Pass	150.0	217.2
988.845	V	6.8	31.0	37.8	54.0	16.2	Pass	200.0	71.4

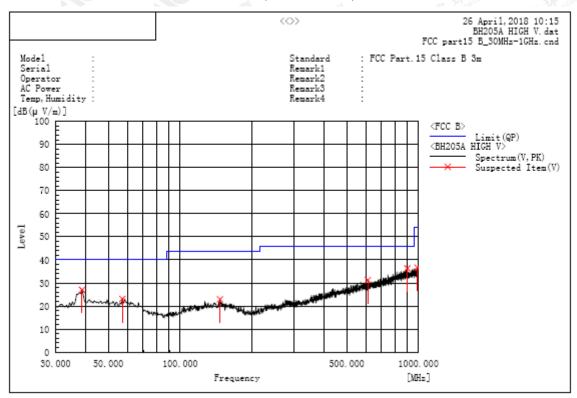
RESULT: PASS


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL-HORIZONTAL

A. Suspected List:


Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
40.670	H	5.1	17.4	22.5	40.0	17.5	Pass	200.0	145.7
165.800	Н	6.0	16.3	22.3	43.5	21.2	Pass	150.0	215.7
384.050	Н	13.7	20.2	33.9	46.0	12.1	Pass	150.0	180.7
666.320	Н	6.1	25.8	31.9	46.0	14.1	Pass	100.0	93.7
751.195	Н	5.5	27.5	33.0	46.0	13.0	Pass	200.0	110.2
973.810	Н	6.0	30.9	36.9	54.0	17.1	Pass	150.0	287.8

RESULT: PASS

Page 23 of 60

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL -VERTICAL

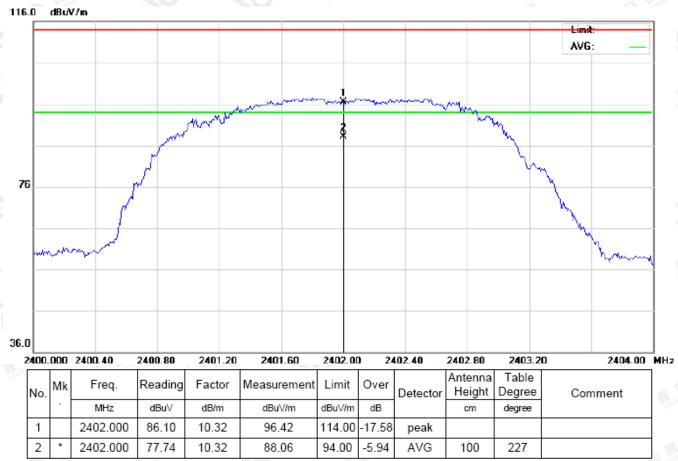
A. Suspected List:

	Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
	38.730	V	9.7	17.3	27.0	40.0	13.0	Pass	150.0	288.6
ſ	57.160	V	6.6	16.5	23.1	40.0	16.9	Pass	150.0	252.2
	146.885	v	6.3	16.6	22.9	43.5	20.6	Pass	150.0	144.5
íc	612.970	V	6.2	25.1	31.3	46.0	14.7	Pass	200.0	92.6
31/	897.665	V	6.2	30.1	36.3	46.0	9.7	Pass	150.0	108.1
	989.815	V	5.7	31.0	36.7	54.0	17.3	Pass	150.0	34.0

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

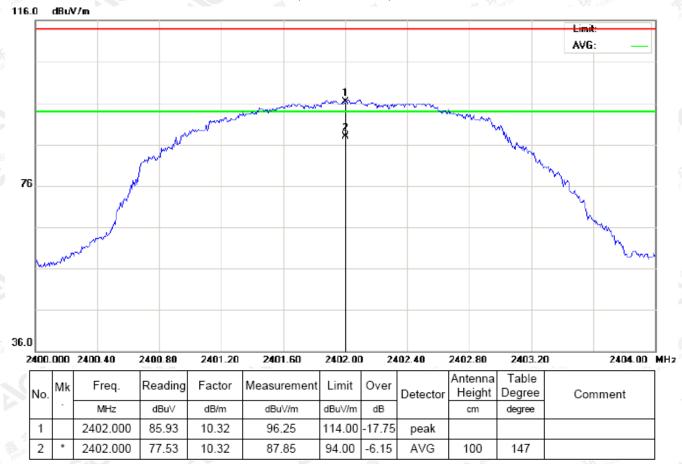

Page 24 of 60

RADIATED EMISSION ABOVE 1GHz

(Worst modulation: GFSK)

