

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	FCC PART 15.247	
	(CTA)	TESI
Report Reference No		
FCC ID	:::::::::::::::::::::::::::::::::	G
Compiled by (position+printed name+signated the second	^{ature):} File administrators Joan Wu	Joan Wu Com
	File administrators Joan Wu	sesting Technology
Supervised by	G. J. T. O.	Forn Cort
	ature): Project Engineer Zoey Cao	
Approved by (position+printed pame+sion:	ature): RF Manager Eric Wang	approved
		EST
Date of issue	: Mar. 27, 2025	ESTIN
Testing Laboratory Name	Shenzhen CTA Testing Te	chnology Co., Ltd.
Address	, Room 106, Building 1, Yibad	olai Industrial Park, Qiaotou Community,
Address	Fuhai Street, Baoʻan District	t, Shenzhen, China
Applicant's name	: HuNan FuYao Electronic T	Геchnology Co., Ltd
Address TESI	Steel Market 1-20 # 113, Tia	anXin District, ChangSha City, HuNan
Address		
C V	Province, China	
Test specification	265	-ING
_	CTATEST	TESTING
Standard	CTATEST	red. CTATESTING
Standard Shenzhen CTA Testing Tec This publication may be repro	: FCC Part 15.247 hnology Co., Ltd. All rights reserv duced in whole or in part for non-co	mmercial purposes as long as the
Standard Shenzhen CTA Testing Tech This publication may be repro Shenzhen CTA Testing Techr	FCC Part 15.247 Innology Co., Ltd. All rights reserv duced in whole or in part for non-con hology Co., Ltd. is acknowledged as	mmercial purposes as long as the source of the
Standard Shenzhen CTA Testing Tech This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Test liability for damages resulting	FCC Part 15.247 Innology Co., Ltd. All rights reserv duced in whole or in part for non-con hology Co., Ltd. is acknowledged as	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume
Standard Shenzhen CTA Testing Tech This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Test liability for damages resulting	FCC Part 15.247 Innology Co., Ltd. All rights reserv duced in whole or in part for non-con nology Co., Ltd. is acknowledged as ing Technology Co., Ltd. takes no r	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume
Standard Shenzhen CTA Testing Tech This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Test liability for damages resulting placement and context.	FCC Part 15.247 Innology Co., Ltd. All rights reserv duced in whole or in part for non-con nology Co., Ltd. is acknowledged as ing Technology Co., Ltd. takes no r	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume he reproduced material due to its
This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context.	FCC Part 15.247 hnology Co., Ltd. All rights reserv duced in whole or in part for non-con hology Co., Ltd. is acknowledged as ing Technology Co., Ltd. takes no r from the reader's interpretation of th : Wireless mechanical keyb	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume he reproduced material due to its
Standard Shenzhen CTA Testing Tech This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Test liability for damages resulting placement and context. Equipment description Trade Mark	FCC Part 15.247 hnology Co., Ltd. All rights reserv duced in whole or in part for non-con hology Co., Ltd. is acknowledged as ing Technology Co., Ltd. takes no r from the reader's interpretation of th Wireless mechanical keyb 	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume he reproduced material due to its
Standard Shenzhen CTA Testing Tech This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Test liability for damages resulting placement and context. Equipment description Trade Mark	FCC Part 15.247 hnology Co., Ltd. All rights reserv duced in whole or in part for non-con- nology Co., Ltd. is acknowledged as ing Technology Co., Ltd. takes no r from the reader's interpretation of th : Wireless mechanical keyb : MMViCTY 	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume he reproduced material due to its
Standard Shenzhen CTA Testing Tech This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Test liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference	FCC Part 15.247 hnology Co., Ltd. All rights reserv duced in whole or in part for non-con hology Co., Ltd. is acknowledged as ing Technology Co., Ltd. takes no r from the reader's interpretation of th Wireless mechanical keyb: Wireless mechanical keyb: MMViCTY	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume he reproduced material due to its
Standard	FCC Part 15.247 hnology Co., Ltd. All rights reserv duced in whole or in part for non-con hology Co., Ltd. is acknowledged as ing Technology Co., Ltd. takes no r from the reader's interpretation of th Wireless mechanical keyb: MMViCTY: HuNan FuYao Electronic Te	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume he reproduced material due to its
Standard	FCC Part 15.247 hnology Co., Ltd. All rights reserv duced in whole or in part for non-con hology Co., Ltd. is acknowledged as ing Technology Co., Ltd. takes no r from the reader's interpretation of th Wireless mechanical keyb: MMViCTY: HuNan FuYao Electronic Te: MY-V82: N/A: GFSK	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume he reproduced material due to its board echnology Co., Ltd
Standard	FCC Part 15.247 hnology Co., Ltd. All rights reserv duced in whole or in part for non-con- nology Co., Ltd. is acknowledged as ing Technology Co., Ltd. takes no r from the reader's interpretation of th Wireless mechanical keyb : Wireless mechanical keyb : MMViCTY : HuNan FuYao Electronic Te : MY-V82 : N/A : GFSK 	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume he reproduced material due to its board echnology Co., Ltd
Standard	FCC Part 15.247 hnology Co., Ltd. All rights reserv duced in whole or in part for non-con hology Co., Ltd. is acknowledged as ing Technology Co., Ltd. takes no r from the reader's interpretation of th Wireless mechanical keyb: MMViCTY: HuNan FuYao Electronic Te: MY-V82: N/A: GFSK	mmercial purposes as long as the s copyright owner and source of the responsibility for and will not assume he reproduced material due to its board echnology Co., Ltd

