

SAR DATA SUMMARY

Mixture Type: 150MHz Brain

14.1	14.1 MEASUREMENT RESULTS (150 MHz Face SAR)								
FREQUENCY			Begin / End POWER [‡]			Separation	Antenna	SAR (W/kg)	SAR (W/ka)
MHz	Ch.	Modulation	(dB	m) Battery		Distance (cm) ⁺⁺	Position	100% Duty Cycle	50% Duty Cycle
156.050	01	FM	37.06	36.90	Ni-MH	2.5	Fixed	2.130	1.065
156.800	16	FM	37.08	36.92	Ni-MH	2.5	Fixed	2.200	1.100
157.425	88	FM	37.10	36.93	Ni-MH	2.5	Fixed	2.400	1.200
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Brain 1.6 W/kg (averaged ove	n (mW/g) r 1 gram		

NOTES:

1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].

- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.
- [‡]Power Measured
- 4. SAR Measurement System Phantom Configuration
- 5. SAR Configuration
- 6. Test Signal Call Mode
- 7. ^{‡‡}Test Configuration
- 8. Tissue parameters and temperatures are listed on the SAR plots.
- 9. Liquid tissue depth is 21.8 cm. \pm 0.1

Alfred Cirwithian Vice President Engineering

Figure 14.1 Face SAR Test Setup

PCTESTÔ SAR REPORT		FCC CERTIFICATION	Uniden	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type:	FCC ID:	Page 18 of 22
SAR-231229004.AMW	January 20-21, 2004	VHF Marine Radio	AMWUT919	

© 2004 PCTEST Engineering Laboratory, Inc

- ☑ Conducted☑ DASY4
 - DASY4 Left Head
- □ Left Head
- Manu. Te

- Manu. Test Codes With Belt clip

ERP

- IX Flat Phantom
- Body
- om 🗆
 - □ Hand

EIRP

Right Head

- Base Station Simulator
- ☑ Without Belt clip

SAR DATA SUMMARY (Continued)

Mixture Type: 150MHz Muscle

14.2 MEASUREMENT RESULTS (150 MHz Body SAR w/ Belt Clip)									
FREQUENCY			Begin / End POWER [‡]			Separation	Antenna	SAR (W/kg)	SAR
MHz	Ch.	Modulation	(dBm)		Battery	Distance (cm) [#]	Position	100% Duty Cycle	50% Duty Cycle
156.050	01	FM	37.10	36.95	Ni-MH	2.4	Fixed	2.780	1.390
156.800	16	FM	37.12	36.98	Ni-MH	2.4	Fixed	2.910	1.455
157.425	88	FM	37.03	36.94	Ni-MH	2.4	Fixed	2.740	1.370
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Musc 1.6 W/kg (averaged ove	le (mW/g) r 1 gram	

NOTES:

1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].

- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.
 - [‡]Power Measured
- 4. SAR Measurement System Phantom Configuration
- 5. SAR Configuration
- 6. Test Signal Call Mode
- 7. ^{‡‡}Test Configuration
- 8. Tissue parameters and temperatures are listed on the SAR plots.
- 9. Liquid tissue depth is 21.8 cm. \pm 0.1

Alfred Cirwithian Vice President Engineering

Figure 14.2 Body SAR Test Setup -- w/ Belt clip --

PCTESTÔ SAR REPORT		FCC CERTIFICATION	Uniden	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type:	FCC ID:	Page 19 of 22
SAR-231229004.AMW	January 20-21, 2004	VHF Marine Radio	AMWUT919	

© 2004 PCTEST Engineering Laboratory, Inc

- Conducted DASY4
- □ Left Head
- Face
- 🗵 Manu. Test Codes
- ☑ With Belt clip □

- EIRP
- □ Right Head
- □ Hand
- Base Station Simulator
- □ Without Belt clip

ERP

IDX

Body

IX Flat Phantom

 \mathbf{X}

SAR TEST EQUIPMENT 15.

