TEST REPORT							
FCC ID :	2BDOA-USD-3WI						
Test Report No::	TCT230804E011						
Date of issue:	Aug. 14, 2023						
Testing laboratory::	SHENZHEN TONGCE TESTING	S LAB					
Testing location/ address:	2101 & 2201, Zhenchang Factory Fuhai Subdistrict, Bao'an District 518103, People's Republic of Ch	, Shenzhen, Guangdong,					
Applicant's name::	Shenzhen eMylo Smart Technolo	ogy Co., Ltd.					
Address:	412, BLDG A, B, C, Zone B, Yua Community, Dalang St., Longhua	· · · · · · · · · · · · · · · · · · ·					
Manufacturer's name :	Shenzhen Delixi Technology Co.	, Ltd.					
Address:	611, 6th Floor, Century Phoenix Business Center, Fenghuang First Industrial Zone, Fuyong Street, Bao'an District, Shenzhen, China						
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013						
Product Name::	US Standard Dimmer Switch						
Trade Mark:	N/A 🚫						
Model/Type reference :	USD-3WI, USD-1WI, USD-3ZB, USC-3LB-WI, USC-3LB-ZB, USC USD-3LB-WI, USD-3LB-ZB, USE	C-3LNB-WI, USC-3LNB-ZB,					
Rating(s):	AC 120V, 60Hz						
Date of receipt of test item	Aug. 04, 2023						
Date (s) of performance of test:	Aug. 04, 2023 - Aug. 14, 2023						
Tested by (+signature) :	Ronaldo LUO	Ronaldon AGBGCED					
Check by (+signature) :	Beryl ZHAO	Boyl 20 TCT					
Approved by (+signature):	Tomsin	Jomsm 30 54					
General disclaimer:		* *					

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	General Pro	duct Info	rmation					
	1.1. EUT desc	ription				<u>(G)</u>		3
	1.2. Model(s) I							
	1.3. Operation	Frequenc	y					4
2.	Test Result	Summary	, <u></u>		<u> </u>		<u>(6)</u>	5
3.	General Info	rmation.						6
	3.1. Test envir	onment an	d mode					6
	3.2. Descriptio	on of Supp	ort Units					7
4.	Facilities an							
	4.1. Facilities.							8
	4.2. Location .							8
	4.3. Measurem							
5.	Test Results	and Mea	asureme	nt Data		<u>(6)</u>		9
	5.1. Antenna r	equiremen	t					9
	5.2. Conducte							
	5.3. Maximum	Conducte	d (Averag	e) Output	Power		<u> </u>	14
	5.4. Emission							
	5.5. Power Sp	ectral Dens	sity					16
	5.6. Conducte	d Band Ed	ge and Sp	ourious En	nission M	easureme	nt	17
	5.7. Radiated	Spurious E	mission I	Measurem	ent			19
Ap	opendix A: Te	est Resul	t of Con	ducted T	est			
Ap	opendix B: P	hotograp	hs of Te	st Setup				
A	opendix C: P	hotograp	hs of EU	IT				

1. General Product Information

1.1. EUT description

Product Name:	US Standard Dimmer Switch
Model/Type reference:	USD-3WI
Sample Number	TCT230804E011-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20) 7 for 802.11n(HT40)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing(OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	PCB Antenna
Antenna Gain:	3.09dBi
Rating(s):	AC 120V, 60Hz

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	USD-3WI	\leq
Other models	USD-1WI, USD-3ZB, USD-1ZB, USDF-4ZB, USC-3LB-WI, USC-3LB-ZB, USC-3LNB-WI, USC-3LNB-ZB, USD-3LB-WI, USD-3LB-ZB, USD-3LNB-WI, USD-3LNB-ZB	

Note: USD-3WI is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of USD-3WI can represent the remaining models.

Page 3 of 92

1.3. Operation Frequency

For 802.11b/g/n (HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
(1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

For 802.11n (HT40)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
-		4	2427MHz	7	2442MHz		-
(`U	(5	2432MHz	8	2447MHz	6`)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (HT40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 92

3. General Information

3.1. Test environment and mode

Operating Environment:						
Condition	Conducted Emission	Radiated Emission				
Temperature:	24.1 °C	24.1 °C				
Humidity:	53 % RH	54 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	1		/	6

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Report No.: TCT230804E011

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB
 - CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
7	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT230804E011

Test Results and Measurement Data 5.

5.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 3.09dBi.

1812

TUON 🛞

KOUT

5.2. Conducted Emission

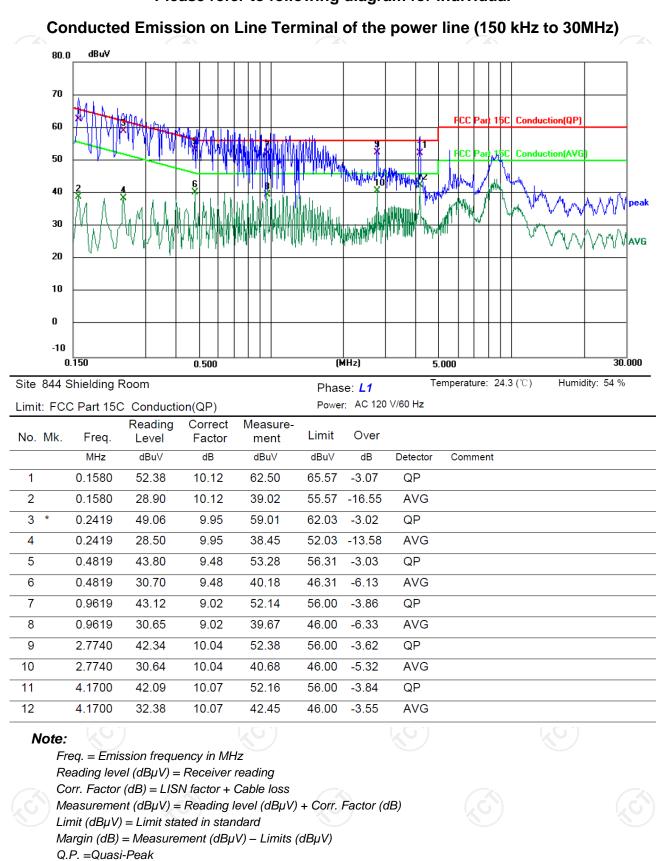
5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60					
	Reference						
Test Setup:	40cm E.U.T AC powe Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m	EMI Receiver	-] AC power				
Test Mode:	Transmitting Mode	No.	K.				
Test Procedure:	 The E.U.T is connected to the main power through line impedance stabilization network (L.I.S.N.). Thi provides a 50ohm/50uH coupling impedance for th measuring equipment. The peripheral devices are also connected to the mai power through a LISN that provides a 50ohm/50ul coupling impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup an photographs). Both sides of A.C. line are checked for maximur conducted interference. In order to find the maximur emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 						
	ANSI C63.10:2013 d	on conducted mea	asurement.				

Page 10 of 92

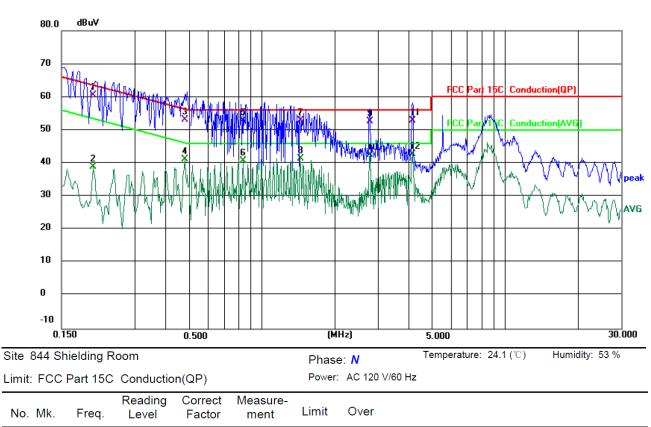
5.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)					
	Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EN	/II Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024	
	ine Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 20, 2024	
	Line-5	ТСТ	CE-05	/	Jul. 03, 2024	
EN	AI Test Software	Shurple Technology	EZ-EMC	1	1 6	



Page 11 of 92

5.2.3. Test data


Please refer to following diagram for individual

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.2020	50.35	10.15	60.50	63.53	-3.03	QP	
2		0.2020	28.88	10.15	39.03	53.53	-14.50	AVG	
3		0.4818	43.62	9.48	53.10	56.31	-3.21	QP	
4		0.4818	31.61	9.48	41.09	46.31	-5.22	AVG	
5		0.8377	43.82	9.14	52.96	56.00	-3.04	QP	
6		0.8377	31.60	9.14	40.74	46.00	-5.26	AVG	
7		1.4377	42.80	10.01	52.81	56.00	-3.19	QP	
8		1.4377	31.47	10.01	41.48	46.00	-4.52	AVG	
9		2.7820	42.56	10.05	52.61	56.00	-3.39	QP	
10		2.7820	32.60	10.05	42.65	46.00	-3.35	AVG	
11		4.1619	42.75	10.09	52.84	56.00	-3.16	QP	
12		4.1619	32.71	10.09	42.80	46.00	-3.20	AVG	

1.Freq. = Emission frequency in MHz

CT通测检测 TESTING CENTRE TECHNOLOGY

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$

 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

2. The test data in this report is power supplied by adapter 1 which is in the worse case.

Page 13 of 92

5.3. Maximum Conducted (Average) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report.
Test Result:	PASS
$(\tilde{\mathcal{A}})$	

5.3.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024	
Combiner Box	Ascentest	AT890-RFB			

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15	5.247 (a)(2)			
Test Method:	KDB 558074 D01 v05r02	2			
Limit:	>500kHz				
Test Setup:					
	Spectrum Analyzer	EUT			
Test Mode:	Transmitting mode with m	Transmitting mode with modulation			
Test Procedure:	EUT transmit continue 2. Make the measuremen resolution bandwidth (Video bandwidth (VBV an accurate measuren be greater than 500 k	nt with the spectrum analyzer's (RBW) = 100 kHz. Set the W) = 300 kHz. In order to make ment. The 6dB bandwidth must			
Test Result:	PASS				

5.4.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024	
Combiner Box	Ascentest	AT890-RFB	/	1	

Report No.: TCT230804E011

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)	Ĉ			
Test Method:	KDB 558074	C			
Limit:	The peak power spectral density shall not be gre than 8dBm in any 3kHz band at any time interva continuous transmission.				
Test Setup:	Spectrum Analyzer EUT	(C			
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The RF output of EUT was connected to the spect analyzer by RF cable and attenuator. The path low was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzed resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the st to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minim of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 	ss er's pan			
Test Result:	PASS				

5.5.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024	
Combiner Box	Ascentest	AT890-RFB			
		•			

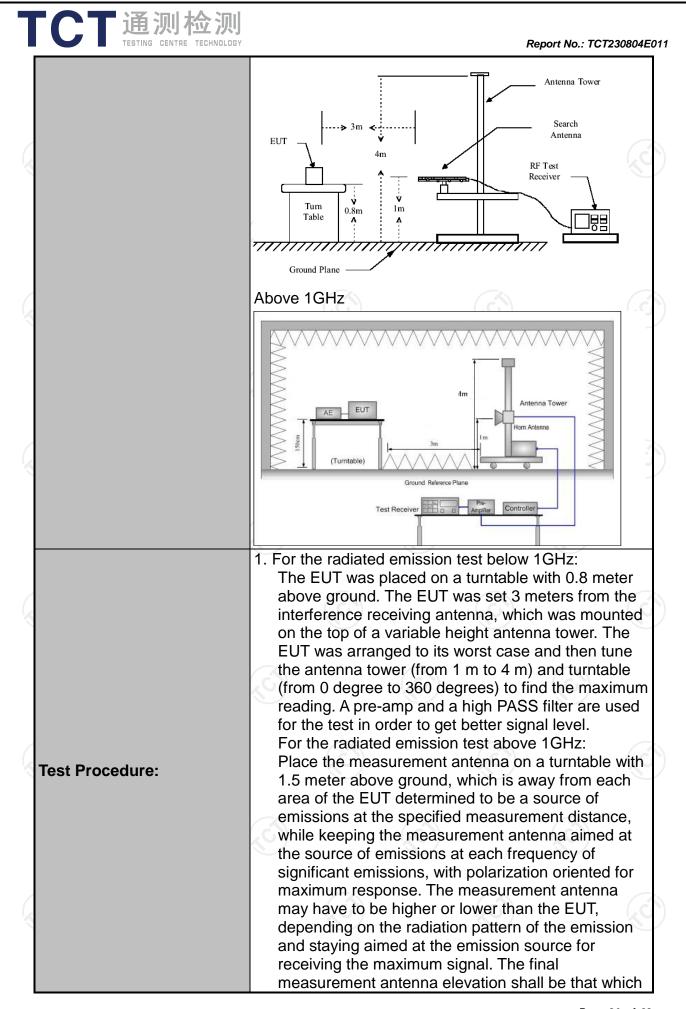
5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report.
	 The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5.6.2. Test Instruments

