ONE WORLD OUR APPROVAL

Wireless test report – 368276-1TRFWL

Applicant:

Mikrotikls SIA

Product name:

WLAN 802.11a/n/ac and 802.11b/g/n router

Model:

Model variant:

RBLHGG-5HPacD2HPnD-XL-US

FCC ID: TV7LHG5HPACD2HPD IC Registration number: 7442A-LHG5ACD2HPD

Specifications:

FCC 47 CFR Part 15 Subpart C, §15.247

Operation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz

--

RSS-247, Issue 2, Feb 2017, Section 5

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices 5) Standard specifications for frequency hopping systems and digital transmission systems operating in the bands 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz

Date of issue: November 11, 2019

Test engineer(s): Daniele Guarnone, Wireless/EMC Specialist signature:

Double guomone Bas U

Reviewed by:

Paolo Barbieri, Wireless/EMC Specialist Signa

Signature:

Test location(s)

Company name	Nemko Spa Via del Carroccio, 4 I 20853 Biassono (Italy)
Address	Via del Carroccio, 4
City	Biassono
Province	MB
Postal code	20853
Country	Italy
Telephone	+039 039 2201201
Facsimile	+39 039 220 1221
Toll free	-
Website	www.nemko.com
Site number	FCC Test Firm Registration Number: 682159 ISED#: 9109A

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025.

Copyright notification

Nemko S.p.A authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Table of contents

Table of	contents	
Section 1	. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test methods	4
1.4	Statement of compliance	4
1.5	Exclusions	4
1.6	Test report revision history	4
Section 2	2. Summary of test results	5
2.1	FCC Part 15 Subpart C, general requirements test results	
2.2	FCC Part 15 Subpart C, intentional radiators test results for frequency hopping spread spectrum systems	5
2.3	FCC Part 15 Subpart C, intentional radiators test results for digital transmission systems (DTS)	5
2.4	ISED RSS-Gen, Issue 5, test results	6
2.5	ISED RSS-247, Issue 2, test results for frequency hopping spread spectrum systems (FHSS)	6
2.6	ISED RSS-247, Issue 2, test results for digital transmission systems (DTS)	6
Section 3	B. Equipment under test (EUT) details	7
3.1	Sample information	7
3.2	EUT information	7
3.3	Technical information	7
3.4	Product description and theory of operation	8
3.5	EUT exercise details	
3.6	EUT setup diagram	9
3.7	EUT sub assemblies	
Section 4		
4.1	Modifications incorporated in the EUT	10
4.2	Technical judgment	
4.3	Deviations from laboratory tests procedures	10
Section 5		
5.1	Atmospheric conditions	
5.2	Power supply range	
Section 6		
6.1	Uncertainty of measurement	
Section 7		
7.1	Test equipment list	
Section 8	5	
8.1	FCC 15.31(e) Variation of power source	
8.2	FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies	
8.3	FCC 15.203 and RSS-Gen, section 6.8 Antenna requirement.	
8.4	FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits	
8.5	FCC 15.247(a)(2) and RSS-247 5.2(a) Minimum 6 dB bandwidth for DTS systems	
8.6	FCC 15.247(b) and RSS-247 5.4 (d) Transmitter output power and e.i.r.p. requirements for DTS in 2.4 GHz	
8.7	FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions	
Section 9		
9.1	Radiated emissions set-up for frequencies below 1 GHz	
9.2	Radiated emissions set-up for frequencies above 1 GHz	
9.3	Antenna port conducted measurements set-up	
9.4	Conducted emissions on AC line set-up	.101

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Mikrotikls SIA
Address	Brivibas gatve 214i LV-1039 Riga Latvia

1.2 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.247	Operation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz
RSS-247, Issue 2, Feb 2017, Section 5	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

1.3 Test methods

558074 D01 DTS Meas Guidance v04 (April 5, 2017)	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
RSS-Gen, Issue 5, April 2018	General Requirements for Compliance of Radio Apparatus

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.5 below. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	September 14, 2018	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Table 2.1-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass

Notes: EUT is an AC powered device.

2.2 FCC Part 15 Subpart C, intentional radiators test results for frequency hopping spread spectrum systems

Table 2.2-1: FCC 15.247 results for FHSS

Part	Test description	Verdict
§15.247(a)(1)(i)	Requirements for operation in the 902–928 MHz band	Not applicable
§15.247(a)(1)(ii)	Requirements for operation in the 5725–5850 MHz band	Not applicable
§15.247(a)(1)(iii)	Requirements for operation in the 2400–2483.5 MHz band	Not applicable
§15.247(b)(1)	Maximum peak output power in the 2400–2483.5 MHz band and 5725–5850 MHz band	Not applicable
§15.247(b)(2)	Maximum peak output power in the 902–928 MHz band	Not applicable
§15.247(c)(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Not applicable
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

2.3 FCC Part 15 Subpart C, intentional radiators test results for digital transmission systems (DTS)

Table 2.3-1: FCC 15.247 results for DTS

Part	Test description	Verdict
§15.247(a)(2)	Minimum 6 dB bandwidth	Pass
§15.247(b)(3)	Maximum peak output power in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands	Pass
§15.247(c)(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247(e)	Power spectral density	Pass
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

2.4 ISED RSS-Gen, Issue 5, test results

Table 2.4-1: RSS-Gen results

Part	Test description	Verdict
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
6.9	Operating bands and selection of test frequencies	Pass
8.8	AC power-line conducted emissions limits	Pass

Notes: ¹ According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

EUT is an AC powered device.

2.5 ISED RSS-247, Issue 2, test results for frequency hopping spread spectrum systems (FHSS)

Table 2.5-1: RSS-247 results for FHSS

Part	Test description	Verdict
5.1 (a)	Bandwidth of a frequency hopping channel	Not applicable
5.1 (b)	Minimum channel spacing	Not applicable
5.1 (c)	Systems operating in the 902–928 MHz band	Not applicable
5.1 (d)	Systems operating in the 2400–2483.5 MHz band	Not applicable
5.1 (e)	Systems operating in the 5725–5850 MHz band	Not applicable
5.3	Hybrid Systems	Not applicable
5.3 (a)	Digital modulation turned off	Not applicable
5.3 (b)	Frequency hopping turned off	Not applicable
5.4	Transmitter output power and e.i.r.p. requirements	Not applicable
5.4 (a)	Systems operating in the 902–928 MHz band	Not applicable
5.4 (b)	Systems operating in the 2400–2483.5 MHz band	Not applicable
5.4 (c)	Systems operating in the 5725–5850 MHz	Not applicable
5.4 (e)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
5.4 (f)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
5.5	Unwanted emissions	Not applicable

Notes: None

2.6 ISED RSS-247, Issue 2, test results for digital transmission systems (DTS)

Table 2.6-1: RSS-247 results for DTS

Part	Test description	Verdict
5.2 (a)	Minimum 6 dB bandwidth	Pass
5.2 (b)	Maximum power spectral density	Pass
5.3	Hybrid Systems	
5.3 (a)	Digital modulation turned off	Not applicable
5.3 (b)	Frequency hopping turned off	Not applicable
5.4	Transmitter output power and e.i.r.p. requirements	
5.4 (d)	Systems employing digital modulation techniques	Pass
5.4 (e)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
5.4 (f)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
5.5	Unwanted emissions	Pass

Notes: None

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	February 21, 2019
Nemko sample ID number	Item 1 of 2

3.2 EUT information

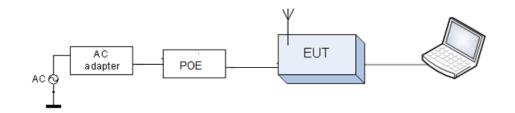
Product name	WLAN 802.11a/n/ac and 802.11b/g/n router
Model	RBLHGG-5HPacD2HPnD-XL-US
Model variant	
Serial number	

3.3 Technical information

Applicant IC company number	7442A
IC UPN number	LHG5ACD2HPD
All used IC test site(s) Reg. number	9109A
RSS number and Issue number	RSS-247 Issue 2, Feb 2017
Frequency band	2400 to 2483.5 MHz
Frequency Min (MHz)	2412
Frequency Max (MHz)	2462
Field strength, Units @ distance	N/A
Measured BW (kHz) (6 dB)	9020 (802.11b), 16320 (802.11g), 16300 (802.11n HT20), 35640 (802.11 HT40)
Calculated BW (kHz), as per TRC-43	N/A
Type of modulation	802.11b/g/n
Emission classification (F1D, G1D, D1D)	W7D
Transmitter spurious, Units @ distance	31.2 dBµV/m at 96.96MHz, @ 3 m
Power requirements	24 V _{DC} , via 120 V _{AC} adapter or battery
Antenna information	The EUT uses a unique antenna coupling.
	EUT has 2 antenna configurations. The max antenna peak gain is 18 dBi at 2.4 GHz band and 27 dBi at 5 GHz
	WIFI bands.

3.4 Product description and theory of operation

The LHG is an outdoor wireless router with with an integrated dual polarization grid antenna


3.5 EUT exercise details

EUT was set to continuously transmit mode during tests, by test software provided by client.

These tools/scripts configure the radio modules to enable continuous transmission with the ability to adjust modulation, frequency and output power as required.