For Fundamental

RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL-HORIZONTAL



RESULT: PASS

Page 25 of 60

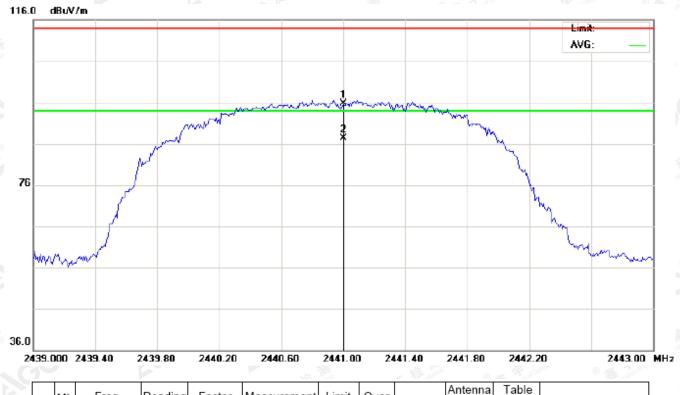
RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL- VERTICAL



RESULT: PASS

Page 26 of 60

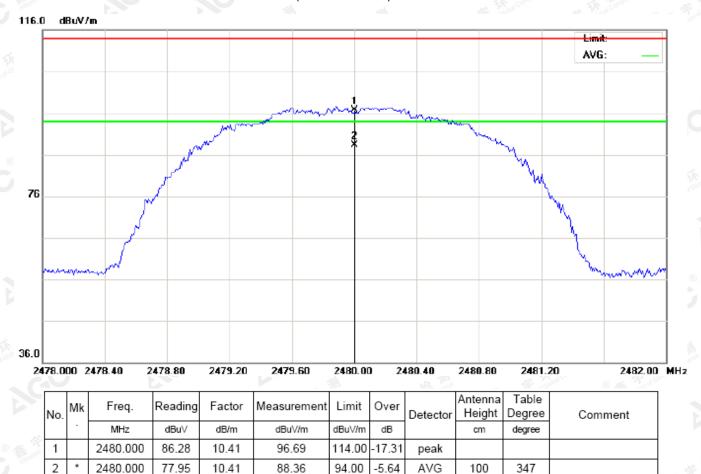
RADIATED EMISSION TEST- (ABOVE 1GHz)-MIDDLE CHANNEL-HORIZONTAL


No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu\//m	dBu∀/m	dB		cm	degree	
1		2441.000	85.71	10.36	96.07	114.00	-17.93	peak			
2	*	2441.000	77.17	10.36	87.53	94.00	-6.47	AVG	100	98	

RESULT: PASS

Page 27 of 60

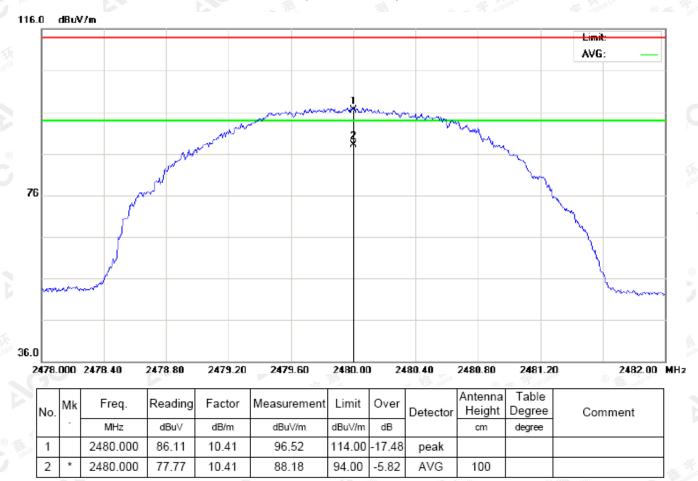
RADIATED EMISSION TEST- (ABOVE 1GHz)-MIDDLE CHANNEL- VERTICAL


	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
3		-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
ji.	1		2441.000	85.43	10.36	95.79	114.00	-18.21	peak			
	2	*	2441.000	76.99	10.36	87.35	94.00	-6.65	AVG	100	145	

RESULT: PASS

Page 28 of 60

RADIATED EMISSION TEST- (ABOVE 1GHz)-HIGH CHANNEL-HORIZONTAL


RESULT: PASS

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 29 of 60

RADIATED EMISSION TEST- (ABOVE 1GHz)-HIGH CHANNEL- VERTICAL

RESULT: PASS

Note: Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Page 30 of 60

Field strength of the fundamental signal

1Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna	
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization	
2402	86.10	10.32	96.42	114	-17.58	Horizontal	
2402	85.93	10.32	96.25	114	-17.75	Vertical	
2441	85.71	10.36	96.07	114	-17.93	Horizontal	
2441	85.43	10.36	95.79	114	-18.21	Vertical	
2480	86.28	10.41	96.69	114	-17.31	Horizontal	
2480	86.11	10.41	96.52	114	-17.48	Vertical	

