

CFR 47 FCC PART 15 SUBPART E ISED RSS-247 Issue 3

TEST REPORT

For

IEEE 802.11b/g/n/a/ac/ax 2T2R PCIE WiFi Module Integrated BT 2.1+EDR/4.2/5.3

MODEL NUMBER: SKO.WB276P.1

REPORT NUMBER: 4791083360-RF-4

ISSUE DATE: January 8, 2024

FCC ID:2AR82-SKOWB276P1

IC:24728-SKOWB276P1

Prepared for

Guangzhou Shikun Electronics Co., Ltd NO.6 Liankun Road, Huangpu District, Guangzhou China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	January 8, 2024	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
On Time And Duty Cycle	ANSI C63.10-2013, Clause 12.2	None; for reporting purposes only.	Pass
6db And 26db Emission Bandwidth And 99% Occupied Bandwidth	KDB 789033 D02 v02r01 Section C.1	FCC Part 15.407 (a)/(e), RSS-247 Issue 3, Clause 6.2.1.2 RSS-Gen Clause 6.7	Pass
Conducted Output Power	KDB 789033 D02 v02r01 Section E.3.a (Method PM)	FCC 15.407 (a) RSS-247 Clause 6.2	Pass
Power Spectral Density	KDB 789033 D02 v02r01 Section F	FCC 15.407 (a) RSS-247 Clause 6.2	Pass
Ac Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2.	FCC 15.207 RSS-GEN Clause 8.8	Pass
Radiated Emissions And Band Edge Measurement	KDB 789033 D02 v02r01 Section G.3, G.4, G.5, and G.6	FCC 15.407 (b) FCC 15.209 FCC 15.205 RSS-247 Clause 6.2 RSS-GEN Clause 8.9	Pass
Frequency Stability	ANSI C63.10-2013,Clause 6.8	FCC 15.407 (g)	Pass
Dynamic Frequency Selection (Slave)	KDB 905462 D03 Client Without DFS New Rules v01r02	FCC Part 15.407 (h), RSS-247 Issue 3 Clause6.3	Pass
Antenna Requirement	/	FCC 47 CFR Part 15.203/ 15.407(a)(1) (2), RSS-Gen Issue 5, Clause 6.8	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART E and ISED RSS-247 Issue 3> when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTESTATION OF TEST RESULTS6	;
2.	TEST METHODOLOGY7	,
3.	FACILITIES AND ACCREDITATION7	,
4.	CALIBRATION AND UNCERTAINTY	;
4	Δ.1. MEASURING INSTRUMENT CALIBRATIONδ	3
4	2. MEASUREMENT UNCERTAINTY	3
5.	EQUIPMENT UNDER TEST9)
5	5.1. DESCRIPTION OF EUT)
5	5.2. CHANNEL LIST)
5	5.3. MAXIMUM POWER	1
5	5.4. TEST CHANNEL CONFIGURATION)
5	5.5. THE WORSE CASE POWER SETTING PARAMETER	1
5	6.6. WORSE CASE CONFIGURATIONS17	7
5	5.7. DESCRIPTION OF AVAILABLE ANTENNAS	3
5	8.8. SUPPORT UNITS FOR SYSTEM TEST)
6.	MEASURING EQUIPMENT AND SOFTWARE USED	
7.	ANTENNA PORT TEST RESULTS23	•
••	ANTENNA PORT TEST RESULTS 23 7.1. ON TIME AND DUTY CYCLE 23	
7		3
 7 7	7.1. ON TIME AND DUTY CYCLE	3 1
7 7 7	 ON TIME AND DUTY CYCLE	3 4 6
7 7 7 7	 ON TIME AND DUTY CYCLE	3 4 5 9
7 7 7 7 7 7	 ON TIME AND DUTY CYCLE	345
7 7 7 7 7 7	 ON TIME AND DUTY CYCLE	345913
7 7 7 7 7 7 8.	 ON TIME AND DUTY CYCLE	345913
7 7 7 7 7 7 8.	7.1.ON TIME AND DUTY CYCLE237.2.6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH247.3.CONDUCTED OUTPUT POWER267.4.POWER SPECTRAL DENSITY267.5.FREQUENCY STABILITY317.6.DYNAMIC FREQUENCY SELECTION (SLAVE)33RADIATED TEST RESULTS37	345913,7
7 7 7 7 7 8. 8	7.1.ON TIME AND DUTY CYCLE237.2.6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH247.3.CONDUCTED OUTPUT POWER267.4.POWER SPECTRAL DENSITY297.5.FREQUENCY STABILITY317.6.DYNAMIC FREQUENCY SELECTION (SLAVE)33RADIATED TEST RESULTS7.1.RESTRICTED BANDEDGE47	345913,73
7 7 7 7 8. 8 8 8	7.1.ON TIME AND DUTY CYCLE237.2.6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH247.3.CONDUCTED OUTPUT POWER267.4.POWER SPECTRAL DENSITY297.5.FREQUENCY STABILITY317.6.DYNAMIC FREQUENCY SELECTION (SLAVE)33RADIATED TEST RESULTS7.1.RESTRICTED BANDEDGE477.2.SPURIOUS EMISSIONS (1 GHZ ~ 7 GHZ)126	345913.734
7 7 7 7 8. 8 8 8 8 8 8	7.1.ON TIME AND DUTY CYCLE237.2.6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH247.3.CONDUCTED OUTPUT POWER267.4.POWER SPECTRAL DENSITY297.5.FREQUENCY STABILITY317.6.DYNAMIC FREQUENCY SELECTION (SLAVE)337.1.RESTRICTED BANDEDGE477.2.SPURIOUS EMISSIONS (1 GHZ ~ 7 GHZ)1287.3.SPURIOUS EMISSIONS (7 GHZ ~ 18 GHZ)154	345913,7345
7 7 7 7 7 8. 8 8 8 8 8 8 8 8 8 8 8	7.1.ON TIME AND DUTY CYCLE237.2.6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH247.3.CONDUCTED OUTPUT POWER267.4.POWER SPECTRAL DENSITY297.5.FREQUENCY STABILITY317.6.DYNAMIC FREQUENCY SELECTION (SLAVE)337.6.DYNAMIC FREQUENCY SELECTION (SLAVE)337.1.RESTRICTED BANDEDGE477.2.SPURIOUS EMISSIONS (1 GHZ ~ 7 GHZ)1267.3.SPURIOUS EMISSIONS (7 GHZ ~ 18 GHZ)1547.4.SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)296	3 1 1 3 3 3 1 1 3 3 1 1
7 7 7 7 7 8. 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.1. ON TIME AND DUTY CYCLE 23 7.2. 6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH 24 7.3. CONDUCTED OUTPUT POWER 26 7.4. POWER SPECTRAL DENSITY 29 7.5. FREQUENCY STABILITY 29 7.6. DYNAMIC FREQUENCY SELECTION (SLAVE) 33 RADIATED TEST RESULTS 37 7.1. RESTRICTED BANDEDGE 47 7.2. SPURIOUS EMISSIONS (1 GHZ ~ 7 GHZ) 126 7.3. SPURIOUS EMISSIONS (7 GHZ ~ 18 GHZ) 154 7.4. SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ) 296 7.5. SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ) 296	3 4 5 7 3 4 7 3 4 1 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1
7 7 7 7 8. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.1. ON TIME AND DUTY CYCLE 23 7.2. 6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH 24 7.3. CONDUCTED OUTPUT POWER 26 7.4. POWER SPECTRAL DENSITY 29 7.5. FREQUENCY STABILITY 31 7.6. DYNAMIC FREQUENCY SELECTION (SLAVE) 33 RADIATED TEST RESULTS 7.1. RESTRICTED BANDEDGE 47 7.2. SPURIOUS EMISSIONS (1 GHZ ~ 7 GHZ) 126 7.3. SPURIOUS EMISSIONS (7 GHZ ~ 18 GHZ) 154 7.4. SPURIOUS EMISSIONS (7 GHZ ~ 18 GHZ) 296 7.5. SPURIOUS EMISSIONS (26 GHZ ~ 40 GHZ) 296 7.5. SPURIOUS EMISSIONS (26 GHZ ~ 40 GHZ) 301	3 4 9 1 3 3 4 4 3 3 4 1 3 3

9. AC PO	WER LINE CONDUCTED EMISSION	311
10.	ANTENNA REQUIREMENT	314
11.	TEST DATA	315
<i>11.1.</i> 11.1.1. 11.1.2.		
<i>11.2.</i> 11.2.1. 11.2.2.	APPENDIX A2: OCCUPIED CHANNEL BANDWIDTH Test Result Test Graphs	
<i>11.3</i> . 11.3.1. 11.3.2.	APPENDIX A3: MIN EMISSION BANDWIDTH Test Result Test Graphs	403
<i>11.4</i> . 11.4.1. 11.4.2.	APPENDIX C: MAXIMUM AVERAGE CONDUCTED OUTPUT POWER Test Result Test Graphs	418
<i>11.5</i> . 11.5.1. 11.5.2.	APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY Test Result Test Graphs	428
<i>11.6.</i> 11.6.1.	APPENDIX E: FREQUENCY STABILITY Test Result	
<i>11.7.</i> 11.7.1. 11.7.2.	APPENDIX F: DUTY CYCLE Test Result Test Graphs	479
<i>11.8.</i> 11.8.1. 11.8.2.		482
<i>11.9.</i> <i>TIME</i> 11.9.1.	APPENDIX H: CHANNEL MOVE TIME AND CHANNEL CLOSING TRANS 484 Test Result	
11.9.2.	Test Graphs	
<i>11.10.</i> 11.10.1 11.10.2		486

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Guangzhou Shikun Electronics Co., Ltd	
Address:	NO.6 Liankun Road, Huangpu District, Guangzhou China	
Manufacturer Information		
Company Name:	Guangzhou Shikun Electronics Co., Ltd	
Address:	NO.6 Liankun Road, Huangpu District, Guangzhou China	

EUT Information

EUT Name:

Sample Status:

Date of Tested:

Model: Brand:

IEEE 802.11b/g/n/a/ac/ax 2T2R PCIE WiFi Module Integrated BT 2.1+EDR/4.2/5.3 SKO.WB276P.1 1 Sample Received Date: November 27, 2023 Normal November 27, 2023 to January 8, 2024

APPLICABLE STANDARDS

STANDARD CFR 47 FCC PART 15 SUBPART E ISED RSS-247 Issue 3

TEST RESULTS

Pass

Prepared By:

Juan Donn

Checked By:

Kebo Zhang Senior Project Engineer

Denny Huang Senior Project Engineer

Approved By:

Applientino

Stephen Guo **Operations Manager**

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART E ISED RSS-247 Issue 3, ANSI C63.10-2013, CFR 47 FCC Part 2, KDB 789033 D02 v02r01, RSS-GEN Issue 5, KDB414788 D01 Radiated Test Site v01, KDB 662911 D01 Multiple Transmitter Output v02r01, KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02, KDB 905462 D03 UNII clients without radar detection New Rules v01r02, KDB 905462 D04 Operational Modes for DFS Testing New Rules v01, KDB 905462 D06 802 11 Channel Plans New Rules v02 and KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02.

3. FACILITIES AND ACCREDITATION

A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Br	
III. Varification Sarvicas (Guanazhou) Ca. Itd. Sana Shan Laka Br	
	anch.
has been assessed and proved to be in compliance with A2LA.	
FCC (FCC Designation No.: CN1187)	
UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Br	anch.
Has been recognized to perform compliance testing on equipment s to the Commission's Declaration of Conformity (DoC) and Certificat	
ISED (Company No.: 21320)	
Accreditation UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Br	anch.
Certificate has been registered and fully described in a report filed with ISED.	
The Company Number is 21320 and the test lab Conformity Assess Body Identifier (CABID) is CN0046.	ment
VCCI (Registration No.: G-20192, R-20202, C-20153 and T-2015	5)
UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Br	
has been assessed and proved to be in compliance with VCCI, the	
Membership No. is 3793.	
Facility Name:	
Chamber D, the VCCI registration No. is G-20192 and C-20153	
Shielding Room B , the VCCI registration No. is C-20153 and T-201	55

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62 dB	
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB	
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	ed Emission 4.00 dB	
	5.78 dB (1 GHz ~ 18 GHz)	
Radiated Emission (Included Fundamental Emission) (1 GHz to 40 GHz)	5.23 dB (18 GHz ~ 26 GHz)	
	5.37 dB (26 GHz ~ 40 GHz)	
Duty Cycle	±0.028%	
Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%	
Maximum Conducted Output Power	±0.766 dB	
Maximum Power Spectral Density Level	±1.22 dB	
Frequency Stability	±2.76%	
Dynamic Frequency Selection	±1.01 dB	
Conducted Band-edge Compliance	±1.328 dB	
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)	
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)	
Note: This uncertainty represents an expanded uncerta 95% confidence level using a coverage factor of k=2.	inty expressed at approximately the	

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name:	IEEE 802.11b/g/n/a/ac/ax 2T2R PCIE WiFi Module Integrated BT 2.1+EDR/4.2/5.3
Model:	SKO.WB276P.1
Frequency Range:	5180 MHz to 5240 MHz (U-NII-1) 5260 MHz to 5320 MHz (U-NII-2A) 5500 MHz to 5720 MHz (U-NII-2C) 5745 MHz to 5825 MHz (U-NII-3)
Type of Modulation:	IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Radio Technology:	IEEE802.11a/n HT20/n HT40/ ac VHT20/ac VHT40/ac VHT80/ ax HE20/ax HE40/ax HE80
Ratings	DC 3.3 V

5.2. CHANNEL LIST

UNII-1 (For Bandwidth=20MHz)		UNII-1 (For Bandwidth=40MHz)		UNII-1 (For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230		
44	5220				
48	5240				

UNII-2A (For Bandwidth=20MHz)		UNII-2A (For Bandwidth=40MHz)		UNII-2A (For Bandwidth=80MHz)	
				(For Bandwidth=80MHZ)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270	58	5290
56	5280	62	5310		
60	5300				
64	5320				

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

UNII-2C (For Bandwidth=20MHz)		UNII-2C (For Bandwidth=40MHz)		UNII-2C (For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510	106	5530
104	5520	110	5550	122	*5610
108	5540	118	*5590	/	/
112	5560	126	*5630		
116	5580	134	5670		
120	*5600	/	/		
124	*5620				
128	*5640				
132	5660				
136	5680				
140	5700				
/	/				

* Note: Not operational in Canada.

UNII-3 (For Bandwidth=20MHz)		UNII-3 (For Bandwidth=40MHz)		UNII-3 (For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795		
157	5785				
161	5805				
165	5825				

UNII-3		
(For Bandwidth=240 MHz)		
Channel	Frequency (MHz)	
130	5610	

Straddle Test Channel Configuration			
IEEE Std.	Frequency		
802.11a	CH 144	5720 MHz	
802.11n HT20	CH 144	5720 MHz	
802.11ax HE20	CH 144	5720 MHz	
802.11n HT40	CH 142	5710 MHz	
802.11ax HE40	CH 142	5710 MHz	
802.11n HT80	CH 138	5690 MHz	
802.11ax HE80	CH 138	5690 MHz	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.3. MAXIMUM POWER

UNII-1 BAND(FCC&ISED)

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)	Max Average EIRP (dBm)
а		14.04	19.56
n HT20		11.47	16.99
n HT40		15.15	20.67
ac VHT80	5150 ~ 5250	11.87	17.39
ax HE20		13.14	18.66
ax HE40		12.45	17.97
ax HE80		12.28	17.80

UNII-2A BAND(FCC&ISED)

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)
а		14.37
n HT20		15.54
n HT40		14.04
ac VHT80	5250 ~ 5350	10.77
ax HE20		12.40
ax HE40		12.32
ax HE80		12.30

UNII-2C BAND(FCC&ISED)

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)	
а		14.74	
n HT20		15.78	
n HT40	5470 ~ 5725	15.59	
ac VHT80		12.43	
ax HE20		13.89	
ax HE40		12.84	
ax HE80		12.54	

UNII-3 BAND(FCC&ISED)

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)	
а		15.15	
n HT20		16.82	
n HT40		15.96	
ac VHT80	5725 ~ 5850	13.24	
ax HE20		12.08	
ax HE40		12.97	
ax HE80		11.39	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

UNII-1 Test Channel Configuration			
IEEE Std.	Test Channel Number	Frequency	
802.11a	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz	
802.11n HT20	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz	
802.11n HT40	CH 38(Low Channel), CH 46(High Channel)	5190 MHz, 5230 MHz	
802.11ac VHT80	CH 42(Low Channel)	5210 MHz	
802.11ax HE20 CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)		5180 MHz, 5200 MHz, 5240 MHz	
802.11ax HE40	CH 38(Low Channel), CH 46(High Channel)	5190 MHz, 5230 MHz	
802.11ax HE80	CH 42(Low Channel)	5210 MHz	

UNII-2A Test Channel Configuration			
IEEE Std.	Test Channel Number Frequency		
802.11a	CH 52(Low Channel), CH 56(MID Channel), CH 64(High Channel)	5260 MHz, 5280 MHz, 5320 MHz	
802.11n HT20	CH 52(Low Channel), CH 56(MID Channel), CH 64(High Channel)	5260 MHz, 5280 MHz, 5320 MHz	
802.11n HT40	CH 54(Low Channel), CH 62(High Channel)	5270 MHz, 5310 MHz	
802.11ac VHT80	CH 58(Low Channel)	5290 MHz	
802.11ax HE20 CH 52(Low Channel), CH 56(MID Channel), CH 64(High Channel)		5260 MHz, 5280 MHz, 5320 MHz	
802.11ax HE40	CH 54(Low Channel), CH 62(High Channel)	5270 MHz, 5310 MHz	
802.11ax HE80	CH 58(Low Channel)	5290 MHz	

UNII-2C Test Channel Configuration			
IEEE Std.	Test Channel Number	Frequency	
802.11a	CH 100(Low Channel), CH 116(MID Channel), CH 140(High Channel)	5500 MHz, 5580 MHz, 5700 MHz	
802.11n HT20	CH 100(Low Channel), CH 116(MID Channel), CH 140(High Channel)	5500 MHz, 5580 MHz, 5700 MHz	
802.11n HT40	CH 102(Low Channel), CH 110(MID Channel), CH 134(High Channel)	5510 MHz, 5550 MHz, 5670 MHz	
802.11ac VHT80	CH 102(Low Channel), CH 122(High Channel)	5530 MHz, 5610 MHz	
802.11ax HE20	CH 100(Low Channel), CH 116(MID Channel), CH 140(High Channel)	5500 MHz, 5580 MHz, 5700 MHz	
802.11ax HE40 CH 102(Low Channel), CH 110(MID Channel), CH 134(High Channel)		5510 MHz, 5550 MHz, 5670 MHz	
802.11ax HE80	CH 102(Low Channel), CH 122(High Channel)	5530 MHz, 5610 MHz	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

UNII-3 Test Channel Configuration			
IEEE Std.	Test Channel Number	Frequency	
802.11a	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz	
802.11n HT20	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz	
802.11n HT40	CH 151(Low Channel), CH 159(High Channel)	5755MHz, 5795MHz	
802.11ac VHT80	CH 155(Low Channel)	5775 MHz	
802.11ax HE20	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz	
802.11ax HE40	CH 151(Low Channel), CH 159(High Channel)	5755MHz, 5795MHz	
802.11ax HE80	CH 155(Low Channel)	5775 MHz	

Straddle Test Channel Configuration			
IEEE Std. Test Channel Number Frequency			
802.11a	CH 144	5720 MHz	
802.11n HT20	CH 144	5720 MHz	
802.11n HT40	CH 142	5710 MHz	
802.11ac VHT80	CH 138	5690 MHz	
802.11ax HE20	CH 144	5720 MHz	
802.11ax HE40	CH 142	5710 MHz	
802.11ax HE80	CH 138	5690 MHz	

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter						
Test Software	MobaXterm22.1					
		UNII-1				
Mada		Dete	Channel	Soft se	Soft set value	
Mode		Rate	Channel	ANT 1	ANT 2	
			36	12	13	
11a		6M	40	12	13	
			48	12	13	
			36	9	9	
11n HT20		MCS0	40	9	9	
			48	9	9	
11n HT40		MCS0	38	11	11	
1111 1140			46	11	11	
		36				
11ac VHT20		MCS0	40	Cover by	11n HT20	
			48			
11ac VHT40)	MCS0	38	Cover by	11n HT40	
			46			
11ac VHT80)	MCS0	42	9	9	
			36	9	9	
11ax HE20		MCS0	40	9	9	
			48	9	9	
11ax HE40		MCS0	38	8	8	
			46	8	8	
11ax HE80		MCS0	42	8	8	

UNII-2A

Mada	Dete	Channel	Soft set valu	Soft set value		
Mode	Rate	Channel	ANT 1	ANT 2		
		52	12	13		
11a	6M	56	12	13		
		64	12	13		
		52	12	12		
11n HT20	MCS0	56	12	12		
		64	12	12		
11n HT40	MCCO	54	11	11		
	MCS0	62	10	10		
		52	Cover by 11n HT20			
11ac VHT20	MCS0	56				
		64				
11ac VHT40	MCS0	54	Cover by 11n HT40			
	10000	62				
11ac VHT80	MCS0	58	9	9		
		52	9	9		
11ax HE20	MCS0	56	9	9		
		64	9	9		
11ax HE40	MCS0	54	9	9		
		62	9	9		
11ax HE80	MCS0	58	9	9		

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

UNII-2C							
Mode	Dete	Channel	Soft se	Soft set value			
Mode	Rate	Channel	ANT 1	ANT 2			
		100	15	14			
11a	6M	116	15	13			
l lia	OIVI	140	15	14			
		144	15	14			
		100	13	13			
11n HT20	MCS0	116	13	13			
110 H120	IVIC50	140	13	13			
		144	13	13			
		102	12	12			
11n HT40	MCS0	118	12	12			
	IVIC30	134	12	12			
		142	12	12			
		100					
11ac VHT20	MCS0	116		(11n HT20			
	IVIC30	140	Cover by 11n HT20				
		144					
		102	_				
11ac VHT40	MCS0	118	Cover by	Cover by 11n HT40			
	Meee	134					
		142					
		106	10	10			
11ac VHT80	MCS0	122	10	10			
		138	10	10			
		100	10	10			
11ax HE20	MCS0	116	10	10			
		140	10	10			
		144	10	10			
		102	10	10			
11ax HE40	MCS0	118	10	10			
		134	10	10			
		142	10	10			
11ax HE80	MCS0	106 122	10	10			
	IVICOU		10	10			
		138	10	10			

UNII-3						
Mada	Dete	Channal	Soft se	Soft set value		
Mode	Rate	Channel	ANT1	ANT 2		
		149	13	15		
11a	6M	157	12	14		
		165	12	14		
		149	13	13		
11n HT20	MCS0	157	13	13		
		165	13	13		
11n HT40	MCS0	151	13	13		
1111 H140	IVICSU	159	12	12		
		149				
11ac VHT20	MCS0	157	Cover by 11n HT20			
		165				
11ac VHT40	MCS0	151	Cover by 11n HT40			
		159				
11ac VHT80	MCS0	155	10	10		
		149	9	9		
11ax HE20	MCS0	157	9	9		
		165	7	7		
11ax HE40	MCS0	151	9	9		
		159	9	9		
11ax HE80	MCS0	155	8	8		

5.6. WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Worst case Data Rates declared by the customer: 802.11a 20 mode : 6 Mbps 802.11n HT20 CDD mode : MCS0 802.11n HT40 CDD mode : MCS0 802.11ac VHT20 CDD mode : MCS0 802.11ac VHT40 CDD mode : MCS0 802.11ac VHT80 CDD mode : MCS0 802.11ax HE20 CDD mode : MCS0 802.11ax HE40 CDD mode : MCS0 802.11ax HE40 CDD mode : MCS0

802.11n HT20/HT40 and 802.11ac VHT20/VHT40 were performed on the worst case (802.11ac VHT20/VHT40) mode and only the worst data was recorded in this report.

The EUT has 2 separate antennas which correspond to 2 separate antenna ports. Core 1, Core 2 correspond to antenna 1, antenna 2 respectively.

The 3 kinds of antenna above used for tested were provided by customer, the antenna type is the same but the antenna gain is different, pre-scan had been done for all the antennas, but only the worst data was recorded (antenna type 1) in the report, for more information about the antennas, please refer to clause 5.7.

802.11a mode does not support MIMO mode.

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

When installed in the host product, the radio can support "hotspot" features and operate as a master device only working at WiFi 2.4 GHz (2412 MHz ~ 2462 MHz) and WiFi GHz (5180 MHz ~ 5240 MHz and 5745 MHz ~ 5825 MHz), but the RF parameter is the same when act as a client.

Support Te	chnology	Support (YES/NO)						
BT/BLE	2.4GHz WLAN	YES (only when working in different antennas)						
BT/BLE	5GHz WLAN	YES						
BT/BLE	6GHz WLAN	YES						

Only the following conditions can support simultaneously transmission:

All simultaneously transmission conditions above had been tested, but only the worst data was recorded in the report.