		R	F Test Room				
Equipment	t N	lanufacturer	Model	Seria	Number	Calibratio	n Due
Spectrum Anal	yzer	Agilent	N9020A	MY4	9100619	Jun. 28, 2024	
Combiner Bo	ох	Ascentest	AT890-RFB		/	1	
S		(S)	1	$\langle \mathcal{S} \rangle$		Ś	
						Down	18 of 9
Hotline: 400-6611		el: 86-755-2767	3339 Fax: 86			t <mark>p://www.tct-la</mark>	



5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

Test Requirement:	FCC Part15	C Section	15.209	$\langle \mathcal{O} \rangle$						
Test Method:	ANSI C63.10:2013									
Frequency Range:	9 kHz to 25 (GHz				84				
Measurement Distance:	3 m	4	6)		6					
Antenna Polarization:	Horizontal &	Vertical								
Operation mode:	Transmitting	mode wit	h modulat	ion		(
	Frequency Detec		RBW	VBW		Remark				
	9kHz- 150kHz 150kHz-	Quasi-peal Quasi-peal		1kHz 30kHz		si-peak Value si-peak Value				
Receiver Setup:	30MHz	(K	0001/11		à la companya de la compa				
	30MHz-1GHz	Quasi-peal		300KHz		si-peak Value				
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	1	eak Value erage Value				
	Frequen	су	Field Stro (microvolts			asurement nce (meters)				
	0.009-0.4		2400/F(300				
	0.490-1.7		24000/F	(KHz)	30					
	1.705-3		30		30					
	<u>30-88</u> 88-216		100			3 3				
Limit:	216-96		200			3				
	Above 9		500			3				
			/		G					
	Frequency		d Strength ovolts/meter)	Measure Distan (mete	ance Detecto					
	Above 4011		500	3						
	Above 1GH	2	5000	3	Peak					
Test setup:	For radiated	emissions stance = 3m Turn table Groune		Pre -	Compu Amplifier					
	30MHz to 10	SHz								
		- T								

Page 19 of 92

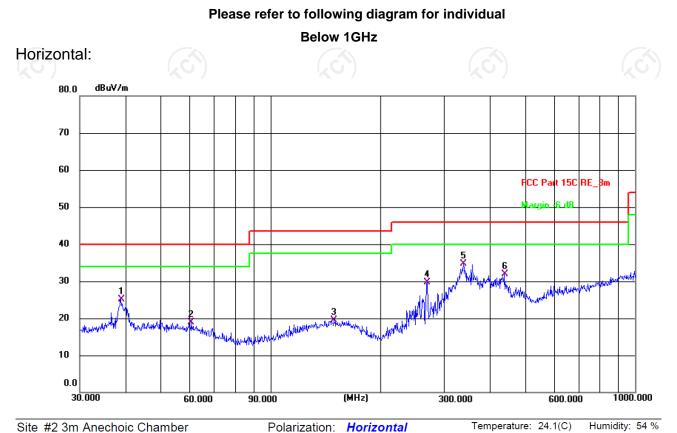
Page 20 of 92

TESTING CENTRE TECHNOLOGY	Report No.: TCT230804E011
	 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
	 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement.
	For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW \ge 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

Page 21 of 92

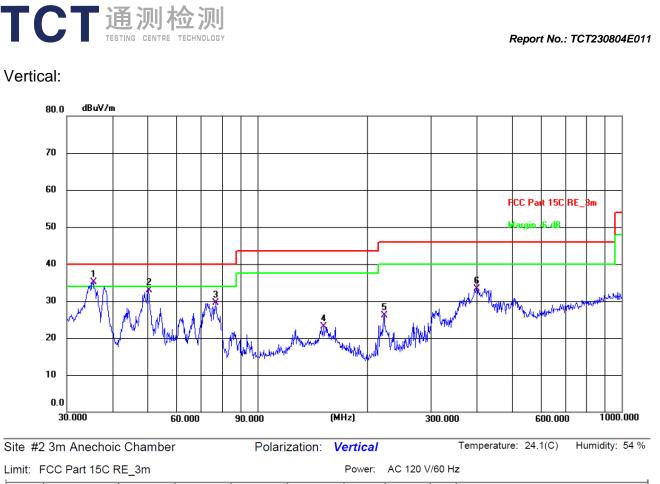
5.7.2. Test Instruments

	Radiated Em	ission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 20, 2024
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 20, 2024
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC		/



Page 22 of 92

Report No.: TCT230804E011


5.7.3. Test Data

Site #2 3m Anechoic Chamber

Limit:	FCC Part 15C F	RE_3m			Power:	AC 120 \	//60 H	z	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	38.8878	10.81	14.30	25.11	40.00	-14.89	QP	Ρ	
2	60.7043	5.74	13.12	18.86	40.00	-21.14	QP	Ρ	
3	149.4857	4.53	14.88	19.41	43.50	-24.09	QP	Ρ	
4	269.4282	15.99	13.79	29.78	46.00	-16.22	QP	Ρ	
5 *	338.4000	19.20	15.59	34.79	46.00	-11.21	QP	Ρ	
6	438.6554	13.77	18.19	31.96	46.00	-14.04	QP	Ρ	

Page 23 of 92

-										
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
Γ	1 *	35.4993	21.42	13.65	35.07	40.00	-4.93	QP	Ρ	
	2	50.2324	19.20	13.66	32.86	40.00	-7.14	QP	Ρ	
	3	76.7808	19.18	10.42	29.60	40.00	-10.40	QP	Ρ	
	4	152.1297	8.04	14.99	23.03	43.50	-20.47	QP	Ρ	
	5	222.9502	14.04	12.15	26.19	46.00	-19.81	QP	Ρ	
	6	399.0302	16.44	16.92	33.36	46.00	-12.64	QP	Ρ	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

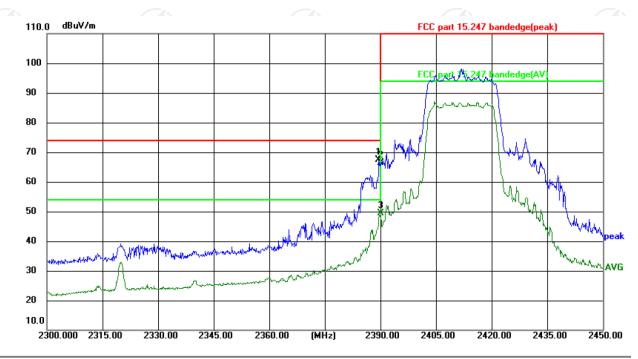
- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode (Middle channel and 802.11b) was submitted only.
- 3. Freq. = Emission frequency in MHz
- $\textit{Measurement (dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)}$
- Correction Factor= Antenna Factor + Cable loss Pre-amplifier

Limit $(dB\mu V/m) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)

- * is meaning the worst frequency has been tested in the test frequency range.
- 4. The test data in this report is power supplied by adapter 1 which is in the worse case.

Page 24 of 92



Report No.: TCT230804E011

Test Result of Radiated Spurious at Band edges

Lowest channel 2412:

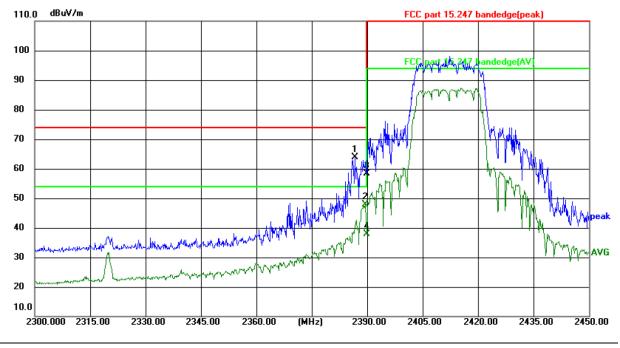
Horizontal:

Site: #3 3m Anechoic Chamber

Polarization: Horizontal

Temperature: 25.2(℃) Humidity: 43 %

Limit: FCC part 15.247 bandedge(peak)


Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2389.650	84.57	-17.10	67.47	74.00	-6.53	peak	Ρ	
2	2390.000	83.53	-17.10	66.43	74.00	-7.57	peak	Ρ	
3 *	2390.000	66.52	-17.10	49.42	54.00	-4.58	AVG	Ρ	

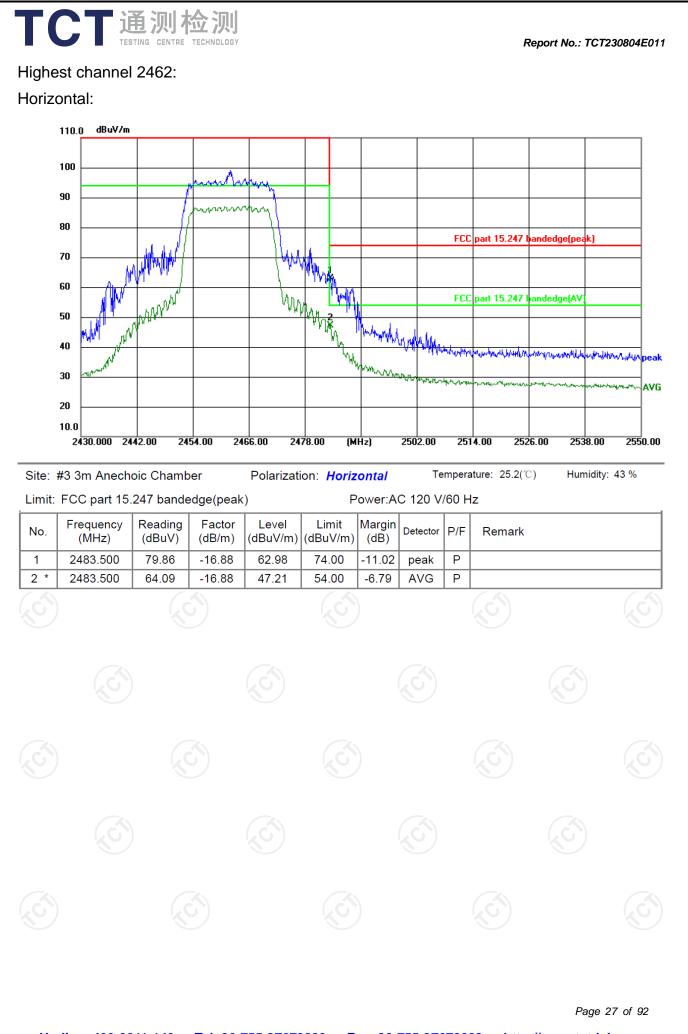
Vertical:

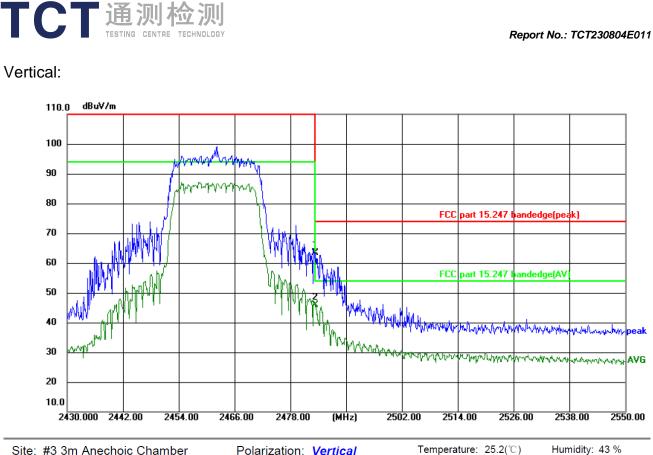
T

Site: #3 3m Anechoic Chamber Polarization: Vertical

Power:AC 120 V/60 Hz

Temperature: 25.2(°C) Humidity: 43 %


Limit: FCC part 15.247 bandedge(peak)


CT 通测检测 TESTING CENTRE TECHNOLOGY

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2386.800	81.09	-17.11	63.98	74.00	-10.02	peak	Ρ	
2 *	2389.450	65.01	-17.10	47.91	54.00	-6.09	AVG	Ρ	
3	2390.000	75.47	-17.10	58.37	74.00	-15.63	peak	Ρ	
4	2390.000	<u>55.07</u>	-17.10	37.97	54.00	-16.03	AVG	Ρ	
X	/	X	<u> </u>	-	K Y	J			KU KU

Note: Measurements were conducted in all two channels (high, low) and all modulation (802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode 802.11b was submitted only.