3.6 EUT setup diagram

Figure 3.6-1: Setup diagram

3.7 EUT sub assemblies

Table 3.7-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number	
Power supply	Fullpower	SAW 30-240-1200G R2A		
Gigabit POE	Mikrotik			

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	18÷33 °C
Relative humidity	30÷60 %
Air pressure	980÷1060 hPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Table 6.1-1: Measurement uncertainty

EUT	Туре	Test	Range and Setup features	Measurement Uncertainty	Notes
		Frequency error	0.001 MHz ÷ 40 GHz	0.08 ppm	(1)
			10 kHz ÷ 30 MHz	1.0 dB	(1)
		Carrier power	30 MHz ÷ 18 GHz	1.5 dB	(1)
		RF Output Power	18 MHz ÷ 40 GHz	3.0 dB	(1)
		Adjacent channel power	1 MHz ÷ 18 GHz	1.6 dB	(1)
			10 kHz ÷ 26 GHz	3.0 dB	(1)
		Conducted spurious emissions	26 GHz ÷ 40 GHz	4.5 dB	(1)
		Intermodulation attenuation	1 MHz ÷ 18 GHz	2.2 dB	(1)
		Attack time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Attack time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
		Release time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Release time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
Transmitter	Conducted	Transient behaviour of the transmitter– Transient frequency behaviour	1 MHz ÷ 18 GHz	0.2 kHz	(1)
Transmitter			Transient behaviour of the transmitter – Power level slope	1 MHz ÷ 18 GHz	9%
	Frequency deviation - Maximum permissible frequency deviation	0.001 MHz ÷ 18 GHz	1.3%	(1)	
	Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	0.001 MHz ÷ 18 GHz	0.5 dB	(1)	
		Dwell time	-	3%	(1)
		Hopping Frequency Separation	0.01 MHz ÷ 18 GHz	1%	(1)
		Occupied Channel Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
		Modulation Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
			10 kHz ÷ 26.5 GHz	6.0 dB	(1)
		Radiated spurious emissions	26.5 GHz ÷ 40 GHz	8.0 dB	(1)
	Radiated		10 kHz ÷ 26.5 GHz	6.0 dB	(1)
		Effective radiated power transmitter	26,5 GHz ÷ 40 GHz	8.0 dB	(1)
			10 kHz ÷ 26.5 GHz	6.0 dB	(1)
	Radiated	Radiated spurious emissions	26.5 GHz ÷ 40 GHz	8.0 dB	(1)
Receiver	Nadiated	Sensitivity measurement	1 MHz ÷ 18 GHz	6.0 dB	(1)
NECCIVEI		Schattering measurement	10 kHz ÷ 26 GHz	3.0 dB	(1)
	Conducted	Conducted spurious emissions	26 GHz ÷ 40 GHz	4.5 dB	(1)
	L <u></u>	uncertainty of measurement is st			

Report reference ID: 368276-1TRFWL

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI receiver 2 Hz ÷ 44 GHz	R&S	ESW44	101620	2018/05	2020/08
Broadband preamplifier	Schwarzbeck	BBV 9718	9718-137	2018/08	2019/08
Trilog Broadband Antenna	Schwarzbeck	VULB 9162	9162-025	2018/07	2021/07
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	2018/09	2021/09
Antenna mast	R&S	HCM	836 529/05	NCR	NCR
Controller	R&S	HCC	836 620/7	NCR	NCR
EMI receiver 9 kHz ÷ 3 GHz	R&S	ESCI	100888	2018/09	2020/10
LISN 9 kHz ÷ 30 MHz	R&S	ESH2-Z5	872 460/041	2018/09	2020/09
Climatic Chamber	ESPEC	ARS 1100	410000067	2018/11	2019/11
EMI receiver 20 Hz ÷ 8 GHz	R&S	ESU8	100202	2019/01	2020/01
Bilog antenna 1 ÷18 GHz	Schwarzbeck	STLP 9148-123	123	2018/09	2021/09
Double Ridged Waveguide Horn	RF SPIN	DRH40	061106a40	2017/02	2020/02
Wide band Amplifier 18 GHz ÷ 40 GHz	MITEQ	AMF-5F-18004000-37-8P	128061	2018/09	2020/09
High pass filter	Wainwright Instruments	WHNX6-2555-3500-26500-60CC	01	2018/10	2020/10

Note: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

8.1 FCC 15.31(e) Variation of power source

8.1.1 Definitions and limits

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.1.2 Test date

 Start date
 April 04 2019

 8.1.3
 Observations, settings and special notes

 None

8.1.4 Test data

EUT Power requirements:	🖂 AC		□ Battery
If EUT is an AC or a DC powered, was the noticeable output power variation observed?	🗆 YES	□ NO	🖾 N/A
If EUT is battery operated, was the testing performed using fresh batteries?	□ YES	🗆 NO	🖾 N/A
If EUT is rechargeable battery operated, was the testing performed using fully charged batteries?	□ YES	□ NO	🖾 N/A

8.2 FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies

8.2.1 Definitions and limits

FCC:

Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

ISED:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 8.2-1: Frequency Range of Operation

Frequency range over which the device operates (in each band)	Number of test frequencies required	Location of measurement frequency inside the operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Note: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test date

Start date April 04 2019

8.2.3 Observations, settings and special notes

None

8.2.4 Test data

Table 8.2-2: Test channels selection

Modulation	Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
802.11b/g/n HT20	2400	2483.5	83.5	2412	2437	2462
802.11n HT40	2400	2483.5	83.5	2422	2437	2452

8.3 FCC 15.203 and RSS-Gen, section 6.8 Antenna requirement

8.3.1 Definitions and limits

FCC:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

ISED:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2 Test date Start date April 05, 2019

8.3.3 Observations, settings and special notes

None

8.3.4 Test data

Must the EUT be professionally installed?	□ YES	🖾 NO	
Does the EUT have detachable antenna(s)?	🗆 YES	🖾 NO	
If detachable, is the antenna connector(s) non-standard?	□ YES	🗆 NO	🗆 N/A

8.4 FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

8.4.1 Definitions and limits

FCC:

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu$ H/ $50 \,\Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

IC:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.4-1: Conducted emissions limit

Frequency of emission,	Conducted limit, dBµV		
MHz	Quasi-peak	Average**	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	
Note: * - The level decreases linearly with the level	ogarithm of the frequency.		

** - A linear average detector is required.

8.4.2 Test date

|--|--|

8.4.3 Observations, settings and special notes

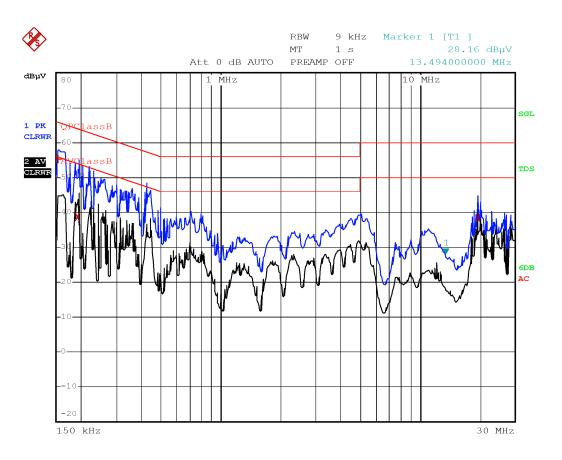
The EUT was set up as tabletop configuration.

The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver settings for preview measurements:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average
Trace mode	Max Hold
Measurement time	100 ms


Receiver settings for final measurements:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Quasi-Peak and Average
Trace mode	Max Hold
Measurement time	100 ms

Testing data FCC 15.407(b)(6) and RSS-Gen 8.8 AC power line conducted emissions limits FCC Part 15 Subpart E and RSS-Gen, Issue 4

8.4.4 Test data

Date: 4.APR.2019 20:15:04

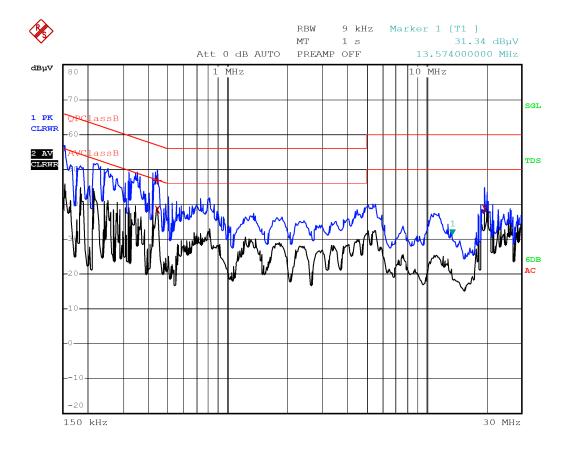
Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector
0.1540	55.3	65.8	-10.5	QP
0.1940	38.7	53.9	-15.2	Av
19.7100	38.6	50.0	-11.4	Av

Plot 8.4-1: Conducted emissions on phase line

Notes:

 1 Result (dBµV) = receiver/spectrum analyzer value (dBµV) + correction factor (dB) 2 Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions have been recorded.


Sample calculation: 37.1 dB μ V (result) = 26.6 dB μ V (receiver reading) + 9.5 dB (Correction factor)

Report reference ID: 368276-1TRFWL

_

Testing data FCC 15.407(b)(6) and RSS-Gen 8.8 AC power line conducted emissions limits FCC Part 15 Subpart E and RSS-Gen, Issue 4

Date: 4.APR.2019 20:17:19

Plot 8.4-2: Conducted emissions on neutral line

Frequency (MHz)	Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Detector
0.1540	55.3	65.8	-10.5	QP
0.1940	38.7	53.9	-15.2	Av
19.7100	38.6	50.0	-11.4	Av

Table 8.4-2: Quasi-Peak conducted emissions results on neutral line

Notes:	¹ Result (dB μ V) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)
	2 Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)
	³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every
	15 seconds observation period were considered valid emissions. The maximum value of valid emissions have
	been recorded.
	Sample calculation: 37.1 dBμV (result) = 26.6 dBμV (receiver reading) + 9.5 dB (Correction factor)

8.5 FCC 15.247(a)(2) and RSS-247 5.2(a) Minimum 6 dB bandwidth for DTS systems

8.5.1 Definitions and limits

FCC:

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

ISED:

The minimum 6 dB bandwidth shall be 500 kHz.