Equipment Calibration

Table 15.1 Test Equipment Calibration

EQUIPMENT	SPECIFICATIONS		
Туре	Calibration Date	Serial Number	
Stäubli Robot RX60L	February 2003	599131-01	
Stäubli Robot Controller	February 2003	PCT592	
Stäubli Teach Pendant (Joystick)	February 2003	3323-00161	
Micron Computer, 450 MHz Pentium III, Windows NT	February 2003	PCT577	
SPEAG EDC3	February 2003	321	
SPEAG DAE3	February 2003	330	
SPEAG E-Field Probe ET3DV6	September 2003	1560	
SPEAG Dummy Probe	February 2003	PCT583	
SPEAG Plexiglas Planar Phantom V1.0	February 2003	PCT150	
SPEAG Light Alignment Sensor	February 2003	205	
PCTEST Validation Dipole D300V2	September 2003	PCT301	
SPEAG Validation Dipole D835V2	February 2003	PCT512	
SPEAG Validation Dipole D1900V2	February 2003	PCT613	
Brain Equivalent Matter (150MHz)	January 2004	PCTBEM501	
Muscle Equivalent Matter (150MHz)	January 2004	PCTMEM501	
Brain Equivalent Matter (300MHz)	January 2004	PCTBEM601	
Muscle Equivalent Matter (300MHz)	January 2004	PCTMEM701	
Microwave Amp. Model: 5S1G4, (800MHz - 4.2GHz)	January 2004	22332	
Gigatronics 8651A Power Meter	January 2004	1835299	
HP-8648D (9kHz ~ 4GHz) Signal Generator	January 2004	PCT530	
Amplifier Research 5S1G4 Power Amp	January 2004	PCT540	
HP-8753E (30kHz ~ 3GHz) Network Analyzer	January 2004	PCT552	
HP85070B Dielectric Probe Kit	January 2004	PCT501	
Ambient Noise/Reflection, etc. January 2004	January 2003	Anechoic Room PCT01	

NOTE:

The E-field probe was calibrated by SPEAG, by waveguide technique procedure. Dipole Validation measurement is performed by PCTEST Lab. before each test. The brain simulating material is calibrated by PCTEST using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

PCTESTÔ SAR REPORT		FCC CERTIFICATION	Uniden	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type:	FCC ID:	Page 20 of 22
SAR-231229004.AMW	January 20-21, 2004	VHF Marine Radio	AMWUT919	

© 2004 PCTEST Engineering Laboratory, Inc

16. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.[3]

PCTESTÔ SAR REPORT		FCC CERTIFICATION	Uniden	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type:	FCC ID:	Page 21 of 22
SAR-231229004.AMW	January 20-21, 2004	VHF Marine Radio	AMWUT919	

© 2004 PCTEST Engineering Laboratory, Inc

17. REFERENCES

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.

[2] ANSI/IEEE C95.1 - 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Aug. 1992.

[3] ANSI/IEEE C95.3 - 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, 1992.

[4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), *Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields*, July 2001.

[5] IEEE Standards Coordinating Committee 34 – IEEE Std. P1528 D1.2 (April 2003), Draft Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

[6] NCRP, National Council on Radiation Protection and Measurements, *Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields*, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, *Automated E-field scanning system for dosimetric assessments*, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, *Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies*, ICECOM97, Oct. 1997, pp. 120-124.

[9]K. Poković, T. Schmid, and N. Kuster, *E-field Probe with improved isotropy in brain simulating liquids*, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, *The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz*, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, *Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz*, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, *Simulated Biological Materials for Electromagnetic Radiation Absorption Studies*, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., *Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones*, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, *Numerical Recepies in C*, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.

[18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.