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Report No.: CTA25031701201 Page 2 of 36 TEST REPORT Wireless mechanical keyboard Equipment under Test Model /Type **MY-V82** Listed Models N/A 5 HuNan FuYao Electronic Technology Co., Ltd Applicant Steel Market 1-20 # 113, TianXin District, ChangSha City, HuNan Address CTATESTING Province, China Manufacturer HuNan FuYao Electronic Technology Co., Ltd CTATESTING Steel Market 1-20 # 113, TianXin District, ChangSha City, HuNan Province, China Test Result: PASS The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. GTA CTATESTING

Page 3 of 36

Contents

1	TEST STANDARDS		. 4
	-11-	. C.	<u> </u>
<u>2</u>	<u>SUMMARY</u>		. 5
2.1	General Remarks		5
		G	5 5 5 5 5 6 6 6
2.2	Product Description*	STORE AND A STORE	5
2.3	Equipment Under Test		5
2.4	Short description of the Equipment under Test (E	UT)	5
2.5	EUT configuration		5
2.6	EUT operation mode		6
2.7	Block Diagram of Test Setup		6
2.8	Related Submittal(s) / Grant (s)		
2.9	Modifications	ING	6
		TESTING	
	617	TES	
<u>3</u>	TEST ENVIRONMENT	<u>.</u>	. 7
		TEST	
3.1	Address of the test laboratory	GA CTATES	7
3.1 3.2			
	Test Facility		7
3.3	Environmental conditions		7
3.4	Summary of measurement results		8 8
3.5	Statement of the measurement uncertainty		
3.6	Equipments Used during the Test	1	9
	TATES NG		
	TEST CONDITIONS AND RESULTS		10
4	TEGT CONDITIONS AND RESOLTS		10
	CTA .	CTA TESTING	
4.1	AC Power Conducted Emission	ESI"	10
4.2	Radiated Emissions and Band Edge	TATL	13
4.3	Maximum Peak Output Power	C V	20
4.4	Power Spectral Density		21
4.5	6dB Bandwidth		23
4.6	Out-of-band Emissions		25
4.7	Antenna Requirement		29
STILL			20
<u>5</u>	TEST SETUP PHOTOS OF THE EUT .		30
<u>6</u>	PHOTOS OF THE EUT		31
<u> </u>			
	Gen CTI	TES.	
	GIN	-551	
	TA TESTING		
	CATE		
	TATES.	CTATESTING	
		TATE	
		C.V.	