8.5.1 Test date

Start date July 23, 2019

23, 2015

8.5.2 Observations, settings and special notes

Spectrum analyser settings:

Resolution bandwidth	100 kHz
Video bandwidth	≥3 × RBW
Frequency span	30 MHz for 20 MHz channel; 80 MHz for 40 MHz channel
Detector mode	Peak
Trace mode	Max Hold

Testing data

Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

8.5.3 Test data

Table 8.5-1: 6 dB bandwidth results

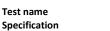
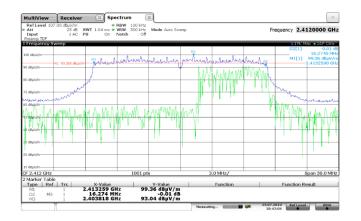

Modulation	Frequency, MHz	6 dB bandwidth, MHz	Limit, MHz	Margin, MHz
	2412	8.51	0.5	8.01
802.11b	2437	8.48	0.5	7.98
	2462	9.02	0.5	8.52
	2412	16.30	0.5	15.80
802.11g	2437	16.27	0.5	15.77
	2462	16.30	0.5	15.80
	2412	16.27	0.5	15.77
802.11n HT20	2437	16.27	0.5	15.77
	2462	16.30	0.5	15.80
	2422	34.97	0.5	34.47
802.11n HT40	2442	35.64	0.5	35.14
	2452	35.4	0.5	34.9

Table 8.5-2: 99% occupied bandwidth results

Modulation	Frequency, MHz	99% occupied bandwidth, MHz
	2412	11.36
802.11b	2437	11.33
	2462	12.95
	2412	16.18
802.11g	2437	16.24
	2462	16.27
	2412	16.15
802.11n HT20	2437	16.24
	2462	16.27
	2422	36.04
802.11n HT40	2437	36.20
	2452	36.04

Note: there is no 99% occupied bandwidth limit in the standard's requirements, the measurement results provided for information purposes only.

Testing data


FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

 Number
 Bacchurg
 Spectrum
 <

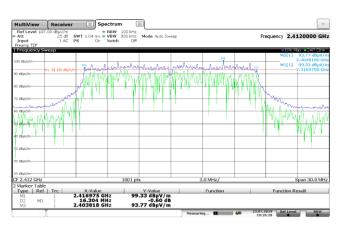

17:42:59 23.07.2019

Figure 8.5-1: 6 dB bandwidth on 802.11b, sample plot

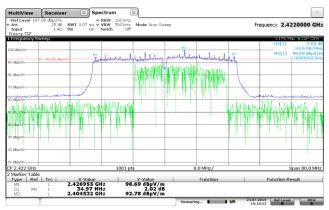
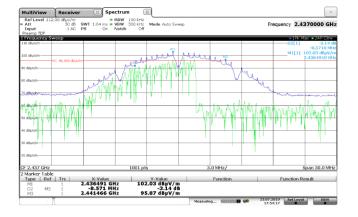

18:42:04 23.07.2019

Figure 8.5-3: 6 dB bandwidth on 802.11n HT20, sample plot

18:26:29 23.07.2019

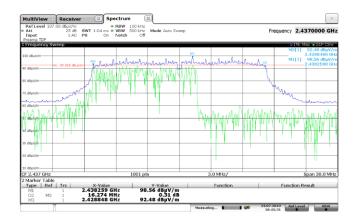
19:18:53 23.07.2019


Figure 8.5-4: 6 dB bandwidth on 802.11n HT40, sample plot

Testing data

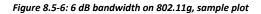
Test name	9
Specificat	ion

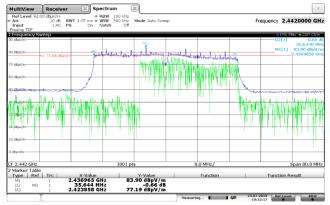
FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4



 Number
 Spectrum
 <

18:19:36 23.07.2019


Figure 8.5-5: 6 dB bandwidth on 802.11b, sample plot

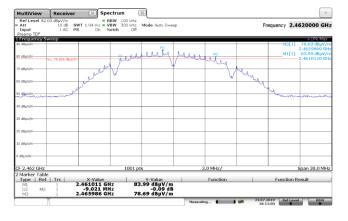


18:45:31 23.07.2019

17:54:18 23.07.2019

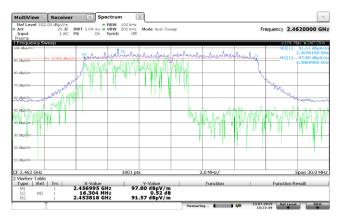
Figure 8.5-7: 6 dB bandwidth on 802.11n HT20, sample plot

19:32:17 23.07.2019

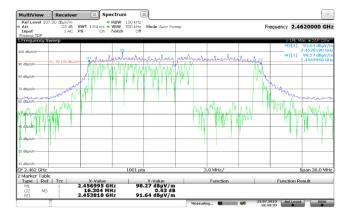

Figure 8.5-8: 6 dB bandwidth on 802.11n HT40, sample plot

Testing data

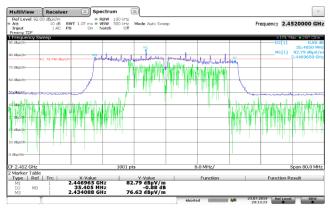
Nemko


Test name Specification

FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4


18:11:00 23.07.2019

18:22:50 23.07.2019



18:48:30 23.07.2019

Figure 8.5-11: 6 dB bandwidth on 802.11n HT20, sample plot

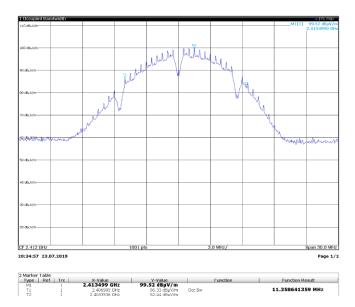

20:13:24 23.07.2019

Figure 8.5-12: 6 dB bandwidth on 802.11n HT40, sample plot

Testing data

Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

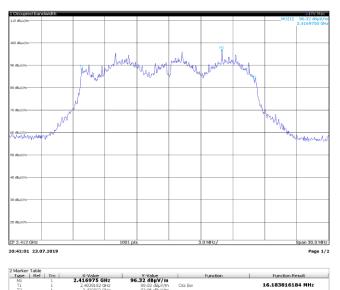


Figure 8.5-13: 99% bandwidth on 802.11b, sample plot

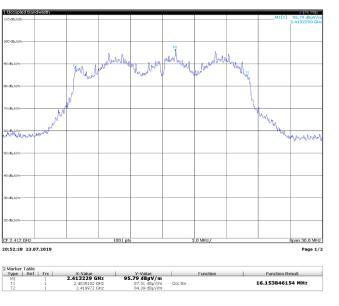
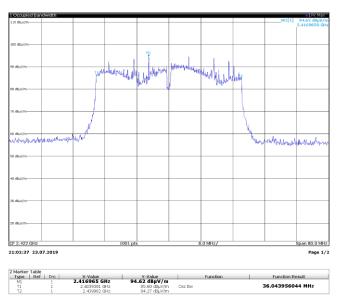
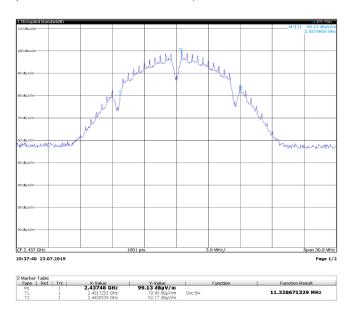
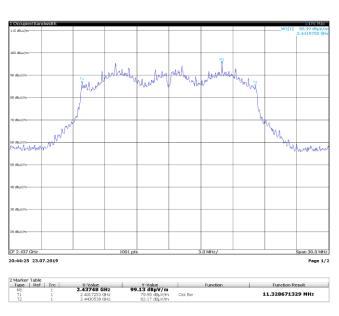


Figure 8.5-15: 99% bandwidth on 802.11n HT20, sample plot

Figure 8.5-14: 99% bandwidth on 802.11g, sample plot




Figure 8.5-16: 99% bandwidth on 802.11n HT40, sample plot


Testing data

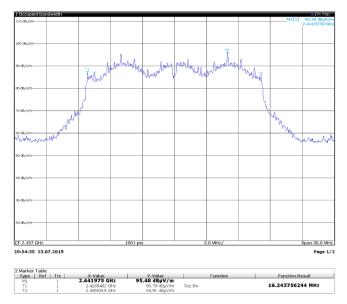

FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

Figure 8.5-17: 99% bandwidth on 802.11b, sample plot

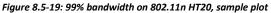
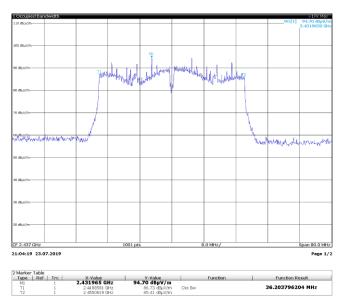
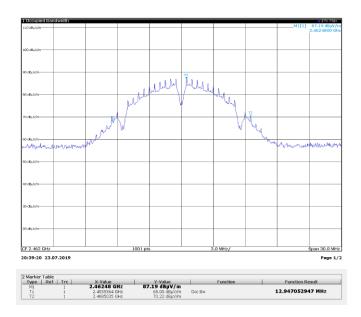


Figure 8.5-18: 99% bandwidth on 802.11g, sample plot




Figure 8.5-20: 99% bandwidth on 802.11n HT40, sample plot

Testing data

Test name Specification

FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

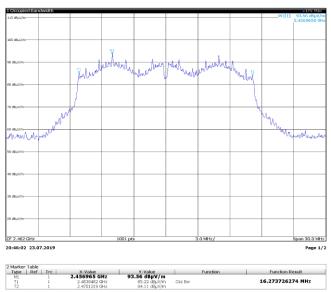
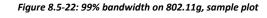
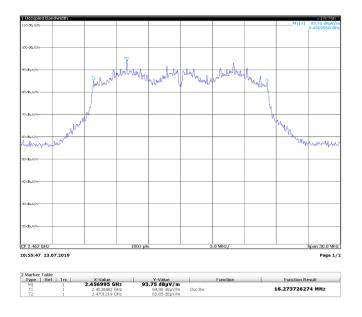
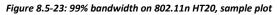





Figure 8.5-21: 99% bandwidth on 802.11b, sample plot

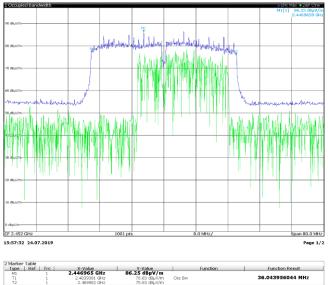


Figure 8.5-24: 99% bandwidth on 802.11n HT40, sample plot

 Test name
 FCC 15.407(g) and RSS-Gen 8.11 Frequency stability

 Specification
 FCC Part 15 Subpart E and RSS-Gen Issue 4

8.6 FCC 15.247(b) and RSS-247 5.4 (d) Transmitter output power and e.i.r.p. requirements for DTS in 2.4 GHz

8.6.1 Definitions and limits

FCC:

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

- (3) For systems using digital modulation in the 2400–2483.5 MHz band: 1 W (30 dBm). As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(i) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(i) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(i) of this section by more than 8 dB. (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Section 8	Testing data	
Test name Specification	FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4	

ISED:

Start date

d. For DTSs employing digital modulation techniques operating in the 2400–2483.5 MHz band, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

e. Fixed point-to-point systems in the 2400–2483.5 MHz band are permitted to have an e.i.r.p. higher than 4 W provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. Point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding an e.i.r.p. of 4 W.

f. Transmitters operating in the band 2400–2483.5 MHz, may employ antenna systems that emit multiple directional beams simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers, provided that the emissions comply with the following:

i Different information must be transmitted to each receiver.