Page 26 of 92

Site: #3 3m Anechoic Chamber Temperature: 25.2(℃) Polarization: Vertical

Limit: FCC	part 15 247	bandedge(peak)
	punt 10.2-11	banacage(peak)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	80.19	-16.88	63.31	74.00	-10.69	peak	Ρ	
2 *	2483.500	62.87	-16.88	45.99	54.00	-8.01	AVG	Ρ	

Power:AC 120 V/60 Hz

Note:

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the З. worst case Mode 802.11b was submitted only.

Report No.: TCT230804E011

Above 1GHz Modulation Type: 802.11b

			Ĺ	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Level Peak AV (dBµV/m) (dBµV/m)		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	46.83		0.75	47.58		74	54	-6.42
7236	Н	34.60		9.87	44.47		74	54	-9.53
	Н								
4824	V	45.25	()	0.75	46.00		74	54	-8.00
7236	V	35.91		9.87	45.78	(j)	74	54	-8.22
	V				7				

	Middle channel: 2437 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4874	Н	45.88		0.97	46.85		74	54	-7.15				
7311	Н	34.62		9.83	44.45		74	54	-9.55				
	H				(
			K)	X	0							
4874	V	45.94		0.97	46.91	·	74	54	-7.09				
7311	V	35.26		9.83	45.09		74	54	-8.91				
	V												
				(.0									

			Н	ligh channe	I: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	45.13		1.18	46.31		74	54	-7.69
7386	Ŧ	34.54		10.07	44.61	<u> </u>	74	54	-9.39
	Н								
4924	V	45.96		1.18	47.14		74	54	-6.86
7386	V	36.30		10.07	46.37		74	54	-7.63
	V				/				

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.All the restriction bands are compliance with the limit of 15.209.

Page 29 of 92

	TESTI	NG CENTRE TEC					Reµ	oort No.: TCT2	230804E011
			Μ	odulation T	ype: 802.1	lg			
			Ĺ	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	46.88		0.75	47.63		74	54	-6.37
7236	Н	35.56		9.87	45.43		74	54	-8.57
· · · · ·	Н			(· · · ·		<u> </u>		
4824	V	47.90		0.75	48.65		74	54	-5.35
7236	N-	36.18		9.87	46.05	×	74	54	-7.95
	V		1 20	•)		G`)		(2G)	

			Mi	ddle chann	el: 2437 Mł	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	46.77		0.97	47.74		74	54	-6.26
7311	Н	37.12		9.83	46.95		74	54	-7.05
	Н								
				2	(
4874	V	45.08		0.97	46.05	<u> </u>	74	54	-7.95
7311	V	34.91		9.83	44.74		74	54	-9.26
	V								

(\mathbf{G})		()	F	Z	(\mathbf{c})		(\mathbf{O})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	45.97		1.18	47.15		74	54	-6.85
7386	H	35.15		10.07	45.22	<u> </u>	74	54	-8.78
	H			/	<)			
4924	V	47.32		1.18	48.50		74	54	-5.50
7386	V	36.86		10.07	46.93		74	54	-7.07
(.)	V	θ α Ο		(, (5		$\mathcal{G}^{\rightarrow}$		(
Madai			7						

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

○T 通测检测

TC		的加检					Rej	oort No.: TCT2	230804E011
			Modu	lation Type	: 802.11n (l	HT20)			
			L	ow channe	l: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	47.71		0.75	48.46		74	54	-5.54
7236	Н	36.92		9.87	46.79		74	54	-7.21
· · · · · ·	Н			()	····		<u> </u>		
4824	V	46.44		0.75	47.19		74	54	-6.81
7236	N	37.36	(9.87	47.23		74	54	-6.77
	V		+20)		S)		(2G-2)	

			Mi	iddle chann	el: 2437 Mł	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	46.82		0.97	47.79		74	54	-6.21
7311	Н	35.00		9.83	44.83		74	54	-9.17
	Н								
				6	(
4874	V	46.98		0.97	47.95		74	54	-6.05
7311	V	36.65	()	9.83	46.48		74	54	-7.52
	V								

(\mathbf{G})		() F	ligh channe	el: 2462 MH	z	(\mathbf{c})		(\mathbf{G})
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	46.03		1.18	47.21		74	54	-6.79
7386	Н	37.58		10.07	47.65	<u> </u>	74	54	-6.35
	H			/	(<u> </u>			
4924	V	45.41		1.18	46.59		74	54	-7.41
7386	V	35.50		10.07	45.57		74	54	-8.43
$(-\Theta)$	V	[. 6]		(, (5)		\mathcal{S}^{2}		
Mater			·			•			

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

TC		的加检					Rej	oort No.: TCT2	230804E011
			Modu	lation Type	: 802.11n (l	HT40)			
			L	ow channe.	l: 2422 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4844	Н	46.74		0.75	47.49		74	54	-6.51
7266	Н	35.22		9.87	45.09		74	54	-8.91
	Н			0	· · · ·				
4824	V	45.56		0.75	46.31		74	54	-7.69
7236	V	36.19		9.87	46.06	×	74	54	-7.94
	V)	(<u> </u>			

			Mi	iddle chann	el: 2437 Mł	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	45.54		0.97	46.51		74	54	-7.49
7311	Н	35.29		9.83	45.12		74	54	-8.88
	Н								
				6	(
4874	V	45.75		0.97	46.72	<u> </u>	74	54	-7.28
7311	V	36.06	()	9.83	45.89		74	54	-8.11
	V								

$\left(\cdot \cdot \cdot \right)$		(6)	H	z			(\mathbf{c})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4904	H_	47.34		1.18	48.52		74	54	-5.48
7356	H	35.11		10.07	45.18	<u> </u>	74	54	-8.82
	H			/	(<u> </u>			
4904	V	45.72		1.18	46.90		74	54	-7.10
7356	V	34.85		10.07	44.92		74	54	-9.08
(26-)	V	Ú ,		(20	5)		<u>, G }</u>		
Madai									

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

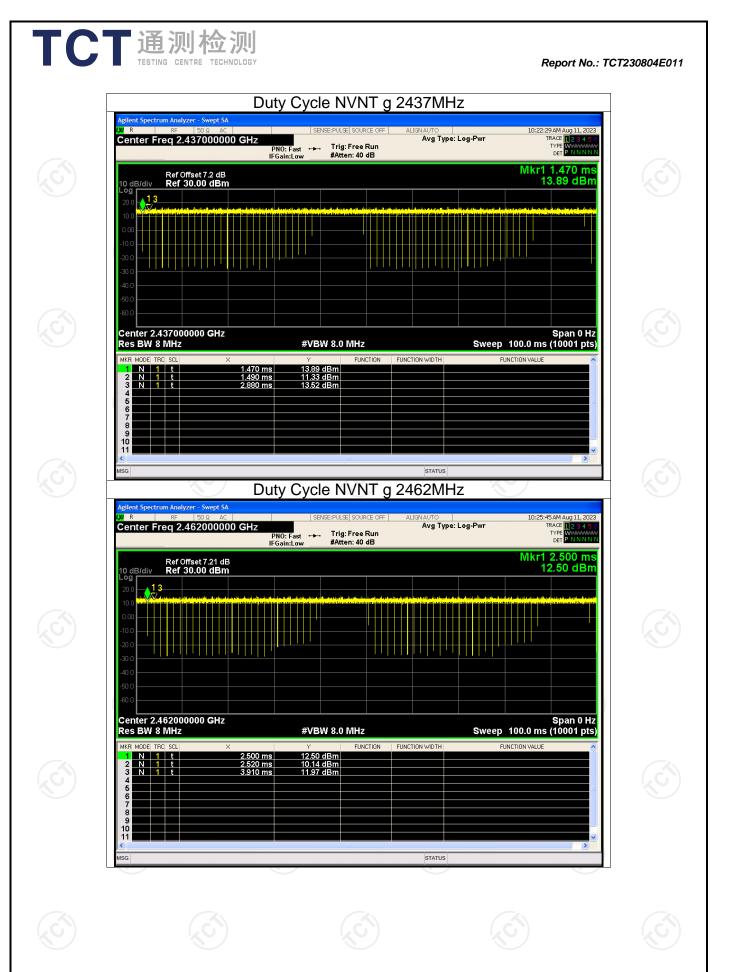
			Duty	Cycle		
	Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	
СŢ	NVNT	b	2412	99.06	0	T _K C
	NVNT	b	2437	99.06	0	
	NVNT	b	2462	99.07	0	
	NVNT	g	2412	99.48	0	
	NVNT	g	2437	99.48	0,0	
	NVNT	g	2462	99.48	0	
	NVNT	n20	2412	99.49	0	
2	NVNT	n20	2437	99.51	0	
5	NVNT	n20	2462	99.49	0	T _k C
	NVNT	n40	2422	100	0	0
	NVNT	n40	2437	100	0	
	NVNT	n40	2452	100	0	
	$\langle \mathcal{O} \rangle$	L	(0)	(10)]

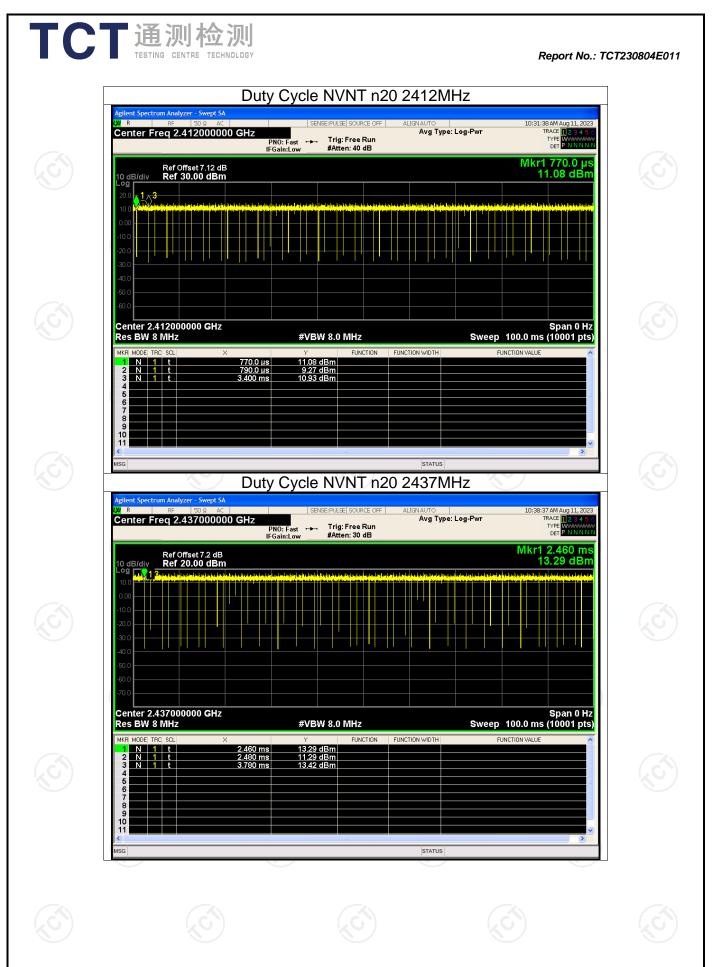
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