Average value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna Polarization	
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)		
2402	77.74	10.32	88.06	94	-5.94	Horizontal	
2402	77.53	10.32	87.85	94	-6.15	Vertical	
2441	77.17	10.36	87.53	94	-6.47	Horizontal	
2441	76.99	10.36	87.35	94	-6.65	Vertical	
2480	77.95	10.41	88.36	94	-5.64	Horizontal	
2480	77.77	10.41	88.18	94	-5.82	Vertical	

Page 31 of 60

2Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna	
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization	
2402	85.78	10.32	96.10	114	-17.90	Horizontal	
2402	85.59	10.32	95.91	114	-18.09	Vertical	
2441	85.40	10.36	95.76	114	-18.24	Horizontal	
2441	84.97	10.36	95.33	114	-18.67	Vertical	
2480	85.81	10.41	96.22	114	-17.78	Horizontal	
2480	85.77	10.41	96.18	114	-17.82	Vertical	

Average value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna	
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization	
2402	77.44	10.32	87.76	94	-6.24	Horizontal	
2402	77.05	10.32	87.37	94	-6.63	Vertical	
2441	76.69	10.36	87.05	94	-6.95	Horizontal	
2441	76.61	10.36	86.97	94	-7.03	Vertical	
2480	77.59	10.41	88.00	94	-6.00	Horizontal	
2480	77.38	10.41	87.79	94	-6.21	Vertical	

Page 32 of 60

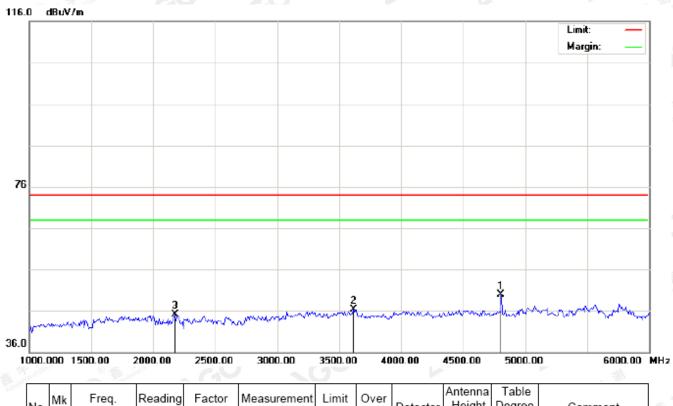
3Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna	
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization	
2402	85.39	10.32	95.71	114	-18.29	Horizontal	
2402	85.23	10.32	95.55	114	-18.45	Vertical	
2441	84.91	10.36	95.27	114	-18.73	Horizontal	
2441	84.53	10.36	94.89	114	-19.11	Vertical	
2480	85.53	10.41	95.94	114	-18.06	Horizontal	
2480	85.44	10.41	95.85	114	-18.15	Vertical	

Average value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna	
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization	
2402	76.99	10.32	87.31	94	-6.69	Horizontal	
2402	76.73	10.32	87.05	94	-6.95	Vertical	
2441	76.21	10.36	86.57	94	-7.43	Horizontal	
2441	76.13	10.36	86.49	94	-7.51	Vertical	
2480	77.25	10.41	87.66	94	-6.34	Horizontal	
2480	76.99	10.41	87.40	94	-6.60	Vertical	

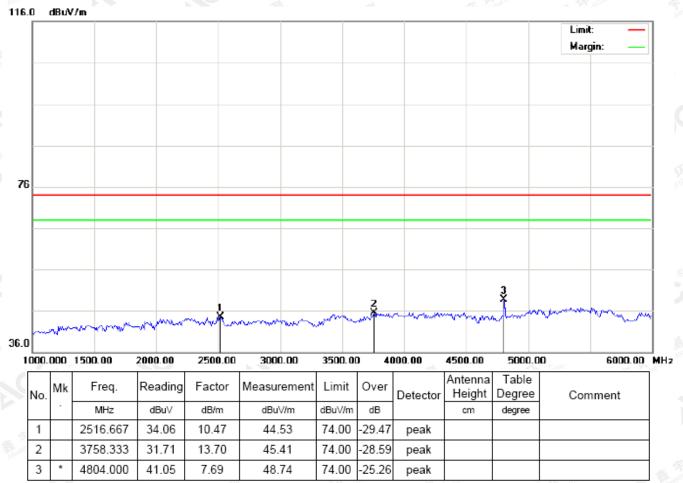


Page 33 of 60

(Worst modulation: GFSK)