[20] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

PCTESTÔ SAR REPORT		FCC CERTIFICATION	Uniden	Reviewed by: Quality Manager
SAR Filename:	Test Dates:	EUT Type:	FCC ID:	Page 22 of 22
SAR-231229004.AMW	January 20-21, 2004	VHF Marine Radio	AMWUT919	

© 2004 PCTEST Engineering Laboratory, Inc

DUT:FCC ID: AMWUT919; Model: MHS350; Type: VHF Marine Radio; SN: FCC/S

Communication System: 156MHz VHF Marine Radio; Frequency: 157.425 MHz;Duty Cycle: 1:1 Medium: 150 Brain ($\sigma = 0.77$ mho/m, $\epsilon_r = 51.8$, $\rho = 1000$ kg/m³) Phantom section: Center Flat

Test Date: 01-20-2004; Ambient Temp: 22.9°C; Tissue Temp: 20.3°C

Probe: ES3DV2 - SN3022; ConvF(8.5, 8.5, 8.5); Calibrated: 9/23/2003 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE3 Sn445; Phantom: Plexiglas Planar V1.0; SN: PCT150 Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 93

Face, 2.5cm.space, Ch.88, Fixed Antenna, Battery: Ni-MH

Area Scan (71x171x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 3.26 W/kg SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.75 mW/g Reference Value = 49.8 V/m

DUT: AMWUT919; Model: MHS350; Type: VHF Marine Radio; SN: FCC/S

Communication System: 156MHz VHF Marine Radio; Frequency: 156.8 MHz;Duty Cycle: 1:1 Medium: 150 Muscle ($\sigma = 0.81$ mho/m; $\epsilon_r = 61.7$; $\rho = 1000$ kg/m³) Phantom section: Center Flat

Test Date: 01-20-2004; Ambient Temp: 22.9°C; Tissue Temp: 20.4°C

Probe: ES3DV2 - SN3022; ConvF(8, 8, 8); Calibrated: 9/23/2003 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE3 Sn445; Phantom: Plexiglas Planar V1.0; SN: PCT150 Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 93

Body, 2.4cm.space, Ch.16, Fixed Antenna, Battery: Ni-MH

Area Scan (71x171x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 4.52 W/kg SAR(1 g) = 2.91 mW/g; SAR(10 g) = 1.98 mW/g Reference Value = 63.3 V/m

DUT: FCC ID: AMWUT919; Model: MHS350; Type: VHF Marine Radio; SN: FCC/S

Communication System: 156MHz VHF Marine Radio; Frequency: 157.425 MHz;Duty Cycle: 1:1 Medium: 150 Brain ($\sigma = 0.77$ mho/m, $\varepsilon_r = 51.8$, $\rho = 1000$ kg/m³) Phantom section: Center Flat

Test Date: 01-20-2004; Ambient Temp: 22.9°C; Tissue Temp: 20.3°C

Probe: ES3DV2 - SN3022; ConvF(8.5, 8.5, 8.5); Calibrated: 9/23/2003 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE3 Sn445; Phantom: Plexiglas Planar V1.0; SN: PCT150 Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 93

Face, 2.5cm.space, Ch.88, Fixed Antenna, Battery: Ni-MH

Area Scan (71x171x1): Measurement grid: dx=15mm, dy=15mm

Ch.88,Face/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 3.26 W/kg SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.75 mW/g Reference Value = 49.8 V/m

DUT: AMWUT919; Model: MHS350; Type: VHF Marine Radio; SN: FCC/S

Communication System: 156MHz VHF Marine Radio; Frequency: 156.8 MHz;Duty Cycle: 1:1 Medium: 150 Muscle (σ = 0.81 mho/m; ϵ_r = 61.7; ρ = 1000 kg/m³) Phantom section: Center Flat

Test Date: 01-20-2004; Ambient Temp: 22.9°C; Tissue Temp: 20.4°C

Probe: ES3DV2 - SN3022; ConvF(8, 8, 8); Calibrated: 9/23/2003 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE3 Sn445; Phantom: Plexiglas Planar V1.0; SN: PCT150 Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 93

Body, 2.4cm.space, Ch.16, Fixed Antenna, Battery: Ni-MH

Area Scan (71x171x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 4.52 W/kg SAR(1 g) = 2.91 mW/g; SAR(10 g) = 1.98 mW/g Reference Value = 63.3 V/m