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission

Systems (DTS) Operating Under §15.247 CTATESTING

<u>SUMMARY</u> 2

2.1 **General Remarks**

CTATEO			
2.1 General Remarks			
Date of receipt of test sample		Mar. 17, 2025	
Testing commenced on	·	Mar. 17, 2025	
Testing concluded on	:	Mar. 27, 2025	

2.2 Product Description*

Testing commenced on	: Mar. 17, 2025
Testing concluded on	: Mar. 27, 2025
2.2 Product Descri	iption*
Product Description:	Wireless mechanical keyboard
Model/Type reference:	MY-V82
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA250317012-1# (Engineer sample) CTA250317012-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB antenna
Antenna gain:	2.96 dBi
	Testing concluded on 2.2 Product Description:Product Description:Model/Type reference:Power supply:Hardware version:Software version:Testing sample ID:Bluetooth BLESupported type:Modulation:Operation frequency:Channel number:Channel separation:Antenna type:

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under Tes Power supply system utilise				TATESI
Power supply voltage	:	○ 230V / 50 Hz	0	120V / 60Hz
		0 12 V DC	0	24 V DC
JUNG		 Other (specified in b 	lank below))
5 DC 3 7V	From	battery and DC 5.0V Fr	om externa	l circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Wireless mechanical keyboard. For more details, refer to the user's manual of the EUT.

2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \bigcirc supplied by the lab

O PC	Model: E470C Trade Mark: thinkpa	ad
	GA CTATES	CTATESTING

2.6 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

00 2402 01 2404 02 2406 .: .: 19 2440 .: .: 37 2476	on Frequency: Channel	Frequency (MHz)
02 2406 : : 19 2440 : : 37 2476	00	2402
: : 19 2440 : : 37 2476	01	2404
: : 37 2476	02	2406
: : 37 2476	:	
	19	2440
	TESTIN'	:
	37	2476
38 2478	38	2478
39 2480	39	2480

2.7 Block Diagram of Test Setup

EUT

G	DC 5.0V From PC

Related Submittal(s) / Grant (s) 2.8

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

No modifications were implemented to meet testing criteria. GA CTATESTING

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

23 ° C
TES
44 %
(en)
950-1050mbar

AC Main Conducted testing.

Temperature:	24 ° C			
~\G				
Humidity:	47 %			
	- C-			
Atmospheric pressure:	950-1050mbar			

	Autospheric pressure.	930-1030mbai	
С	onducted testing:	TES	TING
	Temperature:	24 ° C	TESI
	and the second second		(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar	

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ∠ Lowest ∠ Middle ∠ Highest 	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	Lowest	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	Lowest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
, CV	§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	Lowest Middle	BLE 1Mpbs	Lowest Middle	complies
G	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	ING -/-	BLE 1Mpbs	-/-	complies

3.4 Summary of measurement results

Remark:

1. The measurement uncertainty is not included in the test result.

We tested all test mode and recorded worst case in report 2.

Statement of the measurement uncertainty 3.5

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. ESTING Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co.. Ltd.

The best measurement capability for Shenzhen CTA Testing Technology Co., Etd.						
Test	Range	Measurement Uncertainty	Notes			
Radiated Emission	9KHz~30MHz	3.02 dB	(1)			
Radiated Emission	30~1000MHz	4.06 dB 🕥	(1)			
Radiated Emission	1~18GHz	5.14 dB	(1)			
Radiated Emission	18-40GHz	5.38 dB	(1)			
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)			
Output Peak power	30MHz~18GHz	0.55 dB	(1)			
Power spectral density	-ING	0.57 dB	(1)			
Spectrum bandwidth	-sim /	1.1%	(1)			
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)			
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)			
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)			

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
Temperature and humidity meter	GChigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
Broadband Horn Antenna	A-INFOMW	LB-180500H-2.4F	CTA-336	2023/09/13	2026/09/12
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
	•				TES

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
Str. C.	GA	TATESTIN		ATESTING	

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATE

CTATE

TEST CONDITIONS AND RESULTS 4

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* De ser a se suith the site we with as a fither for such					

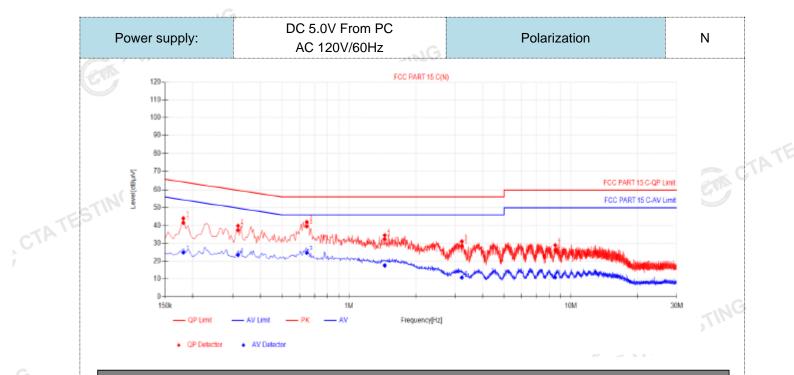
Decreases with the logarithm of the frequency.