The emission of the simultaneous operation has been evaluated and no non-compliance was found.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna Type 1										
Antenna	ntenna Frequency (MHz) Antenna Type Maximum Antenna Gain (c									
1	5150-5825	Dipole Antenna	5.52							
2	5150-5825	Dipole Antenna	5.52							

The EUT support Cyclic Shift Diversity (CDD) mode.

MIMO output power port and MIMO PSD port summing were performed in accordance with KDB 662911 D01. For the CDD results the Directional Gain was calculated in accordance with the following mothed.

For output power measurements: Directional gain= G_{ANT} + Array Gain = 5.52 dBi G_{ANT} : equal to the gain of the antenna having the highest gain Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$

For power spectral density (PSD) measurements: Directional gain= G_{ANT} + Array Gain = 8.53 dBi Array Gain = 10 log(N_{ANT}/N_{SS}) dB. N_{ANT} : number of transmit antennas Nss : number of spatial streams, The worst case directional gain will occur when Nss = 1

Antenna Type 2									
Antenna	Frequency (MHz)	Antenna Type	Maximum Antenna Gain (dBi)						
1	5150-5825	Dipole Antenna	4.65						
2	5150-5825	Dipole Antenna	4.65						

The EUT support Cyclic Shift Diversity (CDD) mode.

MIMO output power port and MIMO PSD port summing were performed in accordance with KDB 662911 D01. For the CDD results the Directional Gain was calculated in accordance with the following mothed.

For output power measurements: Directional gain= G_{ANT} + Array Gain = 4.65 dBi G_{ANT} : equal to the gain of the antenna having the highest gain Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$

For power spectral density (PSD) measurements: Directional gain= G_{ANT} + Array Gain = 7.66 dBi Array Gain = 10 log(N_{ANT}/Nss) dB. N_{ANT} : number of transmit antennas Nss : number of spatial streams, The worst case directional gain will occur when Nss = 1

Antenna Type 3										
Antenna	tenna Frequency (MHz) Antenna Type Maximum Antenna Gain (dl									
1	5150-5825	Dipole Antenna	3.64							
2	5150-5825	Dipole Antenna	3.64							

The EUT support Cyclic Shift Diversity (CDD) mode.

MIMO output power port and MIMO PSD port summing were performed in accordance with KDB 662911 D01. For the CDD results the Directional Gain was calculated in accordance with the following mothed.

For output power measurements: Directional gain= G_{ANT} + Array Gain = 3.64 dBi G_{ANT} : equal to the gain of the antenna having the highest gain Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$

For power spectral density (PSD) measurements:

Directional gain= GANT + Array Gain = 6.65 dBi

Array Gain = 10 log(NANT/Nss) dB.

NANT : number of transmit antennas

Nss : number of spatial streams, The worst case directional gain will occur when Nss = 1

IEE Std. 802.11	Transmit and Receive Mode	Description		
802.11a	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.		
802.11n HT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.		
802.11n HT40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.		
802.11ac VHT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.		
802.11ac VHT40	ANT 1 and ANT 2 can be used as transmittin antenna.			
802.11ac VHT80	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.		
802.11ax HE20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.		
802.11ax HE40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.		
802.11ax HE80	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.		

Note: The value of the antenna gain was declared by customer.

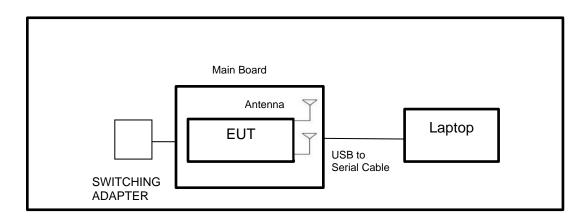
5.8. SUPPORT UNITS FOR SYSTEM TEST

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	ThinkPad	X230i	/
2	Main Board	/	/	/
3	USB to Serial Cable	/	/	/
4	Antenna 1	KTC	4791083360	/
5	Antenna 2	CVTE	004.032.0052703	/
6	Antenna 3	SLEing	SLEingA100080168-C07	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	SWITCHING ADAPTER	SOY	SOY- 1200400US	Input: AC 100-240 V, 50 / 60 Hz, 1.2 A Output: DC 12.0 V, 4 A

TEST SETUP

The EUT can work in engineering mode with a software through a laptop.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING EQUIPMENT AND SOFTWARE USED

R&S TS 8997 Test System										
Equipment	nt Manufacture			turer	Model I	No.	Serial No.	Last (Cal.	Due. Date
Power sensor, Power N	leter	eter R&S			OSP1	20	100921	Mar.31,	2023	Mar.30,2024
Vector Signal Genera	tor		R&S	5	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator			R&S	5	SMB10	0A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer			R&S	5	FSV4	0	101118	Oct.12,	2023	Oct.11, 2024
					Softwar	re				
Description			Ν	<i>A</i> anuf	acturer		Nam	е		Version
For R&S TS 8997 Test	System Rohde a			hde &	Schwar	z	EMC	32		10.60.10
Tonsend RF Test System										
Equipment	Man	ufac	cturer	Мос	del No.	Serial No.		Last Cal.		Due. Date
PXA Signal Analyzer	Ke	eysi	ght	N9	030A	MY	′55410512	Oct.12, 2023		Oct.11, 2024
MXG Vector Signal Generator	Ke	eysi	ght	N5	182B	3 MY56200284		Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysi	ght	N5172B M		MY	⁄56200301	Oct.12,	2023	Oct.11, 2024
DC power supply	Ke	eysi	ght	E3	E3642A MY		′55159130	Oct.12,	2023	Oct.11, 2024
Temperature & Humidity Chamber	SAN	NMC	DOD	SG-8	SG-80-CC-2		2088	Oct.12,	2023	Oct.11, 2024
Attenuator	A	glie	nt	84	495B	28	14a12853	Oct.12,	2023	Oct.11, 2024
RF Control Unit	То	onscend JS			0806-2	23E	380620666	April 18	2023	April 17, 2024
					Softwa	re		• •		
Description	Manufacturer			urer		Name				Version
Tonsend SRD Test Sys	tem	Т	onser	nd	JS1′	120-3	3 RF Test S	ystem		V3.2.22

	Conducted Emissions				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Oct.13, 2023	Oct.12, 2024
Two-Line V- Network	R&S	ENV216	101983	Oct.13, 2023	Oct.12, 2024
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.13, 2023	Oct.12, 2024
	Software				
	Description Manufacturer Name Version				
Test Software for Conducted Emissions			Farad	EZ-EMC	Ver. UL-3A1

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

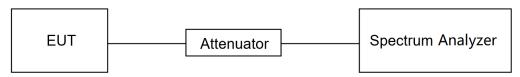
Radiated Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024
Highpass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS	4	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCJV12- 5695-5725- 5850-5880- 40SS	4	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCJV20- 5120-5150- 5350-5380- 60SS	2	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCJV20- 5440-5470- 5725-5755- 60SS	1	Oct.12, 2023	Oct.11, 2024
Software					
Description Man			Manufacturer	Name	Version
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

LIMITS


None; for reporting purposes only.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.B.

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TEST SETUP

TEST ENVIRONMENT

Temperature	25.4 ℃	Relative Humidity	45.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

TEST RESULTS

Please refer to section "Test Data" - Appendix F

7.2. 6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15, Subpart E ISED RSS-247 ISSUE 3				
Test Item	Limit	Frequency Range (MHz)		
26 dB Emission Bandwidth	For reporting purposes only.	5150 ~ 5250		
26 dB Emission Bandwidth	For reporting purposes only.	5250 ~ 5350		
26 dB Emission Bandwidth	For reporting purposes only.	5470 ~ 5725 (For FCC) 5470 ~ 5600 (For ISED) 5650 ~ 5725 (For ISED)		
6 dB Emission Bandwidth	The minimum 6 dB emission bandwidth shall be 500 kHz.	5725 ~ 5850		
99 % Occupied Bandwidth	For reporting purposes only.	5150 ~ 5825 (For ISED)		

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.C1. for 26 dB Emission Bandwidth; section II.C2. for 6 dB Emission Bandwidth; section II.D. for 99 % Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 6 dB Emission Bandwidth: RBW=100 kHz For 26 dB Emission bandwidth: approximately 1 % of the EBW. For 99 % Occupied Bandwidth: approximately 1 % ~ 5 % of the OBW.
VBW	For 6 dB Bandwidth: ≥ 3*RBW For 26 dB Bandwidth: >3*RBW For 99 % Bandwidth: >3*RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6/26 dB relative to the maximum level measured in the fundamental emission.

Calculation for 99 % Bandwidth of UNII-2C and UNII-3 Straddle Channel:

For Example: Fundamental Frequency: 5720 MHz

99 % OBW: 21.00 MHz

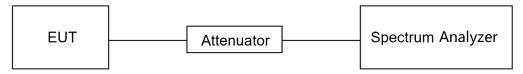
Turning Frequency: 5725 MHz

99 % Bandwidth of UNII-2C Band Portion = (5725-(5720-(21.00/2)) = 15.50 MHz

99 % Bandwidth of UNII-3 Band Portion = (5720+(21.00/2)-5725) = 5.50 MHz

Calculation for 26 dB Bandwidth of UNII-2C Straddle Channel:

For Example: Fundamental frequency: 5720 MHz 26 dB BW: 20.00 MHz


> FL: 5710.16 MHz FH: 5730.16 MHz Turning Frequency: 5725 MHz 26 dB Bandwidth of UNII-2C Band Portion = 5725-5710.16=14.84 MHz

Calculation for 6dB Bandwidth of UNII-3 Straddle Channel:

For Example: Fundamental frequency: 5720 MHz

6 dB BW: 16.44 MHz FL: 5711.76 MHz FH: 5728.2 MHz Turning Frequency: 5725 MHz 6 dB Bandwidth of UNII-3 band Portion = 5728.2-5725=3.2 MHz

TEST SETUP

TEST ENVIRONMENT

Temperature	25.4 ℃	Relative Humidity	45.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

TEST RESULTS

Please refer to section "Test Data" - Appendix A1 & A2 & A3

7.3. CONDUCTED OUTPUT POWER

LIMITS

	CFR 47 FCC Part15, Subpart E		
Test Item	Limit	Frequency Range (MHz)	
Conducted	 Outdoor Access Point: 1 W (30 dBm) Indoor Access Point: 1 W (30 dBm) Fixed Point-To-Point Access Points: 1 W (30 dBm) Client Devices: 250 mW (24 dBm) 	5150 ~ 5250	
Output Power	Shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.	5250 ~ 5350 5470 ~ 5725	
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850	

	ISED RSS-247 ISSUE 3		
Test Item	Limit	Frequency Range (MHz)	
	The maximum e.i.r.p. shall not exceed 200 mW (23 dBm) or 10 + 10 log ₁₀ B, dBm, whichever power is less. B is the 99 % emission bandwidth in megahertz.	5150 ~ 5250	
Conducted Output Power or e.i.r.p.	 a. The maximum conducted output power shall not exceed 250 mW (24 dBm) or 11 + 10 log₁₀B dBm, whichever is less. b. The maximum e.i.r.p. shall not exceed 1.0 W (30 dBm) or 17 + 10 log₁₀B dBm, whichever is less. B is the 99 % emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W. 	5250 ~ 5350 5470 ~ 5600 5650 ~ 5725	
	Shall not exceed 1 Watt (30 dBm). The e.i.r.p. shall not exceed 4 W	5725 ~ 5850	

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.E.

Method SA-2 (trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction.):

- (a) Measure the duty cycle D of the transmitter output signal.
- (b) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
- (c) Set RBW = 1 MHz.
- (d) Set VBW \geq 3 MHz.

(e) Number of points in sweep \geq [2 \times span / RBW]. (This gives bin-to-bin spacing \leq RBW / 2, so that narrowband signals are not lost between frequency bins.)

(f) Sweep time = auto.

(g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(h) Do not use sweep triggering. Allow the sweep to "free run."

(i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.

j) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1 / 0.25)] = 6 dB if the duty cycle is 25%.

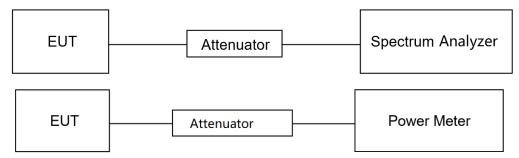
Method PM (Measurement using an RF average power meter):

(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:

a. The EUT is configured to transmit continuously or to transmit with a constant duty cycle.

b. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.

c. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.


(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II.B.

(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25 %).

Note: Method SA-2 was used for straddle channel output power test, and Method PM was used for testing rest channels

TEST SETUP

TEST ENVIRONMENT

Temperature	25.4 ℃	Relative Humidity	45.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

Please refer to section "Test Data" - Appendix C

7.4. POWER SPECTRAL DENSITY

LIMITS

	CFR 47 FCC Part15, Subpart E		
Test Item	Limit	Frequency Range (MHz)	
Power Spectral Density	 Outdoor Access Point: 17 dBm/MHz Indoor Access Point: 17 dBm/MHz Fixed Point-To-Point Access Points: 17 dBm/MHz Client Devices: 11 dBm/MHz 	5150 ~ 5250	
	11 dBm/MHz	5250 ~ 5350 5470 ~ 5725	
	30 dBm/500kHz	5725 ~ 5850	

ISED RSS-247 ISSUE 3		
Test Item	Limit	Frequency Range (MHz)
	The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.	5150 ~ 5250
Power Spectral Density	The power spectral density shall not exceed 11 dBm inany 1.0 MHz band.	5250 ~ 5350 5470 ~ 5600 5650 ~ 5725
	30 dBm / 500 kHz	5725 ~ 5850

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

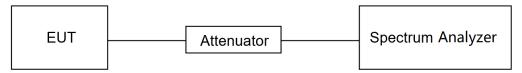
Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.F.

Connect the EUT to the spectrum analyzer and use the following settings:

- ,-	
Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	1 MHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

For U-NII-1, U-NII-2A and U-NII-2C band:

For U-NII-3:



Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	500 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

Allow trace to fully stabilize and use the peak search function on the instrument to find the peak of the spectrum and record its value.

Add 10 log (1/x), where x is the duty cycle, to the peak of the spectrum, the result is the Maximum PSD over 1 MHz / 500 kHz reference bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.4 ℃	Relative Humidity	45.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

TEST RESULTS

Please refer to section "Test Data" - Appendix D

7.5. FREQUENCY STABILITY

<u>LIMITS</u>

The frequency of the carrier signal shall be maintained within band of operation.

TEST PROCEDURE

1. The EUT was placed inside an environmental chamber as the temperature in the chamber was varied between -10 $^{\circ}$ C ~ 70 $^{\circ}$ C (declared by customer).

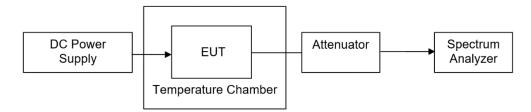
2. The temperature was incremented by 10 °C intervals and the unit allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded.

3. The primary supply voltage is varied from 85 % to 115 % of the nominal value for non handcarried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	10 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

Connect the EUT to the spectrum analyzer and use the following settings:

4. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5minutes, and 10 minutes after the EUT is energized.


5. Allow the trace to stabilize, find the peak value of the power envelope and record the frequency, then calculated the frequency drift.

TEST ENVIRONMENT

	Normal Test Conditions	Extreme Test Conditions	
Relative Humidity	20 % ~ 75 %	/	
Atmospheric Pressure	100 kPa ~ 102 kPa	/	
Temperature	T _N (Normal Temperature):	T _L (Low Temperature): -10 °C	
	25.1 °C	T _H (High Temperature): 70 °C	
Supply Voltage	V _N (Normal Voltage): DC 3.3 V	V _L (Low Voltage): DC 2.805 V	
Supply Voltage	v _N (Normal voltage). DC 3.3 V	V _H (High Voltage): DC 3.795 V	

TEST SETUP

TEST ENVIRONMENT

Temperature	25.4 ℃	Relative Humidity	45.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

TEST RESULTS

Please refer to section "Test Data" - Appendix E

7.6. DYNAMIC FREQUENCY SELECTION (SLAVE)

<u>LIMITS</u>

(1) DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)			
EIRP ≥ 200 milliwatt	-64 dBm			
EIRP < 200 milliwatt and	-62 dBm			
power spectral density < 10 dBm/MHz				
EIRP < 200 milliwatt that do not meet the				
power	-64 dBm			
spectral density requirement				
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.				
Note 2: Throughout these test procedures an additional 1 dB has been added to the				
amplitude of the test transmission waveforms to account for variations in measurement				
equipment. This will ensure that the test signal is at or above the detection threshold level to				
trigger a DFS response.				
Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB				
Publication 662911 D01.				

(2) DFS Response Requirements

Table 4: DFS Response Requirement Values

Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds		
	See Note 1.		
	200 milliseconds + an aggregate of 60		
Channel Closing Transmission Time	milliseconds over		
	remaining 10 second period.		
	See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission		
	power bandwidth. See Note 3.		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

APPLICABILITY OF DFS REQUIREMENTS

A U-NII network will employ a DFS function to detect signals from radar systems and to avoid cochannel operation with these systems. This applies to the 5250-5350 MHz and/or 5470-5725 MHz bands.

Within the context of the operation of the DFS function, a U-NII device will operate in either Master Mode or Client Mode. U-NII devices operating in Client Mode can only operate in a network controlled by a U-NII device operating in Master Mode.

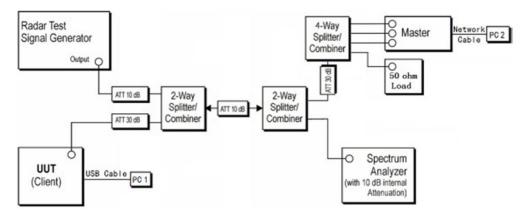
	Operational Mode			
Requirement	Master	Client Without	Client With Radar	
		Radar Detection	Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

T I I O A II I III	(
I able 2: Applicabilit	v of DES requirements	during normal operation

	Operational Mode		
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other tests	Any single BW mode	Not required		
Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.				


PARAMETERS OF RADAR TEST WAVEFORMS

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

	Table 5 Short Pulse Radar Test Waveforms					
Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials	
0	1	1428	18	See Note 1	See Note 1	
		Test A	$\left(\begin{pmatrix} 1 \end{pmatrix} \right)$			
1	1	Test B	$\frac{\left \left(\frac{360}{360}\right)^{2}\right }{\left(\frac{19\cdot10^{6}}{\text{PRI}_{\mu\text{sec}}}\right)}$	60%	30	
2	1-5	150-230	23-29	60%	30	
3	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
Aggregate (F	Aggregate (Radar Types 1-4) 80% 120					
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time,						
and channel closing time tests.						
Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a						
Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum						
increment of 1 µsec, excluding PRI values selected in Test A						

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B. Test aggregate is average of the percentage of successful detections of short pulse radar types 1-4.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.4 ℃	Relative Humidity	45.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM NO: 10-SL-F0035

TEST RESULTS

Please refer to section "Test Data" - Appendix G & H & I

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Refer to CFR 47 FCC §15.205, §15.209 and §15.407 (b).

Refer to ISED RSS-GEN Clause 8.9, Clause 8.10 and ISED RSS-247 6.2.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz					
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m			
	, , , , , , , , , , , , , , , , , , ,	Quasi-	Peak		
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			
Above 1000	500	Peak	Average		
Above 1000	500	74	54		

	FCC Emissions radiated outside of the specified frequency bands below 30 MHz					
Freq	Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)					
0.	009-0.490	2400/F(kHz)	300			
0.	0.490-1.705 24000/F(kHz)		30			
1	.705-30.0	30	30			

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz					
Frequency Magnetic field strength (H-Field) (μA/m) Measurement distance (m)					
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300			
490 - 1705 kHz	63.7/F (F in kHz)	30			
1.705 - 30 MHz	0.08	30			

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands refer to ISED RSS-GEN Clause 8.10

Hz	MHz	GHz
090 - 0.110	149.9 - 150.05	9.0 - 9.2
495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
1735 - 2.1905	158.7 - 156.9	10.6 - 12.7
020 - 3.028	162.0125 - 167.17	13.25 - 13.4
25 - 4.128	167.72 - 173.2	14.47 - 14.5
7725 - 4.17775	240 - 285	15.35 - 16.2
20725 - 4.20775	322 - 335.4	17.7 - 21.4
877 - 5.683	399.9 - 410	22.01 - 23.12
15 - 6.218	608 - 614	23.6 - 24.0
28775 - 6.28825	960 - 1427	31.2 - 31.8
1175 - 6.31225	1435 - 1626.5	36.43 - 36.5
91 - 8.294	1845.5 - 1848.5	Above 38.6
362 - 8.366	1660 - 1710	
7625 - 8.38675	1718.8 - 1722.2	
1425 - 8.41475	2200 - 2300	
29 - 12.293	2310 - 2390	
51975 - 12.52025	2483.5 - 2500	
57675 - 12.57725	2855 - 2900	
36 - 13.41	3260 - 3267	
42 - 16.423	3332 - 3339	
39475 - 16.69525	3345.8 - 3358	
80425 - 16.80475	3500 - 4400	
5 - 25.87	4500 - 5150	
5 - 38.25	5350 - 5460	
- 74.6	7250 - 7750	
3 - 75.2	8025 - 8500	
- 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(²)	
13.36-13.41				

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Limits of unwanted/undesirable emission out of the restricted bands refer to CFR 47 FCC §15.407 (b) and ISED RSS-247 6.2.

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1GHz)				
Frequency Range		Field Strength Limit		
(MHz)	EIRP Limit	(dBuV/m) at 3 m		
5150~5250 MHz				
5250~5350 MHz	PK: -27 (dBm/MHz)	PK:68.2(dBµV/m)		
5470~5725 MHz				
	PK: -27 (dBm/MHz) *1	PK: 68.2(dBµV/m) *1		
5725~5850 MHz	PK: 10 (dBm/MHz) *2	PK: 105.2 (dBµV/m) *2		
5725~5650 WIFIZ	PK: 15.6 (dBm/MHz) *3	PK: 110.8(dBµV/m) *3		
	PK: 27 (dBm/MHz) *4	PK: 122.2 (dBµV/m) *4		
Note:				

*1 beyond 75 MHz or more above of the band edge.

*2 below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

*3 below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

*4 from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

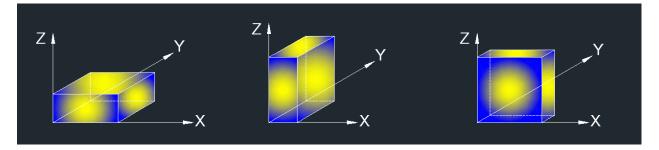
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
NBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.G.3 ~ II.G.6.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: EUT uses an adjustable antenna, pre-scan had been done for the typical positions and the other positions that customer can used, only the worst data was recorded in the report.

For Restricted Bandedge:

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes have been tested, but only the worst data was recorded in the report.

5. dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 7 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27 dBm/MHz (68.2 dBuV/m) limit.

9. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (7 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27 dBm/MHz (68.2 dBuV/m) limit.

9. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed

to comply with average limit.

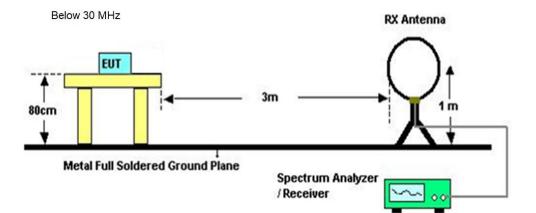
3. Peak: Peak detector.