July 25, 2019

ii If the transmitter employs an antenna system that emits multiple directional beams, but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device (i.e. the sum of the power supplied to all antennas, antenna elements, staves, etc., and summed across all carriers or frequency channels) shall not exceed the applicable output power limit specified in sections 5.4(b) and 5.4(d). **However**, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

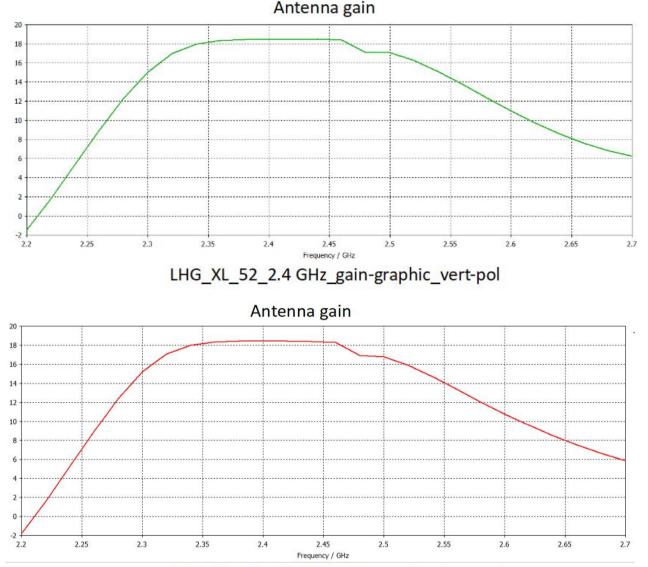
iii If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the applicable power limit specified in sections 5.4(b) and 5.4(d). If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the applicable limit specified in sections 5.4(b) and 5.4(d). In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the applicable limit specified in sections 5.4(b) and 5.4(d) by more than 8 dB. iv Transmitters that transmit a single directional beam shall operate under the provisions of sections 5.4(b), 5.4(d) and 5.4(e).

8.6.1	Test date				

Report reference ID: 368276-1TRFWL

Section 8 Testing data

Test nameFCC 15.407(g) and RSS-Gen 8.11 Frequency stabilitySpecificationFCC Part 15 Subpart E and RSS-Gen Issue 4



8.6.2 Observations, settings and special notes

The test was performed using Integrated band power method. Tests were performed with highest and lowest data rates, only the worst cases were presented.

EIRP CALCULATION:

Max antenna gain: 18.5 dBi (see below the gain measurement provided by manufacturer)

LHG_XL_52_2.4 GHz_gain-graphic_horz-pol

Testing data

Test nameFCC 15.407(g) and RSS-Gen 8.11 Frequency stabilitySpecificationFCC Part 15 Subpart E and RSS-Gen Issue 4

DIRECTIONAL GAIN According to KDB 662911 (F)(2)(e)(i):

Directional antenna gain $G_{DIR} = G_{MAX} + 10 * Log (N_{ANT}/N_{SS})$, where N_{SS} is the number of independent spatial streams of data and G_{MAX} is the gain of the antenna having the highest gain (in dBi).

Device supports spatial multiplexing/cyclic delay diversity in MIMO configurations and single stream legacy modes. Antenna gain for both chains is the same. Signals between chains are correlated. Then N_{ANT} = 2 and N_{SS} = 1:

 $G_{DIR} = 18.5 \text{ dBi} + 10*Log (2/1) = 21.5 \text{ dBi}.$

OUTPUT POWER/EIRP/PSD LIMIT ADJUSTMENT Output power/EIRP/PSD limit – (Total antenna gain – 6 dBi). FCC Output power limit is 30 dBm – (21.5-6) = 30 dBm – 15.5 = 14.5 dBm

E-FIELD CALCULATION According to KDB 558074 and ANSI C63.10:

 $EIRP_{dBm} = S_{dB\mu V/m} + 20*Log(d_m) - 104.7$

Example of calculation, 3 m distance, 111 dBuV/m: EIRP_{dBm=}111 dBuV/m+20*log10(3)-104.7=15.9 dBm eirp

According clause 14.5 of ANSI C63.10 where radiated measurements are used for determining compliance with conducted limits, the following steps are required to ensure that the total emission power or PSD is determined for equipment driving cross-polarized antennas:

a) Measure radiated emissions with vertical and horizontal polarizations of the measurement antenna.

b) Convert each radiated measurement to transmit power or PSD based on the antenna gain.

c) Sum the powers or PSDs across the two polarizations.

Testing data

Test name Specification

FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

8.6.3 Test data

Radiated Field strength, vertical polarization

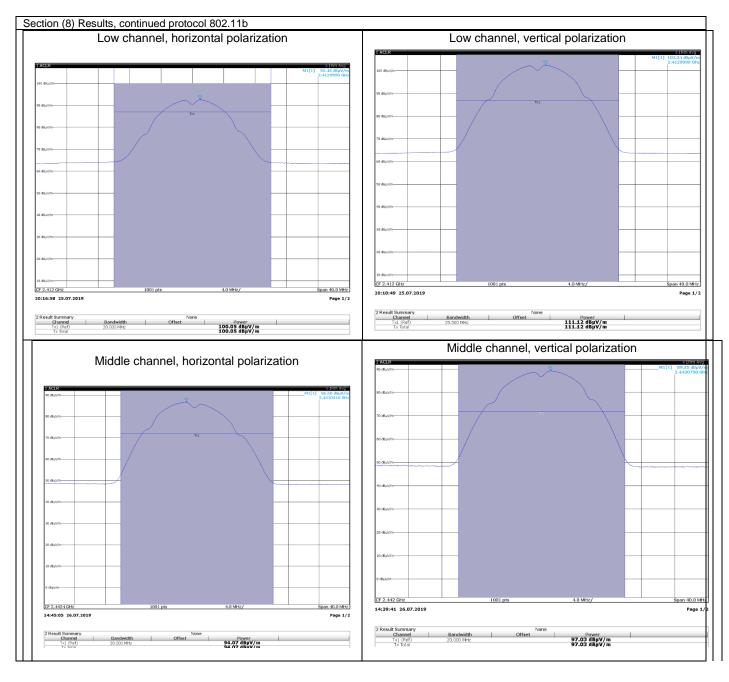
Modulation	Frequency, MHz	dBm	Limit	Margin, dB	Antenna gain, dBi	EIRP,	EIRP limit, dBm	EIRP margin, dB	E Field dBuV/m
		Measured			0,	dBm			
802.11b	2412	-5.6	14.5	-20.1	21.5	15.9	36.0	-20.1	111.1
	2442	-19.6	14.5	-34.1	21.5	1.9	36.0	-34.1	97.0
	2462	-18.8	14.5	-33.3	21.5	2.7	36.0	-33.3	97.9
802.11g	2412	-8.4	14.5	-22.9	21.5	13.1	36.0	-22.9	108.3
	2442	-11.4	14.5	-25.9	21.5	10.1	36.0	-25.9	105.2
	2462	-8.0	14.5	-22.5	21.5	13.5	36.0	-22.5	108.7
802.11n HT20	2412	-7.3	14.5	-21.8	21.5	14.2	36.0	-21.8	109.4
	2442	-9.5	14.5	-24.0	21.5	12.0	36.0	-24.0	107.2
	2462	-9.2	14.5	-23.7	21.5	12.3	36.0	-23.7	107.5
802.11n HT40	2422	-8.2	14.5	-22.7	21.5	13.3	36.0	-22.7	108.5
	2442	-13.1	14.5	-27.6	21.5	8.4	36.0	-27.6	103.5
	2452	-11.1	14.5	-25.6	21.5	10.4	36.0	-25.6	105.6

Radiated Field strength, horizontal polarization

Modulation	Frequency, MHz	dBm Measured	Limit	Margin, dB	Antenna gain, dBi	EIRP, dBm	EIRP limit, dBm	EIRP margin, dB	E Field dBuV/m
					-				
802.11b	2412	-16.7	14.5	-31.2	21.5	4.8	36.0	-31.2	100.0
	2442	-22.6	14.5	-37.1	21.5	-1.1	36.0	-37.1	94.0
	2462	-22.2	14.5	-36.7	21.5	-0.7	36.0	-36.7	94.5
802.11g	2412	-23.0	14.5	-37.5	21.5	-1.5	36.0	-37.5	93.7
	2442	-24.5	14.5	-39.0	21.5	-3.0	36.0	-39.0	92.2
	2462	-22.9	14.5	-37.4	21.5	-1.4	36.0	-37.4	93.8
802.11n HT20	2412	-28.6	14.5	-43.1	21.5	-7.1	36.0	-43.1	88.1
	2442	-17.2	14.5	-31.7	21.5	4.3	36.0	-31.7	99.5
	2462	-23.9	14.5	-38.4	21.5	-2.4	36.0	-38.4	92.8
802.11n HT40	2422	-17.8	14.5	-32.3	21.5	3.7	36.0	-32.3	98.9
	2442	-18.2	14.5	-32.7	21.5	3.3	36.0	-32.7	98.5
	2452	-15.4	14.5	-29.9	21.5	6.1	36.0	-29.9	101.3

Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

Modulatio n	Frequency,	Conducted output power, dBm		Margin, dB	Antenna gain, dBi	EIRP,	EIRP limit,	EIRP margin, dB
	MHz	Measured	Limit			dBm	dBm	
802.11b	2412	-5.2	14.5	-19.7	21.5	16.3	36.0	-19.7
	2442	-17.9	14.5	-32.4	21.5	3.6	36.0	-32.4
	2462	-17.1	14.5	-31.6	21.5	4.4	36.0	-31.6
802.11g	2412	-8.2	14.5	-22.7	21.5	13.3	36.0	-22.7
	2442	-11.2	14.5	-25.7	21.5	10.3	36.0	-25.7
	2462	-7.8	14.5	-22.3	21.5	13.7	36.0	-22.3
802.11n HT20	2412	-7.3	14.5	-21.8	21.5	14.2	36.0	-21.8
	2442	-8.8	14.5	-23.3	21.5	12.7	36.0	-23.3
	2462	-9.0	14.5	-23.5	21.5	12.5	36.0	-23.5
802.11n HT40	2422	-7.7	14.5	-22.2	21.5	13.8	36.0	-22.2
	2442	-11.9	14.5	-26.4	21.5	9.6	36.0	-26.4
	2452	-9.7	14.5	-24.2	21.5	11.8	36.0	-24.2

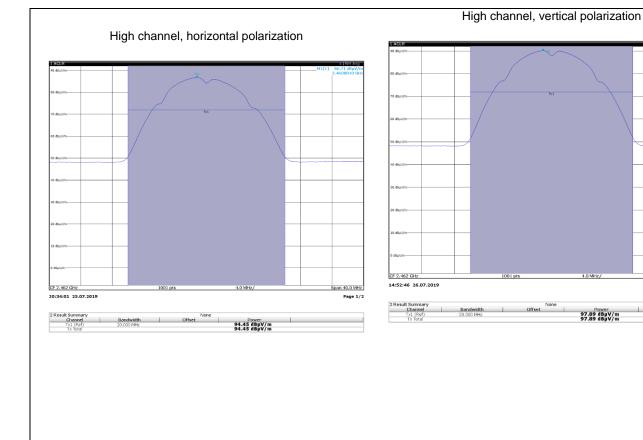

Table 8.6-1: Total Output power measurements Sum of E Field in vertical and horizontal polarization) to dBm EIRP (Total E Field – antenna gain - 20*log10(3)-104.7 dB)

Testing data

Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

detector = RMS (power averaging).

Testing data

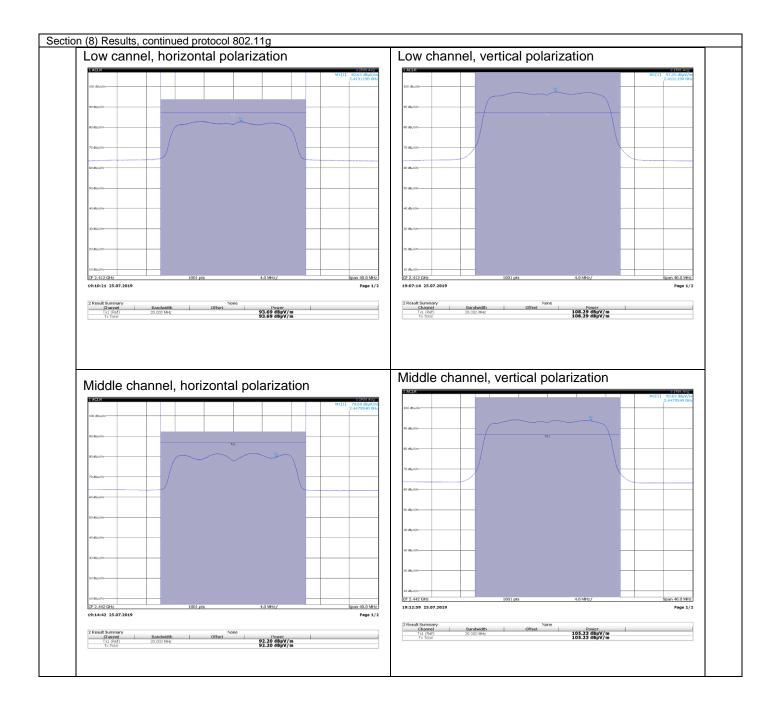


1 40.0 MHz

Page 1/2

Power 97.89 dBµV/m 97.89 dBµV/m

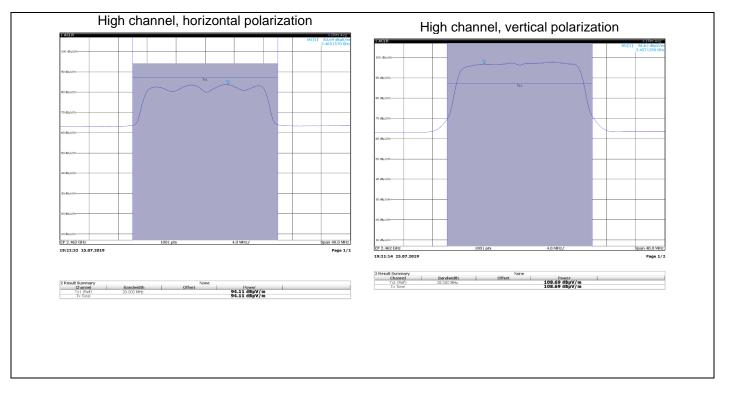
Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4



Report reference ID: 368276-1TRFWL

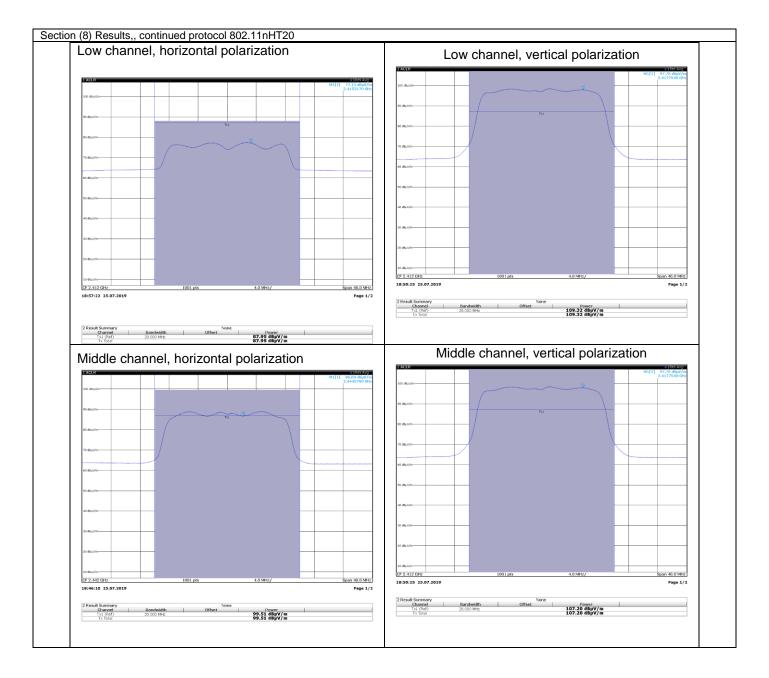
Testing data

Nemko


Test name Specification

Testing data

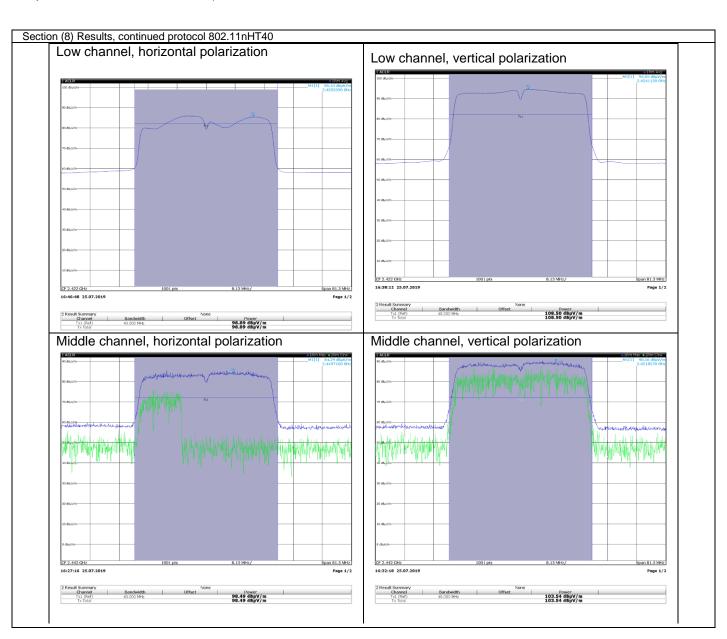
Nemko


Test name Specification

Testing data

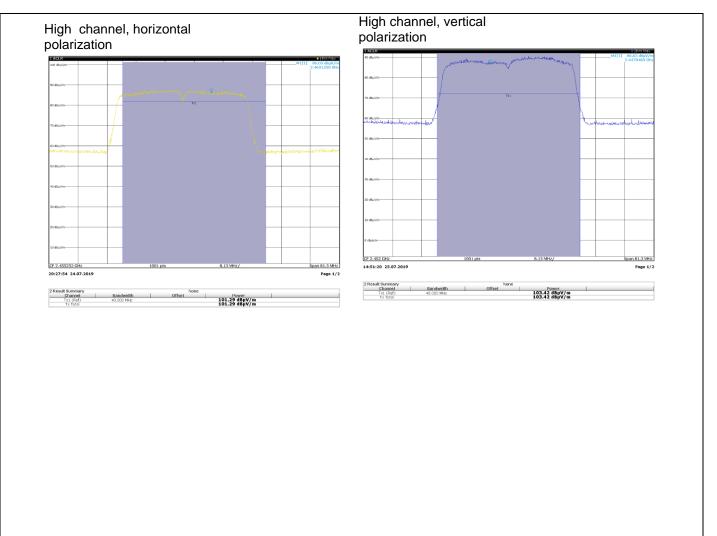
Nemko

Test name Specification



Hi	FCC Part 15 Subpart E and RSS-Gen Issue 4 gh channel, horizontal polarization	High channel vertical polarization
НЦ 16.8.000 16.8.000 16.8.000 16.8.000 16.8.0000 16.8.000 16.8.0000 16.8.00000000000000000000000000000	h channel, horizontal polarization	<section-header><section-header><section-header></section-header></section-header></section-header>