TEST RESULTS

Remark:

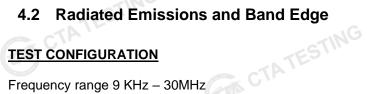
1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel

Page 11 of 36

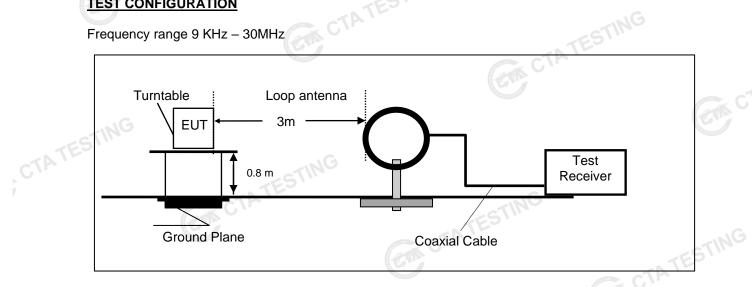

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1815	10.01	31.96	41.97	64.42	22.45	15.50	25.51	54.42	28.91	PASS
2	0.312	9.93	28.57	38.50	59.92	21.42	14.93	24.86	49.92	25.06	PASS
3	0.6405	9.99	33.45	43.44	56.00	12.56	18.29	28.28	46.00	17.72	PASS
4	1.0275	9.91	24.20	34.11	56.00	21.89	11.74	21.65	46.00	24.35	PASS
5	1.7835	9.91	25.08	34.99	56.00	21.01	9.41	19.32	46.00	26.68	PASS
6	4.785	9.97	22.23	32.20	56.00	23.80	7.31	17.28	46.00	28.72	PASS
	4.785						View		46.00	28.72	PASS

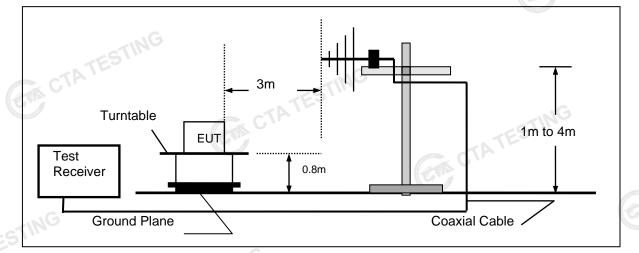
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) GA CTATESTING


Page 12 of 36

Einal Data List

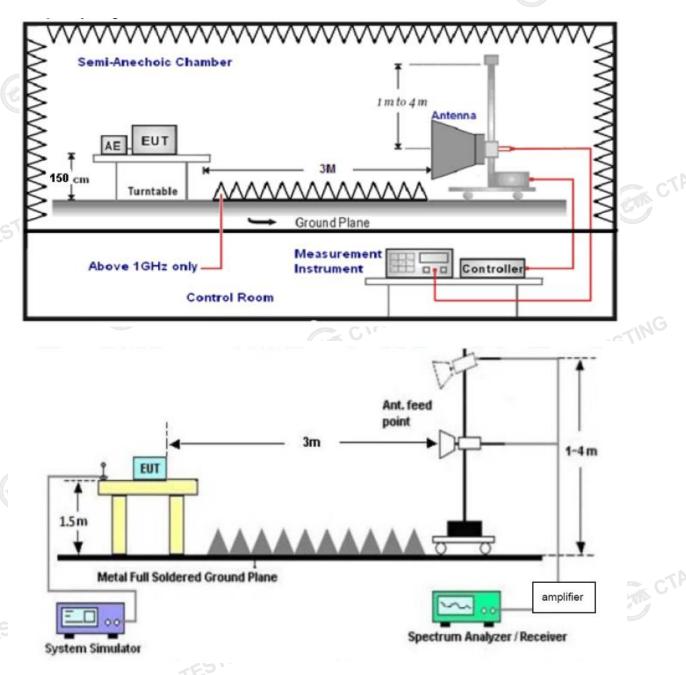

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1815	10.03	31.51	41.54	64.42	22.88	14.85	24.88	54.42	29.54	PASS
2	0.3165	9.86	27.54	37.40	59.80	22.40	13.63	23.49	49.80	26.31	PASS
3	0.645	10.11	29.42	39.53	56.00	16.47	14.54	24.65	46.00	21.35	PASS
4	1.4505	10.14	22.29	32.43	56.00	23.57	7.44	17.58	46.00	28.42	PASS
5	3.228	10.22	18.43	28.65	56.00	27.35	0.56	10.78	46.00	35.22	PASS
6	8.502	10.41	15.96	26.37	60.00	33.63	0.50	10.91	50.00	39.09	PASS