4. All modes have been tested, but only the worst data was recorded in the report.

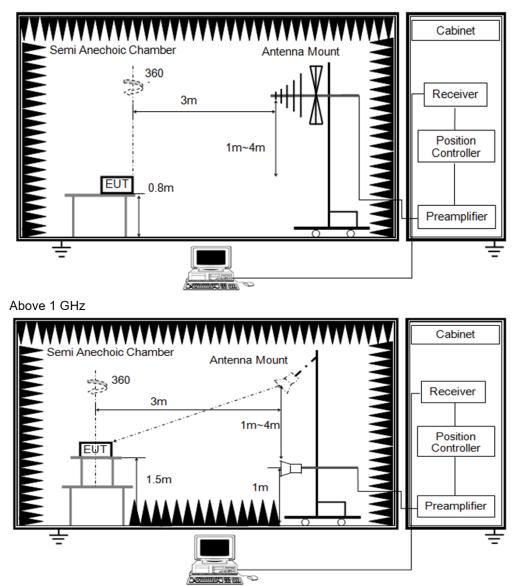
For Radiate Spurious emission (26 GHz ~ 40 GHz):

Note:

1. Measurement = Reading Level + Correct Factor.


2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

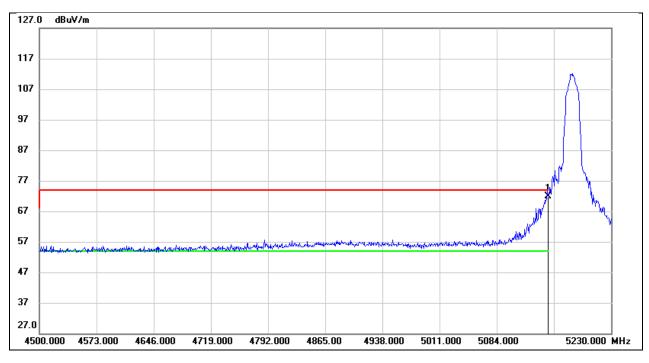

4. All modes have been tested, but only the worst data was recorded in the report.

TEST SETUP

Below 1 GHz and above 30 MHz

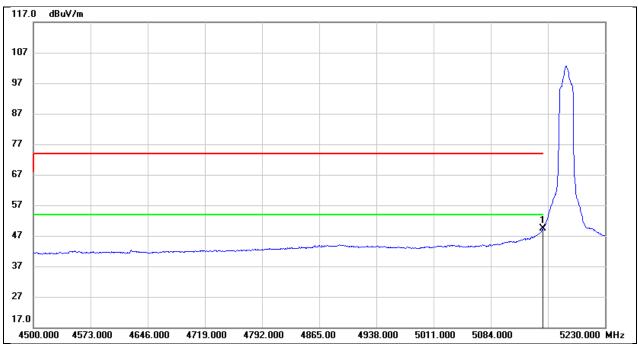
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

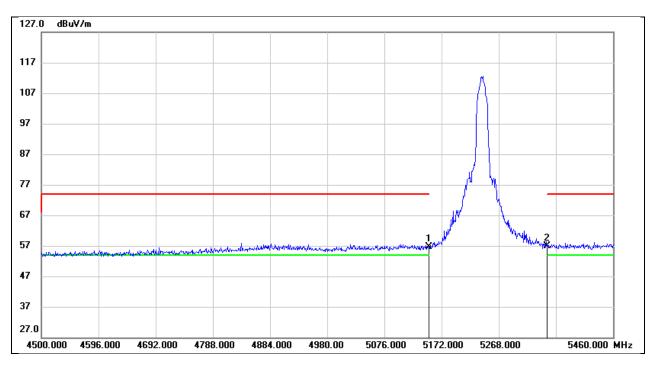

Temperature	25.4 ℃	Relative Humidity	45.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

TEST RESULTS

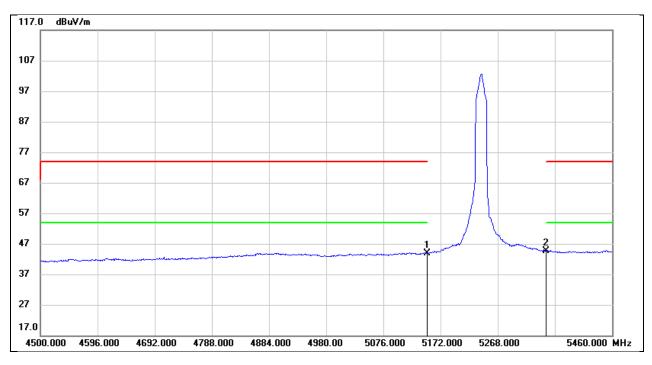
8.1. RESTRICTED BANDEDGE


Test Mode:	802.11a 20 PK	Frequency(MHz):	5180
Polarity:	Vertical	Test Voltage:	DC 3.3 V

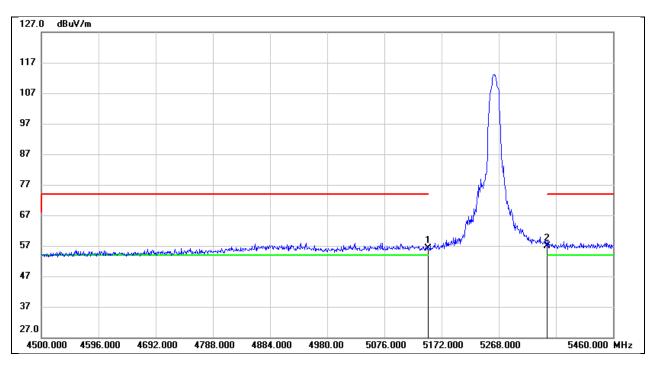
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	31.57	40.27	71.84	74.00	-2.16	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5180
Polarity:	Vertical	Test Voltage:	DC 3.3 V

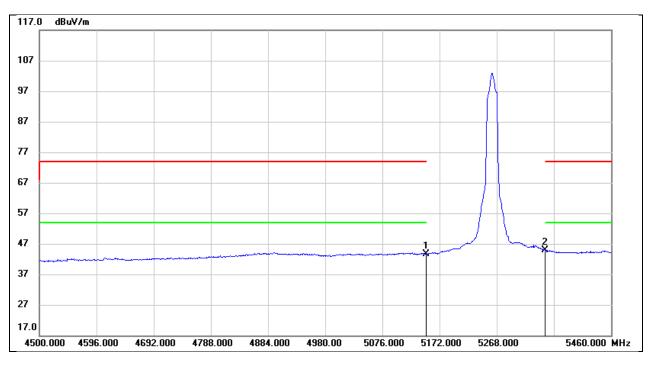
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	9.02	40.27	49.29	54.00	-4.71	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 3.3 V

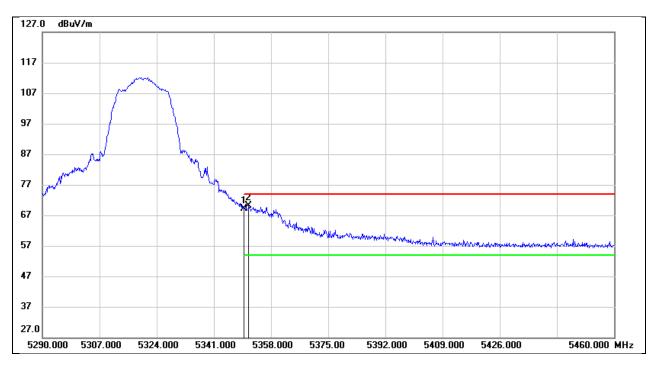
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	16.44	40.27	56.71	74.00	-17.29	peak
2	5350.000	16.29	40.49	56.78	74.00	-17.22	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 3.3 V

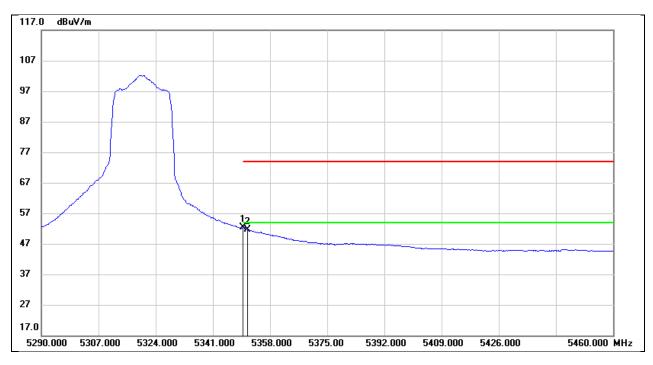
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.55	40.27	43.82	54.00	-10.18	AVG
2	5350.000	4.05	40.49	44.54	54.00	-9.46	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5260
Polarity:	Vertical	Test Voltage:	DC 3.3 V

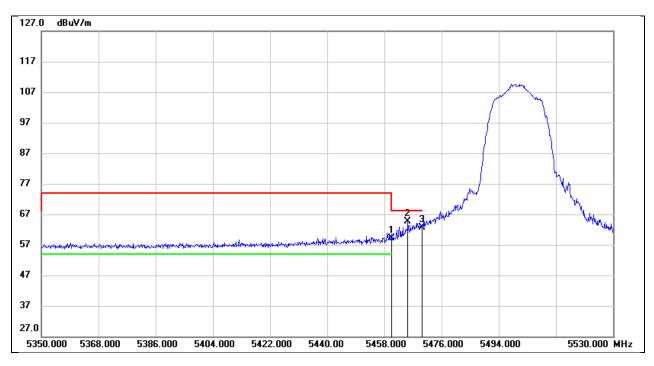
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.76	40.27	56.03	74.00	-17.97	peak
2	5350.000	16.32	40.49	56.81	74.00	-17.19	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5260
Polarity:	Vertical	Test Voltage:	DC 3.3 V

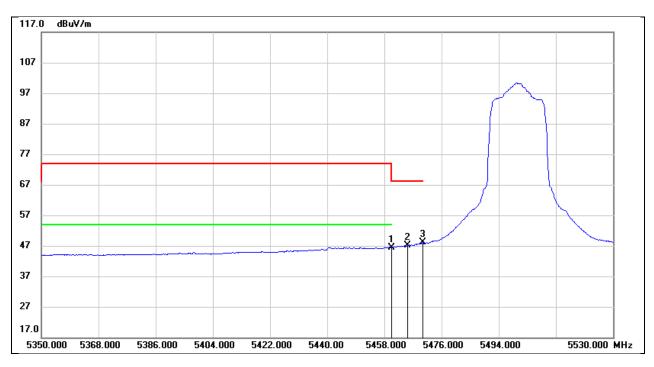
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.42	40.27	43.69	54.00	-10.31	AVG
2	5350.000	4.36	40.49	44.85	54.00	-9.15	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5320
Polarity:	Vertical	Test Voltage:	DC 3.3 V

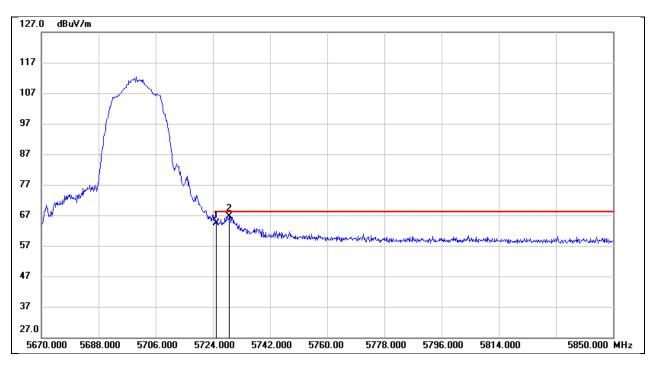
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	28.61	40.49	69.10	74.00	-4.90	peak
2	5351.370	29.70	40.49	70.19	74.00	-3.81	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5320
Polarity:	Vertical	Test Voltage:	DC 3.3 V

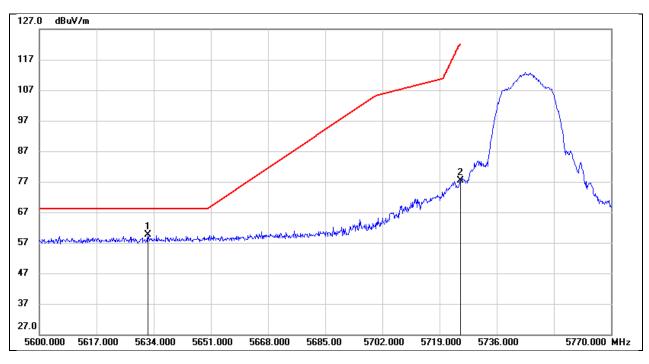
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	11.83	40.49	52.32	54.00	-1.68	AVG
2	5351.370	11.08	40.49	51.57	54.00	-2.43	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5500
Polarity:	Vertical	Test Voltage:	DC 3.3 V

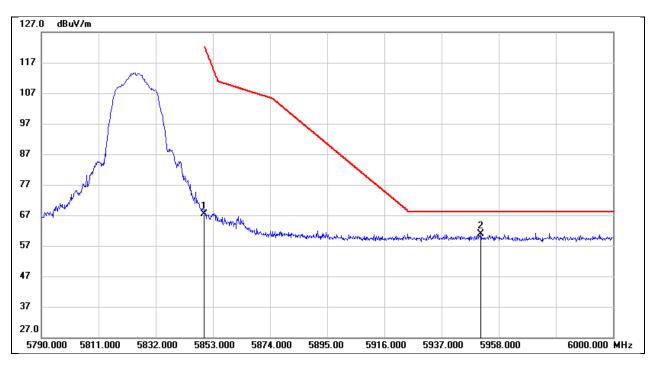
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	18.45	40.62	59.07	68.20	-9.13	peak
2	5465.380	23.92	40.62	64.54	68.20	-3.66	peak
3	5470.000	22.06	40.63	62.69	68.20	-5.51	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5500
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	5.88	40.62	46.50	/	/	AVG
2	5465.380	6.39	40.62	47.01	/	/	AVG
3	5470.000	7.40	40.63	48.03	/	/	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5700
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	23.22	41.27	64.49	68.20	-3.71	peak
2	5729.220	25.35	41.28	66.63	68.20	-1.57	peak


Test Mode:	802.11a 20 PK	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5632.300	18.64	41.01	59.65	68.20	-8.55	peak
2	5725.000	36.00	41.27	77.27	122.20	-44.93	peak

Test Mode:	802.11a 20 PK	Frequency(MHz):	5825
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	25.68	41.60	67.28	122.20	-54.92	peak
2	5951.490	18.97	41.87	60.84	68.20	-7.36	peak

802.11n HT20 PK	Frequency(MHz):	5180
Vertical	Test Voltage:	DC 3.3 V
		Λ
		Multin Multin
add and the second and a second and the second and the second second second second second second second second	hole and the state of the second s	makey second Markow
	Vertical	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5148.970	23.23	40.28	63.51	74.00	-10.49	peak
2	5150.000	21.69	40.27	61.96	74.00	-12.04	peak

Fest Mode:	802.11n HT20 AV	Frequency(MHz):	5180		
Polarity:	Vertical	Test Voltage:	DC 3.3 V		
117.0 dBuV/m					
107					
7			A		
7					
7					
7					
7					
7					
7					
7.0	.000 4719.000 4792.000 4	865.00 4938.000 5011.000	5084.000 5230.000 MH		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5148.970	4.72	40.28	45.00	54.00	-9.00	AVG
2	5150.000	4.79	40.27	45.06	54.00	-8.94	AVG

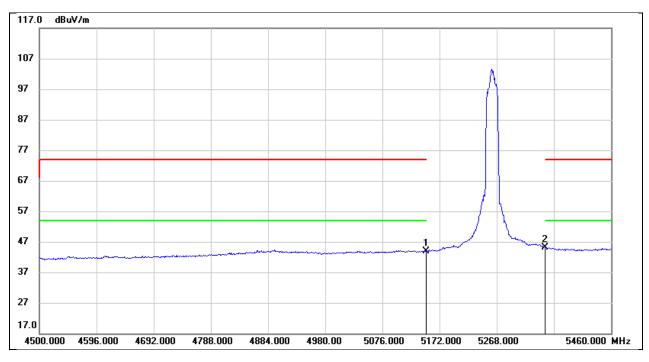
Test Mode:	802.11n HT20 PK	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 3.3 V
127.0 dBuV/m			
117			
107		A	
97			
87			
77			
67		. /	2
	wannen ander de stande ander and and an	materia da a construction de la construction de la construcción de la construcción de la construcción de la cons	lenne / marine in the second
37			
27.0			

No.	Frequency	Reading	Reading Correct		Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.74	40.27	56.01	74.00	-17.99	peak
2	5350.000	16.05	40.49	56.54	74.00	-17.46	peak

Test Mode:	802.11n HT20 AV	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 3.3 V
117.0 dBuV/m			
107			
97			A
87			

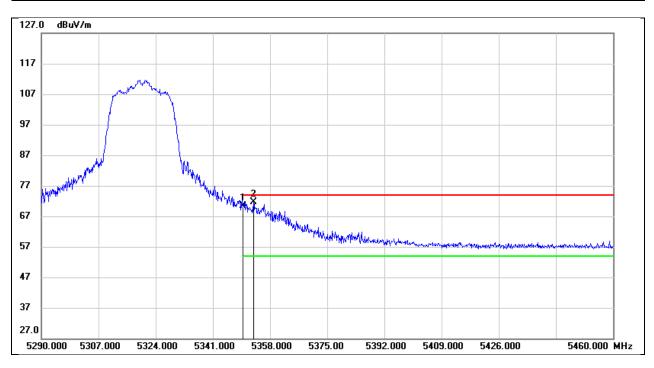
7.0	0.000	4596	000	4000	2.000	470	3.000	400	I.000	4980	 5076.	000	E172	2.000	500	3.000		5460.00	
,																			
											 		Ϋ́				-¥-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
													1]	<u> </u>		2		
' -													_				-		1
															11				
7											 								
<u>ا</u>																			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.34	40.27	43.61	54.00	-10.39	AVG
2	5350.000	3.77	40.49	44.26	54.00	-9.74	AVG

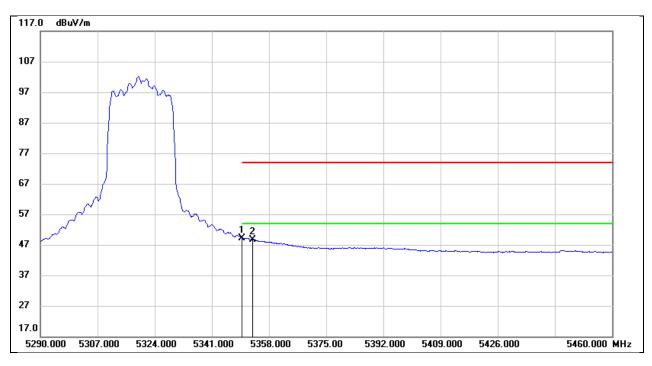

Test Mode:	802.11n HT20 PK	Frequency(MHz):	5260
Polarity:	Vertical	Test Voltage:	DC 3.3 V
127.0 dBu∀/m	·	·	
117			
107			
97			
87			
77			
67			
57	and the second state of the second states and the second states and the second states and the second states and	mound and an and an and the south	The 2
47			

N	0	Ereque		pading	Correct	Docul	•	Limit	Margin	Pomark
450	0.000	4596.000	4692.000	4788.000	4884.000	4980.00	5076.000	5172.000	5268.000	5460.000 MHz
27.0										
37										
27										

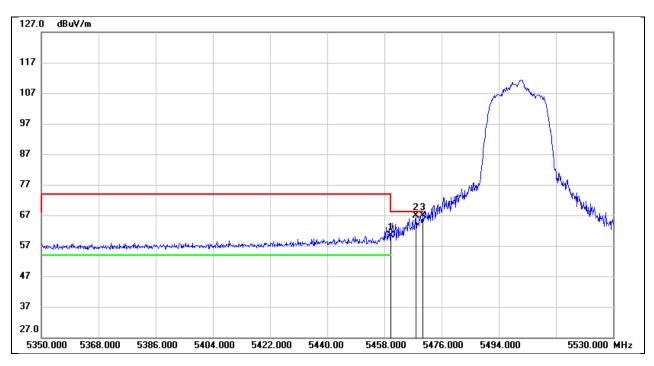
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.79	40.27	56.06	74.00	-17.94	peak
2	5350.000	17.31	40.49	57.80	74.00	-16.20	peak


Test Mode:	802.11n HT20 AV	Frequency(MHz):	5260
Polarity:	Vertical	Test Voltage:	DC 3.3 V

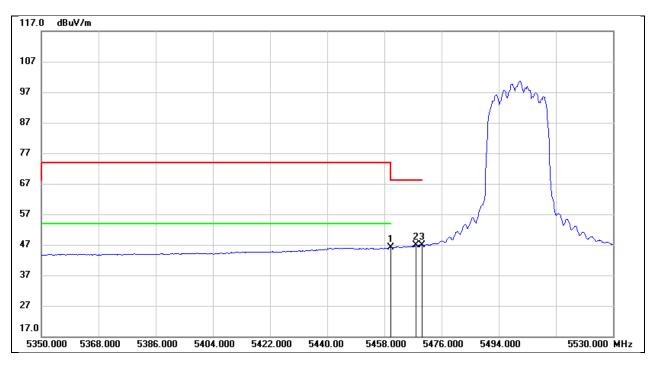
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.49	40.27	43.76	54.00	-10.24	AVG
2	5350.000	4.56	40.49	45.05	54.00	-8.95	AVG


Test Mode:	802.11n HT20 PK	Frequency(MHz):	5320
Polarity:	Vertical	Test Voltage:	DC 3.3 V

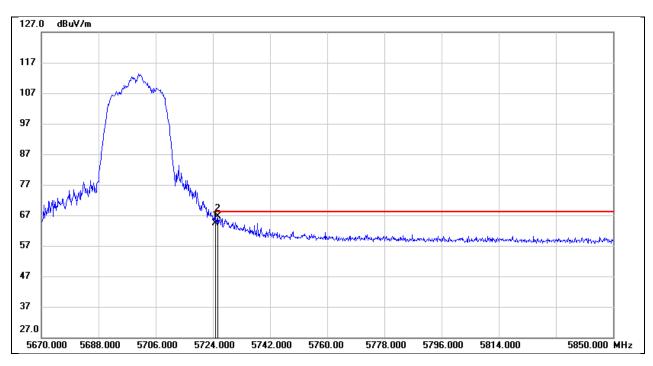
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	29.84	40.49	70.33	74.00	-3.67	peak
2	5353.070	31.13	40.50	71.63	74.00	-2.37	peak


Test Mode:	802.11n HT20 AV	Frequency(MHz):	5320
Polarity:	Vertical	Test Voltage:	DC 3.3 V

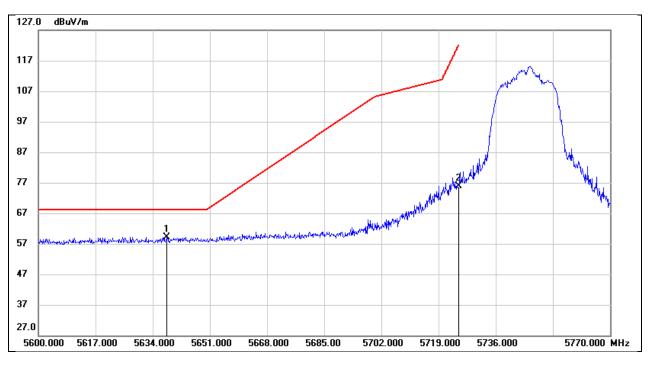
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	8.60	40.49	49.09	54.00	-4.91	AVG
2	5353.070	8.25	40.50	48.75	54.00	-5.25	AVG


Test Mode:	802.11n HT20 PK	Frequency(MHz):	5500
Polarity:	Vertical	Test Voltage:	DC 3.3 V

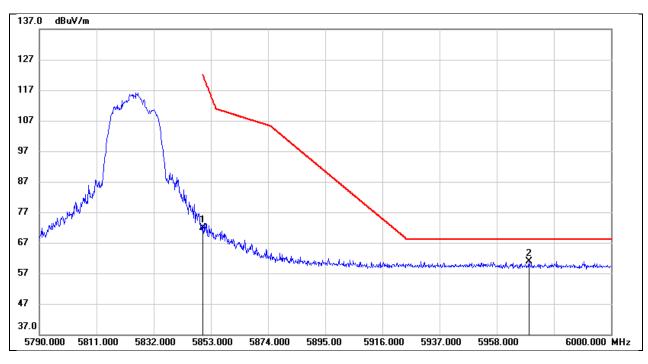
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	19.70	40.62	60.32	68.20	-7.88	peak
2	5467.900	26.27	40.63	66.90	68.20	-1.30	peak
3	5470.000	26.35	40.63	66.98	68.20	-1.22	peak


Test Mode:	802.11n HT20 AV	Frequency(MHz):	5500
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	5.56	40.62	46.18	/	/	AVG
2	5467.900	6.14	40.63	46.77	/	/	AVG
3	5470.000	6.16	40.63	46.79	/	/	AVG


Test Mode:	802.11n HT20 PK	Frequency(MHz):	5700
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	23.17	41.27	64.44	68.20	-3.76	peak
2	5725.620	25.27	41.27	66.54	68.20	-1.66	peak


Test Mode:	802.11n HT20 PK	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 3.3 V

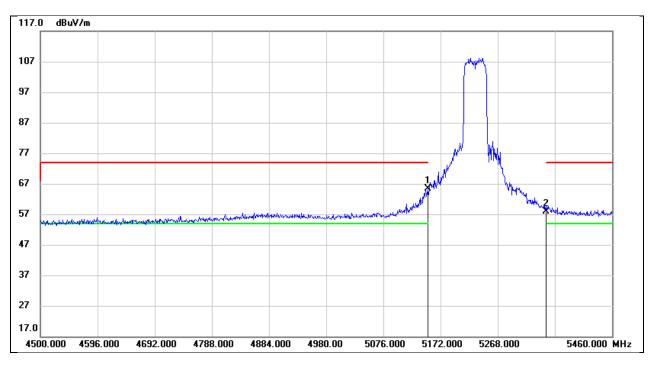
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5638.250	18.20	41.03	59.23	68.20	-8.97	peak
2	5725.000	34.53	41.27	75.80	122.20	-46.40	peak

Test Mode:	802.11n HT20 PK	Frequency(MHz):	5825	
Polarity:	Vertical	Test Voltage:	DC 3.3 V	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	30.38	41.60	71.98	122.20	-50.22	peak
2	5969.760	18.85	41.92	60.77	68.20	-7.43	peak