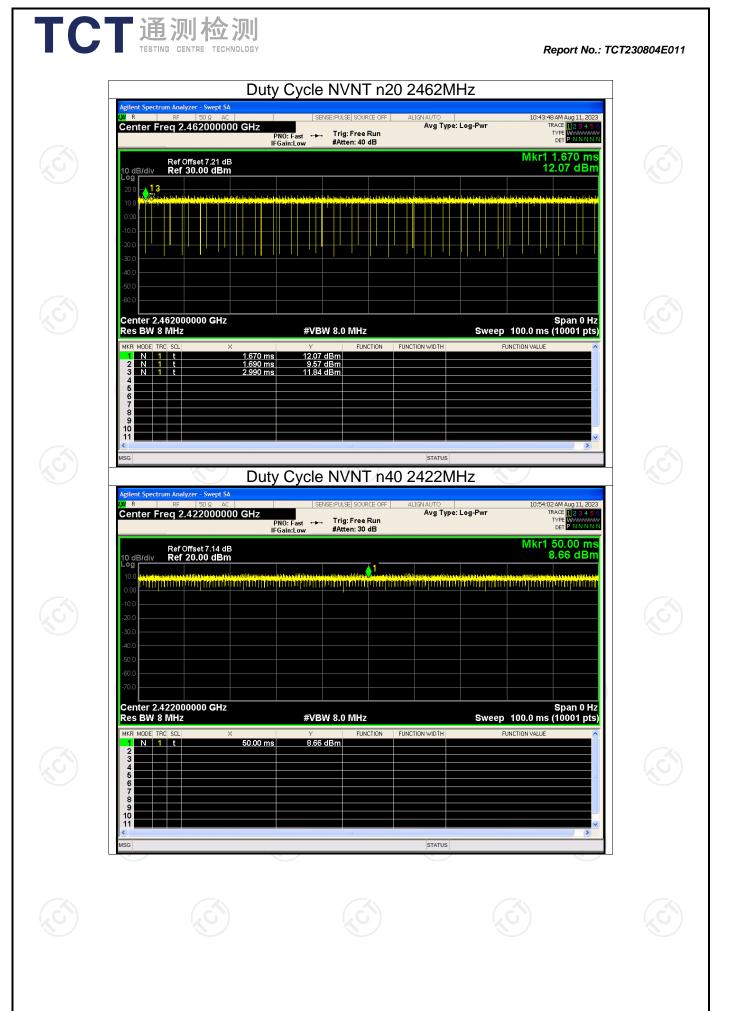
Duty Cycle NVNT b 2462MHz

SENSE:PULSE SOURCE OFF ALIGN AUTO Avg Type: Log-Pwr

FCT通测检测 TESTING CENTRE TECHNOLOGY


gilent Spectrum Analyzer - Sw


Center Freq 2.462000000 GHz


Report No.: TCT230804E011

10:07:00 AM Aug 11, 2023 TRACE 123456 TYPE WWWWWWW DET PNNNNN

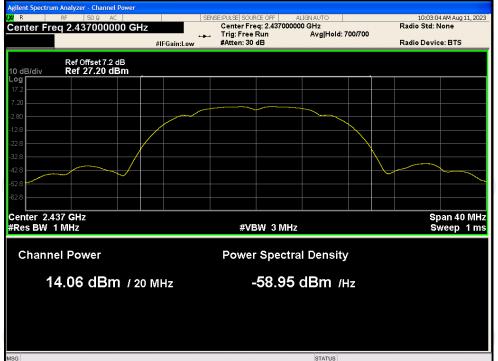
Page 35 of 92

Page 38 of 92

	R RF 50 Ω AC Center Freq 2.437000000 GH:	SENSE:PULSE SOURCE OFF	ALIGNAUTO Avg Type: Log-Pwr	11:06:16 AM Aug 11, 2023 TRACE 12 3 4 5 6 TRACE MANNANANAN	-
	Ref Offset 7.2 dB	PNO: Fast 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB		Mkr1 50.00 ms	G
	10 dB/div Ref 20.00 dBm			9.69 dBm	
	-10.0				
	-20.0				
	-50.0				
	-70.0			Spop 0 Hz	G
		#VBW 8.0 MHz	-	Span 0 Hz 100.0 ms (10001 pts) UNCTION VALUE	
		0 ms 9.69 dBm			
	4 5 6 7				
	8 9 10				
	MSG	E E E E E E E E E E E E E E E E E E E	STATUS		
2		a			
T		uty Cycle NVNT n4	0 2452MHz	\mathcal{D}	
-	Agilent Spectrum Analyzer - Swept SA Juil R RF 50 Ω AC AC Center Freq 2.452000000 GH3 C	SENSE:PULSE SOURCE OFF	O 2452MHz	11:12:29 AM Aug 11, 2023 TRACE 12 3 4 5 6	
-	Aglient Spectrum Analyzer - Swept SA W R RF 50 Ω AC Center Freq 2.452000000 GH	SENSE:PULSE SOURCE OFF	ALIGNAUTO	TRACE 123456 TYPE DET PNNNNN	
	Aglient Spectrum Analyzer - Swept SA (X R RF 50 Ω AC Center Freq 2.452000000 GH: Ref Offset 7.21 dB 10 dB/div Ref 20.00 dBm	SENSE:PULSE SOURCE OFF	ALIGNAUTO	TRACE 1 2 3 4 5 6	
2	Agilent Spectrum Analyzer - Swept SA OX R RF SO Ω AC Center Freq 2.452000000 GH; Ref Offset 7.21 dB 10 dB/div Ref 20.00 dBm Og 10 og Ref 20.00 dBm	SENSE:PULSE SOURCE OFF Z PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	TRACE 123456 TYPE WARMAN DET PINNINA Mkr1 50.00 ms 8.26 dBm	
)	Aglient Spectrum Analyzer - Swept SA Q R RF 50 Ω AC Center Freq 2.452000000 GH: Ref Offset 7.21 dB 10 dB/div Ref 20.00 dBm 00 Ref 20.00 dBm 00 Ref 20.00 dBm 000 Ref 20.00 dBm -10 0 Ref 20.00 dBm	SENSE:PULSE SOURCE OFF PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	TRACE 123456 TYPE WARMAN DET PINNINA Mkr1 50.00 ms 8.26 dBm	
9	Aglient Spectrum Analyzer - Swept SA X R RF 50 Q AC Center Freq 2.452000000 GH: Ref Offset 7.21 dB Ref Offset 7.21 dB Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dB	SENSE:PULSE SOURCE OFF PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	TRACE 123456 TYPE WARMAN DET PINNINA Mkr1 50.00 ms 8.26 dBm	
9	Aglient Spectrum Analyzer - Swept SA X RF 50.9 AC Center Freq 2.452000000 GH: Ref Offset 7.21 dB B O 0 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 0 g Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm <td>SENSE:PULSE SOURCE OFF PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB</td> <td>ALIGNAUTO Avg Type: Log-Pwr</td> <td>TRACE 123456 TYPE WARMAN DET PINNINA Mkr1 50.00 ms 8.26 dBm</td> <td></td>	SENSE:PULSE SOURCE OFF PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	TRACE 123456 TYPE WARMAN DET PINNINA Mkr1 50.00 ms 8.26 dBm	
)	Aglient Spectrum Analyzer - Swept SA X RF 50 9 AC Center Freq 2.452000000 GH: End of the second seco	SENSE:PULSE SOURCE OFF PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB		TRACE 12 3 4 5 0 TYPE WINNIN DET PINNIN Mkr1 50.00 ms 8.26 dBm Mini	
١	Aglient Spectrum Analyzer - Swept SA OX RF 50.9 AC Center Freq 2.452000000 GH: Ref Offset 7.21 dB 10 Ref 20.00 dBm 000 Ref 20.00 dBm 100 Ref 20.00 dBm Ref 20.00 dBm	SENSE PULSE SOURCE OFF Z PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB 1 4 4 4 4 4 4 4 4 4 4 4 4 4	ALIGNAUTO Avg Type: Log-Pwr		
	Aglient Spectrum Analyzer - Swept SA Image: Center Freq 2.452000000 GHz Ref Offset 7.21 dB 10 dB/div Ref 20.00 dBm 10 dB/div Ref 20.00 dBm<	SENSE:PULSE SOURCE OFF Z PNO: Fast IFGain:Low #Atten: 30 dB Sender Sentematical Sentematica	ALIGNAUTO Avg Type: Log-Pwr	TRACE 12.3.4.5.6 TYPE WINNEN Mkr1 50.00 ms 8.26 dBm Minimum Minimum Minimum Minim Minimum	
	Aglient Spectrum Analyzer - Swept SA X Ref SO Q AC Center Freq 2.452000000 GH: Ref Offset 7.21 dB 10 dB/div Ref Offset 7.21 dB 10 data 10 data	SENSE PULSE SOURCE OFF Z PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB 1 4 4 4 4 4 4 4 4 4 4 4 4 4	ALIGNAUTO Avg Type: Log-Pwr	TRACE 12.3.4.5.6 TYPE WINNEN Mkr1 50.00 ms 8.26 dBm Minimum Minimum Minimum Minim Minimum	

Page 39 of 92

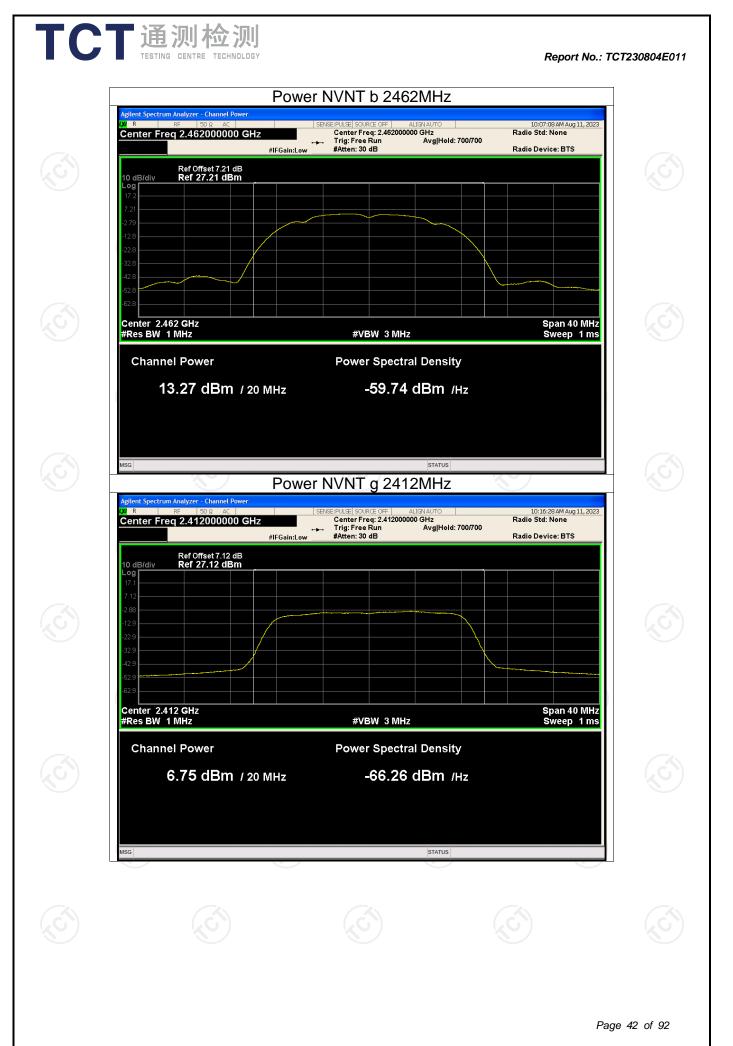
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	11.82	0	11.82	30	Pass
NVNT	b	2437	14.06	0	14.06	30	Pass
NVNT	b	2462	13.27	0	13.27	30	Pass
NVNT	g	2412	6.75	0	6.75	30	Pass
NVNT	g	2437	9.16	0	9.16	30	Pass
NVNT	g	2462	7.74	0	7.74	30	Pass
NVNT	n20	2412	6.53	0	6.53	30	Pass
NVNT	n20	2437	8.73	0	8.73	30	Pass
NVNT	n20	2462	7.57	0	7.57	30	Pass
NVNT	n40	2422	6.87	0	6.87	30	Pass
NVNT	n40	2437	7.64	0	7.64	30	Pass
NVNT	n40	2452	7.03	0	7.03	30	Pass
	(G)			(C)		(\mathcal{G})	