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATES'



TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

Page 14 of 36

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing 1 frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and 2.
- rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT. 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5.
- frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz. 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3-5
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Page 15 of 36

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
	Sweep time=Auto	Peak
10112-400112		I Cak
6.	Sweep time=Auto	
	9KHz-150KHz 150KHz-30MHz	9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto 150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=Auto 30MHz-1GHz RBW=120KHz/VBW=1000KHz,Sweep time=Auto Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Sweep time=Auto

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

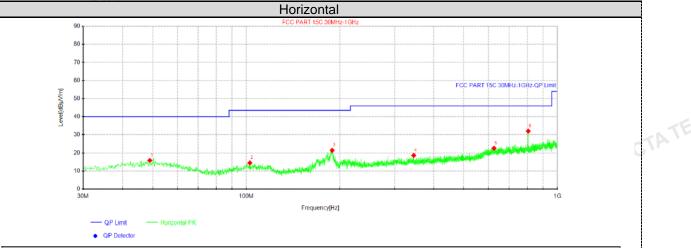
Where FS = Field Strength	CL = Cable Attenuation Factor (Ca	able Loss)
RA = Reading Amplitude	AG = Amplifier Gain	
AF = Antenna Factor	AL	ING
ransd=AF +CL-AG	Gra C.	ATESTIN
DIATION LIMIT		

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
3	20log(30)+ 40log(30/3)	30		
3	40.0	100		
3	43.5	150		
3	46.0	200		
3	54.0	500		
	(Meters) 3 3 3 3 3 3 3	(Meters) 20log(2400/F(KHz))+40log(300/3) 3 20log(24000/F(KHz))+40log(30/3) 3 20log(30)+ 40log(30/3) 3 20log(30)+ 40log(30/3) 3 40.0 3 43.5 3 46.0		

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel for all models and recorded worst mode at the High channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report.

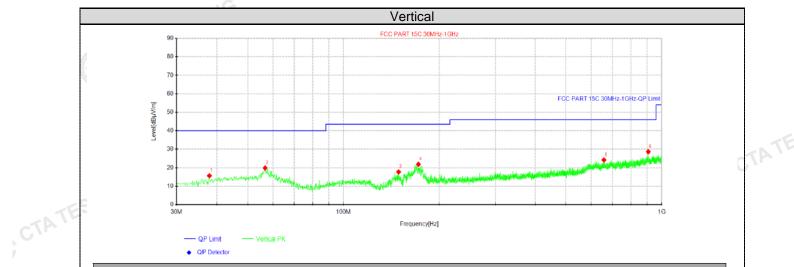
For 30MHz-1GHz

Suspe	List	
	_	

NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delerity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	48.915	27.06	15.85	-11.21	40.00	24.15	200	1	Horizontal
2	102.628	27.47	14.48	-12.99	43.50	29.02	100	48	Horizontal
3	188.837	35.08	21.39	-13.69	43.50	22.11	100	60	Horizontal
4	345.128	29.34	18.60	-10.74	46.00	27.40	200	357	Horizontal
5	625.701	28.25	22.55	-5.70	46.00	23.45	100	269	Horizontal
6	806	36.51	32.05	-4.46	46.00	13.95	100	357	Horizontal

GTA CTATE

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)


2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATE

Page 17 of 36

Suspected Data List

NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delerity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	37.8812	28.37	15.67	-12.70	40.00	24.33	200	157	Vertical
2	56.675	31.82	19.87	-11.95	40.00	20.13	100	216	Vertical
3	148.946	33.16	17.74	-15.42	43.50	25.76	100	360	Vertical
4	171.983	36.78	21.85	-14.93	43.50	21.65	200	360	Vertical
5	658.196	29.65	24.18	-5.47	46.00	21.82	100	348	Vertical
6	907.607	31.30	28.66	-2.64	46.00	17.34	100	81	Vertical