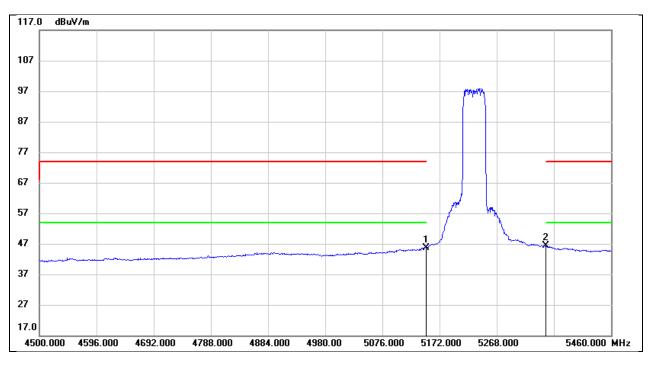
Fest Mode:	802.11n HT40 PK	Frequency(MHz):	5190
Polarity:	Vertical	Test Voltage:	DC 3.3 V
127.0 dBuV/m			
117			
107			Mariny
97			
87			
67			and the second s
57	and the second s	descripte-market the second second second second	and the work of the second sec
47			
37			
27.0 4500.000 4573.000 46	46.000 4719.000 4792.000	4865.00 4938.000 5011.000	5084.000 5230.000 M

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5148.240	31.46	40.28	71.74	74.00	-2.26	peak
2	5150.000	30.79	40.27	71.06	74.00	-2.94	peak

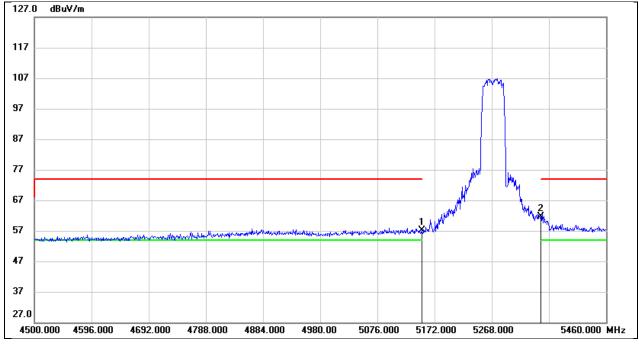


Test Mode:	802.11n HT40	AV Fre	V Frequency(MHz): Test Voltage:		
Polarity:	Vertical	Tes			DC 3.3 V
117.0 dBuV/m					
107					
97					MANAMAN
37					
77					
57					
57				<u>P</u>	
47					
37					
27					
17.0 4500.000 4573.000	4646.000 4719.000 47	792.000 4865.00	4938.000 5011.000	5084.000	5230.000 MI

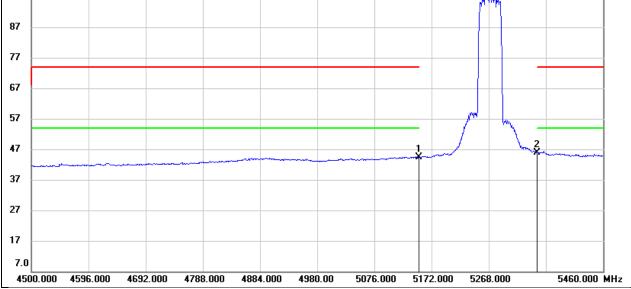
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5148.240	11.88	40.28	52.16	54.00	-1.84	AVG
2	5150.000	12.64	40.27	52.91	54.00	-1.09	AVG


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5230
Polarity:	Vertical	Test Voltage:	DC 3.3 V

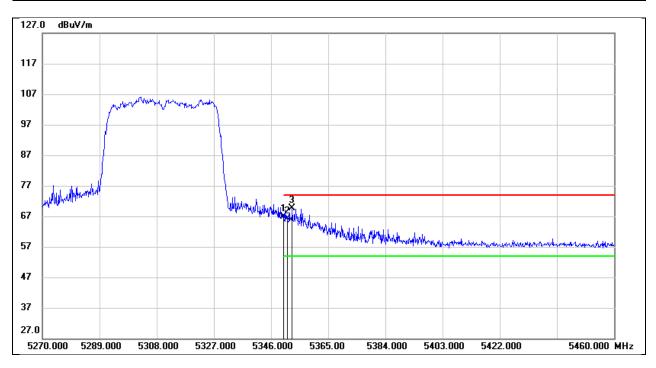
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	25.01	40.27	65.28	74.00	-8.72	peak
2	5350.000	17.50	40.49	57.99	74.00	-16.01	peak


Test Mode:	802.11n HT40 AV	Frequency(MHz):	5230
Polarity:	Vertical	Test Voltage:	DC 3.3 V

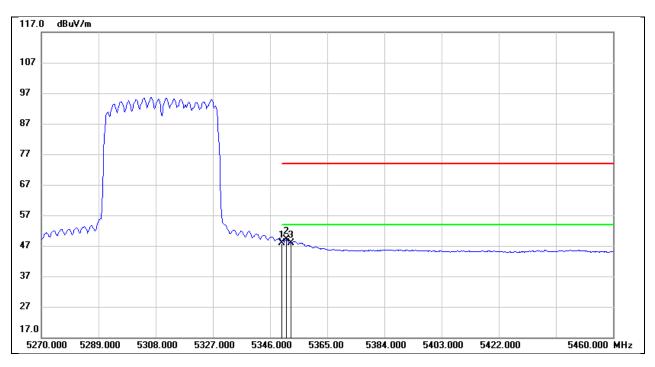
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	5.40	40.27	45.67	54.00	-8.33	AVG
2	5350.000	5.84	40.49	46.33	54.00	-7.67	AVG


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5270
Polarity:	Vertical	Test Voltage:	DC 3.3 V

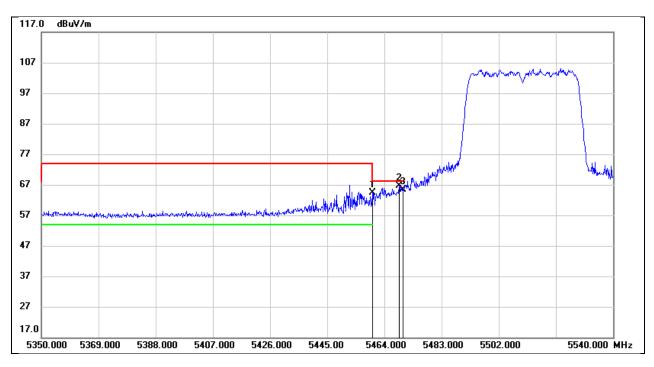
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	16.92	40.27	57.19	74.00	-16.81	peak
2	5350.000	21.14	40.49	61.63	74.00	-12.37	peak


Test Mode:	802.11n HT40 AV	Frequency(MHz):	5270		
Polarity:	Vertical	Test Voltage: DC 3.3 V			
107.0 dBu¥/m					

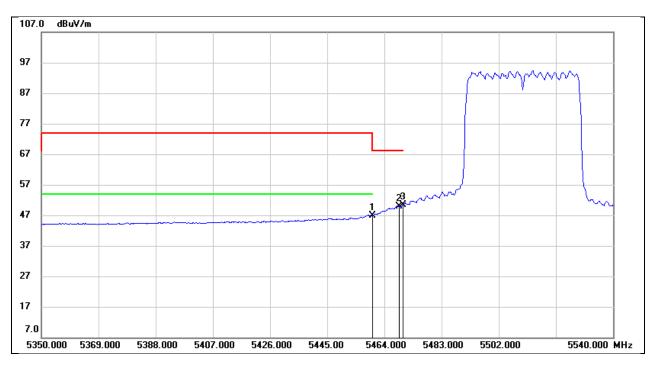
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	4.15	40.27	44.42	54.00	-9.58	AVG
2	5350.000	5.43	40.49	45.92	54.00	-8.08	AVG


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5310
Polarity:	Vertical	Test Voltage:	DC 3.3 V

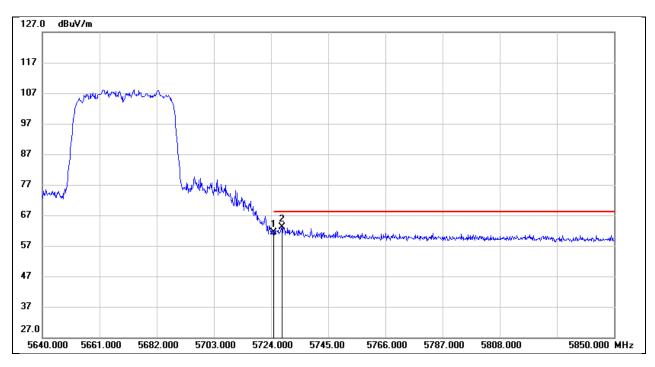
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	26.30	40.49	66.79	74.00	-7.21	peak
2	5351.510	25.75	40.49	66.24	74.00	-7.76	peak
3	5353.030	29.22	40.50	69.72	74.00	-4.28	peak


Test Mode:	802.11n HT40 AV	Frequency(MHz):	5310
Polarity:	Vertical	Test Voltage:	DC 3.3 V

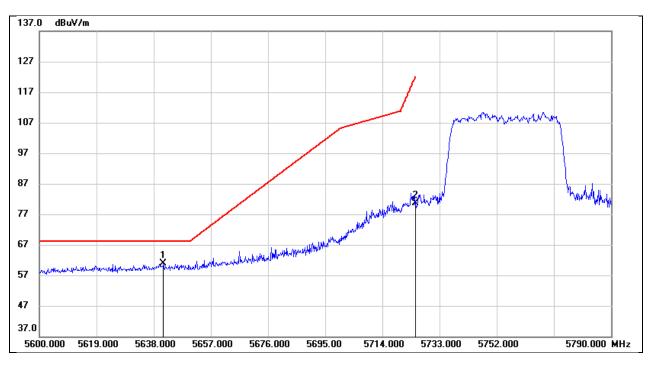
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	7.44	40.49	47.93	54.00	-6.07	AVG
2	5351.510	8.54	40.49	49.03	54.00	-4.97	AVG
3	5353.030	7.44	40.50	47.94	54.00	-6.06	AVG


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5510
Polarity:	Vertical	Test Voltage:	DC 3.3 V

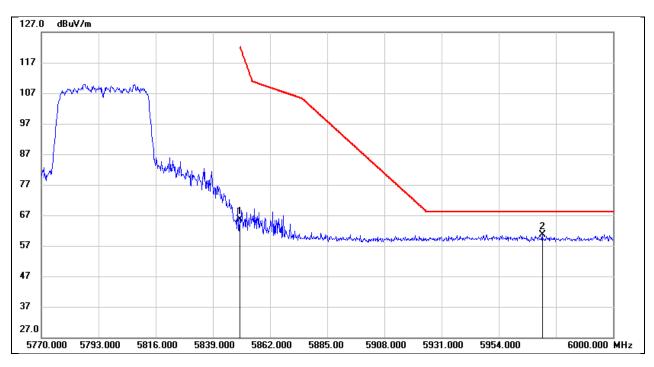
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	23.72	40.62	64.34	68.20	-3.86	peak
2	5468.940	26.10	40.63	66.73	68.20	-1.47	peak
3	5470.000	24.73	40.63	65.36	68.20	-2.84	peak


Test Mode:	802.11n HT40 AV	Frequency(MHz):	5510
Polarity:	Vertical	Test Voltage:	DC 3.3 V

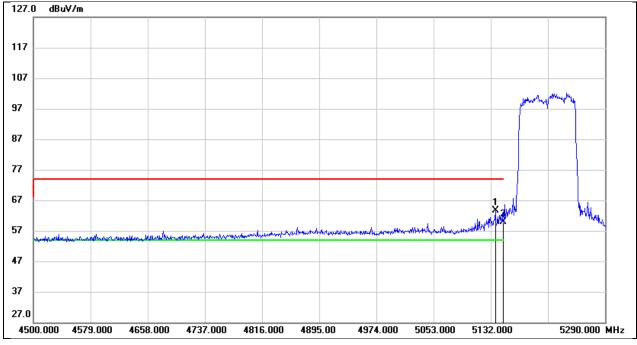
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	6.34	40.62	46.96	/	/	AVG
2	5468.940	9.19	40.63	49.82	/	/	AVG
3	5470.000	9.67	40.63	50.30	/	/	AVG


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5670
Polarity:	Vertical	Test Voltage:	DC 3.3 V

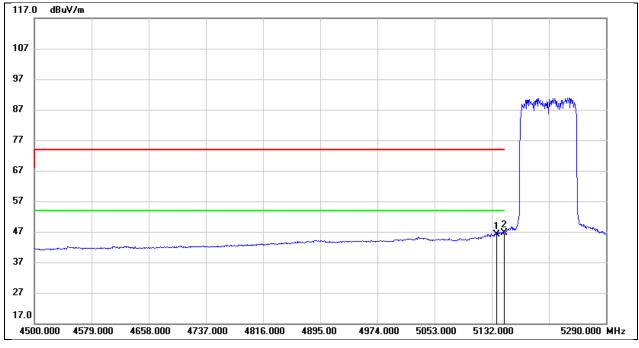
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	20.15	41.27	61.42	68.20	-6.78	peak
2	5727.990	21.83	41.27	63.10	68.20	-5.10	peak


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5755
Polarity:	Vertical	Test Voltage:	DC 3.3 V

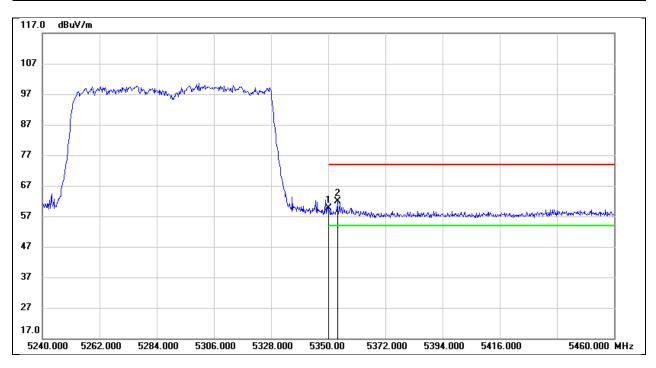
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5641.230	19.83	41.04	60.87	68.20	-7.33	peak
2	5725.000	39.25	41.27	80.52	122.20	-41.68	peak


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5795
Polarity:	Vertical	Test Voltage:	DC 3.3 V

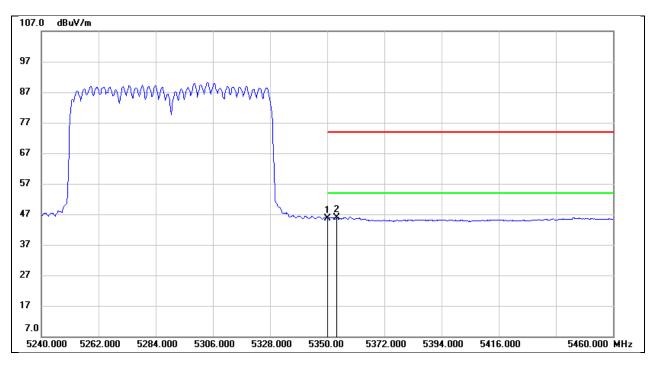
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	24.06	41.60	65.66	122.20	-56.54	peak
2	5971.480	18.83	41.92	60.75	68.20	-7.45	peak


Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5210
Polarity:	Vertical	Test Voltage:	DC 3.3 V

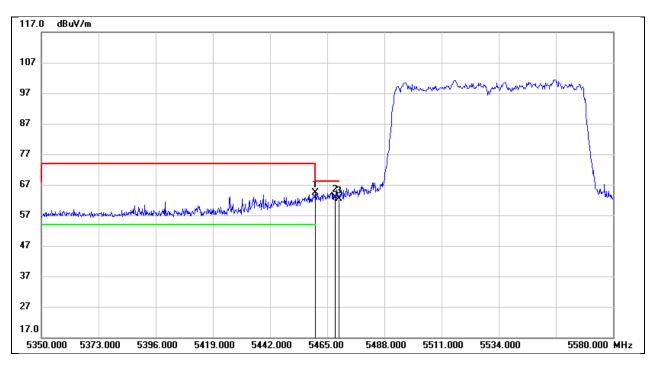
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5138.320	23.40	40.27	63.67	74.00	-10.33	peak
2	5150.000	19.70	40.27	59.97	74.00	-14.03	peak


Test Mode:	802.11ac VHT80 AV	Frequency(MHz):	5210
Polarity:	Vertical	Test Voltage:	DC 3.3 V
,		5	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5138.320	5.85	40.27	46.12	54.00	-7.88	AVG
2	5150.000	6.42	40.27	46.69	54.00	-7.31	AVG


Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5290
Polarity:	Vertical	Test Voltage:	DC 3.3 V

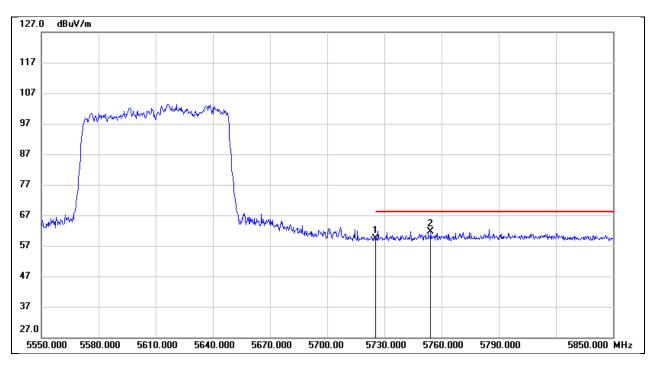
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	19.08	40.49	59.57	74.00	-14.43	peak
2	5353.520	21.47	40.50	61.97	74.00	-12.03	peak


Test Mode:	802.11ac VHT80 AV	Frequency(MHz):	5290
Polarity:	Vertical	Test Voltage:	DC 3.3 V

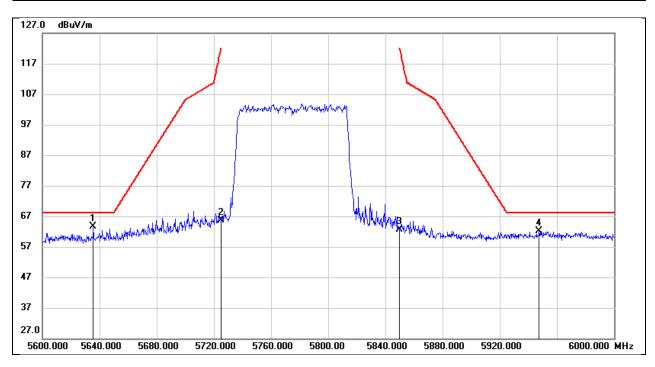
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	5.15	40.49	45.64	54.00	-8.36	AVG
2	5353.520	5.27	40.50	45.77	54.00	-8.23	AVG

Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5530
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	23.66	40.62	64.28	68.20	-3.92	peak
2	5468.220	22.27	40.63	62.90	68.20	-5.30	peak
3	5470.000	21.64	40.63	62.27	68.20	-5.93	peak


Test Mode:	802.11ac VHT80 AV	Frequency(MHz):	5530
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	6.95	40.62	47.57	/	/	AVG
2	5468.220	8.39	40.63	49.02	/	/	AVG
3	5470.000	7.62	40.63	48.25	/	/	AVG


Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5610
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	18.15	41.27	59.42	68.20	-8.78	peak
2	5754.300	20.38	41.34	61.72	68.20	-6.48	peak

Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5775
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5635.600	22.69	41.03	63.72	68.20	-4.48	peak
2	5725.000	24.35	41.27	65.62	122.20	-56.58	peak
3	5850.000	21.11	41.60	62.71	122.20	-59.49	peak
4	5947.600	20.39	41.86	62.25	68.20	-5.95	peak

Test Mode:			5180
Polarity:			DC 3.3 V
127.0 dBuV/m			
117			
107			A
97			
87			
77			
67			
57 Juni and	agained and the second and the second	eli-whether whether the sector and a sector of the sector	water and the second second
47			
37 27.0			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5145.320	17.99	40.27	58.26	74.00	-15.74	peak
2	5150.000	16.39	40.27	56.66	74.00	-17.34	peak

47

37

27 17.0

4500.000

4573.000

4646.000

4719.000

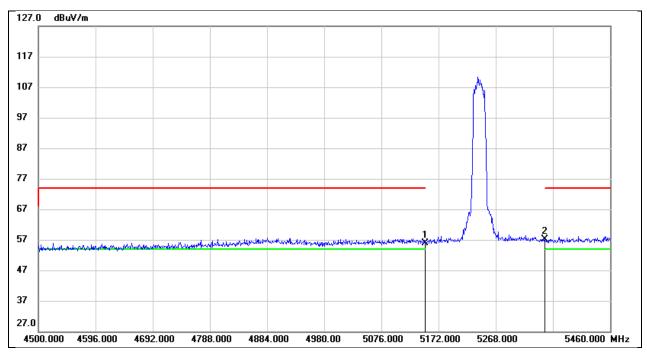
4792.000

5084.000

5230.000 MHz

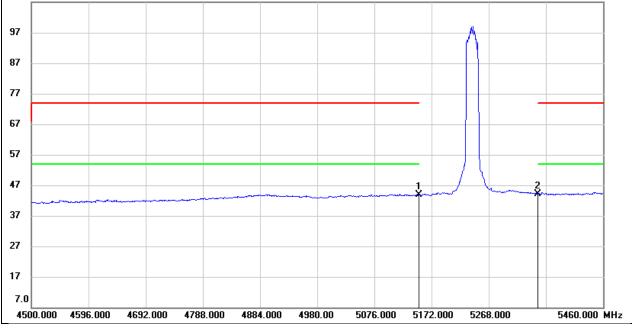
Test Mode:	802.11ax HE20 A	V Frequency(MHz):	5180
Polarity:	Vertical	Test Voltage:	DC 3.3 V
117.0 dBu∀/m		·	•
107			
97			
51			
87			
77			
67			
57			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5145.320	4.24	40.27	44.51	54.00	-9.49	AVG
2	5150.000	4.31	40.27	44.58	54.00	-9.42	AVG


4865.00

4938.000

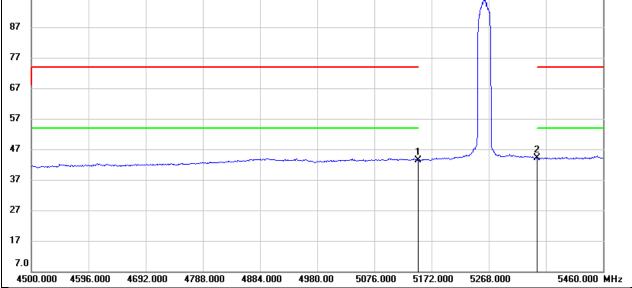
5011.000


Test Mode:	802.11ax HE20 PK	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 3.3 V

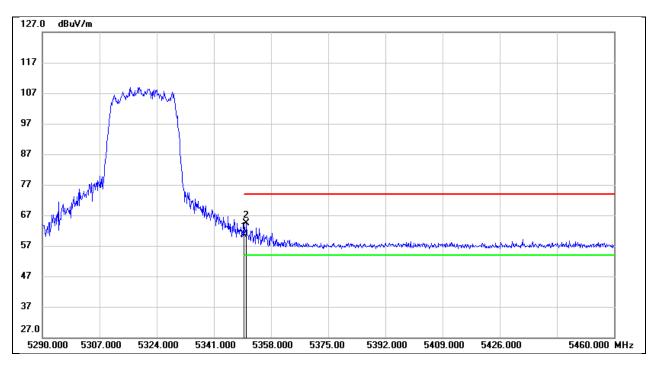
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.64	40.27	55.91	74.00	-18.09	peak
2	5350.000	16.59	40.49	57.08	74.00	-16.92	peak

Test Mode:	802.11ax HE20 AV	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 3.3 V
107.0 dBuV/m			

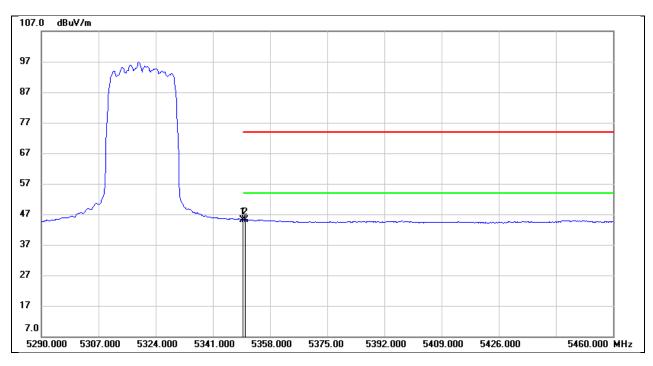
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.57	40.27	43.84	54.00	-10.16	AVG
2	5350.000	3.70	40.49	44.19	54.00	-9.81	AVG


Test Mode:	802.11ax HE20 PK	Frequency(MHz):	5260
Polarity:	Vertical	Test Voltage:	DC 3.3 V

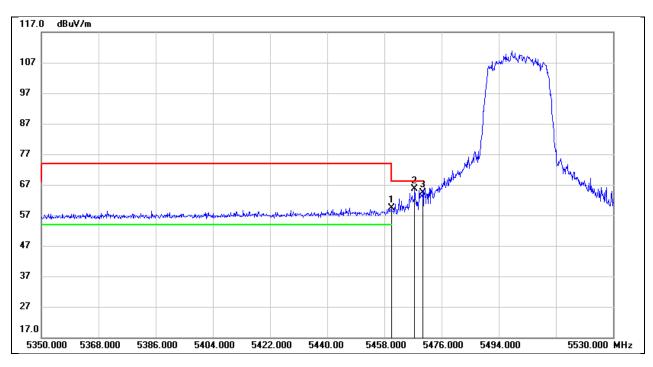
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.48	40.27	55.75	74.00	-18.25	peak
2	5350.000	15.40	40.49	55.89	74.00	-18.11	peak