For Harmonics

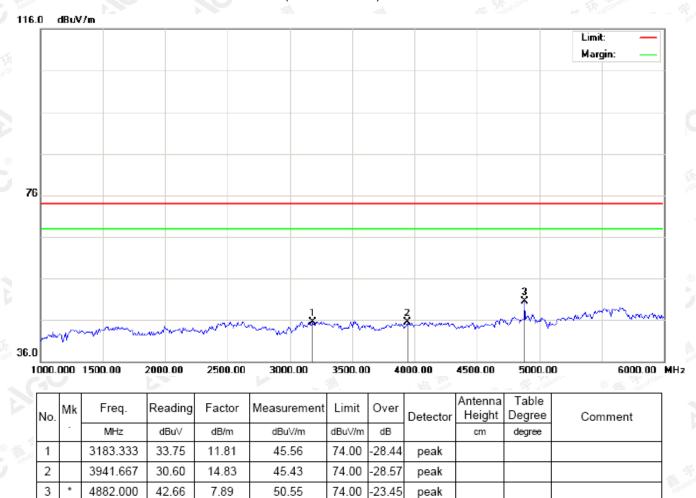
RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL-HORIZONTAL


No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1	*	4804.000	42.21	7.69	49.90	74.00	-24.10	peak			
2		3616.667	33.55	12.83	46.38	74.00	-27.62	peak			
3		2175.000	35.00	10.07	45.07	74.00	-28.93	peak			

RESULT: PASS

Page 34 of 60

RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL- VERTICAL


RESULT: PASS

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 35 of 60

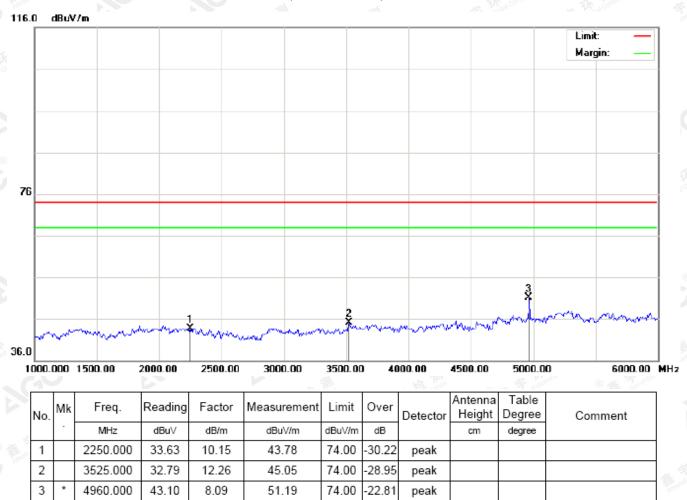
RADIATED EMISSION TEST- (ABOVE 1GHz)-MIDDLE CHANNEL-HORIZONTAL

RESULT: PASS

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 36 of 60

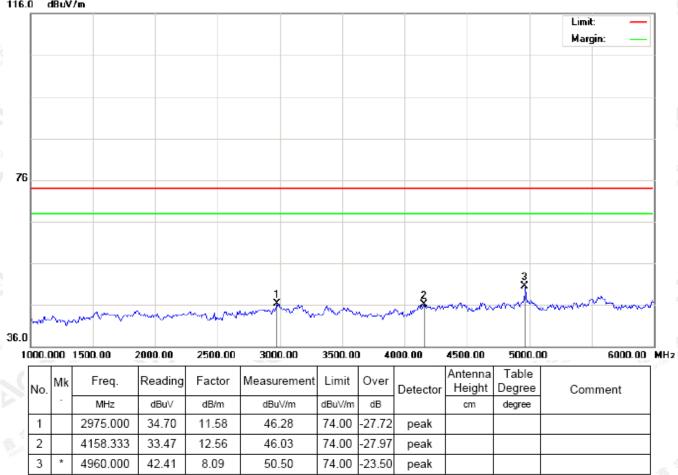
RADIATED EMISSION TEST- (ABOVE 1GHz)-MIDDLE CHANNEL- VERTICAL Limit: Margin: XX 36.0 6000.00 MHz 1000.000 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00 5000.00 Antenna Table Freq. Reading Factor Measurement Limit Over Height Degree Comment Detector dBuV/m dBuV/m dΒ 1 2958.333 34.77 11.54 46.31 74.00 -27.69 peak 2 32.26 12.84 45.10 74.00 28.90 4141.667 peak 4882.000 42.89 7.89 50.78 74.00 peak


RESULT: PASS

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 37 of 60

RADIATED EMISSION TEST- (ABOVE 1GHz)-HIGH CHANNEL-HORIZONTAL


RESULT: PASS

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a titp://www.agc.gatt.com.