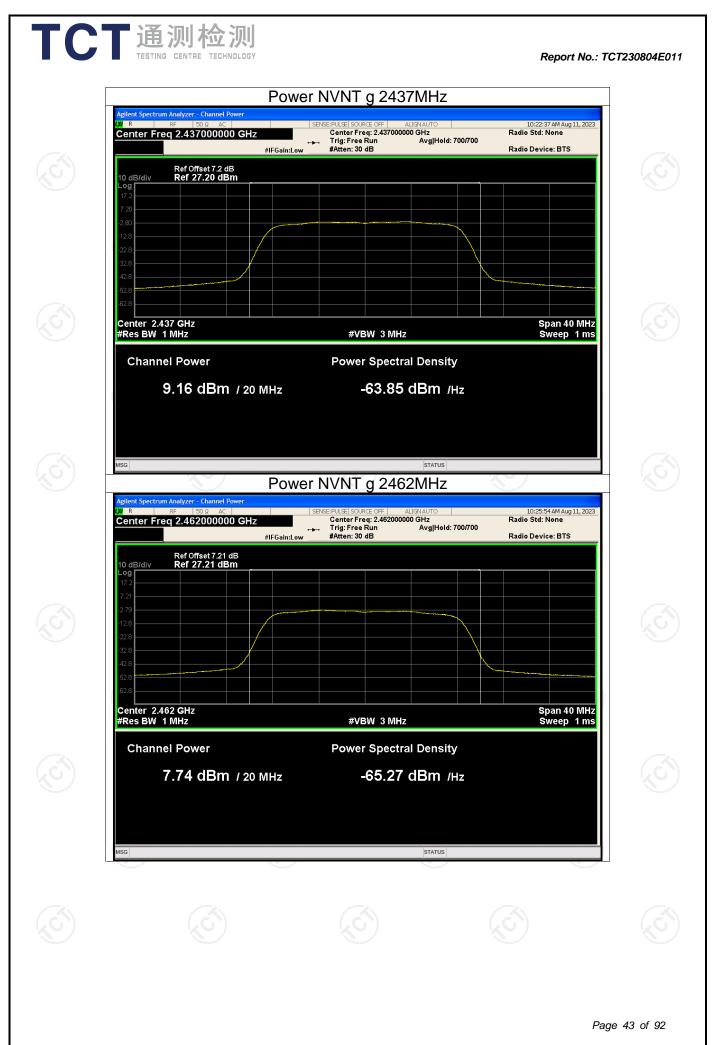

Maximum Conducted Output Power

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

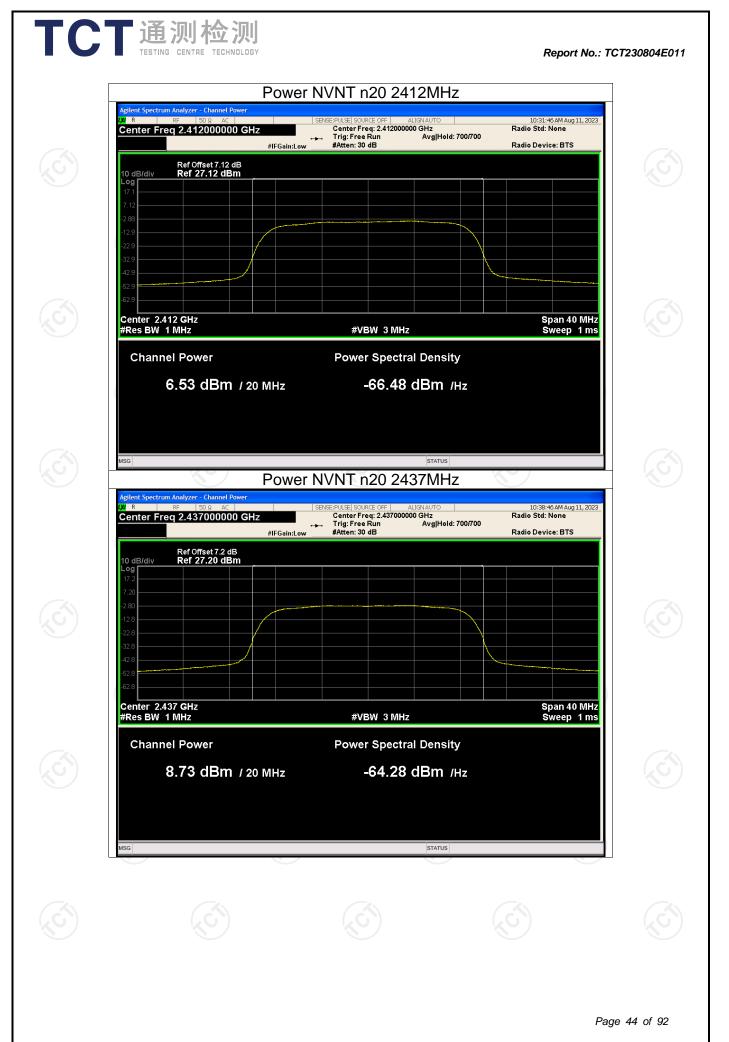
Power NVNT b 2437MHz

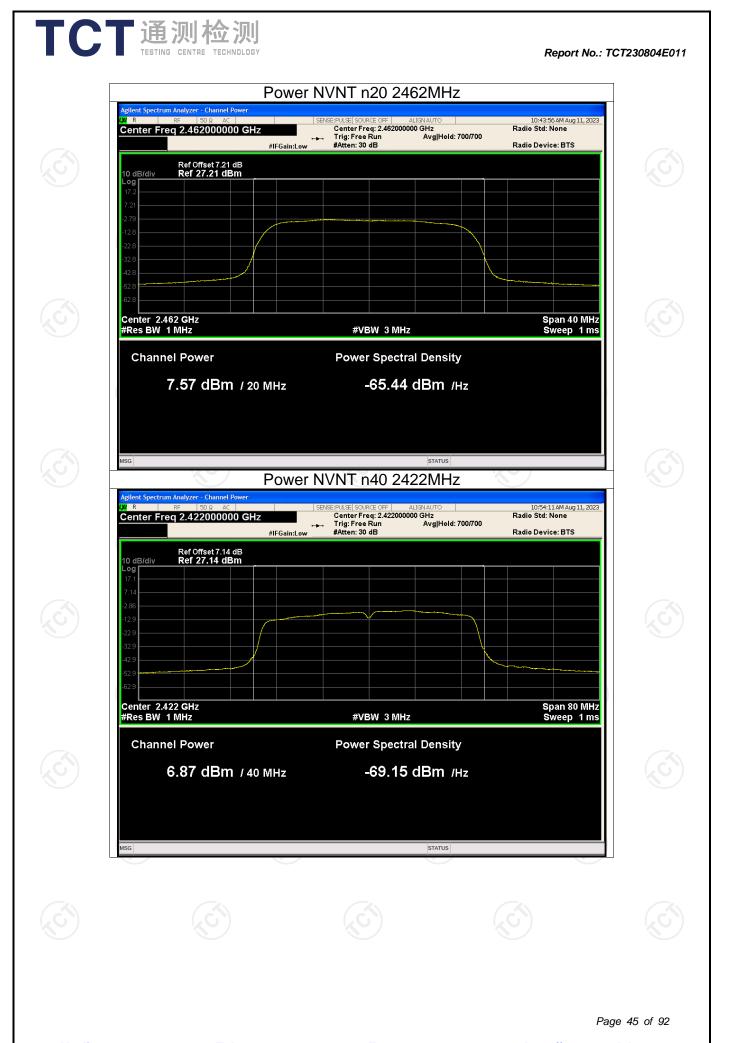
STATUS




Report No.: TCT230804E011

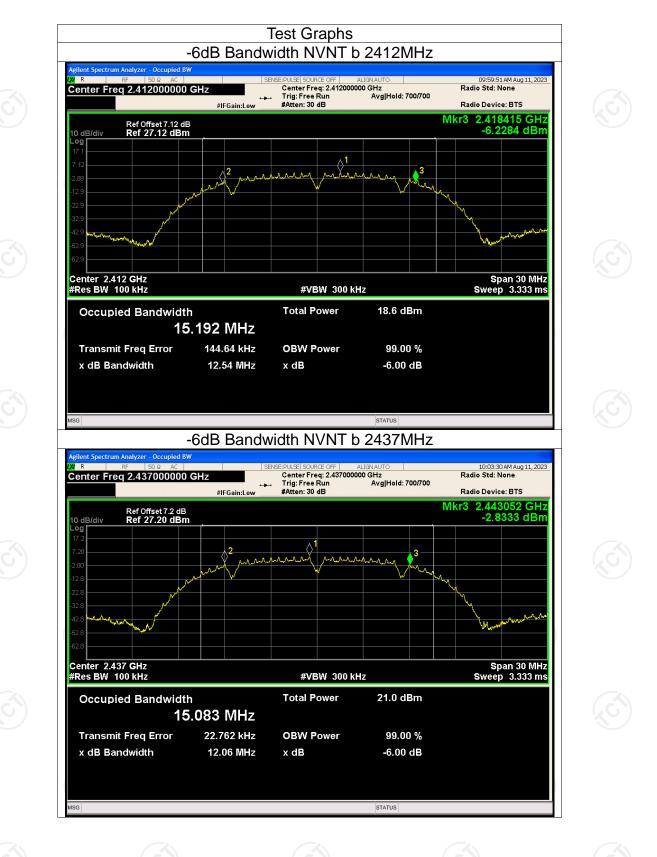
09:57:41 AM Aug 11, 2023 Radio Std: None