ATTACHMENT B – SAR TEST SETUP PHOTOGRAPHS

Client

PC Test

GALIBRATION	DERTHOAT					
Object(s)	ES3DV2 - SN	3022				
Calibration procedure(s)	QA CAL-01.v2 Calibration pro	cedure for dosimetric E-field prob	2 8			
Calibration date:	September 23,	2003				
Condition of the calibrated item	In Tolerance (a	ccording to the specific calibration	n document)			
This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.						
All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.						
Calibration Equipment used (M&TE	critical for calibration)					
Model Type	1D #	Cal Date (Calibrated by Certificate No.)	Scheduled Calibration			
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Anr-04			
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Αρτ-04			
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS No. 251-0340	Apr-04			
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04			
Power sensor HP 8481A	MY41092180	18-Sep-02 (Agilent, No. 20020918)	In house check: Oct 03			
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05			
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03			
	Name	Function	Signature			
Calibrated by:	Katja Pokovic	Laboratory Director	Polonie Hotza			
			100			
Approved by:	Niels Kuster	Quality Manager	1. 205			
		*	Date issued: October 5, 2003			
This calibration certificate is issued a Calibration Laboratory of Schmid &	as an intermediate solutic Partner Engineering AG	on until the accreditation process (based on ISO/IEC is completed.	C 17025 International Standard) for			

Probe ES3DV2

S

SN:3022

Manufactured: Last calibration:

April 15, 2003 September 23, 2003

e

D

a

a

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV2 SN:3022

Sensitiv	ity in Free S	bace		Diode C	ompress	sion	
	NormX	1.00	μV/(V/m) ²		DCP X	95	mV
	NormY	1.04	μ V/(V/m) ²		DCP Y	95	mV
	NormZ	0.98	μV/(V/m) ²		DCP Z	95	mV
Sensitiv	ity in Tissue	Simu	llating Liquid				
Head	900 MH2	:	ε _r = 41.5 ± 5%	σ =	0.97 ± 5% ı	mho/m	
Valid for f=8	300-1000 MHz with	Head T	issue Simulating Liquid	according to) EN 50361, F	P1528-200X	
	ConvF X	6.1	± 9.5% (k=2)		Boundary e	effect:	
	ConvF Y	6.1	± 9.5% (k=2)		Alpha	0.32	
	ConvF Z	6.1	± 9.5% (k=2)		Depth	1.65	
Head	1800 MHz	2	ε _r = 40.0 ± 5%	a =	1.40 ± 5% r	mho/m	
Valid for f=1	1710-1910 MHz with	n Head	Tissue Simulating Liquid	l according	to EN 50361,	P1528-200)	(
	ConvF X	5.0	± 9.5% (k=2)		Boundary e	effect:	
	ConvF Y	5.0	± 9.5% (k=2)		Alpha	0.25	
	ConvF Z	5.0	± 9.5% (k=2)		Depth	2.30	
Bounda	ry Effect						
Head	900 MHz	:	Typical SAR gradient	: 5 % per m	m		

Probe Tip to	o Boundary	1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	5.5	2.5
SAR _{be} [%]	With Correction Algorithm	0.1	0.4

Head 1800 MHz Typical SAR gradient: 10 % p	er mm
--	-------

Probe Tip to Boundary	1 mm	2 mm
SAR _{be} [%] Without Correction Algorithm	7.1	4.4
SAR _{be} [%] With Correction Algorithm	0.0	0.1

Sensor Offset

Probe Tip to Sensor Center	2.0	mm
----------------------------	-----	----

Receiving Pattern (ϕ , θ = 0°

Isotropy Error (\phi), \theta = 0°

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

Dynamic Range f(SAR_{brain})