Page 38 of 60

RADIATED EMISSION TEST- (ABOVE 1GHz)-HIGH CHANNEL- VERTICAL

RESULT: PASS

Note: 6~25GHz at least have 20dB margin. No recording in the test report.

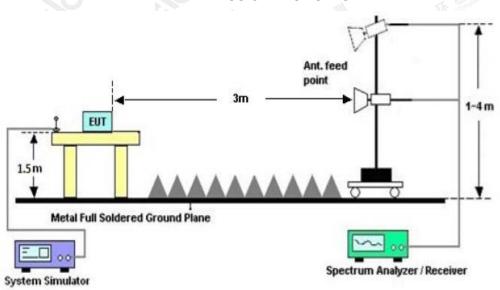
Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc.gett.com.

Page 39 of 60

10. BAND EDGE EMISSION


10.1. MEASUREMENT PROCEDURE

- The EUT operates at hopping-off test mode. The lowest or highest channels are tested to verify the largest transmission and spurious emissions power at the continuous transmission mode.
- 2. Max hold the trace of the setup 1, and the EUT operates at hopping-on test mode to verify the largest spurious emissions power.
- 3. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission.

	Start frequenc	y(MHz)		Stop frequency(MHz)				
	2200	Kimplence	The Committee	® A station of G	2405	100		
(S) ### (1)	2478	3lobal C	Allestation of Glob	-,0 "	2500			

10.2 TEST SETUP

RADIATED EMISSION TEST SETUP

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 40 of 60

10.3 RADIATED TEST RESULT

(Worst modulation: GFSK)

TEST PLOT OF BAND EDGE FOR LOW CHANNEL-Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1		2348.625	32.15	10.26	42.41	74.00	-31.59	peak			
2		2390.000	32.50	10.31	42.81	74.00	-31.19	peak			
3		2400.000	38.97	10.32	49.29	74.00	-24.71	peak			
4	*	2402.000	85.99	10.32	96.31	74.00	22.31	peak			
5	Х	2402.000	77.62	10.32	87.94	74.00	13.94	AVG	100	247	

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

Page 41 of 60

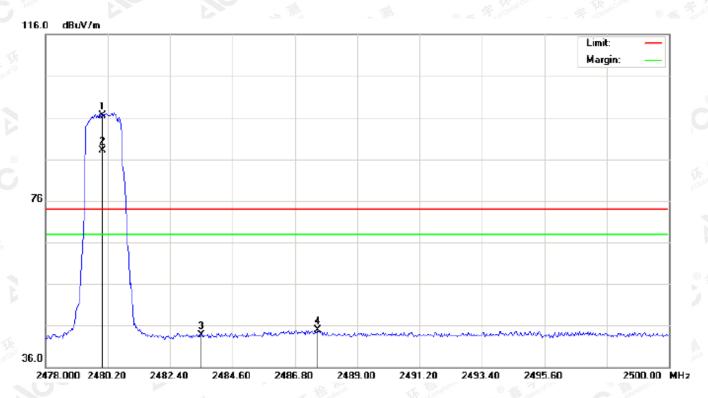
TEST PLOT OF BAND EDGE FOR LOW CHANNEL -Vertical

No	M	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
d	-	MHz	dBu∀	dB/m	dBuV/m	dBu∀/m	dB	dB	cm	degree	
1		2360.583	32.12	10.28	42.40	74.00	-31.60	peak			
2		2390.000	31.21	10.31	41.52	74.00	-32.48	peak			
3		2400.000	42.06	10.32	52.38	74.00	-21.62	peak			
4	*	2402.000	85.82	10.32	96.14	74.00	22.14	peak			
5	Х	2402.000	77.37	10.32	87.69	74.00	13.69	AVG	100	157	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 42 of 60

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL -Horizontal


-	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1	1	*	2480.000	86.06	10.41	96.47	74.00	22.47	peak			
ji i	2	Х	2480.000	77.80	10.41	88.21	74.00	14.21	AVG	100	238	
Γ	3		2483.500	33.69	10.41	44.10	74.00	-29.90	peak			
Γ	4		2487.716	33.68	10.42	44.10	74.00	-29.90	peak			