> Span 40 MHz Sweep 1 ms

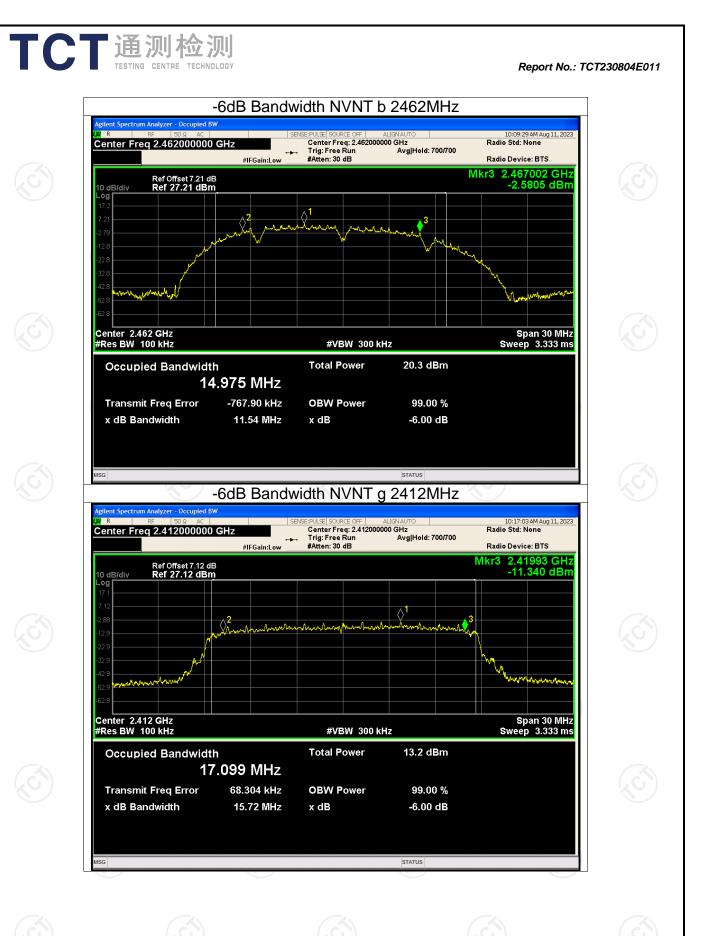

Radio Device: BTS

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

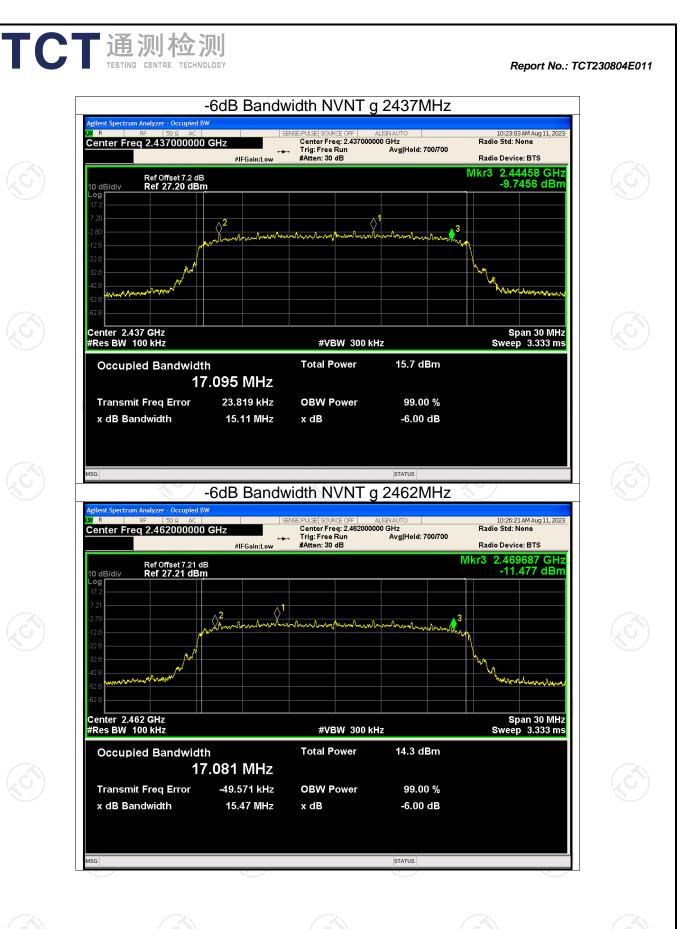
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

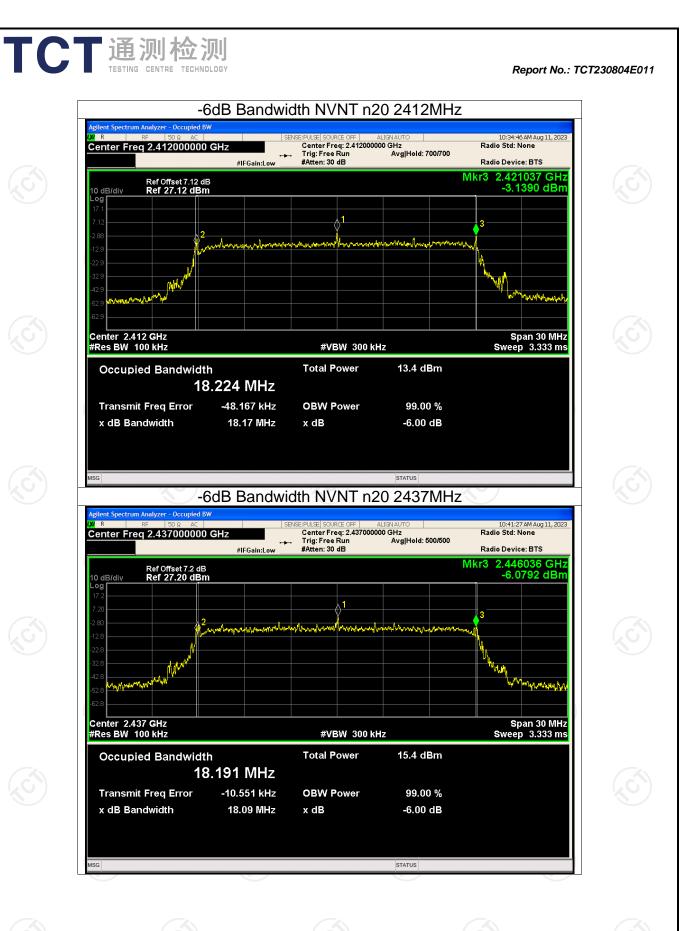


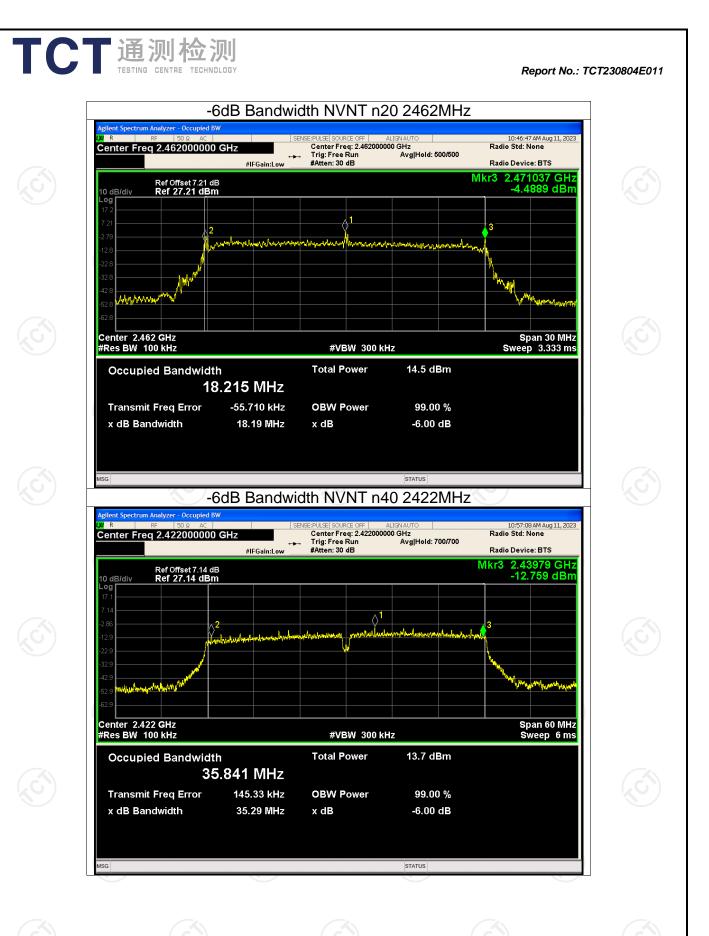
TCT	通测检测
	TESTING CENTRE TECHNOLOGY

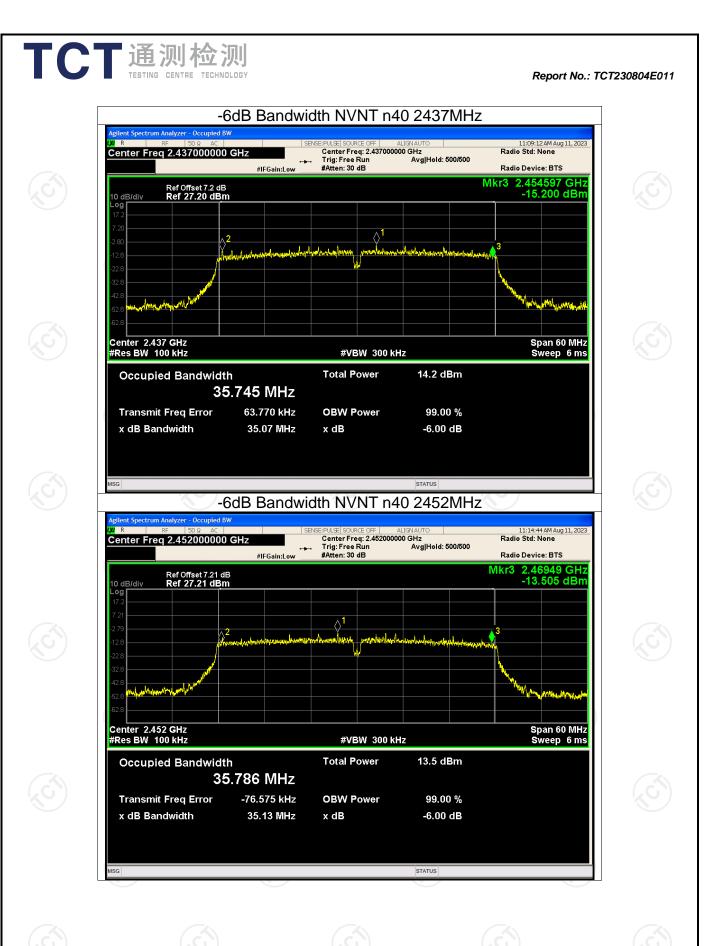

Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict		
NVNT	b	2412	12.540	0.5	Pass		
NVNT	b	2437	12.058	0.5	Pass		
NVNT	b	2462	11.540	0.5	Pass		
NVNT	g	2412	15.723	0.5	Pass		
NVNT	g	2437	15.113	0.5	Pass		
NVNT	g	2462	15.473	0.5	Pass		
NVNT	n20	2412	18.170	0.5	Pass		
NVNT	n20	2437	18.094	0.5	Pass		
NVNT	n20	2462	18.185	0.5	Pass		
NVNT	n40	2422	35.290	0.5	Pass		
NVNT	n40	2437	35.067	0.5	Pass		
NVNT	n40	2452	35.133	0.5	Pass		

-6dB Bandwidth

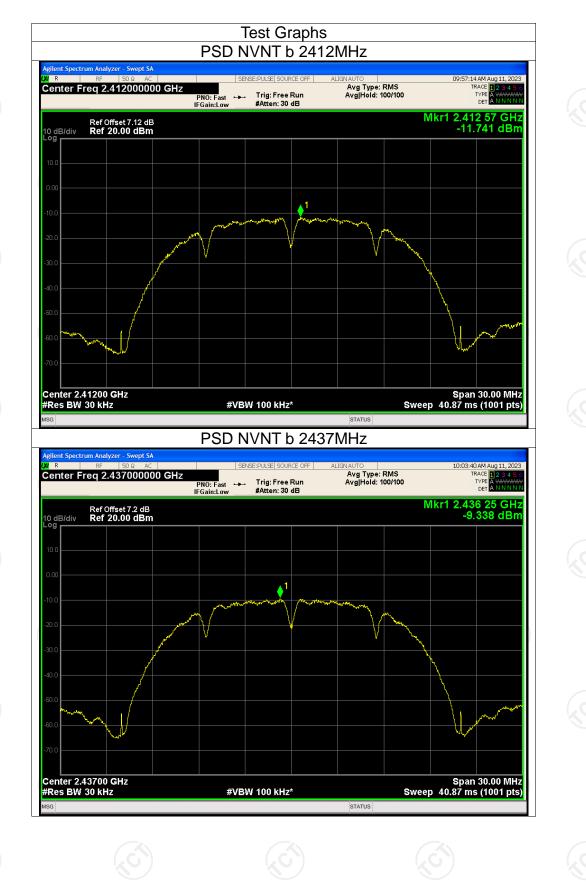

Page 47 of 92


Page 48 of 92




Page 49 of 92

Page 50 of 92



	Maximum Power Spectral Density Level							
Condition	Mode	Frequency (MHz)	Conduc ted PSD (dBm/3 0kHz)	Duty Factor (dB)	Total PSD (dBm/3 0kHz)	Total PSD (dBm/3k Hz)	Limit (dBm/ 3kHz)	Verdict
NVNT	b	2412	-11.74	0	-11.74	-21.74	8	Pass
NVNT	b	2437	-9.34	0	-9.34	-19.34	8	Pass
NVNT	q	2462	-10.01	0	-10.01	-20.01	8	Pass
NVNT	g	2412	-17.16	0	-17.16	-27.16	8	Pass
NVNT	g	2437	-15.34	0	-15.34	-25.34	8	Pass
NVNT	g	2462	-16.15	0	-16.15	-26.15	8	Pass
NVNT	n20	2412	-17.97	0	-17.97	-27.97	8	Pass
NVNT	n20	2437	-15.27	0	-15.27	-25.27	8	Pass
NVNT	n20	2462	-16.49	0	-16.49	-26.49	8	Pass
NVNT	n40	2422	-19.36	0	-19.36	-29.36	8	Pass
NVNT	n40	2437	-18.41	0	-18.41	-28.41	8	Pass
NVNT	n40	2452	-19.65	0	-19.65	-29.65	8	Pass