CTA TES

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Page 18 of 36

For 1GHz to 25GHz

	TI	N		GFSK (abo	ve 1GHz)				
Freque	Frequency(MHz):			02	Pola	arity:	н	IORIZONTA	NL
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	61.99	PK	74	12.01	66.26	32.33	5.12	41.72	-4.27
4804.00	45.21	AV	54	8.79	49.48	32.33	5.12	41.72	-4.27
7206.00	52.94	PK	74	21.06	53.46	36.6	6.49	43.61	-0.52
7206.00	41.68	AV	54	12.32	42.20	36.6	6.49	43.61	-0.52

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu ^v	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	60.14	PK	74	13.86	64.41	32.33	5.12	41.72	-4.27	
4804.00	43.20	AV	54	10.80	47.47	32.33	5.12	41.72	-4.27	
7206.00	51.81	PK	74	22.19	52.33	36.6	6.49	43.61	-0.52	
7206.00	40.03	AV	54	13.97	40.55	36.6	6.49	43.61	-0.52	
								TE		

Freque	Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4880.00	61.27	PK	74	12.73	65.15	32.6	5.34	41.82	-3.88	
4880.00	44.13	AV	54	9.87	48.01	32.6	5.34	41.82	-3.88	
7320.00	52.85	PK	74	21.15	52.96	36.8	6.81	43.72	-0.11	
7320.00	42.25	AV	54	11.75	42.36	36.8	6.81	43.72	-0.11	
State of the second state			- C1	(P)			AI	G		

			•.			00.0	0.0.		••••
and the second states				(A)			-11	G	
Freque	ncy(MHz)	:	24	40	Pola	arity:		VERTICAL	
Frequency (MHz)	Le	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.49	PK	74	14.51	63.37	32.6	5.34	41.82	-3.88
4880.00	41.82	AV	54	12.18	45.70	32.6	5.34	41.82	-3.88
7320.00	50.78	PK	74	23.22	50.89	36.8	6.81	43.72	-0.11
7320.00	40.62	AV	54	13.38	40.73	36.8	6.81	43.72	-0.11
			STIN						

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	60.45	PK	74	13.55	63.53	32.73	5.66	41.47	-3.08	
4960.00	45.50	AV	54	8.50	48.58	32.73	5.66	41.47	-3.08	
7440.00	52.56	PK	74	21.44	52.11	37.04	7.25	43.84	0.45	
7440.00	43.07	AV	54	10.93	42.62	37.04	7.25	43.84	0.45	

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Lev	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	G Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	58.81	PK	74	15.19	61.89	32.73	5.66	41.47	-3.08	
4960.00	43.12	AV	54	10.88	46.20	32.73	5.66	41.47	-3.08	
7440.00	51.44	PK	74	22.56	50.99	37.04	7.25	43.84	0.45	
7440.00	40.27	AV	54	13.73	39.82	37.04	7.25	43.84	0.45	
REMARKS	:					Contraction of the second			ATA	
			Shenzhen	CTA Testing	Technology	Co., Ltd.				

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Freque	ncy(MHz)	:	24	<u> </u>		arity:	Н	ORIZONTA	L
Frequency (MHz)	Emis Lev (dBu)	sion vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.76	PK	74	12.24	72.18	27.42	4.31	42.15	-10.42
2390.00	42.52	AV	54	11.48	52.94	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.54	PK	74	14.46	69.96	27.42	4.31	42.15	-10.42
2390.00	40.26	AV	54	13.74	50.68	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	Pola	arity:	н	ORIZONTA	L
F	Emis	sion vel	Limit (dBuV/m)	Margin (dB)	Raw Value	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Frequency (MHz)	Lev (dBu		(aba t/m)		(dBuV)	(00/11)	(ub)		((()))
			74	12.63	(dBuV) 71.48	27.7	(uB) 4.47	42.28	-10.11
(MHz)	(dBu	V/m)	```	12.63 10.32	· · /	· · · ·	()	. ,	· · /
(MHz) 2483.50 2483.50	(dBu) 61.37	V/m) PK AV	74	10.32	71.48 53.79	27.7	4.47 4.47	42.28	-10.11 -10.11
(MHz) 2483.50 2483.50	(dBu) 61.37 43.68	V/m) PK AV : ssion vel	74 54	10.32	71.48 53.79	27.7 27.7	4.47 4.47	42.28 42.28	-10.11 -10.11
(MHz) 2483.50 2483.50 Freque Frequency	(dBu 61.37 43.68 ncy(MHz) Emis Lev	V/m) PK AV : ssion vel	74 54 24 Limit	10.32 80 Margin	71.48 53.79 Pola Raw Value	27.7 27.7 arity: Antenna Factor	4.47 4.47 Cable Factor	42.28 42.28 VERTICAL Pre- amplifier	-10.11 -10.11 Correction Factor