Test	Fest Mode:		802.11a	802.11ax HE20 AV		Frequency(MHz):			5260		
Polarity:			Vertical		Test Vol	Test Voltage:		DC 3.3 V			
107.0) dBuV/m										

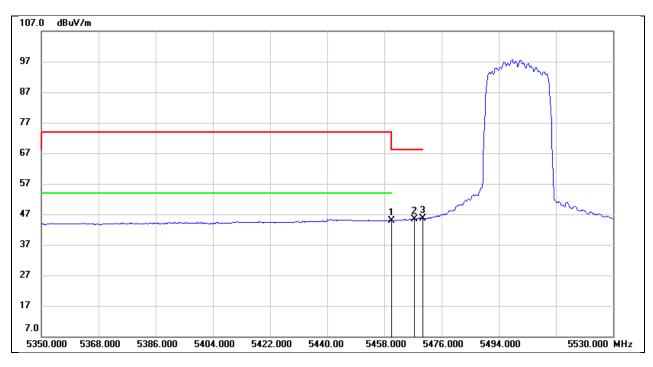
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.23	40.27	43.50	54.00	-10.50	AVG
2	5350.000	3.55	40.49	44.04	54.00	-9.96	AVG


Test Mode:	802.11ax HE20 PK	Frequency(MHz):	5320
Polarity:	Vertical	Test Voltage:	DC 3.3 V

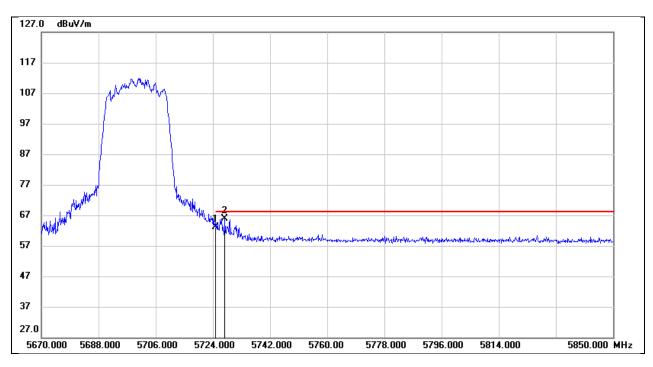
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	20.11	40.49	60.60	74.00	-13.40	peak
2	5350.690	23.96	40.49	64.45	74.00	-9.55	peak


Test Mode:	802.11ax HE20 AV	Frequency(MHz):	5320
Polarity:	Vertical	Test Voltage:	DC 3.3 V

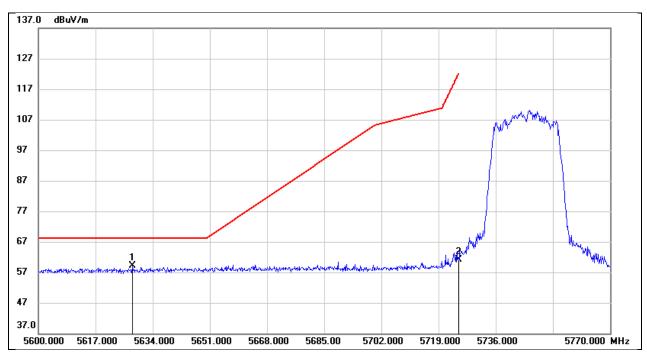
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	4.66	40.49	45.15	54.00	-8.85	AVG
2	5350.690	4.74	40.49	45.23	54.00	-8.77	AVG


Test Mode:	802.11ax HE20 PK	Frequency(MHz):	5500
Polarity:	Vertical	Test Voltage:	DC 3.3 V

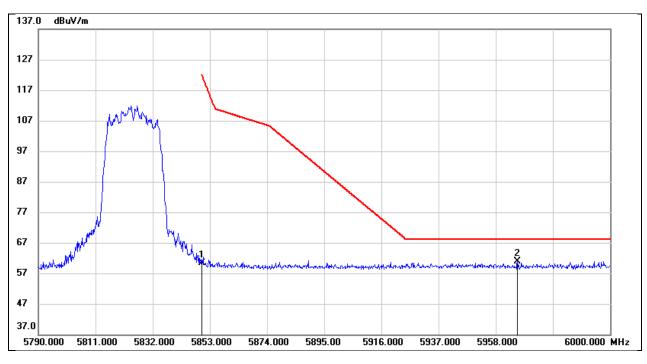
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	18.79	40.62	59.41	68.20	-8.79	peak
2	5467.540	25.05	40.63	65.68	68.20	-2.52	peak
3	5470.000	23.76	40.63	64.39	68.20	-3.81	peak


Test Mode:	802.11ax HE20 AV	Frequency(MHz):	5500
Polarity:	Vertical	Test Voltage:	DC 3.3 V

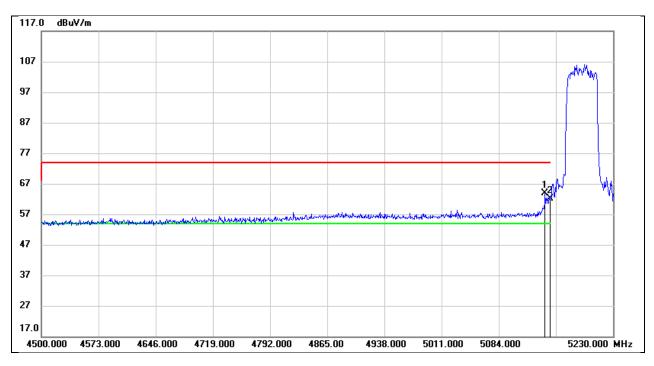
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	4.31	40.62	44.93	/	/	AVG
2	5467.540	4.76	40.63	45.39	/	/	AVG
3	5470.000	4.98	40.63	45.61	/	/	AVG


Test Mode:	802.11ax HE20 PK	Frequency(MHz):	5700
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	21.91	41.27	63.18	68.20	-5.02	peak
2	5727.780	24.64	41.27	65.91	68.20	-2.29	peak


Test Mode:	802.11ax HE20 PK	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5627.880	18.15	41.00	59.15	68.20	-9.05	peak
2	5725.000	19.94	41.27	61.21	122.20	-60.99	peak

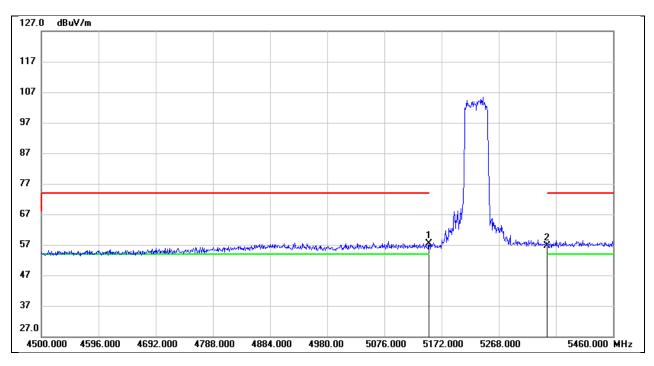

Test Mode:	802.11ax HE20 PK	Frequency(MHz):	5825
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	18.84	41.60	60.44	122.20	-61.76	peak
2	5965.980	18.89	41.91	60.80	68.20	-7.40	peak

Test Mode:	802.11ax HE40 PK	Frequency(MHz):	5190
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5143.130	23.64	40.27	63.91	74.00	-10.09	peak
2	5150.000	21.93	40.27	62.20	74.00	-11.80	peak

77

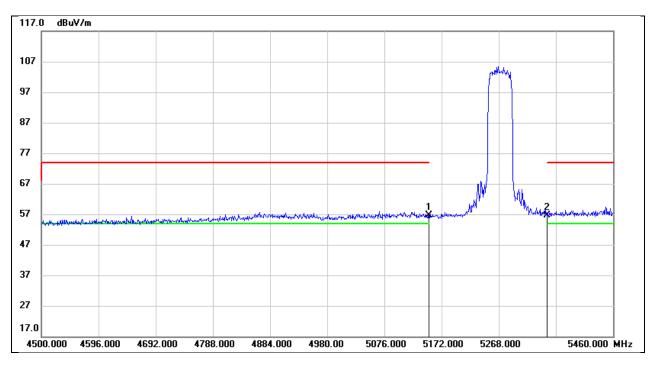

Test Mode: Polarity:			802.1	1ax HE40) AV	Frequen	cy(MHz)	5190	
			Vertic	al		Test Vol	tage:	DC 3.3 V	
107.0) dBuV/m			1					
97									
87									Makromenak

7																		1
7																		
7															1	2 m		1 1
7				~		~~~~	~~~					~~~~~						
,																		
											_							1
7.0 4500	.000 4	573.000	AGAI	6.000	4710	9.000	479	2.000	4865	. 00 . 4 9	38.000	5011	.000	5084.0	00		5230.000	

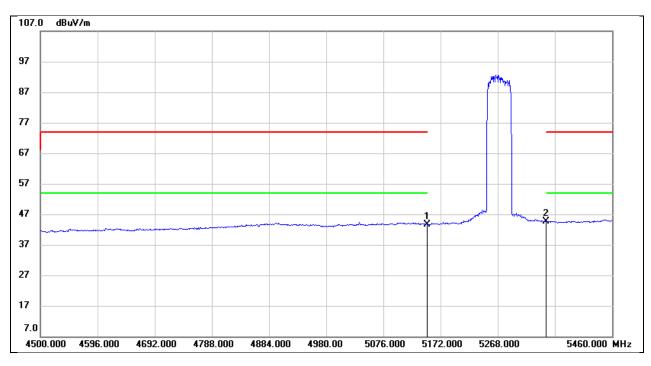
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5143.130	5.49	40.27	45.76	54.00	-8.24	AVG
2	5150.000	7.87	40.27	48.14	54.00	-5.86	AVG

Test Mode:	802.11ax HE40 PK	Frequency(MHz):	5230
Polarity:	Vertical	Test Voltage:	DC 3.3 V

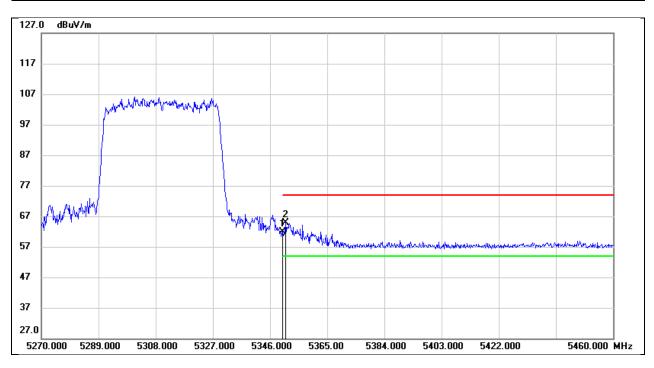
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	17.10	40.27	57.37	74.00	-16.63	peak
2	5350.000	16.25	40.49	56.74	74.00	-17.26	peak


Test Mode:	802.11ax HE40 AV	Frequency(MHz):	5230
Polarity:	Vertical	Test Voltage:	DC 3.3 V

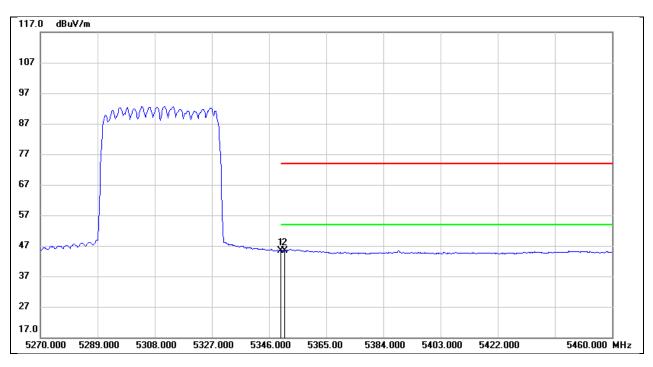
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.76	40.27	44.03	54.00	-9.97	AVG
2	5350.000	4.06	40.49	44.55	54.00	-9.45	AVG


Test Mode:	802.11ax HE40 PK	Frequency(MHz):	5270
Polarity:	Vertical	Test Voltage:	DC 3.3 V

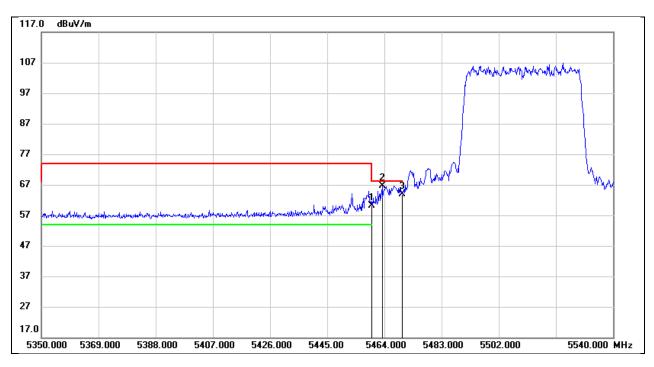
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	16.33	40.27	56.60	74.00	-17.40	peak
2	5350.000	16.10	40.49	56.59	74.00	-17.41	peak


Test Mode:	802.11ax HE40 AV	Frequency(MHz):	5270
Polarity:	Vertical	Test Voltage:	DC 3.3 V

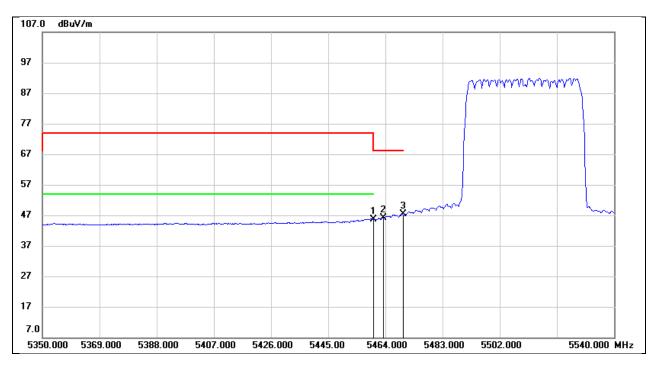
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.42	40.27	43.69	54.00	-10.31	AVG
2	5350.000	4.05	40.49	44.54	54.00	-9.46	AVG


Test Mode:	802.11ax HE40 PK	Frequency(MHz):	5310
Polarity:	Vertical	Test Voltage:	DC 3.3 V

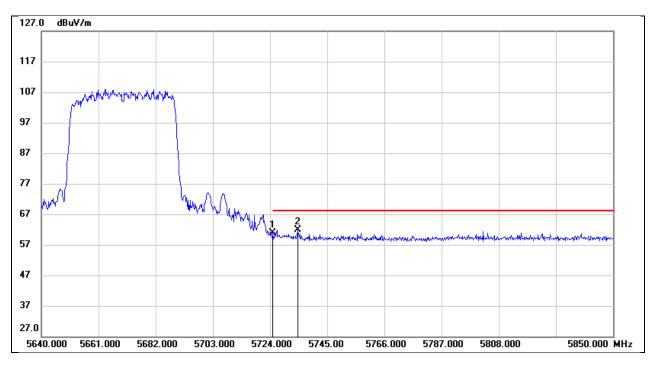
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	21.42	40.49	61.91	74.00	-12.09	peak
2	5351.130	24.37	40.49	64.86	74.00	-9.14	peak


Test Mode:	802.11ax HE40 AV	Frequency(MHz):	5310
Polarity:	Vertical	Test Voltage:	DC 3.3 V

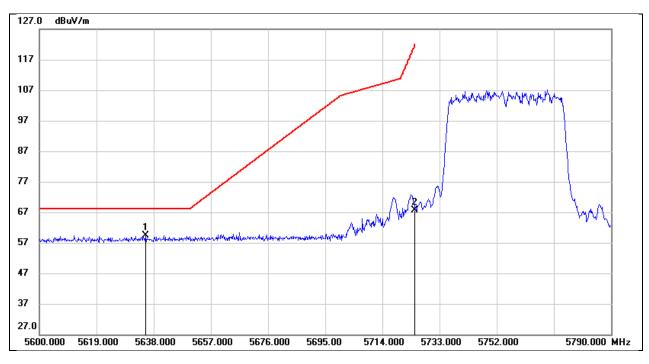
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	4.78	40.49	45.27	54.00	-8.73	AVG
2	5351.130	4.85	40.49	45.34	54.00	-8.66	AVG


Test Mode:	802.11ax HE40 PK	Frequency(MHz):	5510
Polarity:	Vertical	Test Voltage:	DC 3.3 V

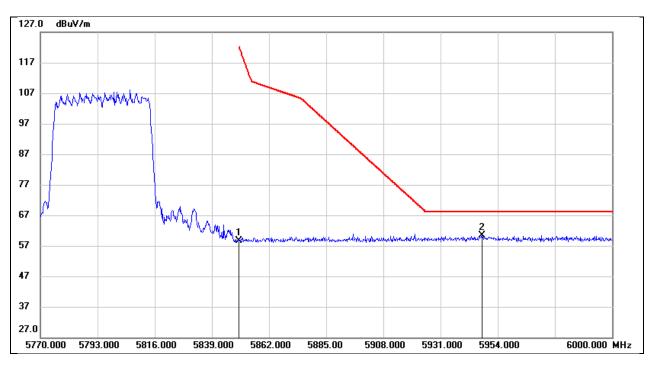
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	19.42	40.62	60.04	68.20	-8.16	peak
2	5463.240	26.06	40.62	66.68	68.20	-1.52	peak
3	5470.000	23.15	40.63	63.78	68.20	-4.42	peak


Test Mode:	802.11ax HE40 AV	Frequency(MHz):	5510
Polarity:	Vertical	Test Voltage:	DC 3.3 V

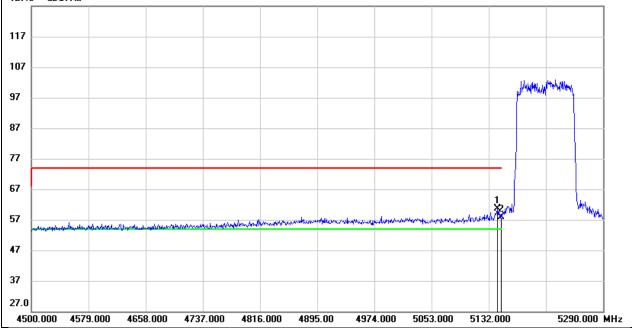
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	4.99	40.62	45.61	/	/	AVG
2	5463.240	5.46	40.62	46.08	/	/	AVG
3	5470.000	6.85	40.63	47.48	/	/	AVG


Test Mode:	802.11ax HE40 PK	Frequency(MHz):	5670
Polarity:	Vertical	Test Voltage:	DC 3.3 V

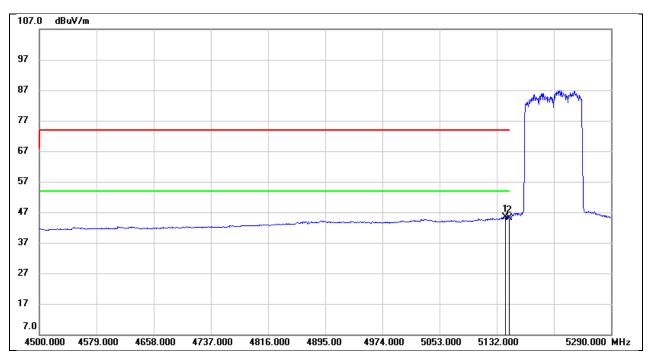
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	19.55	41.27	60.82	68.20	-7.38	peak
2	5734.080	20.71	41.28	61.99	68.20	-6.21	peak


Test Mode:	802.11ax HE40 PK	Frequency(MHz):	5755
Polarity:	Vertical	Test Voltage:	DC 3.3 V

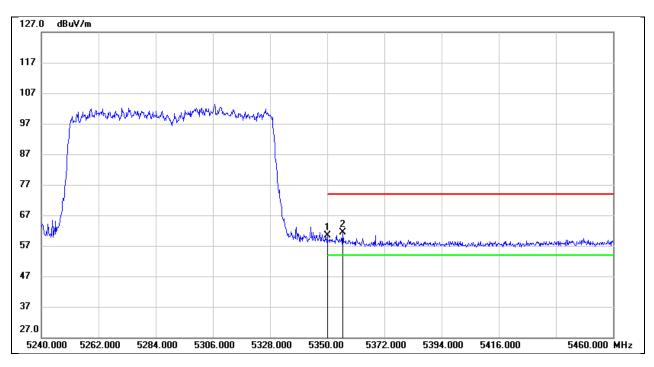
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5635.340	18.36	41.03	59.39	68.20	-8.81	peak
2	5725.000	26.45	41.27	67.72	122.20	-54.48	peak


Test Mode:	802.11ax HE40 PK	Frequency(MHz):	5795
Polarity:	Vertical	Test Voltage:	DC 3.3 V

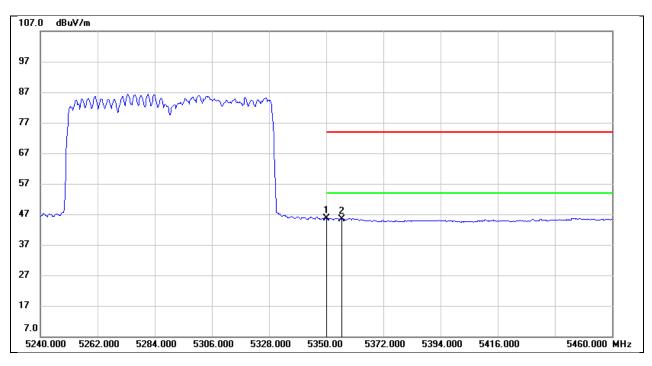
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	17.00	41.60	58.60	122.20	-63.60	peak
2	5947.560	18.41	41.86	60.27	68.20	-7.93	peak


Test Mode:	802.11ax HE80 PK	Frequency(MHz):	5210
Polarity:	Vertical	Test Voltage:	DC 3.3 V

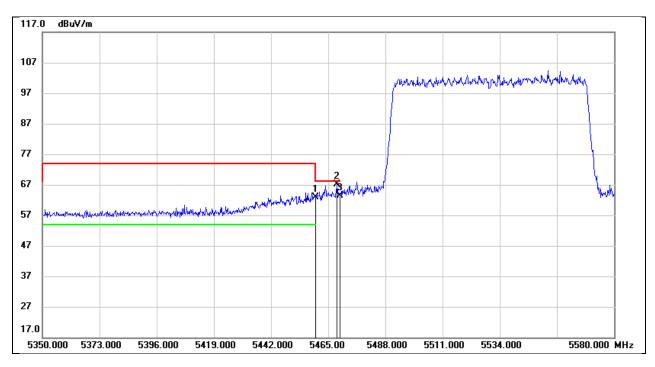
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5143.850	20.26	40.27	60.53	74.00	-13.47	peak
2	5150.000	17.70	40.27	57.97	74.00	-16.03	peak


Test Mode:	802.11ax HE80 AV	Frequency(MHz):	5210
Polarity:	Vertical	Test Voltage:	DC 3.3 V

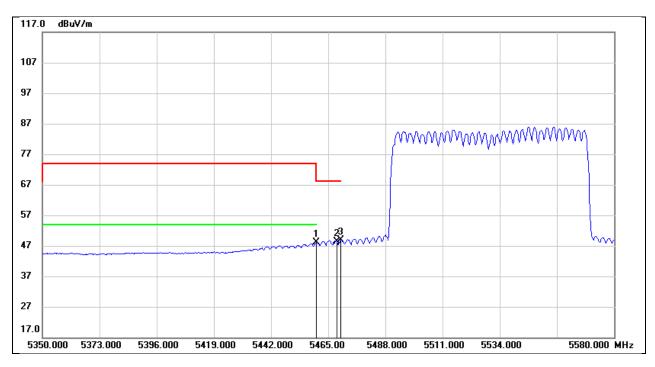
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5143.850	5.13	40.27	45.40	54.00	-8.60	AVG
2	5150.000	4.96	40.27	45.23	54.00	-8.77	AVG


Test Mode:	802.11ax HE80 PK	Frequency(MHz):	5290
Polarity:	Vertical	Test Voltage:	DC 3.3 V

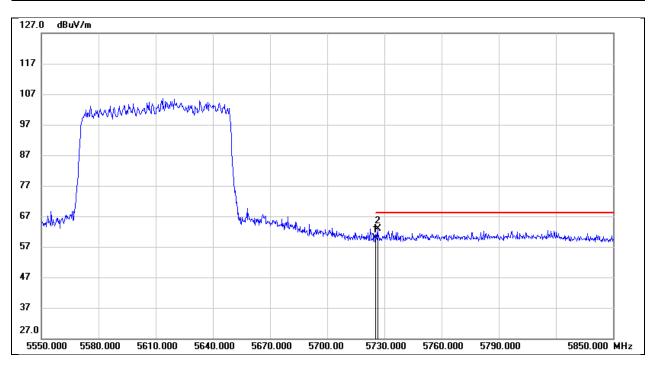
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	19.87	40.49	60.36	74.00	-13.64	peak
2	5355.940	20.94	40.50	61.44	74.00	-12.56	peak


Test Mode:	802.11ax HE80 AV	Frequency(MHz):	5290
Polarity:	Vertical	Test Voltage:	DC 3.3 V