Head	900 MHz		ε r = 41.5 ± 5% σ [:]	= 0.97 ± 5% mho/	/m
Valid for f=	800-1000 MHz with H	ead T	issue Simulating Liquid according	to EN 50361, P1528	3-200X
	ConvF X	6.1	± 9.5% (k=2)	Boundary effect	
	ConvF Y	6.1	± 9.5% (k=2)	Alpha	0.32
	ConvF Z	6.1	± 9.5% (k=2)	Depth	1.65
land	4000 MU-			- 4 40 1 50/	f
пеац			ε _r = 40.0 Ι 5% σ	= 1.40 I 5% mno/	m
Valid for f=1	1710-1910 MHz with	Head	Tissue Simulating Liquid according	; to EN 50361, P152	28-200X
	ConvF X	5.0	± 9.5% (k=2)	Boundary effect	:
	ConvF Y	5.0	± 9.5% (k=2)	Alpha	0.25
	ConvF Z	5.0	± 9.5% (k=2)	Depth	2.30

Body	900 MHz		$\epsilon_{\rm r}$ = 55.0 ± 5%	σ = 1.05 ± 5% m	nho/m
Valid for f=	800-1000 MHz with B	lody T	issue Simulating Liquid accor	ding to OET 65 Sup	pi. C
	ConvF X	6.0	± 9.5% (k=2)	Boundary ef	fect:
	ConvF Y	6.0	± 9.5% (k=2)	Alpha	0.38
	ConvF Z	6.0	± 9.5% (k=2)	Depth	1.47
Body	1800 MHz		ε _r = 53.3 ± 5%	σ = 1.52 ± 5% n	nho/m
Valid for f=	1710-1910 MHz with	Body	Tissue Simulating Liquid acco	rding to OET 65 Su	ppl. C
	ConvF X	4.5	± 9.5% (k=2)	Boundary ef	fect:
	ConvF Y	4.5	± 9.5% (k=2)	Alpha	0.22
	ConvF Z	4.5	± 9.5% (k=2)	Depth	3.42

Head	2450 MHz		ε _r = 39.2 ± 5% σ ⁻¹	= 1.80 ± 5% mho	/m
Valid for f=:	2400-2500 MHz with	Head	Tissue Simulating Liquid according	g to EN 50361, P152	28-200X
	ConvF X	4.5	± 9.5% (k=2)	Boundary effect	:
	ConvF Y	4.5	± 9.5% (k=2)	Alpha	0.42
	ConvF Z	4.5	± 9.5% (k=2)	Depth	1.56
Body	2450 MHz		ε . = 52.7 ± 5% σ	= 1.95 ± 5% mbo	/m
Valid for f=2	2400-2500 MHz with I	Body	Tissue Simulating Liquid according	to OET 65 Suppl.	C
	ConvF X	4.2	± 9.5% (k=2)	Boundary effect	:
	ConvF Y	4.2	± 9.5% (k=2)	Alpha	0.42
	ConvF Z	4.2	± 9.5% (k=2)	Depth	1.65

Head	5200 MHz	2	ε _r = 36.0 ± 5% σ =	• 4.66 ± 5% mho/	/m
Valid for f=	4940-5460 MHz witl	n Head	Tissue Simulating Liquid according	to OET65-SuppC	
	ConvF X	2.60	± 16.6% (k=2)	Boundary effect	:
	ConvF Y	2.60	± 16.6% (k=2)	Alpha	0.93
	ConvF Z	2.60	± 16.6% (k=2)	Depth	1.50
Body	5200 MHz	:	ε _r = 49.0 ± 5% σ =	[±] 5.30 ± 5% mho/	'n
Valid for f=4940-5460 MHz with Body Tissue Simulating Liquid according to OET65-SuppC					
	ConvF X	1.80	± 16.6% (k=2)	Boundary effect	:
	ConvF Y	1.80	± 16.6% (k=2)	Alpha	1.05
	ConvF Z	1.80	± 16.6% (k=2)	Depth	1.60

