

FCC CO-LOCATION RADIO TEST REPORT

FCC ID	:	ACJFZA3A
Equipment	:	Tablet Computer
Brand Name	:	Panasonic
Model Name	:	FZ-A3
Marketing Name		FZ-A3
Applicant	:	Panasonic Corporation of North America Two Riverfront Plaza, 9th Floor, Newark, NJ 07102-5490
Manufacturer	:	Panasonic Mobile Communications Co., Ltd. 600 Saedo-cho, Tsuzuki-ku, Yokohama City 224-8539, Japan
Standard	:	FCC Part 15 Subpart E §15.407

The product was received on Nov. 26, 2019 and testing was started from Mar. 28, 2020 and completed on Apr. 13, 2020. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	story o	f this test report	3
Su	mmary	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	5
2	Test	Configuration of Equipment Under Test	6
	2.1	Carrier Frequency and Channel	6
	2.2	Test Mode	6
	2.3	Connection Diagram of Test System	7
	2.4	Support Unit used in test configuration and system	7
	2.5	EUT Operation Test Setup	7
3	Test	Result	8
	3.1	Unwanted Emissions Measurement	8
	3.2	Antenna Requirements	11
4	List c	of Measuring Equipment	12
5	Unce	rtainty of Evaluation	13
Ap	pendix	x A. Radiated Spurious Emission	
Ар	pendix	k B. Radiated Spurious Emission Plots	
Ар	pendix	c C. Duty Cycle Plots	

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR992410-04	01	Initial issue of report	Apr. 16, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.407(b)	Unwanted Emissions	Pass	Under limit 3.15 dB at 7660.000 MHz
3.2	15.203 15.407(a)	Antenna Requirement	Pass	-

Remark: This is a variant report by adding simultaneous transmission configurations analysis for 5GHz WLAN Ant 1 + 5GHz WLAN Ant 0 + Bluetooth Ant 0. All the test cases were performed on original report which can be referred to Sporton Report Number FR992410-01.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Yimin Ho

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac, Wi-Fi 5GHz 802.11a/n/ac, NFC, and GNSS.

Product Specification subjective to this standard			
	WLAN		
	<ant. 0="">: Monopole Antenna</ant.>		
Antonno Typo	<ant. 1="">: Monopole Antenna</ant.>		
Antenna Type	Bluetooth: Monopole Antenna		
	GNSS: Monopole Antenna		
	NFC: Loop Antenna		

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications _aboratory			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No. 03CH11-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

2.1 Carrier Frequency and Channel

2400-248	33.5 MHz	5150-5250 MHz		
Bluetooth		802.11ac VHT20		
Channel	Freq. (MHz)	. (MHz) Channel Fre		
78	2480	36	5180	

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

<Co-Location>

Modulation	Data Rate
Bluetooth + 5GHz 802.11ac VHT20 for MIMO Ant. 0+1	1Mbps + 6Mbps

Remark: All the tests were performed with Battery 1 and USB Cable 1.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	n Equipment Trade Name		Model Name FCC ID		Data Cable	Power Cord
1.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT v4.0-00156" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.1.1 Limit of Unwanted Emissions

(1) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$

 μ µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

- (2) KDB789033 D02 v02r01 G)2)c)
 - (i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of −27 dBm/MHz.
 - (ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section G) Unwanted emissions measurement.
 - (1) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (2) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.1.4 Test Setup

3.1.5 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.1.6 Duty Cycle

Please refer to Appendix C.

3.1.7 Test Result of Radiated Spurious Emissions

Please refer to Appendix A and B.