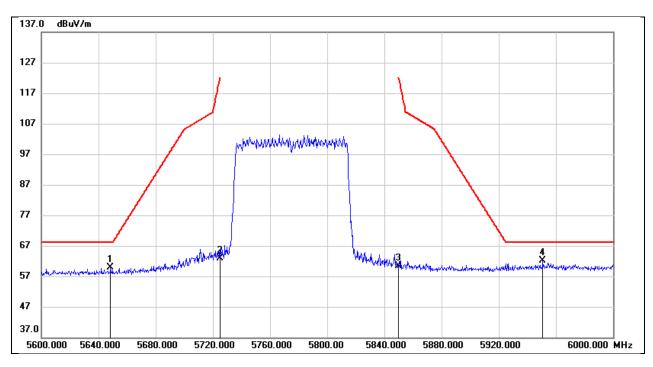
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	5.03	40.49	45.52	54.00	-8.48	AVG
2	5355.940	4.86	40.50	45.36	54.00	-8.64	AVG


Test Mode:	802.11ax HE80 PK	Frequency(MHz):	5530
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	22.16	40.62	62.78	68.20	-5.42	peak
2	5468.450	26.54	40.63	67.17	68.20	-1.03	peak
3	5470.000	22.65	40.63	63.28	68.20	-4.92	peak

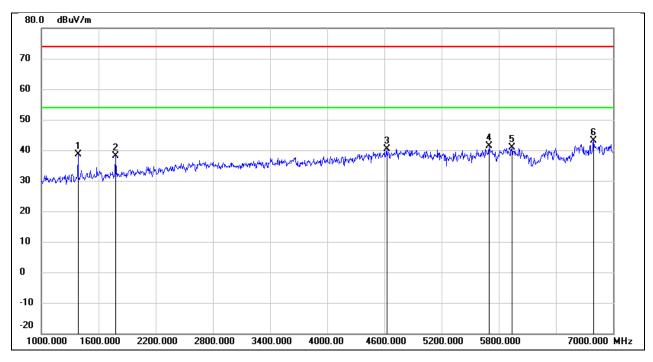

Test Mode:	802.11ax HE80 AV	Frequency(MHz):	5530
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	7.43	40.62	48.05	/	/	AVG
2	5468.450	7.65	40.63	48.28	/	/	AVG
3	5470.000	8.15	40.63	48.78	/	/	AVG


Test Mode:	802.11ax HE80 PK	Frequency(MHz):	5610
Polarity:	Vertical	Test Voltage:	DC 3.3 V

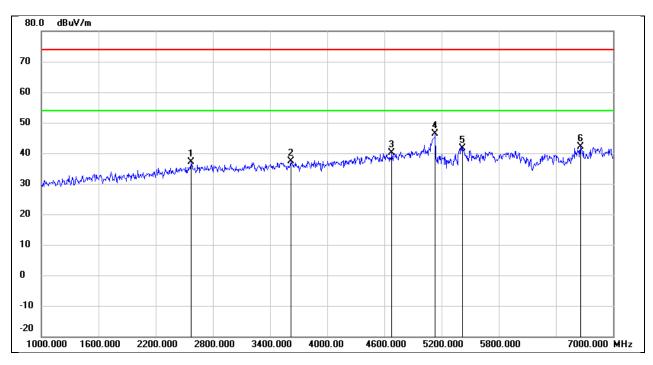
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	18.49	41.27	59.76	68.20	-8.44	peak
2	5726.400	21.73	41.27	63.00	68.20	-5.20	peak

Test Mode:	802.11ax HE80 PK	Frequency(MHz):	5775
Polarity:	Vertical	Test Voltage:	DC 3.3 V

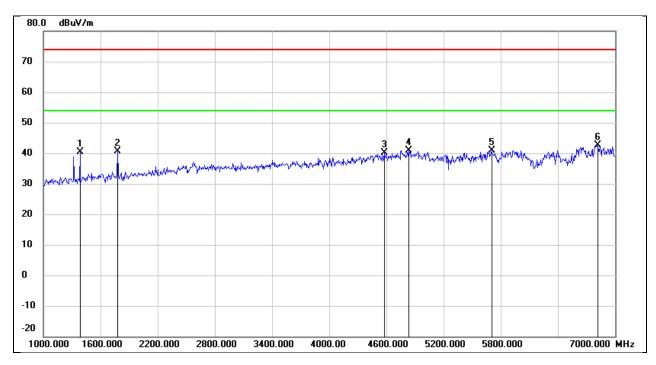


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5648.400	18.75	41.06	59.81	68.20	-8.39	peak
2	5725.000	21.58	41.27	62.85	122.20	-59.35	peak
3	5850.000	18.80	41.60	60.40	122.20	-61.80	peak
4	5950.800	20.22	41.87	62.09	68.20	-6.11	peak

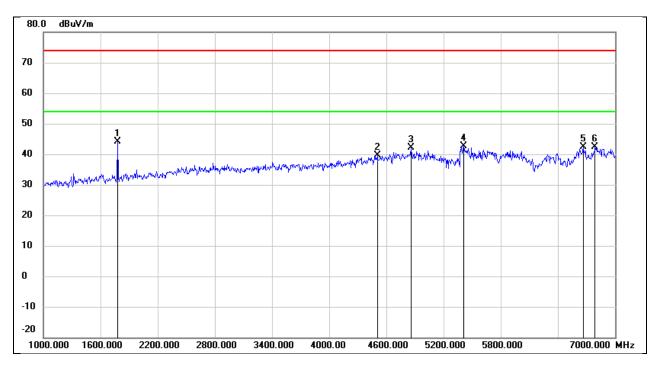
8.2. SPURIOUS EMISSIONS (1 GHZ ~ 7 GHZ)


Test Mode:	802.11a 20	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

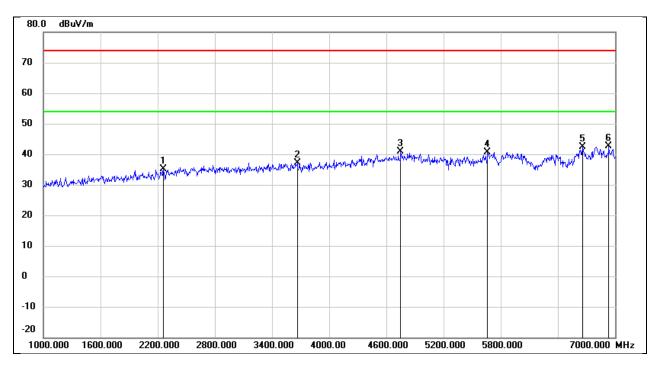
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1384.000	51.85	-13.24	38.61	74.00	-35.39	peak
2	1780.000	49.93	-11.79	38.14	74.00	-35.86	peak
3	4624.000	42.14	-1.65	40.49	74.00	-33.51	peak
4	5698.000	40.41	0.99	41.40	74.00	-32.60	peak
5	5938.000	39.13	1.67	40.80	74.00	-33.20	peak
6	6796.000	38.04	5.19	43.23	74.00	-30.77	peak


Test Mode:	802.11a 20	Frequency(MHz):	5180
Polarity:	Vertical	Test Voltage:	DC 3.3 V

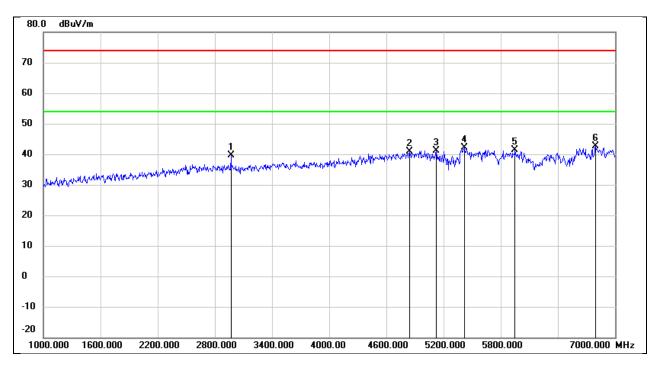
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2572.000	45.33	-8.27	37.06	74.00	-36.94	peak
2	3616.000	43.00	-5.53	37.47	74.00	-36.53	peak
3	4678.000	41.49	-1.44	40.05	74.00	-33.95	peak
4	5134.000	46.49	0.00	46.49	74.00	-27.51	peak
5	5422.000	41.26	0.32	41.58	74.00	-32.42	peak
6	6658.000	37.76	4.49	42.25	74.00	-31.75	peak


Test Mode:	802.11a 20	Frequency(MHz):	5200
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

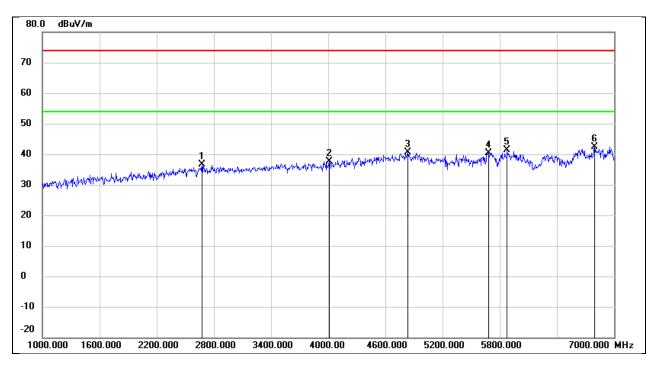
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1384.000	53.68	-13.24	40.44	74.00	-33.56	peak
2	1780.000	52.34	-11.79	40.55	74.00	-33.45	peak
3	4576.000	42.07	-1.84	40.23	74.00	-33.77	peak
4	4834.000	41.77	-0.81	40.96	74.00	-33.04	peak
5	5704.000	39.89	1.00	40.89	74.00	-33.11	peak
6	6820.000	37.39	5.31	42.70	74.00	-31.30	peak


Test Mode:	802.11a 20	Frequency(MHz):	5200
Polarity:	Vertical	Test Voltage:	DC 3.3 V

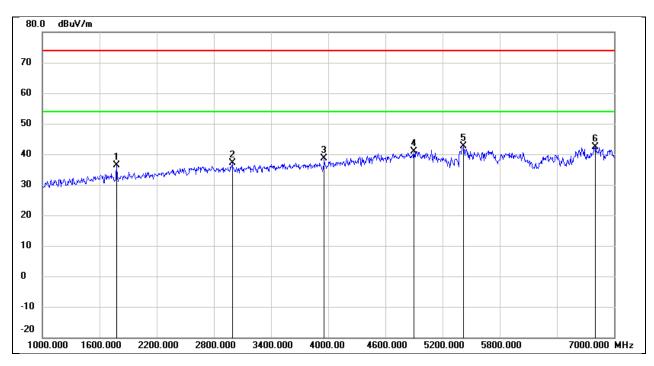
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1780.000	55.85	-11.79	44.06	74.00	-29.94	peak
2	4504.000	41.72	-2.12	39.60	74.00	-34.40	peak
3	4858.000	42.96	-0.72	42.24	74.00	-31.76	peak
4	5410.000	42.33	0.32	42.65	74.00	-31.35	peak
5	6664.000	37.73	4.54	42.27	74.00	-31.73	peak
6	6790.000	37.16	5.15	42.31	74.00	-31.69	peak


Test Mode:	802.11a 20	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

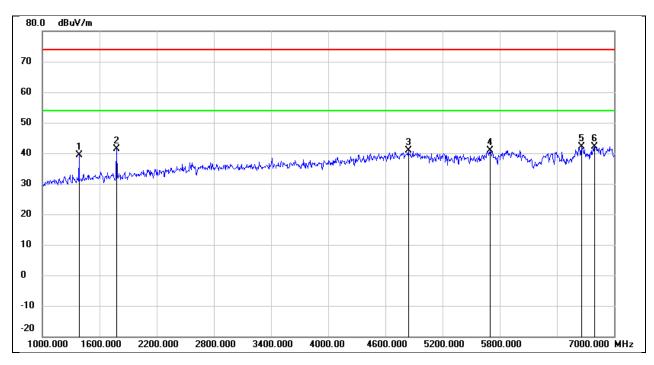
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2260.000	44.75	-9.72	35.03	74.00	-38.97	peak
2	3664.000	42.65	-5.40	37.25	74.00	-36.75	peak
3	4750.000	41.90	-1.14	40.76	74.00	-33.24	peak
4	5662.000	39.70	0.89	40.59	74.00	-33.41	peak
5	6658.000	37.87	4.49	42.36	74.00	-31.64	peak
6	6934.000	36.70	5.87	42.57	74.00	-31.43	peak


Test Mode:	802.11a 20	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 3.3 V

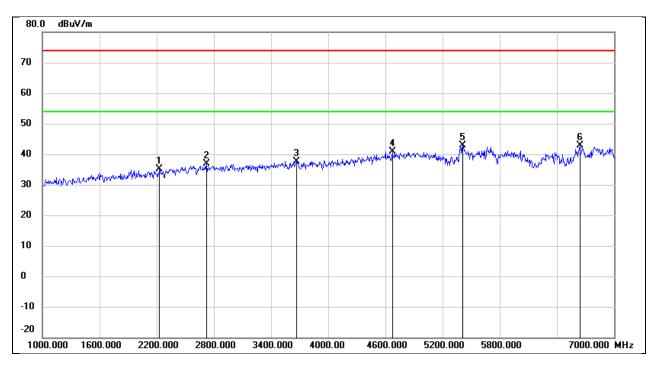
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2968.000	46.70	-7.08	39.62	74.00	-34.38	peak
2	4840.000	41.63	-0.78	40.85	74.00	-33.15	peak
3	5122.000	41.22	-0.02	41.20	74.00	-32.80	peak
4	5422.000	41.72	0.32	42.04	74.00	-31.96	peak
5	5950.000	39.56	1.70	41.26	74.00	-32.74	peak
6	6796.000	37.55	5.19	42.74	74.00	-31.26	peak


Test Mode:	802.11a 20	Frequency(MHz):	5260
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

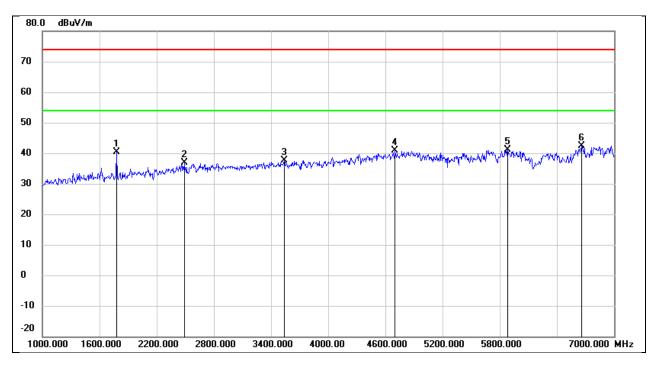
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2674.000	44.57	-7.97	36.60	74.00	-37.40	peak
2	4012.000	42.10	-4.43	37.67	74.00	-36.33	peak
3	4834.000	41.40	-0.81	40.59	74.00	-33.41	peak
4	5680.000	39.44	0.94	40.38	74.00	-33.62	peak
5	5878.000	39.82	1.51	41.33	74.00	-32.67	peak
6	6796.000	37.20	5.19	42.39	74.00	-31.61	peak


Test Mode:	802.11a 20	Frequency(MHz):	5260
Polarity:	Vertical	Test Voltage:	DC 3.3 V

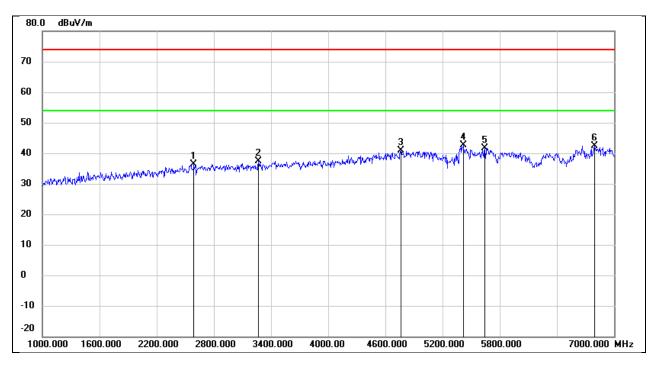
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1780.000	48.21	-11.79	36.42	74.00	-37.58	peak
2	2992.000	44.03	-7.00	37.03	74.00	-36.97	peak
3	3958.000	43.23	-4.59	38.64	74.00	-35.36	peak
4	4900.000	41.40	-0.55	40.85	74.00	-33.15	peak
5	5422.000	42.20	0.32	42.52	74.00	-31.48	peak
6	6802.000	37.20	5.21	42.41	74.00	-31.59	peak


Test Mode:	802.11a 20	Frequency(MHz):	5280
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

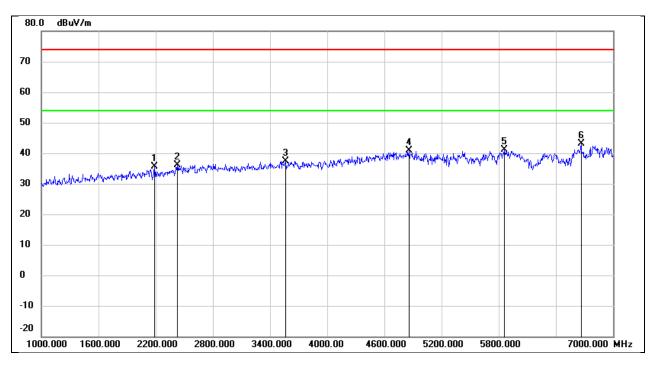
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1384.000	52.63	-13.24	39.39	74.00	-34.61	peak
2	1780.000	53.11	-11.79	41.32	74.00	-32.68	peak
3	4840.000	41.75	-0.78	40.97	74.00	-33.03	peak
4	5698.000	39.91	0.99	40.90	74.00	-33.10	peak
5	6658.000	37.57	4.49	42.06	74.00	-31.94	peak
6	6796.000	37.01	5.19	42.20	74.00	-31.80	peak


Test Mode:	802.11a 20	Frequency(MHz):	5280
Polarity:	Vertical	Test Voltage:	DC 3.3 V

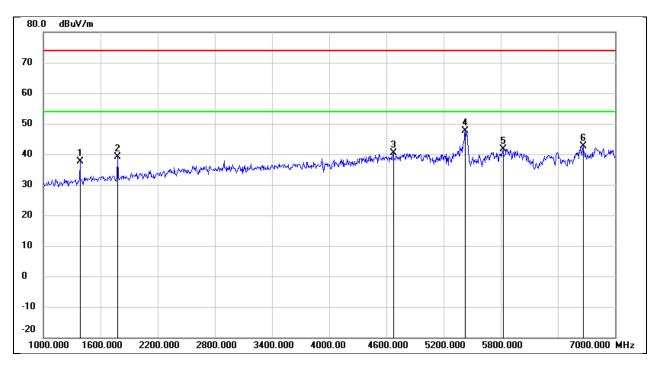
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2230.000	44.90	-9.88	35.02	74.00	-38.98	peak
2	2722.000	44.72	-7.81	36.91	74.00	-37.09	peak
3	3664.000	43.07	-5.40	37.67	74.00	-36.33	peak
4	4672.000	42.30	-1.46	40.84	74.00	-33.16	peak
5	5410.000	42.65	0.32	42.97	74.00	-31.03	peak
6	6640.000	38.39	4.41	42.80	74.00	-31.20	peak


Test Mode:	802.11a 20	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

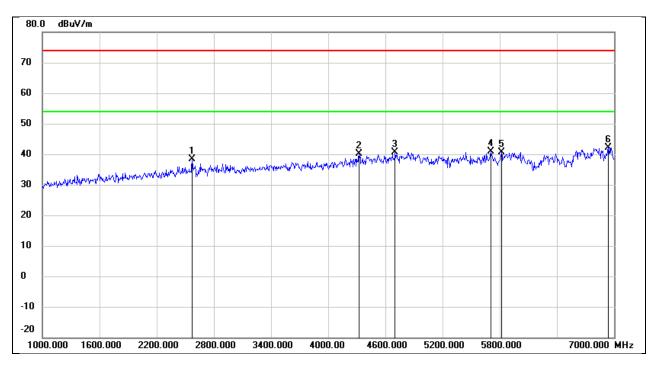
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1780.000	52.08	-11.79	40.29	74.00	-33.71	peak
2	2488.000	45.33	-8.55	36.78	74.00	-37.22	peak
3	3538.000	43.44	-5.74	37.70	74.00	-36.30	peak
4	4702.000	42.16	-1.34	40.82	74.00	-33.18	peak
5	5884.000	39.59	1.52	41.11	74.00	-32.89	peak
6	6658.000	37.96	4.49	42.45	74.00	-31.55	peak


Test Mode:	802.11a 20	Frequency(MHz):	5320
Polarity:	Vertical	Test Voltage:	DC 3.3 V

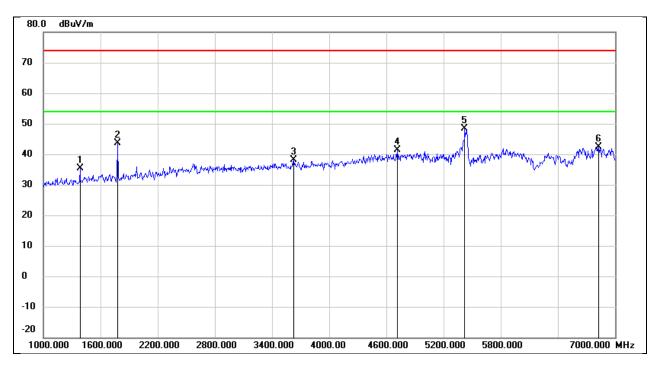
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2590.000	44.57	-8.22	36.35	74.00	-37.65	peak
2	3268.000	43.73	-6.37	37.36	74.00	-36.64	peak
3	4762.000	41.95	-1.10	40.85	74.00	-33.15	peak
4	5416.000	42.42	0.32	42.74	74.00	-31.26	peak
5	5644.000	40.85	0.82	41.67	74.00	-32.33	peak
6	6796.000	37.31	5.19	42.50	74.00	-31.50	peak


Test Mode:	802.11a 20	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

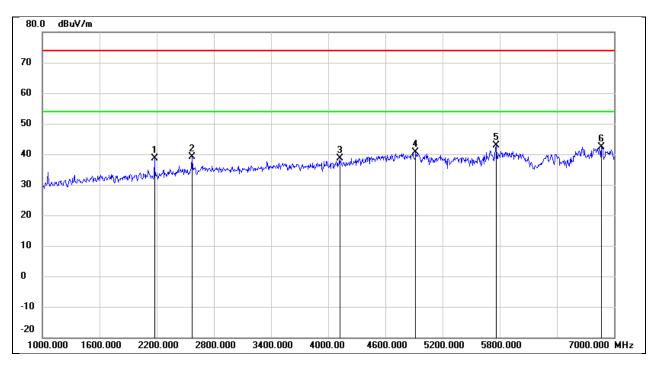
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2188.000	45.72	-10.09	35.63	74.00	-38.37	peak
2	2428.000	45.01	-8.86	36.15	74.00	-37.85	peak
3	3562.000	43.16	-5.68	37.48	74.00	-36.52	peak
4	4858.000	41.49	-0.72	40.77	74.00	-33.23	peak
5	5860.000	39.68	1.45	41.13	74.00	-32.87	peak
6	6664.000	38.52	4.54	43.06	74.00	-30.94	peak


Test Mode:	802.11a 20	Frequency(MHz):	5500
Polarity:	Vertical	Test Voltage:	DC 3.3 V

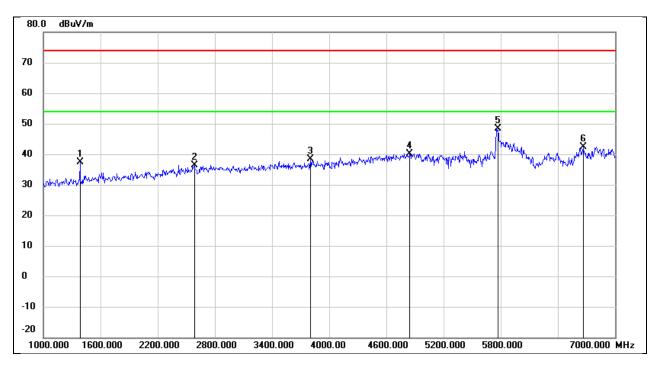
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1384.000	50.87	-13.24	37.63	74.00	-36.37	peak
2	1780.000	50.85	-11.79	39.06	74.00	-34.94	peak
3	4672.000	41.74	-1.46	40.28	74.00	-33.72	peak
4	5428.000	47.23	0.34	47.57	74.00	-26.43	peak
5	5824.000	40.30	1.34	41.64	74.00	-32.36	peak
6	6664.000	38.20	4.54	42.74	74.00	-31.26	peak


Test Mode:	802.11a 20	Frequency(MHz):	5580
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