Testing data


Testing data

Test name Specification

Testing data

Test name Specification

Section 8 Testing data

Test name Specification

FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

8.7 FCC 15.247(d) and RSS-247 5.5 Spurious (out-of-band) unwanted emissions

8.7.1 Definitions and limits

FCC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

ISED:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Table 8.7-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field stren	gth of emissions	Measurement distance, m
MHz	μV/m	dBµV/m	
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.7-2: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.57675-12.57725	399.9–410	7.25–7.75
0.495-0.505	13.36–13.41	608–614	8.025-8.5
2.1735-2.1905	16.42–16.423	960–1427	9.0–9.2
3.020-3.026	16.69475-16.69525	1435–1626.5	9.3–9.5
4.125-4.128	16.80425-16.80475	1645.5-1646.5	10.6–12.7
4.17725-4.17775	25.5-25.67	1660–1710	13.25–13.4
4.20725-4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677-5.683	73–74.6	2200–2300	15.35-16.2
6.215-6.218	74.8–75.2	2310–2390	17.7–21.4
6.26775-6.26825	108–138	2483.5-2500	22.01-23.12
6.31175–6.31225	149.9–150.05	2655–2900	23.6–24.0
8.291-8.294	156.52475-156.52525	3260-3267	31.2-31.8
8.362-8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625-8.38675	162.0125-167.17	3345.8–3358	
8.41425-8.41475	167.72–173.2	3500–4400	Above 38.6
12.29-12.293	240–285	4500–5150	Above 38.6
12.51975-12.52025	322–335.4	5350–5460	

Note: Certain frequency bands listed in Table 8.7-2 and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Section 8 Testing data

Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

Table 8.7-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36–13.41			

8.7.1 Test date

Start date March, 25, 2019

Test name	FCC 15.407(g) and RSS-Gen 8.11 Frequency stability
Specification	FCC Part 15 Subpart E and RSS-Gen Issue 4

8.7.2 Observations, settings and special notes

The spectrum was searched from 30 MHz to the 10th harmonic.

EUT was set to transmit continuously. Tests were performed with EUT set to highest and lowest data rate, different antenna configurations and modulation schemes were investigated, only the worst case are presented.

Radiated measurements were performed at a distance of 3 m. Cabinet radiated emissions were performed with antenna port terminated with 50 Ω load.

Spectrum analyzer settings for conducted spurious emissions measurements:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyzer settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyzer settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

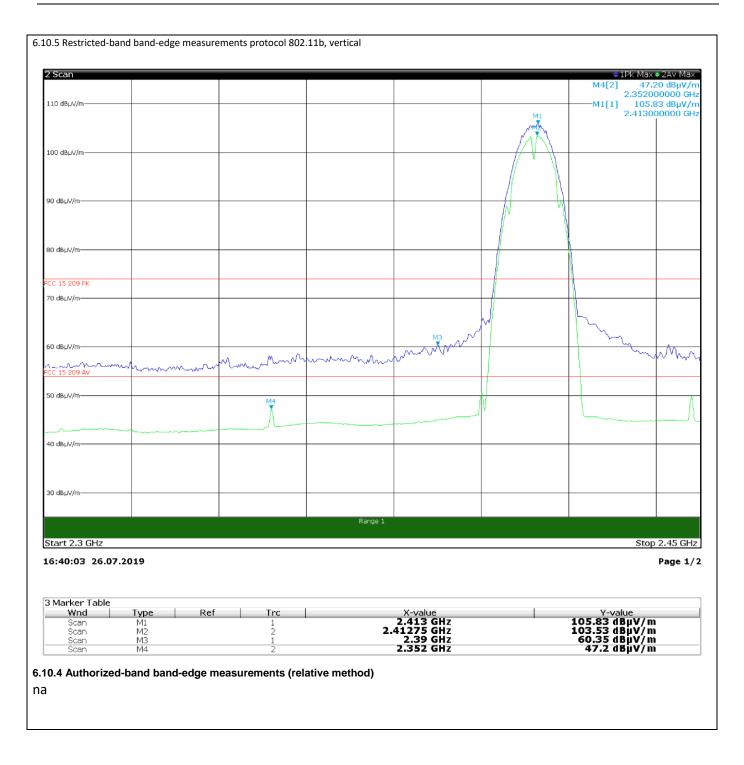
Spectrum analyzer settings for average conducted measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	power averaging (RMS)
Trace mode:	averaging (RMS)

Spectrum analyzer settings for average radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	10 Hz
Detector mode:	Peak
Trace mode:	Max Hold

The spurious emission were performed in MIMO mode.


Section 8

Testing data

Test nameFCC 15.407(g) and RSS-Gen 8.11 Frequency stabilitySpecificationFCC Part 15 Subpart E and RSS-Gen Issue 4

8.7.4 Test data

Testing data

Test name Specification

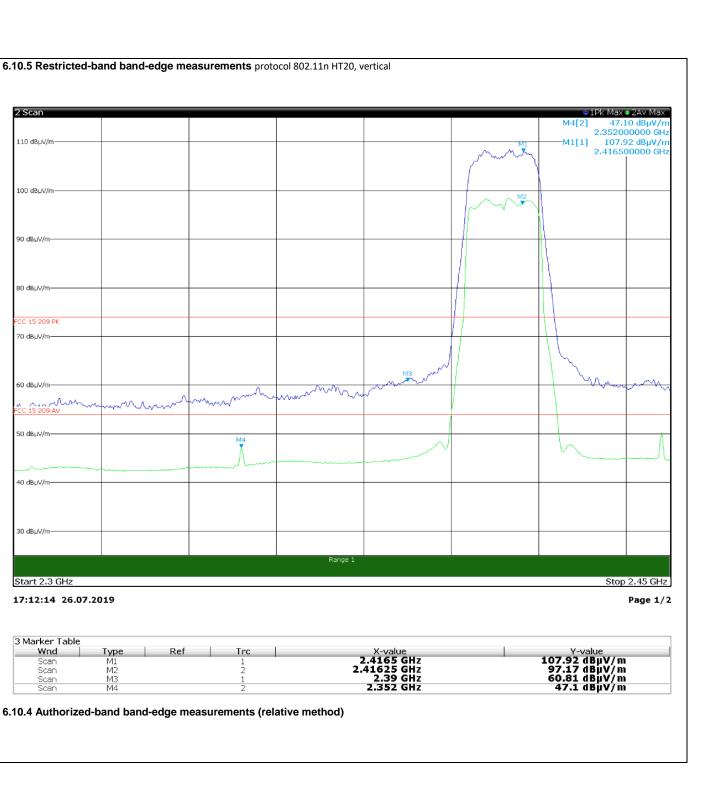
Trc X-value Y-value 1 2.413 GHz 96.56 dBµV/ 2 2.41275 GHz 94.31 dBµV/ 1 2.39 GHz 57.43 dBµV/ 2 2.39 GHz 44.13 dBµV/	Page 1
	Page 1
	Page 1
5	.op 2,40 G
	op 2,45 G
Range 1	
M4	
man man market and the second se	_
	mm
	_
2.41	3000000 G
2.39	4.13 dBμV 00000000 6 6.56 dBμV
	39 9

Testing data

Test name Specification

Scan								dax ● 2Av Ma>
								89.97 dBµV∕ı 16250000 GF
l0 dBµV/m							M1[1]	99.93 dBµV/i
							2.4	16500000 GH
0 dBµV/m						M1		
						MMA		
						M2	l	
) dBµV/m								
]/ V °V \ ₄		
						l (
) dBµV/m							<u> </u>	
C 15 209 PK								
) dBµV/m						1		
- Greep V/III								
							11	
I dBµV/m					M3		they	
C 15 209 AV	mman		mannan	mm	manne		mm	man
C 15 209 AV								
) dBµV/m								
					M4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~
) dBµV/m								
) dBµV/m								
				Range 1				
art 2.3 GHz							5	Stop 2.45 GH
57:09 26.07	2019							Page 1
	.2019							Fage I,
Marker Table								
Wnd	Туре	Ref	Trc	-	X-value		Y-value 87.79 dBμV	/
Scan Scan	M1 M2		1 2		4635 GHz 2.463 GHz		85.22 dBµV	/ m
Scan	M3		1		4835 GHz 4835 GHz		49.29 dBµV/ 36.54 dBµV/	/ m / m
Scan	M4		2	2.	4033 982		30.34 ubµv,	
4 Author:	d hand hand		mente (relative	mothod)				
.+ Authorized	a-band band-	euge measure	ements (relative	metrioa)				

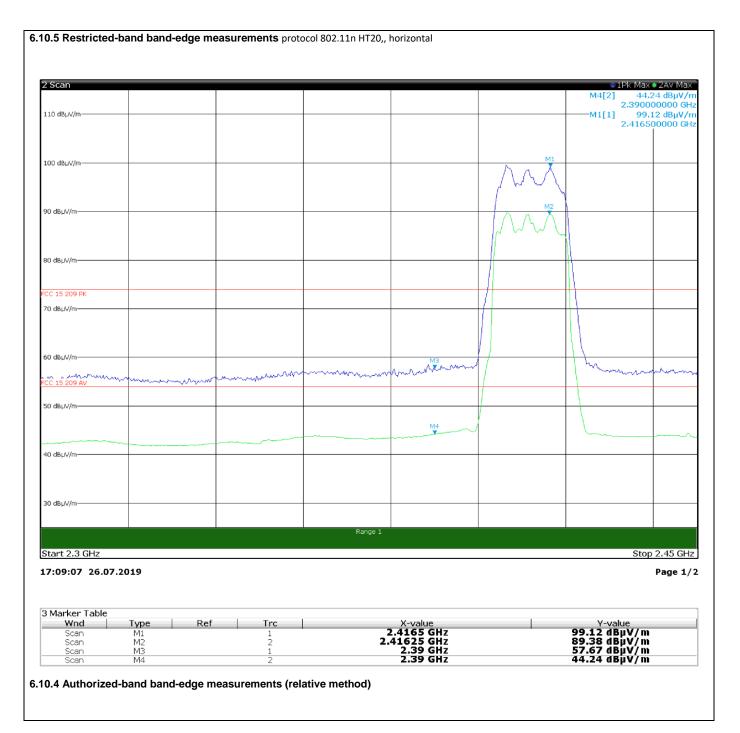
Testing data



Test name Specification

							x • 2Av Ma
							'.00 dBμV, 000000 G
0 dBµV/m					M1	——M1[1] 107	'.19 dBμV 500000 0
					min	2.410	
					(
D dBµV/m					M2		-
					M2		
dBµV/m							_
						11	
dBµV/m							
15 209 PK						{}	
dBµV/m							
				/		12	
dBµV/m				M3 M		- March	. m
15 209 AV	man	mon	mmm	Werren -			1
15 209 AV	and when a						
dBµV/m							
		M4		\sim		h	
		I man					
dBµV/m							
dBµV/m							
			Range 1				
art 2.3 GHz						Sto	p 2.45 G
:00:30 26.07.2	010						Page
.00.30 20.07.2	019						rage
Aarker Table	-		1				
Wnd Scan	Type Ref	1		X-value 2.4165 GHz		Y-value 107.19 dBµV/i 96.73 dBµV/i 59.09 dBµV/i	m
	M2	2	2.	41625 GHz 2.39 GHz		96.73 dBµV/i 59.09 dBµV/i	m m
Scan Scan	M3			2.352 GHz		47.0 dBµV/	