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 43 of 60

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL-Vertical

N	0.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
ė		-	MHz	dBu∀	dB/m	dBuV/m	dBu∀/m	dB		cm	degree	
, V	ı	*	2480.000	86.00	10.41	96.41	74.00	22.41	peak			
	2	Х	2480.000	77.63	10.41	88.04	74.00	14.04	AVG	100	134	
7	3		2483.500	33.26	10.41	43.67	74.00	-30.33	peak			
4	1		2487.607	34.41	10.42	44.83	74.00	-29.17	peak			

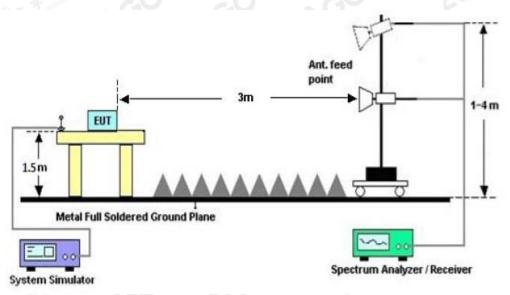
RESULT: PASS

Note: Factor=Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Hopping on mode and Hopping off mode have been tested, but only worst case reported.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Page 44 of 60

11. 20DB BANDWIDTH

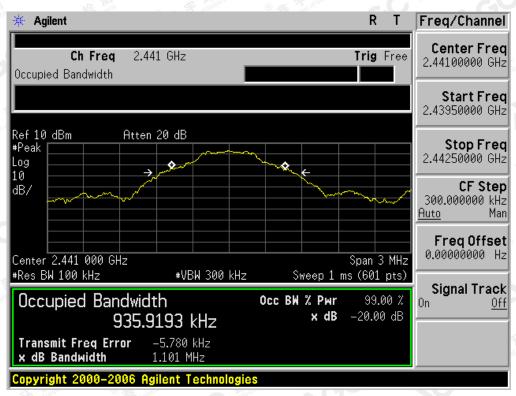
11.1. MEASUREMENT PROCEDURE

- 1. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 2. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ 3RBW; Sweep = auto; Detector function = peak
- 3. Set SPA Trace 1 Max hold, then View.

11.2. TEST SET-UP

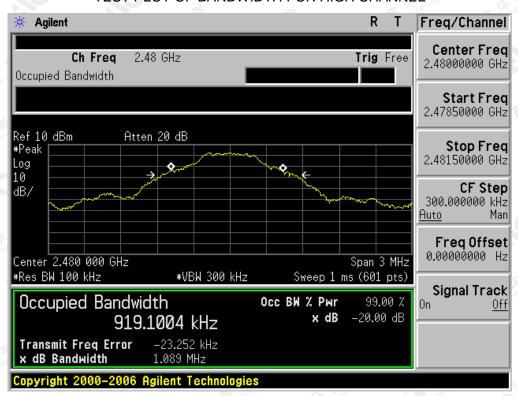
11.3. LIMITS AND MEASUREMENT RESULTS

		4.DL 11.40					
BLUETOOTH 1MBPS LIMITS AND MEASUREMENT RESULT							
		Measure	ement Result				
Applicable Limits		Test Data (MHz)					
		99%OBW (MHz)	-20dB BW(MHz)	Result			
The Standard	Low Channel	0.935	1.092	PASS			
N/A	Middle Channel	0.936	1.101	PASS			
100	High Channel	0.919	1.089	PASS			


The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

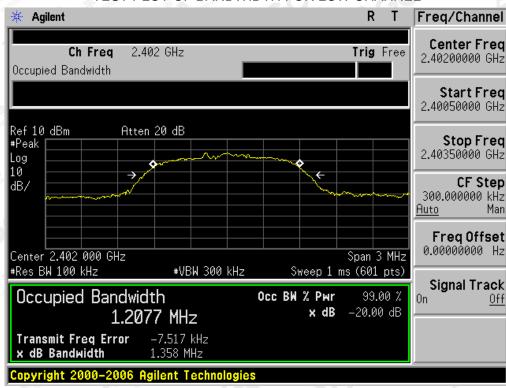
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL