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

Maximum Peak Output Power 4.3

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

est Results				ATESTI
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-2.30		
GFSK 1Mbps	19	-4.19	30.00	Pass
	39	-3.97		
Note: 1.The test res	sults including the c	able loss.	CTATESTING	

4.4 **Power Spectral Density**

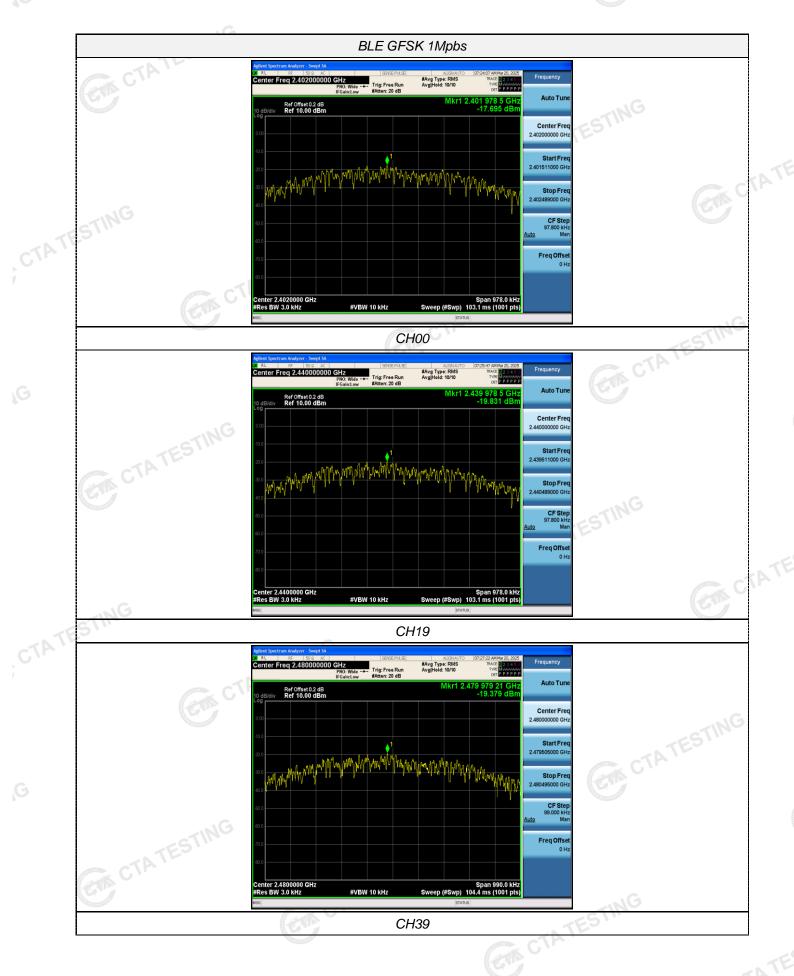
Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


CTATESTING EUT SPECTRUM ANALYZER

Test Results

Г	Truck	Ohannal	Power Spectral Density		Desult
	Туре	Channel	(dBm/3KHz)	Limit (dBm/3KHz)	Result
14		00	G -17.70		
	GFSK 1Mbps	19_51	-19.83	8.00	Pass
		39	-19.38	A G	
	Test plot as follows	G		STINC	

Page 22 of 36

4.5 6dB Bandwidth

Limit

ESTING For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

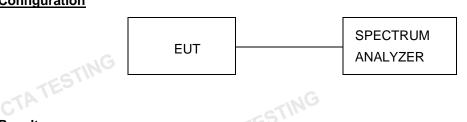
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		ANALYZ	.	CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
GTIM	00	0.652		
GFSK 1Mbps	19	0.652	≥500	Pass
C ¹ r	39	0.660		
Test plot as follows:	Cin C	TATES	CTATESTIN	G