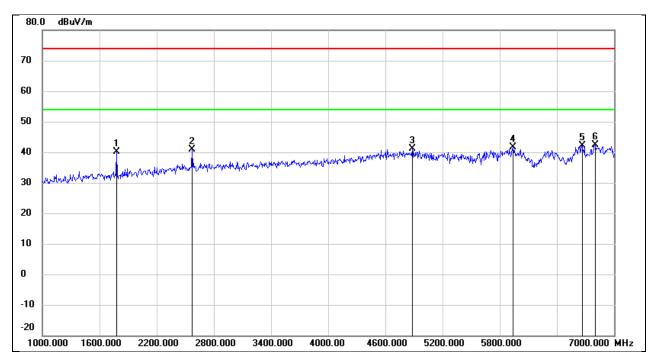
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2572.000	46.69	-8.27	38.42	74.00	-35.58	peak
2	4324.000	42.99	-2.96	40.03	74.00	-33.97	peak
3	4702.000	41.96	-1.34	40.62	74.00	-33.38	peak
4	5704.000	39.85	1.00	40.85	74.00	-33.15	peak
5	5818.000	39.34	1.33	40.67	74.00	-33.33	peak
6	6940.000	36.19	5.90	42.09	74.00	-31.91	peak


Test Mode:	802.11a 20	Frequency(MHz):	5580
Polarity:	Vertical	Test Voltage:	DC 3.3 V

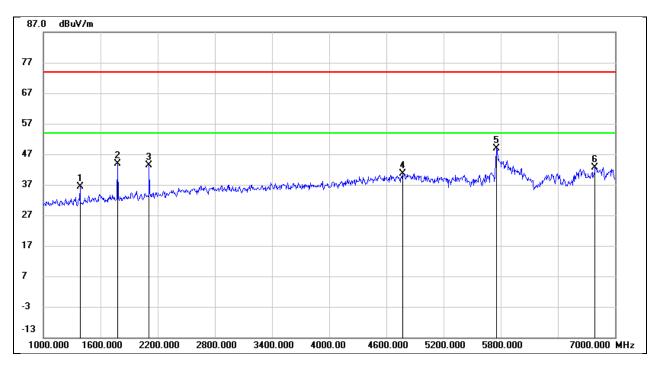
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1384.000	48.69	-13.24	35.45	74.00	-38.55	peak
2	1780.000	55.49	-11.79	43.70	74.00	-30.30	peak
3	3628.000	43.69	-5.50	38.19	74.00	-35.81	peak
4	4714.000	42.61	-1.29	41.32	74.00	-32.68	peak
5	5422.000	48.16	0.32	48.48	74.00	-25.52	peak
6	6826.000	37.03	5.34	42.37	74.00	-31.63	peak


Test Mode:	802.11a 20	Frequency(MHz):	5700
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

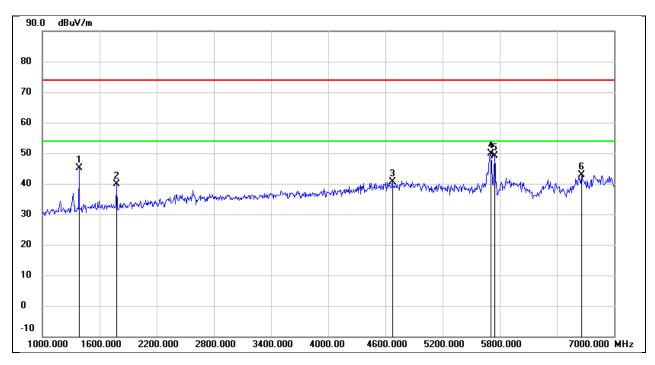
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2176.000	48.81	-10.16	38.65	74.00	-35.35	peak
2	2572.000	47.31	-8.27	39.04	74.00	-34.96	peak
3	4120.000	42.44	-3.92	38.52	74.00	-35.48	peak
4	4918.000	41.01	-0.47	40.54	74.00	-33.46	peak
5	5764.000	41.68	1.17	42.85	74.00	-31.15	peak
6	6868.000	36.89	5.54	42.43	74.00	-31.57	peak


Test Mode:	802.11a 20	Frequency(MHz):	5700
Polarity:	Vertical	Test Voltage:	DC 3.3 V

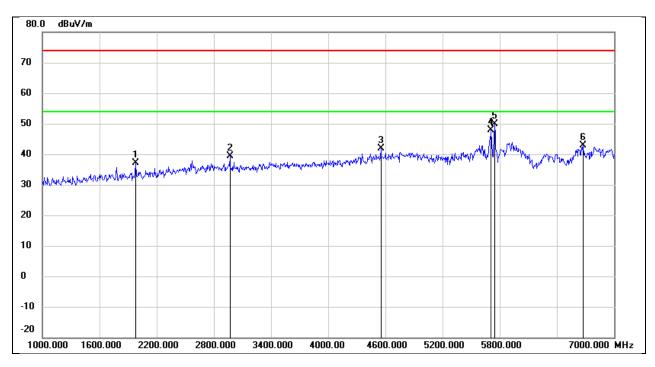
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1384.000	50.61	-13.24	37.37	74.00	-36.63	peak
2	2584.000	44.60	-8.24	36.36	74.00	-37.64	peak
3	3802.000	43.45	-5.03	38.42	74.00	-35.58	peak
4	4846.000	40.95	-0.77	40.18	74.00	-33.82	peak
5	5770.000	47.30	1.20	48.50	74.00	-25.50	peak
6	6670.000	37.85	4.57	42.42	74.00	-31.58	peak


Test Mode:	802.11a 20	Frequency(MHz):	5720
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

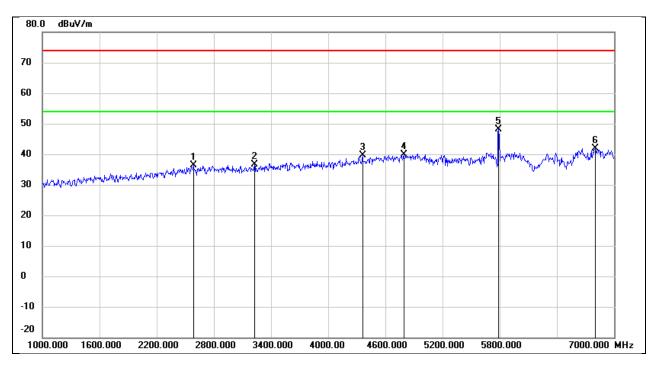
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1780.000	51.88	-11.79	40.09	74.00	-33.91	peak
2	2572.000	49.20	-8.27	40.93	74.00	-33.07	peak
3	4882.000	41.75	-0.62	41.13	74.00	-32.87	peak
4	5938.000	40.01	1.67	41.68	74.00	-32.32	peak
5	6664.000	37.59	4.54	42.13	74.00	-31.87	peak
6	6802.000	37.26	5.21	42.47	74.00	-31.53	peak


Test Mode:	802.11a 20	Frequency(MHz):	5720
Polarity:	Vertical	Test Voltage:	DC 3.3 V

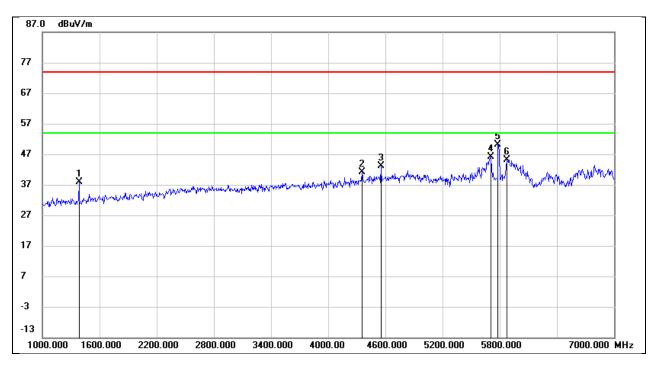
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1384.000	49.63	-13.24	36.39	74.00	-37.61	peak
2	1780.000	55.63	-11.79	43.84	74.00	-30.16	peak
3	2110.000	53.95	-10.49	43.46	74.00	-30.54	peak
4	4768.000	41.66	-1.07	40.59	74.00	-33.41	peak
5	5758.000	47.64	1.16	48.80	74.00	-25.20	peak
6	6790.000	37.50	5.15	42.65	74.00	-31.35	peak


Test Mode:	802.11a 20	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

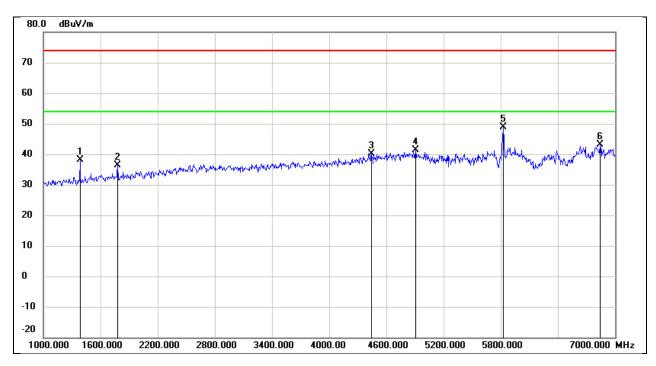
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1384.000	58.29	-13.24	45.05	74.00	-28.95	peak
2	1780.000	51.61	-11.79	39.82	74.00	-34.18	peak
3	4672.000	42.15	-1.46	40.69	74.00	-33.31	peak
4	5704.000	48.98	1.00	49.98	74.00	-24.02	peak
5	5745.000	47.98	1.12	49.10	1	/	Fundamental
6	6658.000	38.41	4.49	42.90	74.00	-31.10	peak


Test Mode:	802.11a 20	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 3.3 V

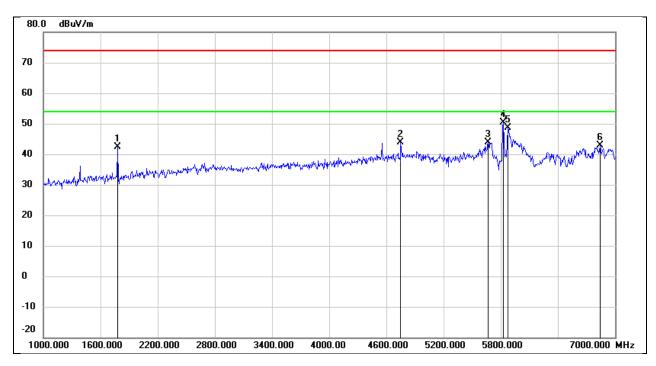
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1978.000	48.32	-11.13	37.19	74.00	-36.81	peak
2	2968.000	46.35	-7.08	39.27	74.00	-34.73	peak
3	4552.000	43.80	-1.93	41.87	74.00	-32.13	peak
4	5710.000	46.84	1.02	47.86	74.00	-26.14	peak
5	5745.000	48.71	1.12	49.83	1	/	Fundamental
6	6676.000	38.19	4.60	42.79	74.00	-31.21	peak


Test Mode:	802.11a 20	Frequency(MHz):	5785
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2584.000	44.60	-8.24	36.36	74.00	-37.64	peak
2	3226.000	43.14	-6.47	36.67	74.00	-37.33	peak
3	4360.000	42.49	-2.80	39.69	74.00	-34.31	peak
4	4792.000	40.78	-0.98	39.80	74.00	-34.20	peak
5	5785.000	46.86	1.25	48.11	1	/	Fundamental
6	6802.000	36.69	5.21	41.90	74.00	-32.10	peak

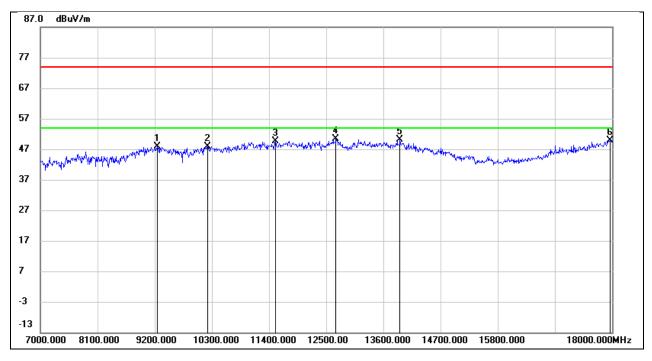

Test Mode:	802.11a 20	Frequency(MHz):	5785
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1384.000	51.11	-13.24	37.87	74.00	-36.13	peak
2	4354.000	43.84	-2.82	41.02	74.00	-32.98	peak
3	4552.000	45.02	-1.93	43.09	74.00	-30.91	peak
4	5704.000	45.19	1.00	46.19	74.00	-27.81	peak
5	5785.000	49.01	1.23	50.24	/	/	Fundamental
6	5872.000	43.70	1.48	45.18	74.00	-28.82	peak


Test Mode:	802.11a 20	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

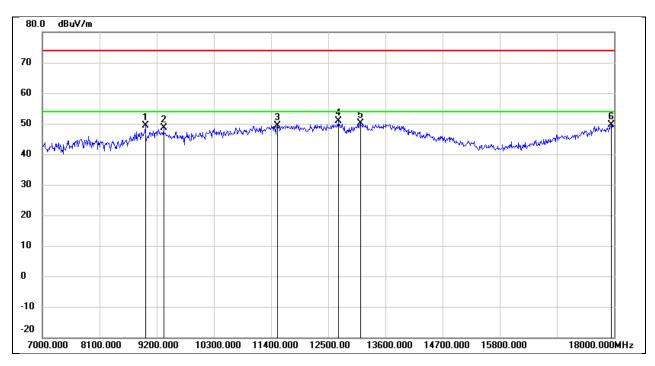
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1384.000	51.37	-13.24	38.13	74.00	-35.87	peak
2	1780.000	48.23	-11.79	36.44	74.00	-37.56	peak
3	4444.000	42.56	-2.40	40.16	74.00	-33.84	peak
4	4906.000	41.92	-0.53	41.39	74.00	-32.61	peak
5	5825.000	47.41	1.36	48.77	1	/	Fundamental
6	6844.000	37.63	5.43	43.06	74.00	-30.94	peak

Test Mode:	802.11a 20	Frequency(MHz):	5825
Polarity:	Vertical	Test Voltage:	DC 3.3 V

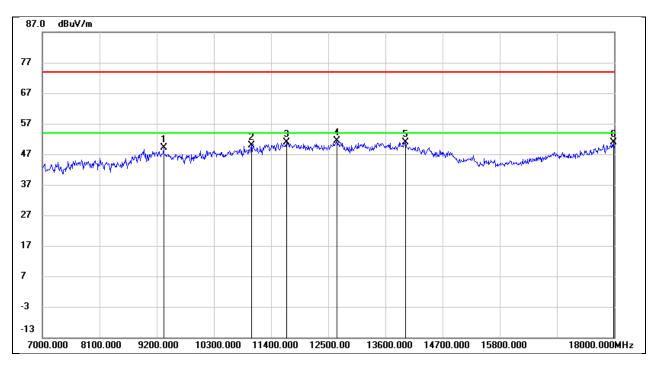


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1780.000	54.05	-11.79	42.26	74.00	-31.74	peak
2	4750.000	44.93	-1.14	43.79	74.00	-30.21	peak
3	5668.000	42.89	0.91	43.80	74.00	-30.20	peak
4	5825.000	48.96	1.36	50.32	/	/	Fundamental
5	5872.000	47.22	1.48	48.70	74.00	-25.30	peak
6	6844.000	37.40	5.43	42.83	74.00	-31.17	peak

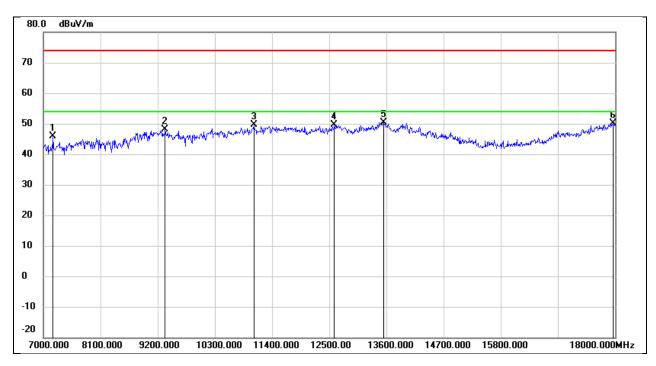
8.3. SPURIOUS EMISSIONS (7 GHZ ~ 18 GHZ)


Test Mode:	802.11a 20	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

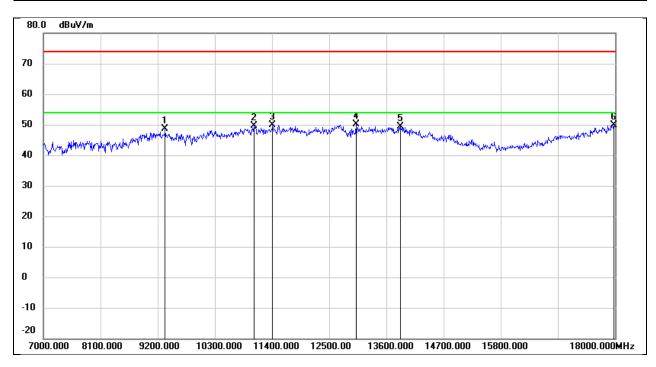
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9244.000	37.32	10.49	47.81	74.00	-26.19	peak
2	10223.000	35.69	12.24	47.93	74.00	-26.07	peak
3	11521.000	32.71	16.82	49.53	74.00	-24.47	peak
4	12687.000	32.29	18.05	50.34	74.00	-23.66	peak
5	13919.000	28.47	21.68	50.15	74.00	-23.85	peak
6	17967.000	23.98	25.89	49.87	74.00	-24.13	peak


Test Mode:	802.11a 20	Frequency(MHz):	5180
Polarity:	Vertical	Test Voltage:	DC 3.3 V

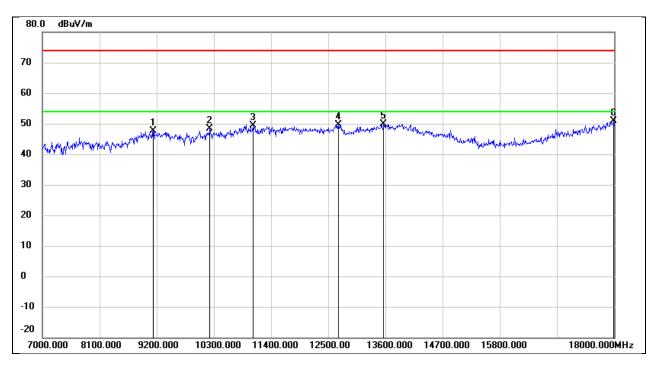
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8980.000	39.07	10.21	49.28	74.00	-24.72	peak
2	9332.000	38.20	10.54	48.74	74.00	-25.26	peak
3	11521.000	32.68	16.82	49.50	74.00	-24.50	peak
4	12698.000	32.76	18.08	50.84	74.00	-23.16	peak
5	13116.000	31.09	18.96	50.05	74.00	-23.95	peak
6	17945.000	24.00	25.75	49.75	74.00	-24.25	peak


Test Mode:	802.11a 20	Frequency(MHz):	5200
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

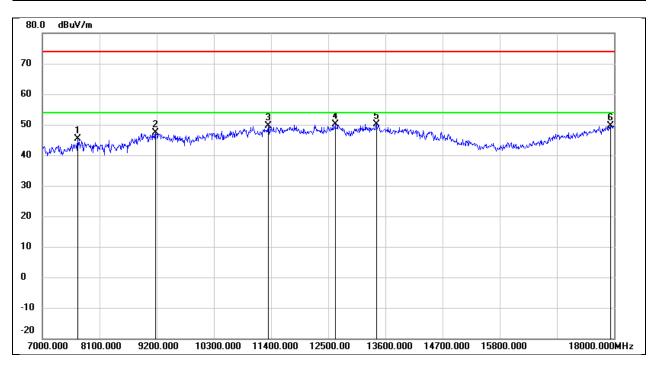
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9332.000	38.50	10.54	49.04	74.00	-24.96	peak
2	11026.000	34.97	14.82	49.79	74.00	-24.21	peak
3	11697.000	33.76	17.13	50.89	74.00	-23.11	peak
4	12665.000	33.33	18.04	51.37	74.00	-22.63	peak
5	13985.000	29.12	21.85	50.97	74.00	-23.03	peak
6	17989.000	24.78	26.04	50.82	74.00	-23.18	peak


Test Mode:	802.11a 20	Frequency(MHz):	5200
Polarity:	Vertical	Test Voltage:	DC 3.3 V

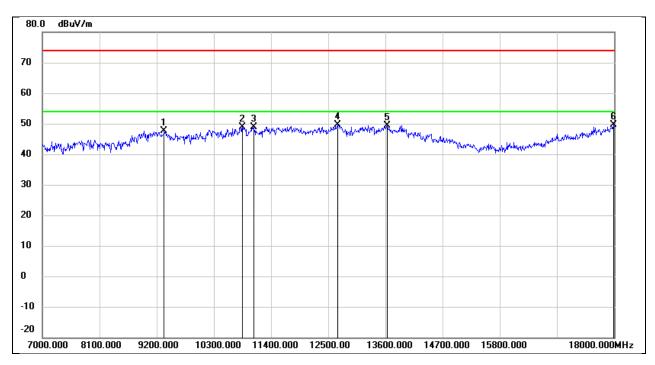
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7187.000	38.80	6.98	45.78	74.00	-28.22	peak
2	9343.000	37.67	10.55	48.22	74.00	-25.78	peak
3	11048.000	34.76	14.91	49.67	74.00	-24.33	peak
4	12599.000	31.58	17.95	49.53	74.00	-24.47	peak
5	13545.000	29.68	20.75	50.43	74.00	-23.57	peak
6	17967.000	24.17	25.89	50.06	74.00	-23.94	peak


Test Mode:	802.11a 20	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

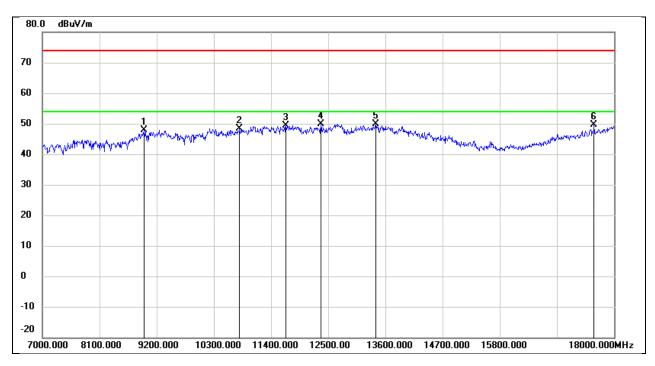
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9343.000	38.10	10.55	48.65	74.00	-25.35	peak
2	11048.000	34.80	14.91	49.71	74.00	-24.29	peak
3	11411.000	33.55	16.41	49.96	74.00	-24.04	peak
4	13017.000	31.62	18.53	50.15	74.00	-23.85	peak
5	13875.000	27.86	21.57	49.43	74.00	-24.57	peak
6	17978.000	23.82	25.97	49.79	74.00	-24.21	peak


Test Mode:	802.11a 20	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 3.3 V

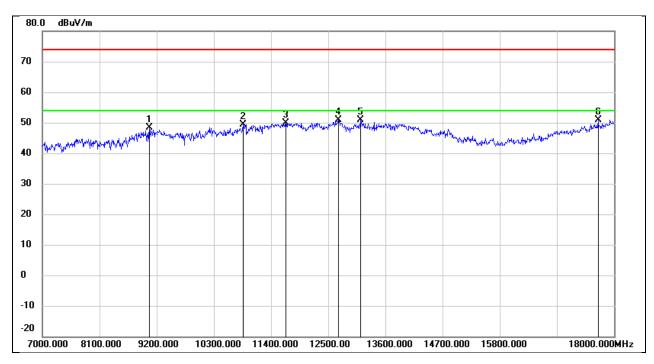
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9134.000	37.18	10.41	47.59	74.00	-26.41	peak
2	10223.000	36.12	12.24	48.36	74.00	-25.64	peak
3	11048.000	34.37	14.91	49.28	74.00	-24.72	peak
4	12698.000	31.60	18.08	49.68	74.00	-24.32	peak
5	13567.000	29.17	20.80	49.97	74.00	-24.03	peak
6	17989.000	24.80	26.04	50.84	74.00	-23.16	peak


Test Mode:	802.11a 20	Frequency(MHz):	5260
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

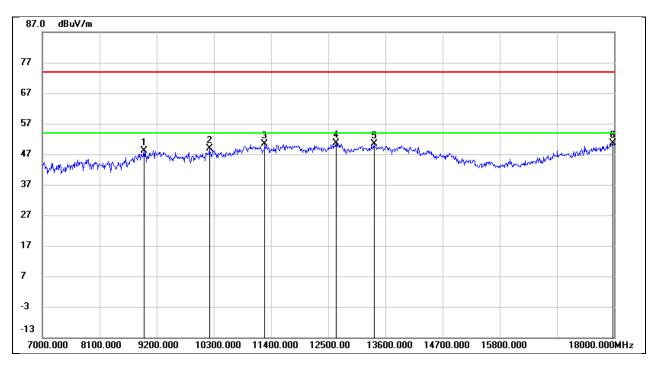
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7682.000	38.76	6.71	45.47	74.00	-28.53	peak
2	9178.000	36.98	10.45	47.43	74.00	-26.57	peak
3	11345.000	33.39	16.14	49.53	74.00	-24.47	peak
4	12632.000	32.08	17.99	50.07	74.00	-23.93	peak
5	13424.000	29.91	20.30	50.21	74.00	-23.79	peak
6	17934.000	23.87	25.67	49.54	74.00	-24.46	peak