Testing data


Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

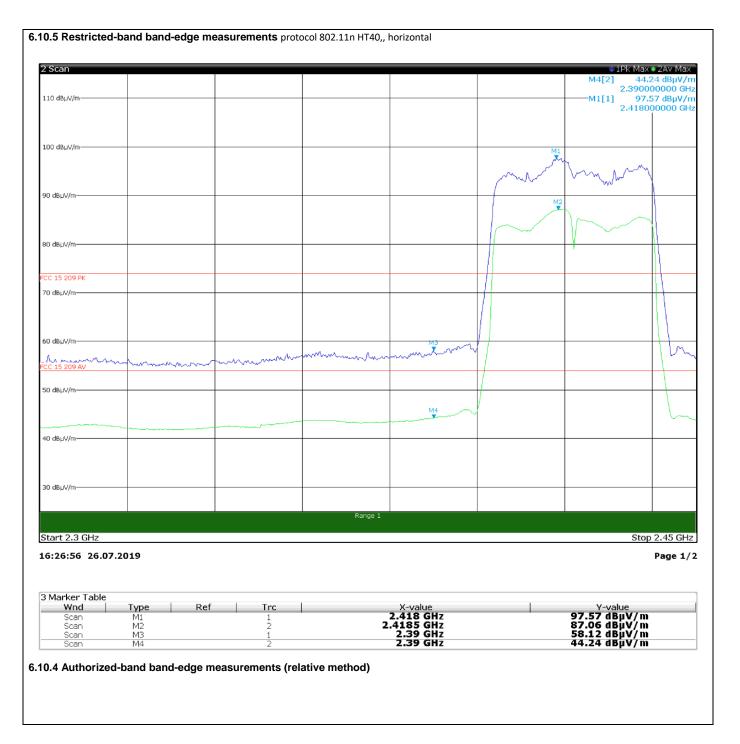
Nèmko

Testing data

Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

mko

Testing data



Test name Specification

Scan Scan Scan Scan Scan	M1 M2 M3 M4		1 2 1 2		X-value 2.418 GHz 2.4185 GHz 2.39 GHz 2.39 GHz			Y-va 104.74 dl 94.43 dl 59.24 dl 46.05 dl	3μV/m 8μV/m 8μV/m 8μV/m 8μV/m
Marker Table Wnd	Туре	Ref	Trc		X-value			Y-va	lue
:30:32 26.07.	2019								Page
art 2.3 GHz									Stop 2.45
				Rang	e 1				
dBµV/m						-			
dBµV/m									
			Λ						
dBµV/m					M4	V			
15 209 AV	Amm	mm	m	mmm	Munner				
dBµV/m					M3 N	V			
					N.				
dBµV/m									
15 209 PK									
dBµV/m						+			
dBµV/m								V	
								$V \sim$	
							M2		
D dBµV/m						+			
							mm	m	m
D dBµV/m							M1	——M1[1]	104.74 dBp 2.41800000
								M4[2]	46.05 dBj 2.390000000

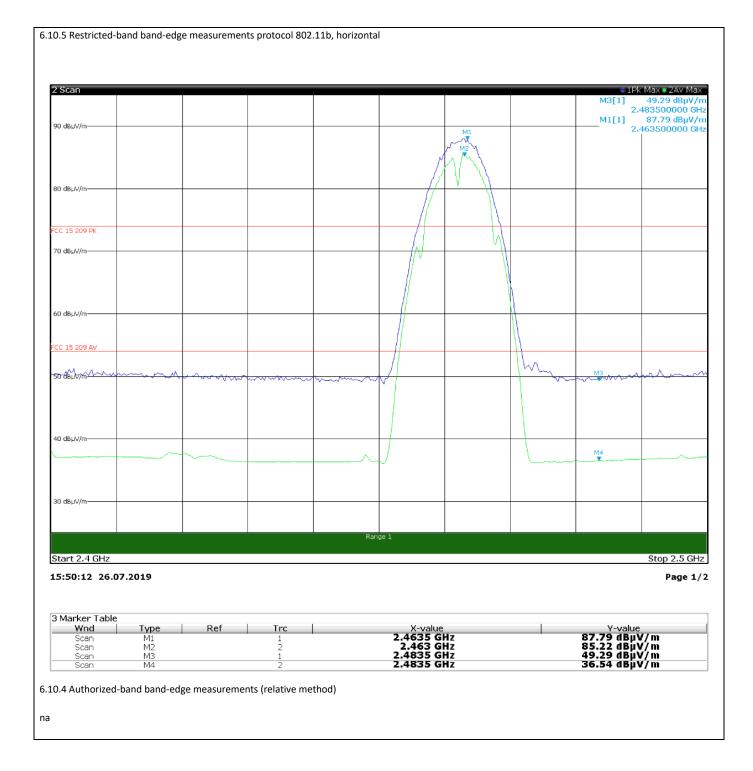
Testing data

Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

mko

Testing data

Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4



6.10.5 Restricted-band band-edge measurements protocol 802.11b, vertical 2 Scan 😑 i Pk. Max 💿 2Av. Max M4[2] 42.37 dBµV/n 2.496000000 GH M1[1] 91.17 dBµV/m 2.461000000 GHz 100 dBµV/m 90 dBµV/m· 80 dBµV/m· FCC 15 209 PK 70 dBµV/m 60 dBµV/m· Many CC 15 209 AV $\overline{\Lambda N}$ k / 50 dBµV/m MAM 40 dBµ∨/m 30 dBuV/m Range 1 Start 2.4 GHz Stop 2.5 GHz 15:54:39 26.07.2019 Page 1/2 3 Marker Table Y-value 91.17 dBµV/m 88.84 dBµV/m 53.54 dBµV/m 42.37 dBµV/m X-value 2.461 GHz 2.46125 GHz 2.4835 GHz 2.496 GHz Ref Wnd Trc Туре M1 M2 M3 M4 Scan Scan 1 Scan Scan 6.10.4 Authorized-band band-edge measurements (relative method) n/a

Testing data

Nemko

Test name Specification

Testing data

Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4

6.10.5 Restricted-band band-edge measurements protocol 802.11g, vertical 2 Scan 🕽 1Pk Max 🗢 2Av Max M2[2] 96.53 dBµV/r 2.467000000 GH 106.72 dBµV/n 2.466500000 GH 110 dBµV/m M1[1] M1 100 dBµV/m M2 90 dBµV/m· 80 dBµV/m· FCC 15 209 PK 70 dBµV/m мз 60 dBµV/m m CC 15 209 A 50 dBuV/m 40 dBµV/m 30 dBµV/m· Range 1 Stop 2.5 GHz Start 2.4 GHz 16:01:37 26.07.2019 Page 1/2 3 Marker Table Wnd Type M1 M2 M3 M4 X-value 2.4665 GHz 2.467 GHz 2.4835 GHz 2.496 GHz Y-value 106.72 dBµV/m 96.53 dBµV/m 59.61 dBµV/m 47.93 dBµV/m Ref Trc Scan Scan 1 Scan 6.10.4 Authorized-band band-edge measurements (relative method) na

Testing data

Test name Specification

								M4[2]	: Max • 2Av M 44.11 dBµ
0 dBµV/m								2. M1[1]	483500000 98.81 dBµ\
								2,	465500000
) dBµV/m						M1			
					/ V	$\bigvee \bigvee$			
dBµV/m									
					$ / \vee$	$ \vee \vee$			
dBµ∨/m							11		
15 209 PK									
dBµV/m									
dBµV/m							\square		
~	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······	mm			1 hours	MB	prover
15 209 AV					/				
dBµV/m					/				
								M4	
				, in the second se					
dBµV/m									
dBµV/m									
	'			Ran	ge 1	۱		·	·
art 2.4 GHz									Stop 2.5 (
:06:12 26.07.	2019								Page
Marker Table	Turse	Def	Tree		V			V	
Wnd Scan	M1	Ref	<u>1</u>		X-value 2.4655 Gl	Hz		Υ-value 98.81 dBμ 88.62 dBμ	// m
Scan Scan	M2 M3		2 1		2.4655 G 2.4835 G 2.4835 G			88.62 dBµ 56.94 dBµ 44.11 dBµ	//m //m
Scan	M4		2		2.4835 G	HZ		44.11 dBµ\	// M

Testing data

Test name Specification

can									γk Max⊙2Av Ma
								M4[2]	45.04 dBμV/ 483500000 G
l dBµV/m								M1[1]	105.92 dBµV/
					\sim	M1		2	.465500000 G
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
I dBµV/m									
						M2			
						~~~~	1		
dBµV/m									
							11		
							11		
dBµ∨/m									
15 209 PK									
dBµV/m					[-]		$\left \right\rangle$		
							$ \rangle \sim$		
dBµV/m				www.	H			have a	4.mar
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	men	V *	/				
15 209 AV									
dBµV/m				/					
								M4	
				V				M4	
In A View									
dBµV/m									
dBµV/m									
				Ran	je 1				
art 2.4 GHz									Stop 2.5 G
10:19 26.07	.2019								Page :
larker Table	-	<b>P</b> (	-						
Wnd Scan	Type M1	Ref	1 1		X-value 2.4655 Gl	Hz		Y-valu 105.92 dB	uV/m
Scan	M2 M3		2		2.4655 G	Hz		95.67 dB	uV/m
Scan	M3 M4		2		2.4835 G 2.4835 G	Hz		59.2 dB 45.04 dB	iv/m
Authorized-b	and band-edg	ge measuremer	nts (relative me	thod)					