Out-of-band Emissions 4.6

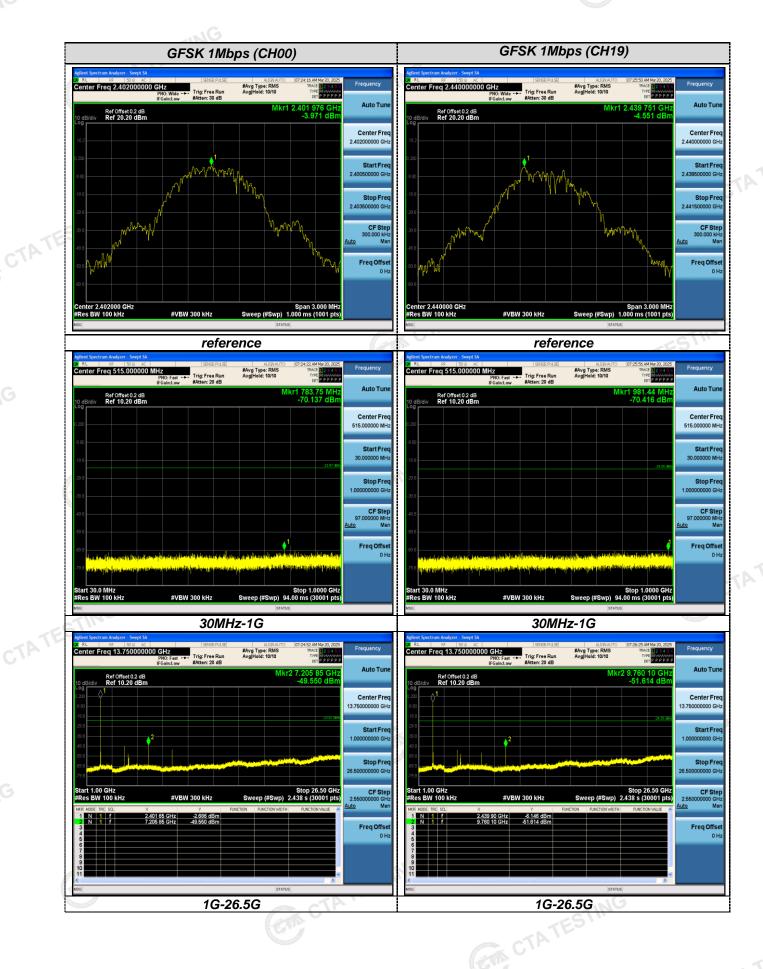

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are GA CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

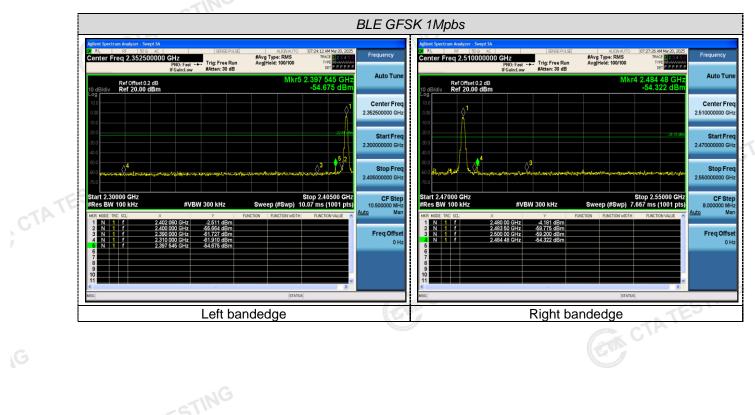
Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage **GIA CTATE** measurement data.

Test plot as follows:


Page 26 of 36

Page 28 of 36

Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The gain of antenna was 2.96 dBi.

Remark: The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT

<u>Photos of the EUT</u> 6

M

Cfel

8

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Page 32 of 36

GA CTATESTING

Page 33 of 36

TING

TING

CTA TESTING

CTATESTING

40 30 20 10 300 90 80 70 60 50 40 30 20 Tarra and 1 200 1 1.11 -CTATESTING 00 to 20 30 40 50 60 70 80 80 300 to 20 33 40 50 60 40 80 80 300 to 20 30 40 50 60 10 80 80 90 400 to 20

Page 34 of 36

Page 35 of 36