Maximum Power Spectral Density Level

Note: Total PSD (dBm/3kHz) = Total PSD (dBm/30kHz) +10log(3kHz/30kHz)

Page 55 of 92

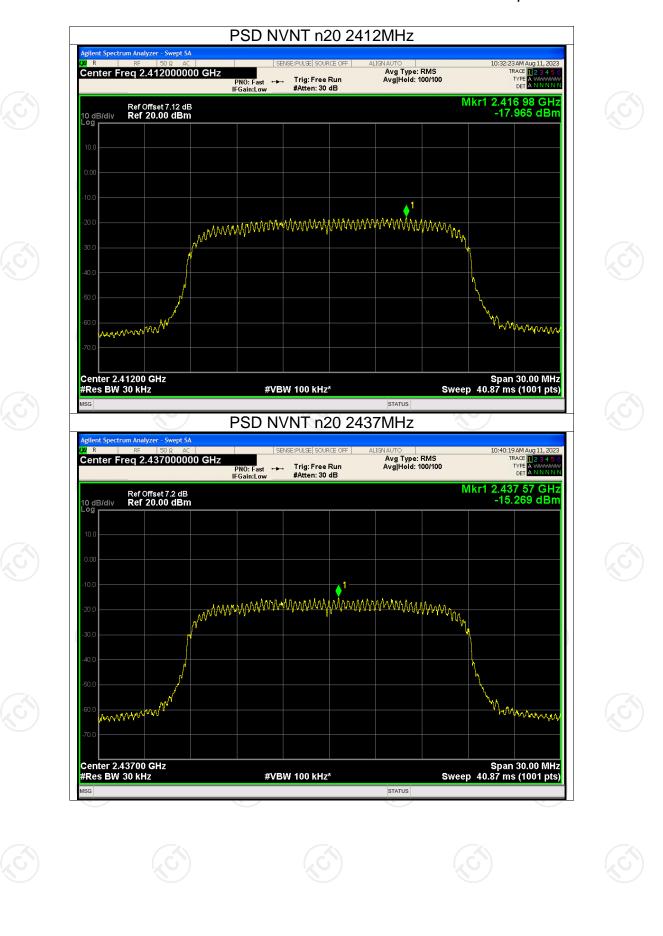
SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: RMS Trig: Free Run Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.461 40 GHz -10.014 dBm Ref Offset 7.21 dB Ref 20.00 dBm 10 dB/div ▲1 Center 2.46200 GHz #Res BW 30 kHz Span 30.00 MHz Sweep 40.87 ms (1001 pts) #VBW 100 kHz* STATUS PSD NVNT g 2412MHz Swept S/ 10:18:39 AM Aug 11, 2023 TRACE 1 2 3 4 5 6 TYPE A WARWAR DET A N N N N F SENSE: PULSE SOURCE OFF U F Avg Type: RMS Avg|Hold: 100/100 Center Freq 2.412000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.415 72 GHz -17.156 dBm Ref Offset 7.12 dB Ref 20.00 dBm 10 dB/div Log MAMAMAMAN wwwwwwwww MAMAAA mmm mm Center 2.41200 GHz #Res BW 30 kHz Span 30.00 MHz Sweep 40.87 ms (1001 pts) #VBW 100 kHz* STATUS

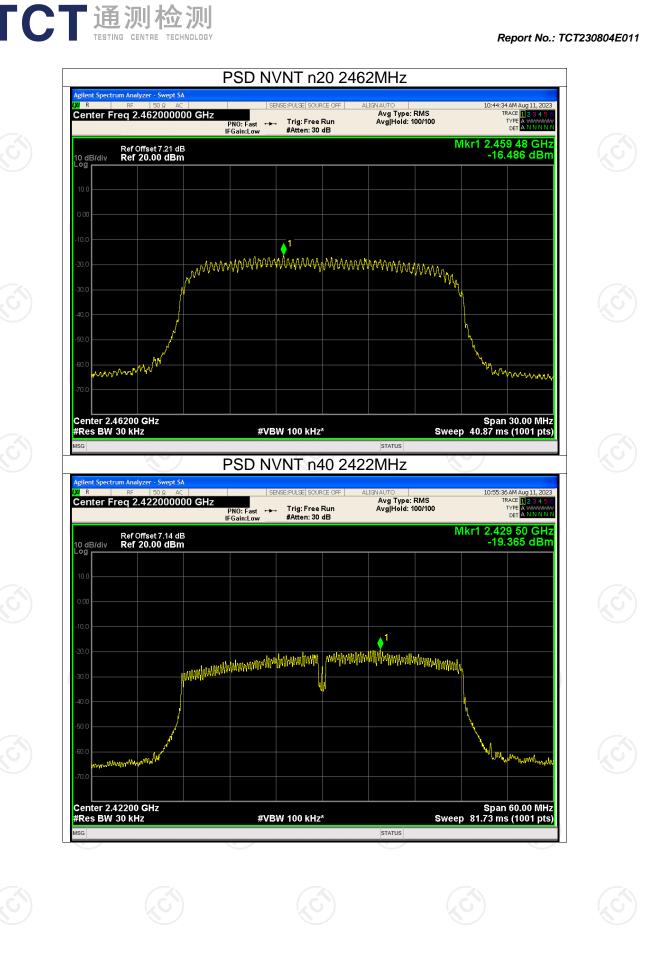
PSD NVNT b 2462MHz

FCT通测检测 TESTING CENTRE TECHNOLOGY

R

gilent Spectrum Analyzer - Swept SA


Center Freq 2.462000000 GHz


Report No.: TCT230804E011

':43 AM Aug 11, 2023 TRACE 1 2 3 4 5

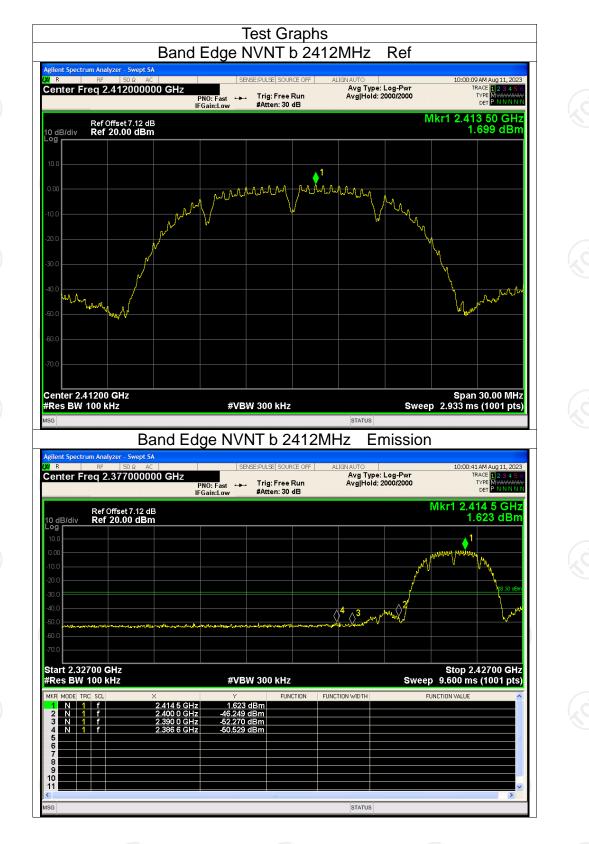
TCT通测检测 TESTING CENTRE TECHNOLOGY

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: RMS Trig: Free Run Avg|Hold: 100/100 11:07:42 AM Aug 11, 2023 TRACE 1 2 3 4 5 6 Center Freq 2.437000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.434 48 GHz -18.409 dBm Ref Offset 7.2 dB Ref 20.00 dBm 10 dB/div Dg Ø ndinamananan MM MMMM MANAN Center 2.43700 GHz #Res BW 30 kHz Span 60.00 MHz Sweep 81.73 ms (1001 pts) #VBW 100 kHz* STATUS PSD NVNT n40 2452MHz Swept S/ 11:14:14 AM Aug 11, 2023 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N U F SENSE:PULSE SOURCE OFF Avg Type: RMS Avg|Hold: 100/100 Center Freq 2.452000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.449 48 GHz -19.654 dBm Ref Offset 7.21 dB Ref 20.00 dBm 10 dB/div Log 0 white the second se What month along the factor of AMMANN Center 2.45200 GHz #Res BW 30 kHz Span 60.00 MHz Sweep 81.73 ms (1001 pts) #VBW 100 kHz* STATUS

PSD NVNT n40 2437MHz

FCT通测检测 TESTING CENTRE TECHNOLOGY

R


gilent Spectrum Analyzer - Swept SA

Band Edge							
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	b	2412	-52.22	-30	Pass		
NVNT	b	2462	-54.88	-30	Pass		
NVNT	g	2412	-46.90	-30	Pass		
NVNT	g	2462	-48.18	-30	Pass		
NVNT	n20	2412	-51.65	-30	Pass		
NVNT	n20	2462	-51.45	-30	Pass		
NVNT 🔍	n40	2422	-44.12	-30	Pass		
NVNT	n40	2452	-43.69	-30	Pass		

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 61 of 92

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

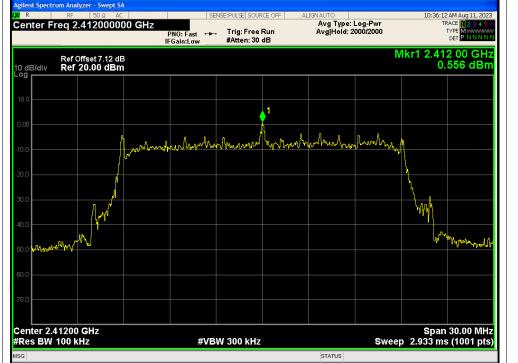
Page 62 of 92

Page 63 of 92

Band Edge NVNT g 2412MHz Ref gilent Spectr SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 2000/2000 10:19:23 AM Aug 11, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N Aug 11, 20 Center Freq 2.412000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.414 49 GHz -3.704 dBm Ref Offset 7.12 dB Ref 20.00 dBm 10 dB/div mmul Inorth homen Anton . and an all Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS

FCT通测检测 TESTING CENTRE TECHNOLOGY

Band Edge NVNT g 2412MHz Emission


PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB

FCT通测检测 TESTING CENTRE TECHNOLOGY

Band Edge NVNT n20 2412MHz Emission

Avg Type: Log-Pwr Avg|Hold: 2000/2000

Band Edge NVNT n20 2412MHz

FCT通测检测 TESTING CENTRE TECHNOLOGY

U F

10 dB/di Log

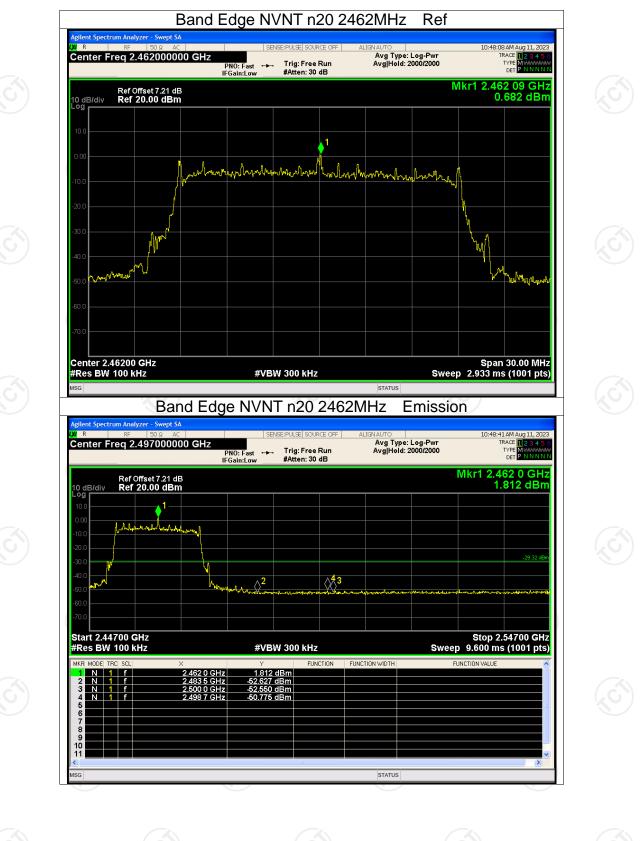
Center Freq 2.377000000 GHz

Ref Offset 7.12 dB Ref 20.00 dBm

SENSE:PULSE SOURCE OFF

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB

Report No.: TCT230804E011


44 AM Aug 11, 20

TRACE TYPE DET

Mkr1 2.412 0 GHz 0.555 dBm

And - and a start and a sub-

Ref

FCT 通测检测 TESTING CENTRE TECHNOLOGY

ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 2000/2000 42 AM Aug 11, 2 TRACE 1 2 3 4 TYPE MWWW DET PNNN PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 10 dB Mkr1 2.426 98 GHz -5.232 dBm Ref Offset 7.14 dB Ref 7.14 dBm 10 dB/div the half of a sector half of a lather and when have been a fight of the of the 1n M Jun L 1

Center 2.42200 GHz #Res BW 100 kHz Span 60.00 MHz Sweep 5.800 ms (1001 pts) #VBW 300 kHz

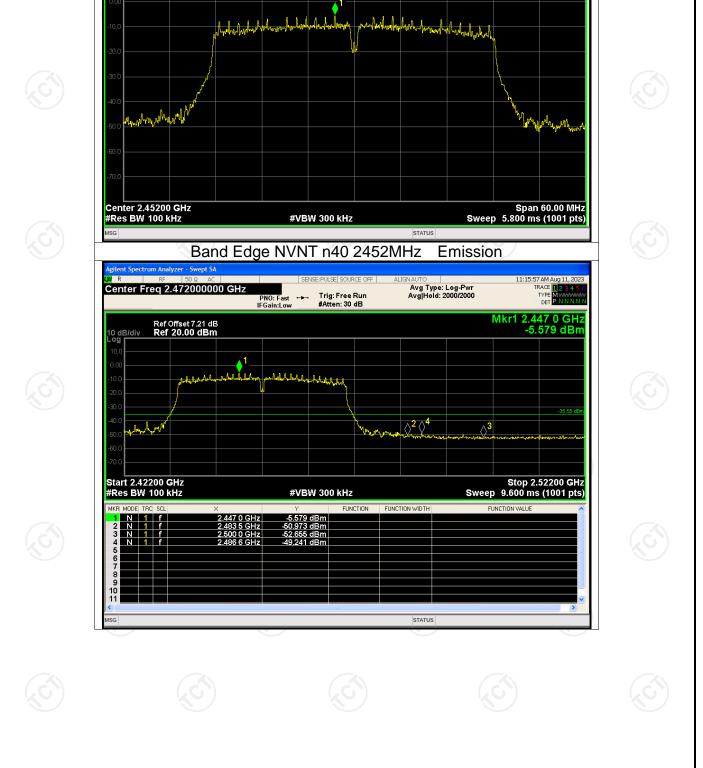
Band Edge NVNT n40 2422MHz

SENSE:PULSE SOURCE OFF

Band Edge NVNT n40 2422MHz Emission

STATUS

Page 68 of 92


Report No.: TCT230804E011

Aug 11, 20

Ref

Center Freq 2.422000000 GHz

SENSE:PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

FCT通测检测 Band Edge NVNT n40 2452MHz

Center Freq 2.452000000 GHz

Ref Offset 7.21 dB Ref 20.00 dBm

gilent Spect

10 dB/div

Report No.: TCT230804E011

11:15:25 AM Aug 11, 20 TRACE 1 2 3 4 TYPE M WWWW DET P N N N

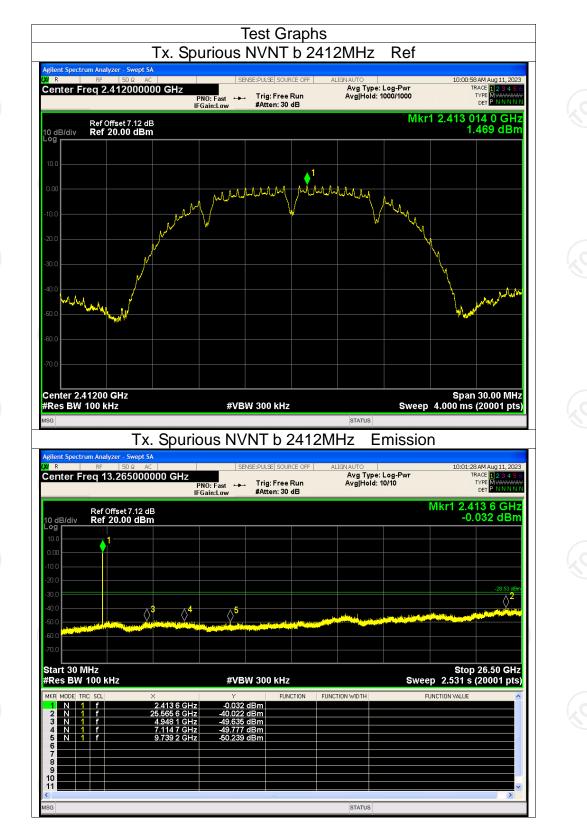
Mkr1 2.449 48 GHz -5.549 dBm

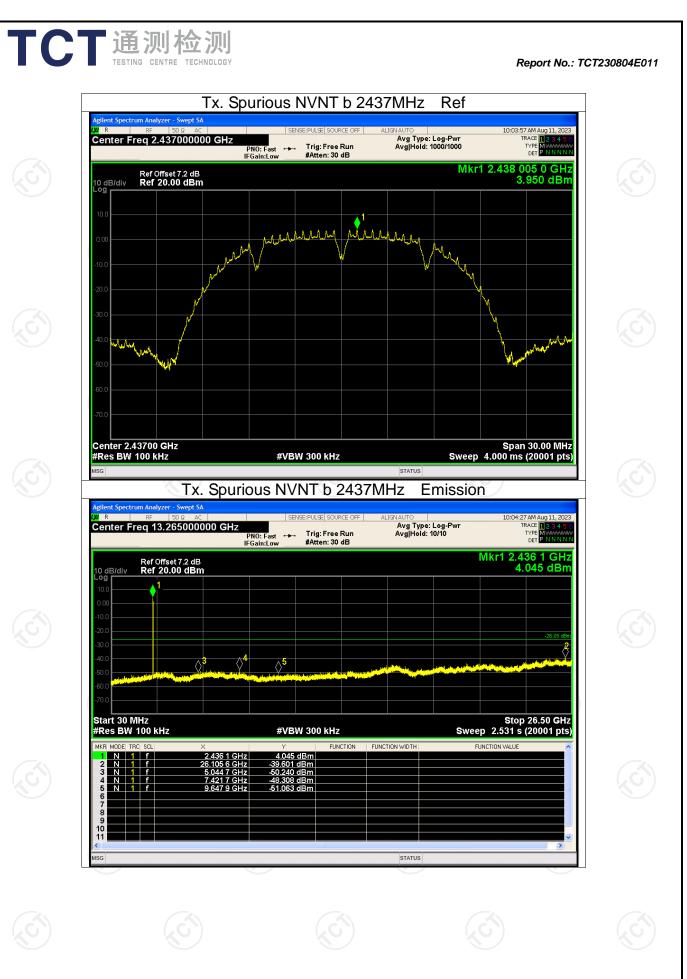
Ref

ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 2000/2000

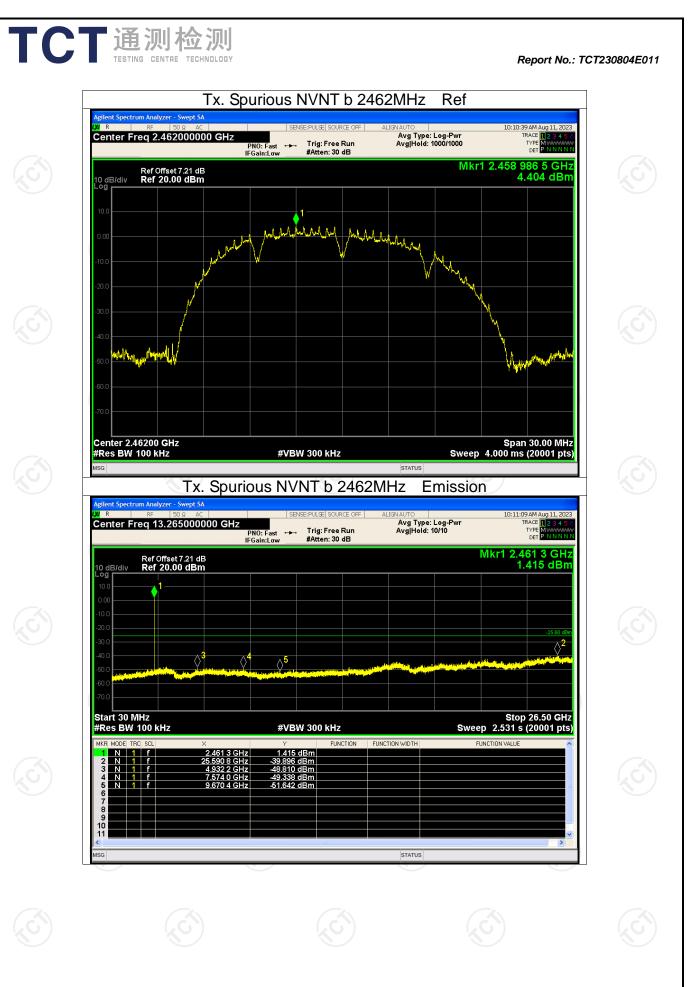
Page 69 of 92

Conducted R ndition Mode Frequency (MH


TCT通测检测 TESTING CENTRE TECHNOLOGY


Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-41.49	-30	Pass
NVNT	b	2437	-43.55	-30	Pass
NVNT	b	2462	-44.29	-30	Pass
ŃVNT	g	2412	-36.46	-30	Pass
NVNT	g	2437	-37.63	-30	Pass
NVNT	g	2462	-47.56	-30	Pass
NVNT 🔍	n20	2412	-39.66	-30	Pass
NVNT	n20	2437	-42.16	-30	Pass
NVNT	n20	2462	-51.73	-30	Pass
NVNT	n40	2422	-44.27	-30	Pass
NVNT	n40	2437	-47.07	-30	Pass
NVNT	n40	2452	-42.63	-30	Pass


Page 70 of 92

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 72 of 92

Page 73 of 92

Page 74 of 92

Page 75 of 92