Testing data

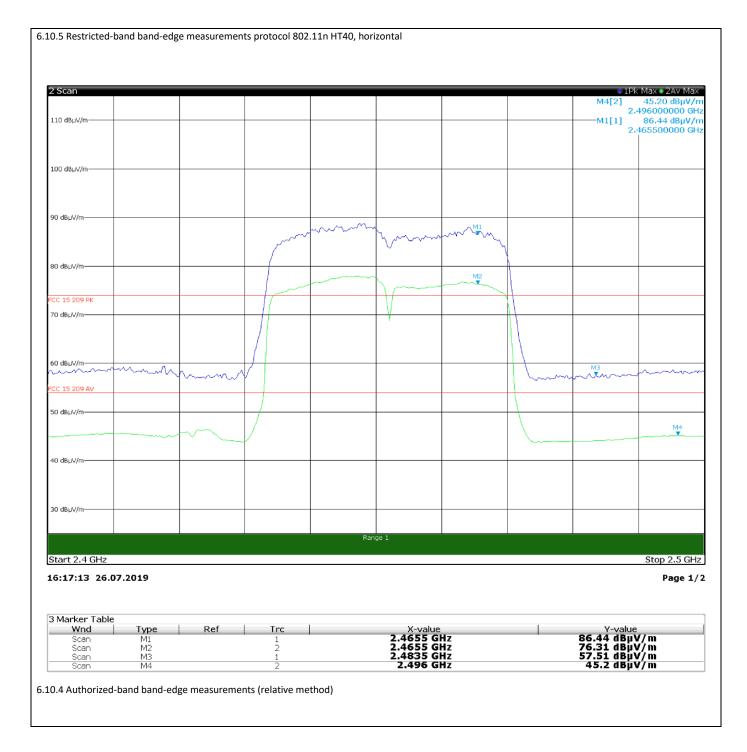


Test name Specification

Scan								M4[2]	iPk Max ● 2Av Ma 44.00 dBμV, 2.483500000 G
0 dBµV/m								M1[1]	96.01 dBµV, 2.465500000 G
0.40.070									
0 dBµV/m						M1			
dBµV/m					$\wedge$	$\wedge \wedge$			
						M2			
dBµV/m					$  / \vee$				
: 15 209 PK dBµV/m					/				
dBµV/m	min a	A					+	M3	
: 15 209 AV					1/		1 - m	men	
dBµV/m					/				
					ł			M4	
dBµV/m									
dBµV/m									
				Rar	nge 1				
art 2.4 GHz									Stop 2.5 G
:08:41 26.07	.2019								Page :
4 Authorized-k	and band-eo	dge measurem	ents (relative						
		0	,						
Marker Table Wnd	Туре	Ref	Trc	1	V-value		1	V_ua	
Scan Scan	M1 M2	ixer	1 2 1		X-value 2.4635 G 2.463 G 2.4835 G 2.4835 G	Hz Hz		Y-va 87.79 dB 85.22 dB 49.29 dB 36.54 dB	μV/m uV/m
Scan Scan	M3 M4		2		2.4835 G 2.4835 G	Hz Hz		49.29 dB 36.54 dB	μV/m μV/m
(k									
-,									

Testing data




Test name Specification

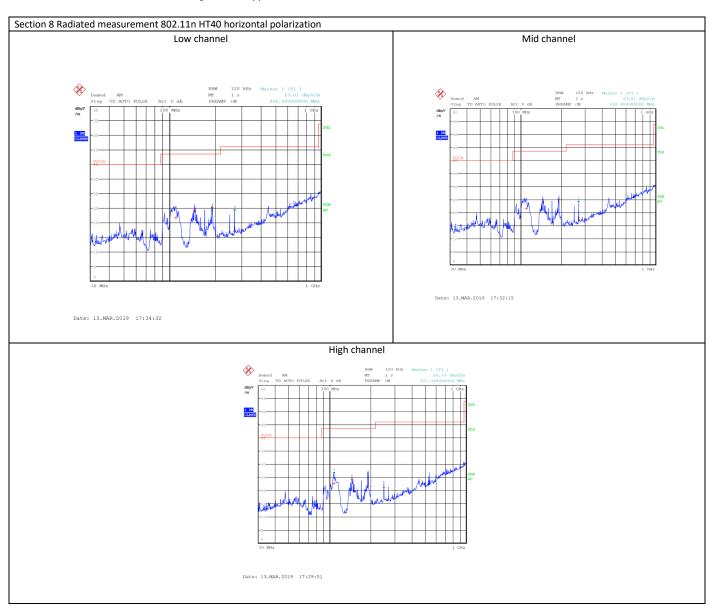
Scan Scan Scan	M2 M3 M4		1 2 1 2		2.4655 G 2.4655 G 2.4835 G 2.496 G	HZ HZ HZ		89.94 dBµ 79.8 dBµ 57.75 dBµ 46.27 dBµ	V/m V/m V/m
Marker Table Wnd	Type M1	Ref	Trc 1		X-value 2.4655 G	Hz		Y-valu 89.94 dBu	e V/m
									. age .
art 2.4 GHz 14:28 26.07	.2019								Stop 2.5 G
				Ran	801				
				8	ge 1				
dBµV/m									
dBµV/m									
			/						+
dBµ∨/m			1						M4
			1						1
15 209 AV	www	mm	/				1 mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	from
dBµV/m			/					M3	
			11						
dBµV/m							$\left  \right $		
15 209 PK					V				
dBµV/m			1		$\gamma$				1
						M2			
			~			رس			
dBµV/m			~~~~	min	mm	~~~M1			
) dBµV/m									
								2	
I dBµV/m								M1[1]	2.49600000 89.94 dBμ\ 2.465500000
								M4[2]	46.27 dBµV

Testing data



Test name Specification




Testing data

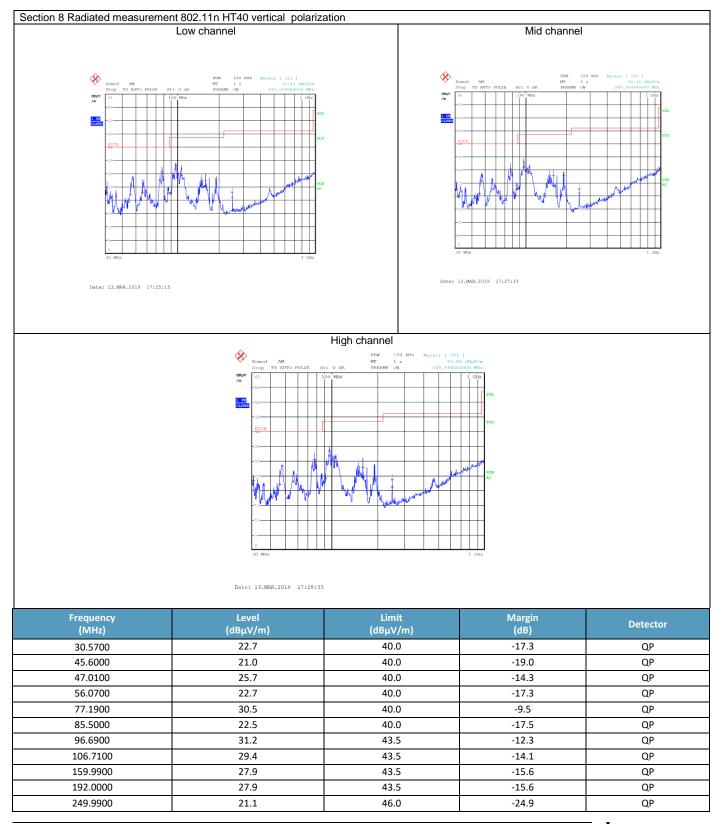
Test name Specification FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4



8.7.1 Test data, continued

Also other modulations have been investigated: not appreciable variation of the results were obtanined



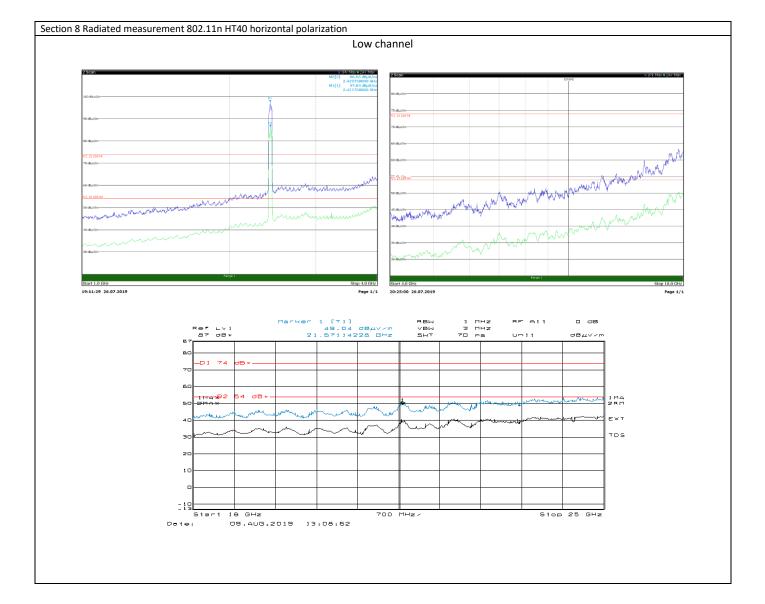

Frequency (MHz)	Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Detector
109.8000	21.7	43.5	-21.8	QP
145.2600	24.2	43.5	-19.3	QP
192.0000	25.3	43.5	-18.2	QP
268.8000	17.1	46.0	-28.9	QP

Testing data

## Test name Specification

FCC 15.407(g) and RSS-Gen 8.11 Frequency stability FCC Part 15 Subpart E and RSS-Gen Issue 4






Report reference ID: 368276-1TRFWL

Page 63 of 101

Testing data

Test name Specification