3.2 Antenna Requirements

3.2.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.2.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Preamplifier	EMCE	EMC184045B	980192	18GHz ~ 40GHz	Aug. 01, 2019	Mar. 28, 2020~ Apr. 13, 2020	Jul. 31, 2020	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY5327008 0	1GHz~26.5GHz	Nov. 13, 2019	Mar. 28, 2020~ Apr. 13, 2020	Nov. 12, 2020	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55 303K	171000180 0054002	1GHz~18GHz	Feb. 07, 2020	Mar. 28, 2020~ Apr. 13, 2020	Feb. 06, 2021	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 576	18GHz- 40GHz	May 14, 2019	Mar. 28, 2020~ Apr. 13, 2020	May 13, 2020	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-132 6	1GHz ~ 18GHz	Nov. 04, 2019	Mar. 28, 2020~ Apr. 13, 2020	Nov. 03, 2020	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY5420048 6	10Hz ~ 44GHz	Oct. 28, 2019	Mar. 28, 2020~ Apr. 13, 2020	Oct. 27, 2020	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Mar. 28, 2020~ Apr. 13, 2020	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1~4m	N/A	Mar. 28, 2020~ Apr. 13, 2020	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Mar. 28, 2020~ Apr. 13, 2020	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Mar. 28, 2020~ Apr. 13, 2020	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4P E	9kHz-30MHz	Mar. 12, 2020	Mar. 28, 2020~ Apr. 13, 2020	Mar. 11, 2021	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 12, 2020	Mar. 28, 2020~ Apr. 13, 2020	Mar. 11, 2021	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4P E	30M-18G	Mar. 12, 2020	Mar. 28, 2020~ Apr. 13, 2020	Mar. 11, 2021	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz-40GHz	Mar. 12, 2020	Mar. 28, 2020~ Apr. 13, 2020	Mar. 11, 2021	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60SS	SN3	3GHz High Pass Filter	Sep. 15, 2019	Mar. 28, 2020~ Apr. 13, 2020	Sep. 14, 2020	Radiation (03CH11-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000 -40SS	SN3	6.75GHz High Pass Filter	Sep. 16, 2019	Mar. 28, 2020~ Apr. 13, 2020	Sep. 15, 2020	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-108 0-1200-15000 -60SS	SN2	1.2GHz High Pass Filter	Sep. 15, 2019	Mar. 28, 2020~ Apr. 13, 2020	Sep. 14, 2020	Radiation (03CH11-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	E 20
of 95% (U = 2Uc(y))	5.20

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	2 1 2
of 95% (U = 2Uc(y))	3.12

Appendix A. Radiated Spurious Emission

Test Engineer :	Cookie Ku, Fu Chen, Troye Hsieh and Quentin Liu	Temperature :	18.9 ~ 23.9°C
		Relative Humidity :	48.9 ~ 69.6%

BT_CH78_Tx Ant. 0 + WLAN 5G 11ac20_CH36_Tx_Ant. 0+1

2.4G 2400~2483.5MHz (Band Edge @ 3m) + 5G Band 1 5150~5250MHz(Band Edge @ 3m)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
0		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	104.52	-	-	103.66	27.28	6.79	33.21	100	112	Р	Н
	*	2480	79.76	-	-	-	-	-	-	-	-	А	Н
		2483.52	55.01	-18.99	74	54.16	27.27	6.79	33.21	100	112	Ρ	Н
		2483.52	30.25	-23.75	54	-	-	-	-	-	-	А	Н
													Н
BT_CH78 Tx													Н
Ant. 0	*	2480	98.41	-	-	97.55	27.28	6.79	33.21	400	176	Ρ	V
	*	2480	73.65	-	-	-	-	-	-	-	-	А	V
		2485.24	48.62	-25.38	74	47.78	27.26	6.79	33.21	400	176	Ρ	V
		2485.24	23.86	-30.14	54	-	-	I	-	-	-	А	V
													V
													V
Pomark	1. No	other spuric	ous found.										
Remark 2. All results are PASS against Peak and Average limit line.													

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ВТ		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5141.18	52.18	-21.82	74	43.25	31.8	9.95	32.82	100	108	Р	н
WLAN 5G		5145.6	43.2	-10.8	54	34.26	31.8	9.96	32.82	100	108	А	Н
	*	5180	113.2	-	-	104.36	31.62	10.01	32.79	100	108	Р	н
	*	5180	105.41	-	-	96.57	31.62	10.01	32.79	100	108	А	н
												Р	н
												А	н
11ac_CH36		5149.76	50.42	-23.58	74	41.46	31.8	9.97	32.81	285	155	Р	V
		5135.2	41.26	-12.74	54	32.33	31.8	9.95	32.82	285	155	А	V
	*	5180	103.74	-	-	94.9	31.62	10.01	32.79	285	155	Ρ	V
	*	5180	97.08	-	-	88.24	31.62	10.01	32.79	285	155	А	V
												Ρ	V
												А	V
Pomark	1. No	o other spuric	ous found.										
Reinark	2. All	results are F	PASS against	t Peak ar	nd Average li	mit line.							