The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

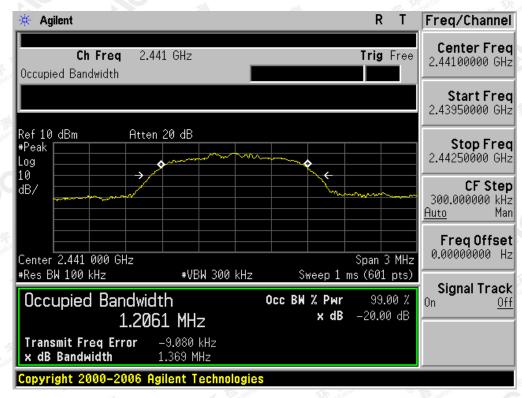
Page 46 of 60

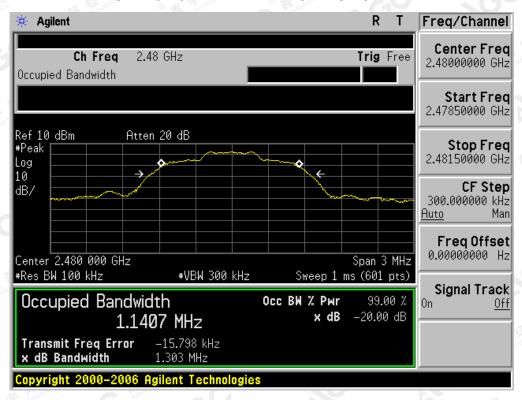
TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL


The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 47 of 60

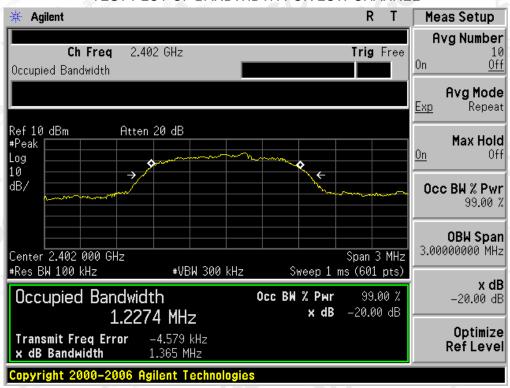
All and a second a	Illine	and the second	and the wall	Service Co.			
BLUETOOTH 2MBPS LIMITS AND MEASUREMENT RESULT							
		Measure	ement Result				
Applicable Limits		Daguit					
		99%OBW (MHz)	-20dB BW(MHz)	Result			
TO THE THE STATE OF THE PROPERTY OF THE PROPER	Low Channel	1.208	1.358	PASS			
N/A	Middle Channel	1.206	1.369	PASS			
	High Channel	1.141	1.303	PASS			


TEST PLOT OF BANDWIDTH FOR LOW CHANNEL


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

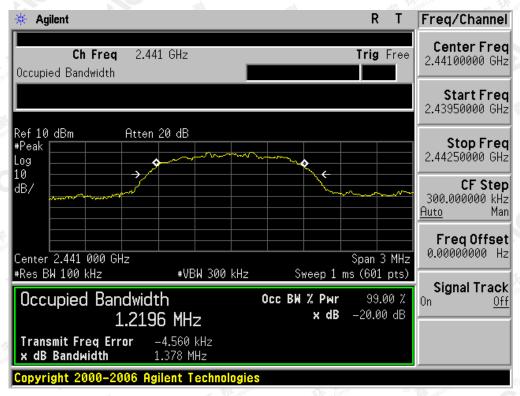
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

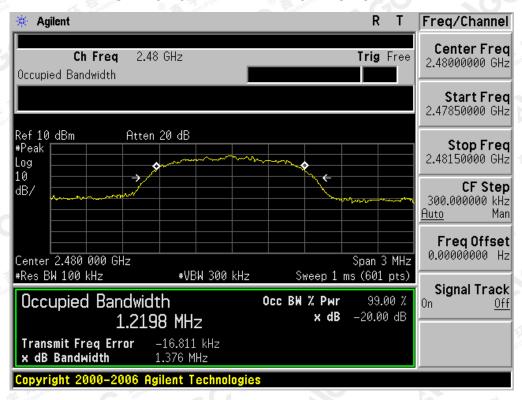
TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL


The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 49 of 60

BLUETOOTH 3MBPS LIMITS AND MEASUREMENT RESULT								
		Measure	ement Result					
Applicable Limits		D II						
		99%OBW (MHz)	-20dB BW(MHz)	Result				
T. Emino	Low Channel	1.227	1.365	PASS				
N/A	Middle Channel	1.220	1.378	PASS				
CC	High Channel	1.220	1.376	PASS				