Test Mode:	802.11a 20	Frequency(MHz):	5260
Polarity:	Vertical	Test Voltage:	DC 3.3 V

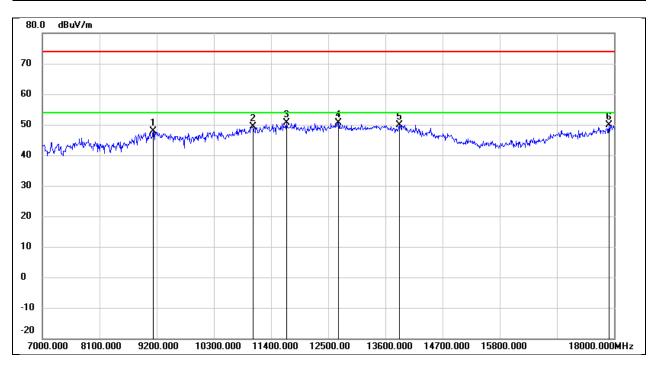
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9343.000	37.02	10.55	47.57	74.00	-26.43	peak
2	10850.000	34.69	14.15	48.84	74.00	-25.16	peak
3	11070.000	33.97	15.01	48.98	74.00	-25.02	peak
4	12687.000	31.47	18.05	49.52	74.00	-24.48	peak
5	13633.000	28.52	20.97	49.49	74.00	-24.51	peak
6	17989.000	23.47	26.04	49.51	74.00	-24.49	peak


Test Mode:	802.11a 20	Frequency(MHz):	5280
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

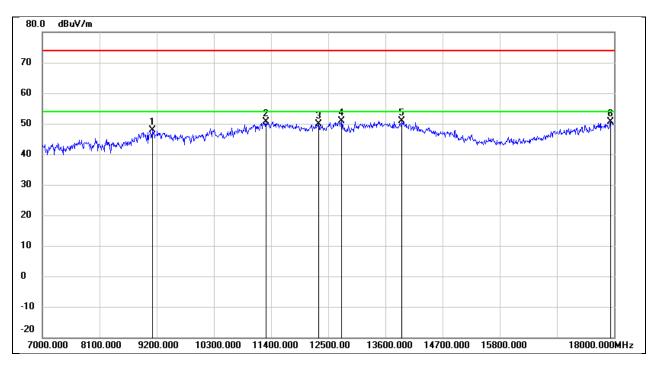
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8958.000	37.76	10.05	47.81	74.00	-26.19	peak
2	10795.000	34.49	13.94	48.43	74.00	-25.57	peak
3	11686.000	32.17	17.12	49.29	74.00	-24.71	peak
4	12357.000	32.11	17.79	49.90	74.00	-24.10	peak
5	13413.000	29.52	20.26	49.78	74.00	-24.22	peak
6	17615.000	26.16	23.49	49.65	74.00	-24.35	peak


Test Mode:	802.11a 20	Frequency(MHz):	5280
Polarity:	Vertical	Test Voltage:	DC 3.3 V

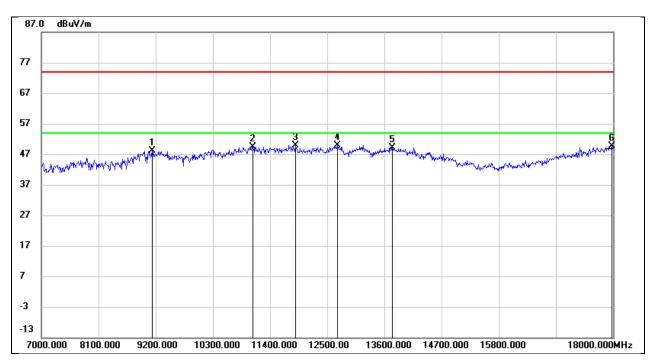
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9057.000	37.88	10.38	48.26	74.00	-25.74	peak
2	10861.000	35.10	14.20	49.30	74.00	-24.70	peak
3	11686.000	32.73	17.12	49.85	74.00	-24.15	peak
4	12698.000	32.71	18.08	50.79	74.00	-23.21	peak
5	13127.000	31.83	19.01	50.84	74.00	-23.16	peak
6	17692.000	26.83	24.01	50.84	74.00	-23.16	peak


Test Mode:	802.11a 20	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

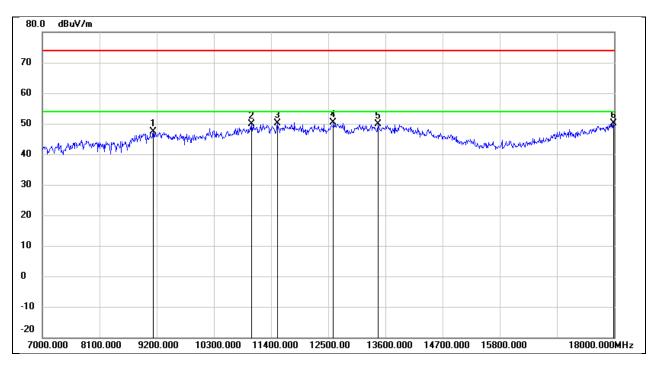
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8958.000	38.16	10.05	48.21	74.00	-25.79	peak
2	10212.000	36.56	12.21	48.77	74.00	-25.23	peak
3	11279.000	34.56	15.86	50.42	74.00	-23.58	peak
4	12654.000	32.61	18.01	50.62	74.00	-23.38	peak
5	13380.000	30.28	20.12	50.40	74.00	-23.60	peak
6	17978.000	24.75	25.97	50.72	74.00	-23.28	peak


Test Mode:	802.11a 20	Frequency(MHz):	5320
Polarity:	Vertical	Test Voltage:	DC 3.3 V

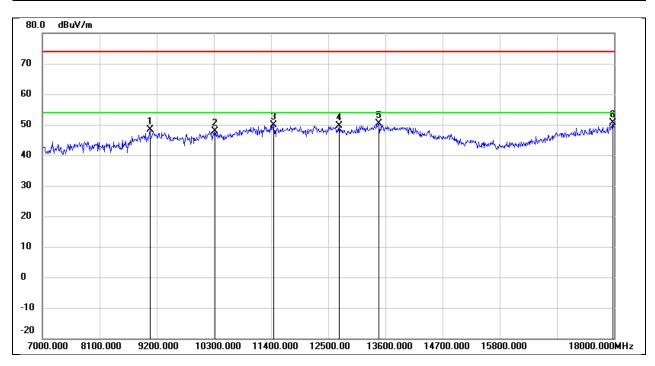
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9134.000	37.49	10.41	47.90	74.00	-26.10	peak
2	11059.000	34.39	14.96	49.35	74.00	-24.65	peak
3	11697.000	33.51	17.13	50.64	74.00	-23.36	peak
4	12698.000	32.44	18.08	50.52	74.00	-23.48	peak
5	13864.000	28.32	21.53	49.85	74.00	-24.15	peak
6	17901.000	24.50	25.45	49.95	74.00	-24.05	peak


Test Mode:	802.11a 20	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

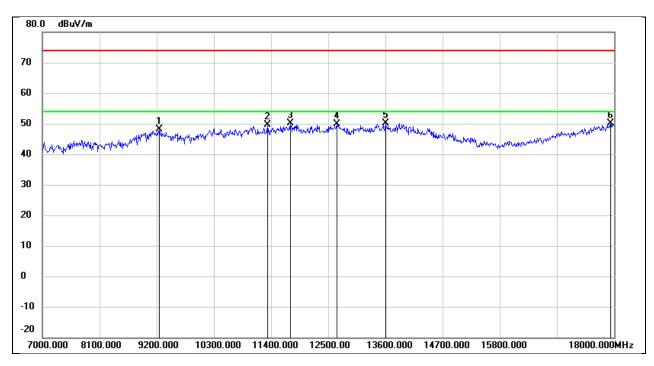
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9112.000	37.54	10.41	47.95	74.00	-26.05	peak
2	11301.000	34.79	15.95	50.74	74.00	-23.26	peak
3	12313.000	32.06	17.78	49.84	74.00	-24.16	peak
4	12753.000	32.62	18.14	50.76	74.00	-23.24	peak
5	13919.000	29.30	21.68	50.98	74.00	-23.02	peak
6	17934.000	25.05	25.67	50.72	74.00	-23.28	peak


Test Mode:	802.11a 20	Frequency(MHz):	5500
Polarity:	Vertical	Test Voltage:	DC 3.3 V

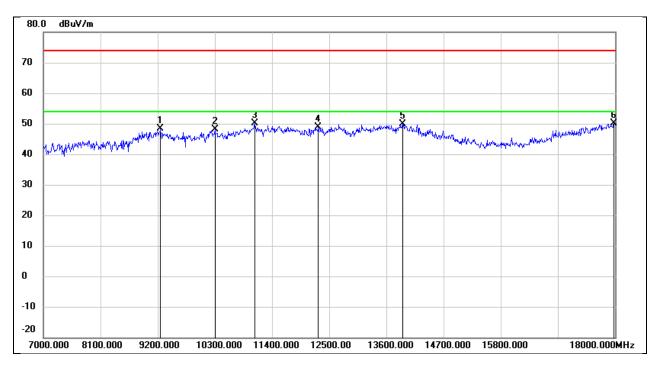
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9134.000	37.60	10.41	48.01	74.00	-25.99	peak
2	11070.000	34.49	15.01	49.50	74.00	-24.50	peak
3	11884.000	32.39	17.48	49.87	74.00	-24.13	peak
4	12698.000	31.84	18.08	49.92	74.00	-24.08	peak
5	13754.000	27.93	21.27	49.20	74.00	-24.80	peak
6	17978.000	23.63	25.97	49.60	74.00	-24.40	peak


Test Mode:	802.11a 20	Frequency(MHz):	5580
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

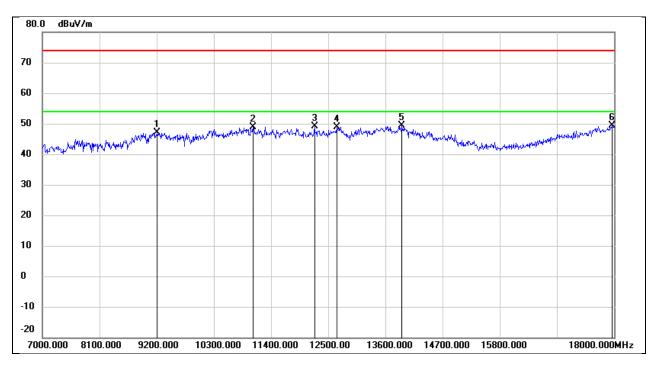
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9134.000	36.91	10.41	47.32	74.00	-26.68	peak
2	11026.000	34.96	14.82	49.78	74.00	-24.22	peak
3	11521.000	33.27	16.82	50.09	74.00	-23.91	peak
4	12599.000	32.41	17.95	50.36	74.00	-23.64	peak
5	13457.000	29.30	20.46	49.76	74.00	-24.24	peak
6	17989.000	24.10	26.04	50.14	74.00	-23.86	peak


Test Mode:	802.11a 20	Frequency(MHz):	5580
Polarity:	Vertical	Test Voltage:	DC 3.3 V

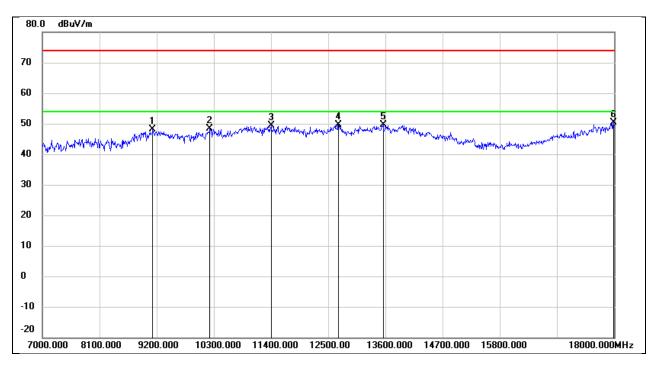
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9068.000	38.11	10.39	48.50	74.00	-25.50	peak
2	10322.000	35.52	12.45	47.97	74.00	-26.03	peak
3	11444.000	33.33	16.53	49.86	74.00	-24.14	peak
4	12709.000	31.64	18.09	49.73	74.00	-24.27	peak
5	13468.000	29.90	20.50	50.40	74.00	-23.60	peak
6	17978.000	24.73	25.97	50.70	74.00	-23.30	peak


Test Mode:	802.11a 20	Frequency(MHz):	5700
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

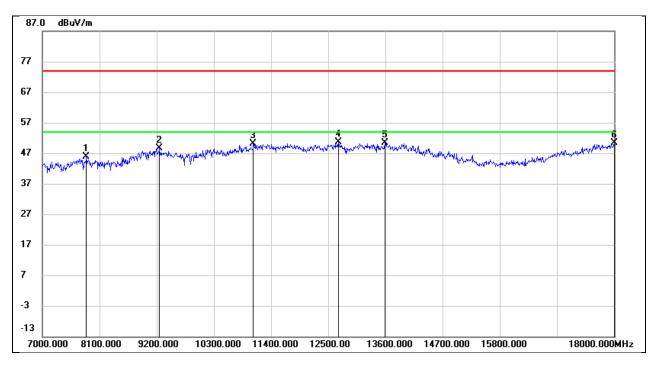
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9255.000	37.70	10.51	48.21	74.00	-25.79	peak
2	11334.000	33.46	16.09	49.55	74.00	-24.45	peak
3	11774.000	32.81	17.28	50.09	74.00	-23.91	peak
4	12665.000	31.93	18.04	49.97	74.00	-24.03	peak
5	13600.000	29.23	20.89	50.12	74.00	-23.88	peak
6	17934.000	24.46	25.67	50.13	74.00	-23.87	peak


Test Mode:	802.11a 20	Frequency(MHz):	5700
Polarity:	Vertical	Test Voltage:	DC 3.3 V

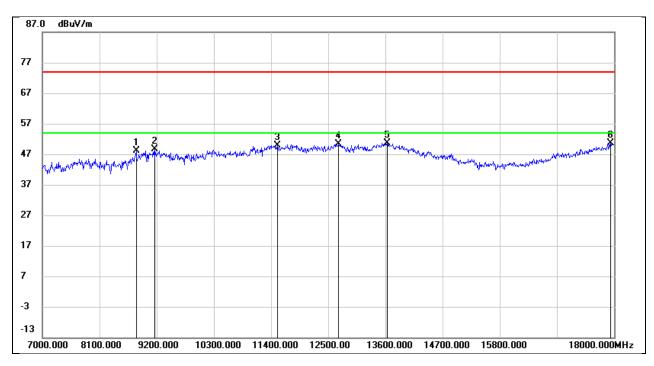
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9255.000	37.75	10.51	48.26	74.00	-25.74	peak
2	10300.000	35.66	12.40	48.06	74.00	-25.94	peak
3	11070.000	35.19	15.01	50.20	74.00	-23.80	peak
4	12291.000	31.21	17.78	48.99	74.00	-25.01	peak
5	13908.000	28.30	21.66	49.96	74.00	-24.04	peak
6	17978.000	24.21	25.97	50.18	74.00	-23.82	peak


Test Mode:	802.11a 20	Frequency(MHz):	5720
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

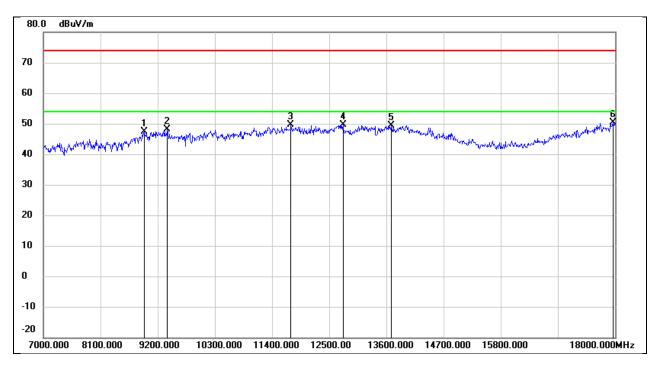
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9211.000	36.54	10.47	47.01	74.00	-26.99	peak
2	11048.000	33.89	14.91	48.80	74.00	-25.20	peak
3	12236.000	31.31	17.76	49.07	74.00	-24.93	peak
4	12665.000	30.93	18.04	48.97	74.00	-25.03	peak
5	13919.000	27.65	21.68	49.33	74.00	-24.67	peak
6	17967.000	23.57	25.89	49.46	74.00	-24.54	peak


Test Mode:	802.11a 20	Frequency(MHz):	5720
Polarity:	Vertical	Test Voltage:	DC 3.3 V

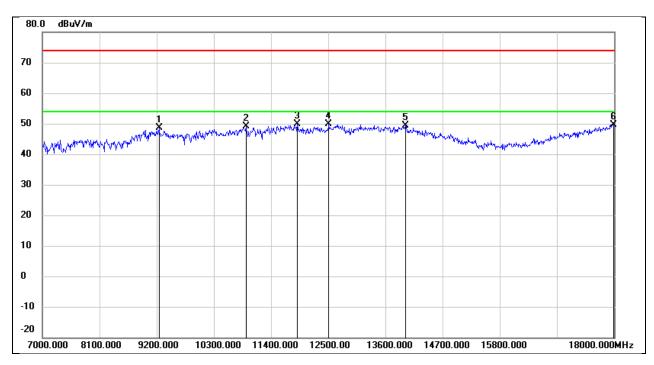
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9123.000	37.60	10.42	48.02	74.00	-25.98	peak
2	10223.000	36.25	12.24	48.49	74.00	-25.51	peak
3	11400.000	32.99	16.36	49.35	74.00	-24.65	peak
4	12698.000	31.55	18.08	49.63	74.00	-24.37	peak
5	13556.000	28.76	20.78	49.54	74.00	-24.46	peak
6	17989.000	24.24	26.04	50.28	74.00	-23.72	peak


Test Mode:	802.11a 20	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

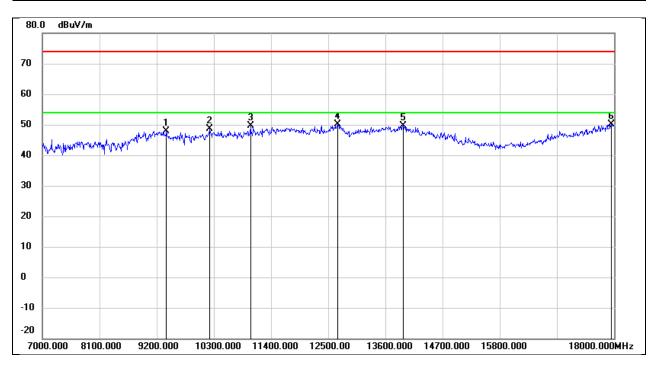
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7847.000	39.28	6.57	45.85	74.00	-28.15	peak
2	9255.000	38.23	10.51	48.74	74.00	-25.26	peak
3	11059.000	35.15	14.96	50.11	74.00	-23.89	peak
4	12698.000	32.56	18.08	50.64	74.00	-23.36	peak
5	13589.000	29.42	20.86	50.28	74.00	-23.72	peak
6	18000.000	24.35	26.12	50.47	74.00	-23.53	peak


Test Mode:	802.11a 20	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 3.3 V

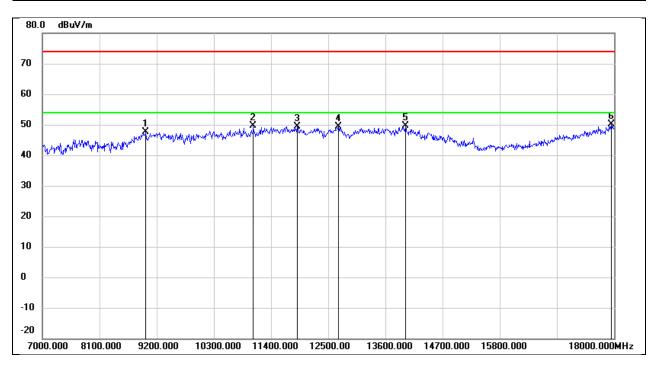
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8804.000	39.12	8.98	48.10	74.00	-25.90	peak
2	9167.000	38.11	10.45	48.56	74.00	-25.44	peak
3	11521.000	33.05	16.82	49.87	74.00	-24.13	peak
4	12698.000	32.28	18.08	50.36	74.00	-23.64	peak
5	13633.000	29.75	20.97	50.72	74.00	-23.28	peak
6	17934.000	25.08	25.67	50.75	74.00	-23.25	peak


Test Mode:	802.11a 20	Frequency(MHz):	5785
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

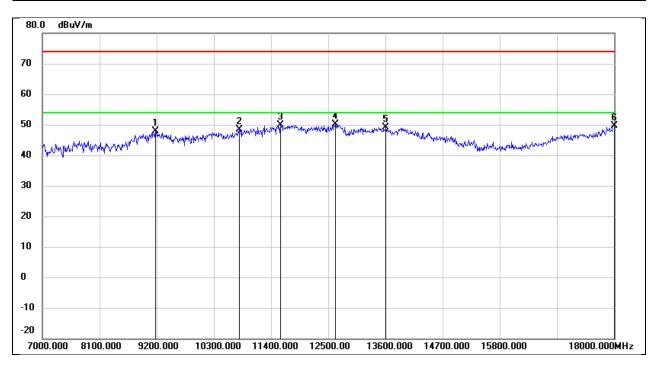
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8936.000	37.51	9.90	47.41	74.00	-26.59	peak
2	9387.000	37.61	10.58	48.19	74.00	-25.81	peak
3	11763.000	32.28	17.26	49.54	74.00	-24.46	peak
4	12764.000	31.45	18.16	49.61	74.00	-24.39	peak
5	13688.000	28.26	21.10	49.36	74.00	-24.64	peak
6	17956.000	24.47	25.82	50.29	74.00	-23.71	peak


Test Mode:	802.11a 20	Frequency(MHz):	5785
Polarity:	Vertical	Test Voltage:	DC 3.3 V

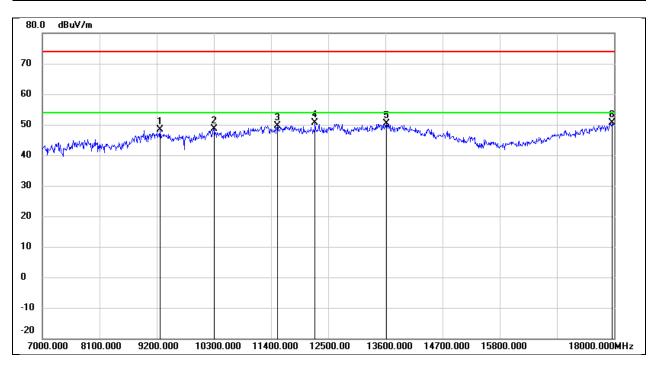
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9244.000	38.12	10.49	48.61	74.00	-25.39	peak
2	10916.000	34.85	14.39	49.24	74.00	-24.76	peak
3	11906.000	32.29	17.52	49.81	74.00	-24.19	peak
4	12511.000	32.11	17.84	49.95	74.00	-24.05	peak
5	13985.000	27.52	21.85	49.37	74.00	-24.63	peak
6	17989.000	23.68	26.04	49.72	74.00	-24.28	peak


Test Mode:	802.11a 20	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9387.000	37.37	10.58	47.95	74.00	-26.05	peak
2	10223.000	36.35	12.24	48.59	74.00	-25.41	peak
3	11004.000	34.94	14.74	49.68	74.00	-24.32	peak
4	12676.000	31.96	18.05	50.01	74.00	-23.99	peak
5	13941.000	28.02	21.73	49.75	74.00	-24.25	peak
6	17945.000	24.50	25.75	50.25	74.00	-23.75	peak


Test Mode:	802.11a 20	Frequency(MHz):	5825
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8991.000	37.34	10.28	47.62	74.00	-26.38	peak
2	11059.000	34.71	14.96	49.67	74.00	-24.33	peak
3	11906.000	31.84	17.52	49.36	74.00	-24.64	peak
4	12698.000	31.21	18.08	49.29	74.00	-24.71	peak
5	13985.000	27.73	21.85	49.58	74.00	-24.42	peak
6	17945.000	24.29	25.75	50.04	74.00	-23.96	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9178.000	37.42	10.45	47.87	74.00	-26.13	peak
2	10795.000	34.35	13.94	48.29	74.00	-25.71	peak
3	11576.000	32.99	16.91	49.90	74.00	-24.10	peak
4	12643.000	32.16	18.01	50.17	74.00	-23.83	peak
5	13611.000	28.26	20.92	49.18	74.00	-24.82	peak
6	18000.000	23.58	26.12	49.70	74.00	-24.30	peak

Test Mode:	802.11n HT20	Frequency(MHz):	5180
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9266.000	37.99	10.51	48.50	74.00	-25.50	peak
2	10311.000	36.32	12.42	48.74	74.00	-25.26	peak
3	11521.000	32.88	16.82	49.70	74.00	-24.30	peak
4	12247.000	32.90	17.77	50.67	74.00	-23.33	peak
5	13622.000	29.32	20.95	50.27	74.00	-23.73	peak
6	17967.000	24.68	25.89	50.57	74.00	-23.43	peak