Colocation	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4960	69.38	-4.62	74	61.37	31.14	9.74	32.87	100	107	Р	н
		4960	44.62	-9.38	54	-	-	-	-	-	-	А	н
		7440	53.08	-20.92	74	61.67	36.38	13.62	58.59	100	0	Р	н
		7440	28.32	-25.68	54	-	-	-	-	-	-	А	н
		7660	58.94	-15.06	74	67.6	36.02	13.8	58.48	100	87	Р	н
		7660	50.85	-3.15	54	59.51	36.02	13.8	58.48	100	87	А	н
		10360	49.55	-18.65	68.2	52.7	39.8	17.44	60.39	100	0	Р	н
Colocation		15540	44.11	-29.89	74	45.92	37.84	21.62	61.27	100	0	Ρ	н
		4960	62.72	-11.28	74	54.71	31.14	9.74	32.87	100	114	Ρ	V
		4960	37.96	-16.04	54	-	-	-	-	-	-	А	V
		7440	47.26	-26.74	74	55.85	36.38	13.62	58.59	100	0	Ρ	V
		7440	-22.5	-31.5	54	-	-	-	-	-	-	А	V
		7660	48.56	-25.44	74	57.22	36.02	13.8	58.48	100	0	Р	V
		10360	49.72	-18.48	68.2	52.87	39.8	17.44	60.39	100	0	Р	V
		15540	44.07	-29.93	74	45.88	37.84	21.62	61.27	100	0	Р	V
Remark	1. No	other spuric	ous found.										
N¢IIIdi K	2. All	results are F	PASS against	Peak ar	nd Average li	mit line.							

Colocation (Harmonic @ 3m)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
ļ	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix B. Radiated Spurious Emission Plots

Test Engineer :	Cookie Ku, Fu Chen, Troye Hsieh and Quentin Liu	Temperature :	18.9 ~ 23.9°C
	Cookie Ku, Fu Chen, hoye Asien and Quentin Liu	Relative Humidity :	48.9 ~ 69.6%

BT 2.4GHz 2400-2483.5MHz Band Edge @ 3m ANT Br_Ch7s tx An. 0 0 Horizontal Fundamental 0 Horizontal Image: Comparison of the second of the secon

2400~2483.5MHz (Band Edge @ 3m)

Band 1 5150~5250MHz (Band Edge @ 3m)

Co-location (Harmonic @ 3m)

Appendix C. Duty Cycle Plots

Keysight Spectrum Analyzer - Swept SA					
X RL RF 50Ω DC	5 647	SENSE:INT		01:07:12 AM Apr 02, 2020 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast Trig IFGain:Low Atte	: Free Run en: 40 dB			Auto Tune
10 dB/div Ref 129.99 dBu	v		A	-0.13 dB	
120					Center Freq
110 100 X2		1∆2			2.480200495 GHz
90.0					Start Freq
70.0					2.480200495 GHz
60.0 Wyprulyhru		hayymad		mughered	Stop Fred
50.0					2.480200495 GHz
Center 2.480200495 GHz Res BW 1.0 MHz	#VBW 1.0 I	₩Hz	Sweep 1	Span 0 Hz 0.00 ms (1001 pts)	CF Step 1.000000 MHz
MKR MODE TRC SCL X	2 900 mg (A)	FUNCT	ON FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mari
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.890 ms (Δ) 1.765 ms 98.9 3.750 ms (Δ) 1.760 ms 98.9	0.33 dB 04 dBµV -0.13 dB			Freq Offset
	1.700 113 00.0			=	0 HZ
7 8					
9					
<		П			

DH5 on time (One Pulse) Plot on Channel 39

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.89 / 100 = 5.78 \%$
- 2. Worst case Duty cycle correction factor = $20*\log(\text{Duty cycle}) = -24.76 \text{ dB}$
- 3. **DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.8ms] = 2 hops

Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

20 x log(5.78 ms/100ms) = -24.76 dB

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
0+1	5GHz 802.11ac VHT20 for Ant. 0	94.39	1935	0.52	1kHz	0.25
0+1	5GHz 802.11ac VHT20 for Ant. 1	94.62	1935	0.52	1kHz	0.24

MIMO <Ant. 0>

MIMO <Ant. 1>

802.11ac VHT20