TEST PLOT OF BANDWIDTH FOR LOW CHANNEL


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

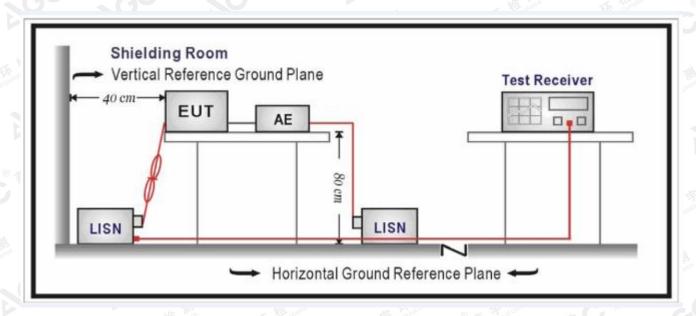
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

age 51 of 60

12. FCC LINE CONDUCTED EMISSION TEST


12.1. LIMITS OF LINE CONDUCTED EMISSION TEST

F	Maximum RF	Maximum RF Line Voltage							
Frequency	Q.P.(dBuV)	Average(dBuV)							
150kHz~500kHz	66-56	56-46							
500kHz~5MHz	8 gg 200 56 gg 100 00 00 00 00 00 00 00 00 00 00 00 00	46 / W							
5MHz~30MHz	60	50							

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

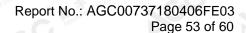
Page 52 of 60

12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter or PC which received 120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

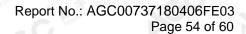

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- The test data of the worst case condition(s) was reported on the Summary Data page.

12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

N/A

Note: The BT function of EUT isn't work when charging.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a trp://www.ago.go.tt.com.


APPENDIX A: PHOTOGRAPHS OF TEST SETUP

FCC RADIATED EMISSION TEST SETUP

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.goalt.com.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

APPENDIX B: PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

FRONT VIEW OF EUT

BACK VIEW OF EUT

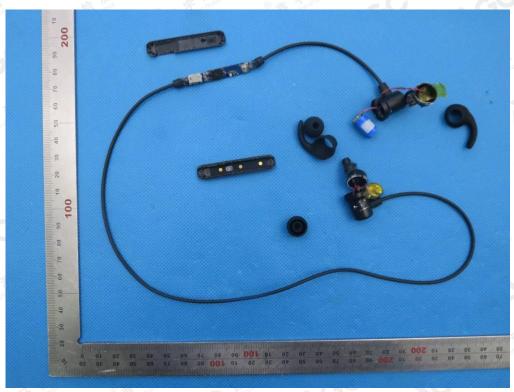
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

LEFT VIEW OF EUT

RIGHT VIEW OF EUT

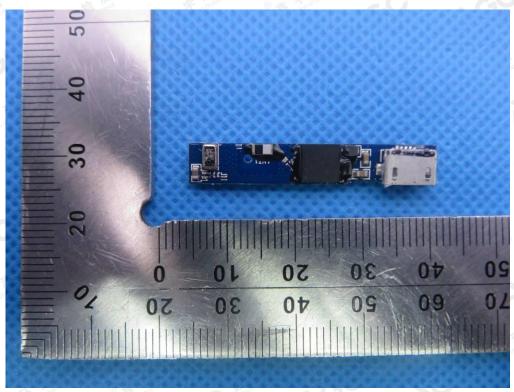

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

VIEW OF EUT (PORT)

OPEN VIEW OF EUT

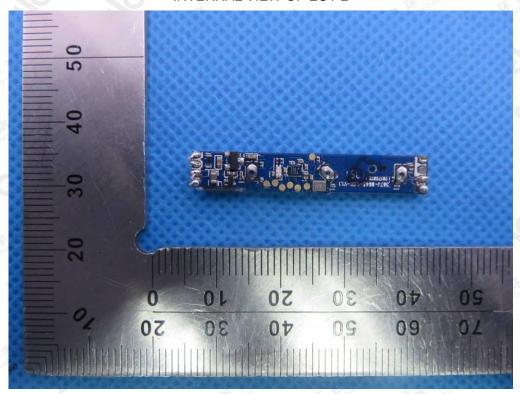
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

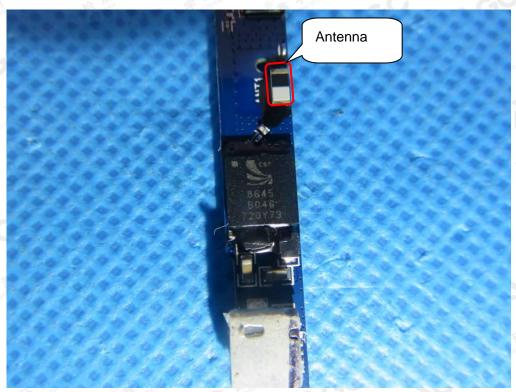

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

VIEW OF BATTERY

INTERNAL VIEW OF EUT-1


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance


Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

INTERNAL VIEW OF EUT-2

INTERNAL VIEW OF EUT-3

----END OF REPORT----

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.cett.com.