Head	5800 N	/IHz	ε _r = 35.3 ± 5%	σ = 5.27 ± 5% mho /	m
Valid for f	=5510-6090 MHz	with Head	Tissue Simulating Liquid ac	cording to OET65-SuppC	
	ConvF X	2.15	± 16.6% (k=2)	Boundary effect	
	ConvF Y	2.15	± 16.6% (k=2)	Alpha	1.04
	ConvF Z	2.15	± 16.6% (k=2)	Depth	1.50
Body	5800 N	11 Hz	ε _r = 48.2 ± 5%	σ = 6.0 ± 5% mho/n	ı
Valid for f=5510-6090 MHz with Body Tissue Simulating Liquid according to OET65-SuppC					
	ConvF X	1.57	± 16.6% (k=2)	Boundary effect:	
	ConvF Y	1.57	± 16.6% (k=2)	Alpha	1.15
	ConvF Z	1.57	± 16.6% (k=2)	Depth	1.70

Deviation from Isotropy in HSL

Error ($\theta \phi$), f = 900 MHz

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV2
Serial Number:	3022
Place of Assessment:	Zurich
Date of Assessment:	December 3, 2003
Probe Calibration Date:	September 23, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (± standard deviation)

1950 MHz	ConvF	4.7 ± 9.5%	$\mathbf{s}_{r} = 40.0 \pm 5\%$ $\mathbf{\sigma} = 1.40 \pm 5\%$ mho/m (head tissue)
1950 MHz	ConvF	4. 3± 9.5%	$\mathbf{g}_{r} = 53.3 \pm 5\%$ $\mathbf{\sigma} = 1.52 \pm 5\%$ mho/m (body tissue)

Additional Conversion Factors for Dosimetric E-Field Probe

S

е

a

q

Туре:	ES3DV2
Serial Number:	3022
Place of Assessment:	Zurich
Date of Assessment:	October 3, 2003
Probe Calibration Date:	September 23, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

plou: Mate

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (± standard deviation)

150 MHz	ConvF	8.5 ± 8%	$\varepsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue)
150 MHz	ConvF	8.0 ± 8%	$\varepsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue)
450 MHz	ConvF	7.1±8%	$\varepsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	7.2 ± 8%	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\% \text{ mho/m}$ (body tissue)

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV2
Serial Number:	3022
Place of Assessment:	Zurich
Date of Assessment:	November 28, 2003
Probe Calibration Date:	September 23, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (± standard deviation)

1600 MHz	ConvF	5.2 ± 8%	$\epsilon_r = 40.3 \pm 5\%$ $\sigma = 1.29 \pm 5\%$ mho/m (head tissue)
1600 MHz	ConvF	4.9 ± 8%	$\epsilon_r = 53.8 \pm 5\%$ $\sigma = 1.40 \pm 5\%$ mho/m (body tissue)

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV2
Serial Number:	3022
Place of Assessment:	Zurich
Date of Assessment:	December 9, 2003
Probe Calibration Date:	September 23, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (± standard deviation)

2140 MHz

ConvF **4.5 ± 8%**

 $\epsilon_r = 39.8 \pm 5\%$ $\sigma = 1.49 \pm 5\%$ mho/m (brain tissue)

DUT: 300 MHz. Dipole; Type: D300V2; Serial: 301 Program: 300 MHz. Dipole Validation

Communication System: 300MHz.; Frequency: 300 MHz;Duty Cycle: 1:1 Medium: 300MHz. Brain (σ = 0.84 mho/m, ϵ_r = 45.2, ρ = 1300 kg/m³) Phantom section: Flat Section

Test Date: 01-20-2004; Ambient Temp: 22.9°C; Tissue Temp: 20.3°C

Probe: ES3DV2 - SN3022; ConvF(8.5, 8.5, 8.5); Calibrated: 9/23/2003 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE3 Sn445; Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197 Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197 Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 93

300MHz. CW Dipole Validation @ 250mW

Area Scan (51x111x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 0.784 mW/g; SAR(10 g) = 0.86 mW/g Reference Value = 52.8 V/m

