ENGINEERING TEST REPORT

Ումումանականական արարաանում անագրանան անագրանան անագրանական անականության անագրանան անագրանական անագրանան անագր

800 RF MODULE Model No.: T1088 FCC ID: IMA-T1088

Applicant: Technisonic Industries Ltd.

> 240 Traders Blvd E, Mississauga, Ontario Canada, L4Z 1W7

Tested in Accordance With

Federal Communications Commission (FCC) CFR 47, PARTS 2 and 90 (Subpart I)

UltraTech's File No.: TIL-037FCC90

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: March 17, 2004

Issued Date: March 17, 2004

Report Prepared by: Dharmajit Solanki,

RFI Engineer

Tested by: Hung Trinh, EMI/RFI Technician

Test Dates: December 10 - 23, 2003, March 04, 2004

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com -labs.com

C-1376

46390-2049

200093-0

TABLE OF CONTENTS

EXHIBIT 1.	SUBMITTAL CHECK LIST	3
EXHIBIT 2.	INTRODUCTION	4
	PE	
	TED SUBMITAL(S)/GRANT(S)	
	MATIVE REFERENCES	
EXHIBIT 3.	PERFORMANCE ASSESSMENT	
2.1 gym	IT INFORMATION	
	PMENT UNDER TEST (EUT) INFORMATION	
	S TECHNICAL SPECIFICATIONS	
	OF EUT'S PORTS	
	LLARY EQUIPMENT	
	CK DIAGRAM OF TEST SETUP	
EXHIBIT 4.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	9
4.1. CLIM	ATE TEST CONDITIONS	q
	ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	
EXHIBIT 5.	SUMMARY OF TEST RESULTS	
	ATION OF TESTS	
	JICABILITY & SUMMARY OF EMISSION TEST RESULTS	
	FICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	
EXHIBIT 6.		
	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	
	Procedures	
	UREMENT UNCERTAINTIES	
	UREMENT EQUIPMENT USED:	
	ENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER:	
	WER OUTPUT @ FCC 2.1046 , 90.205 & 90.635	
	Method of Measurements	
	Test Equipment List	
	Test Arrangement	
	Test Data	
	XPOSURE REQUIRMENTS @ 1.1310 & 2.1091	14
	Limits	
	Method of Measurements	
	Test Data	
	UENCY STABILITY @ FCC 2.1055 & 90.213	
	Limits @ FCC 90.213	
	Method of Measurements Test Equipment List	
	Test Arrangement	
	Test Data	
	O FREQUENCY RESPONSE @ FCC 2.1047(A) & 90.242(B)(8)	
	Limits @ FCC 2.1047(a) and 90.242(b)(8)	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY	6.8.2. Method of Measurements	19
6.8.4. Test Arrangement	6.8.3. Test Equipment List	
6.9. MODULATION LIMITING @ FCC 2.1047(B) & 90.210		
6.9. MODULATION LIMITING © FCC 2.1047(b) & 90.210		
6.9.1. Limits @ FCC 2.1047(b) and 90.210		
6.9.2. Method of Measurements		
6.9.3. Test Equipment List 6.9.4. Test Arrangement 24 6.9.5. Test Data 25 6.10. EMISSION MASK @ FCC 2.1049, 90.208 & 90.210 30 6.10.1. Limits @ FCC 90.209 & 90.210 30 6.10.2. Method of Measurements. 30 6.10.3. Test Equipment List 30 6.10.4. Test Arrangement 30 6.10.5. Test Data 31 6.11. Limits @ 90.210 35 6.11.1. Limits @ 90.210 37 6.11.2. Method of Measurements. 37 6.11.3. Test Equipment List 37 6.11.4. Test Arrangement 37 6.11.5. Test Data 37 6.11.6.11. Test Arrangement 37 6.11.1. Limits @ 90.210 37 6.11.2. Method of Measurements. 37 6.11.3. Test Equipment List 37 6.11.4. Test Arrangement 37 6.11.5. Test Data 37 6.11.6.11. Limits @ FCC 90.210 6.12.1. Limits @ FCC 90.210 6.12.2. Method of Measurements. 39 6.12.3. Test Equipment List 40 6.12.1. Limits @ FCC 90.210 41 6.12.1. Limits @ FCC 90.210 41 6.12.2. Test Data 41 6.12.1. Test Setup 41 6.12.2. Test Equipment List 42 6.12.3. Test Equipment List 43 6.12.4. Test Setup 44 6.12.5. Test Data 45 6.12.5. Test Data 47 6.12.6.12.5. Test Data 48 6.12.6.12.5. Test Data 68 68.1. CONDUCTED POWER MEASUREMENT UNCERTAINTY 68 68.2. RADIATED POWER MEASUREMENTS 68 68.3. FREQUENCY STABILITY 69 68 68.3. FREQUENCY STABILITY 69 68 68 68 68 68 68 68 68 68 68 69 69 68	· · ·	
6.9.4. Test Arrangement 24 6.9.5. Test Data. 25 6.10. EMISSION MASK @ FCC 2.1049, 90.208 & 90.210 30 6.10.1. Limits @ FCC 90.209 & 90.210 30 6.10.2. Method of Measurements 36 6.10.3. Test Equipment List 36 6.10.4. Test Arrangement 36 6.10.5. Test Data 31 6.11. Transmitter Antenna Power Spurious/Harmonic Conducted Emissions @ FCC 90.210 75 6.11.1. Limits @ 90.210 75 6.11.2. Method of Measurements 75 6.11.3. Test Equipment List 75 6.11.4. Test Arrangement 75 6.11.5. Test Data 76 6.12.1 Limits @ FCC 90.210 91 6.12.2. Method of Measurements 76 6.12.1 Limits @ FCC 90.210 91 6.12.2 Transmitter Spurious/Harmonic Radiated Emissions @ FCC 90.210 91 6.12.1 Limits @ FCC 90.210 91 6.12.2 Transmitter Spurious/Harmonic Emissions @ FCC 90.210 91 6.12.5 Test Equipment List 91 6.12.1 Limits @ FCC 90.210 91 6.12.2 Method of Measurements 92 EXHIBIT 7. MEASUREMENT UNCERTAINTY 93 </td <td>\mathbf{J}</td> <td></td>	\mathbf{J}	
6.9.5. Test Data	1 1	
6.10. EMISSION MASK @ FCC 2.1049, 90.208 & 90.210		
6.10.1. Limits @ FCC 90.209 & 90.210	6.10. EMISSION MASK @ FCC 2.1049, 90,208 & 90,210	30
6.10.2. Method of Measurements		
6.10.3. Test Equipment List		
6.10.4. Test Arrangement 36 6.10.5. Test Data. 31 6.11. TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS @ FCC 90.210 75 6.11.1. Limits @ 90.210 75 6.11.2. Method of Measurements 75 6.11.3. Test Equipment List 75 6.11.4. Test Arrangement 75 6.11.5. Test Data. 76 6.12. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 90.210 91 6.12.1. Limits @ FCC 90.210 91 6.12.2. Method of Measurements 91 6.12.3. Test Equipment List 91 6.12.4. Test Setup 92 6.12.5. Test Data. 92 EXHIBIT 7. MEASUREMENT UNCERTAINTY 93 EXHIBIT 8. MEASUREMENT UNCERTAINTY 93 EXHIBIT 8. MEASUREMENT METHODS 94 8.1. CONDUCTED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD 95 8.2.1. Maximizing RF Emission Level (E-Field). 95 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method. 96 8.3. FREQUENCY STABILITY 98 8.4. EMISSION MASK 99	v	
6.10.5. Test Data		
6.11. Transmitter Antenna Power Spurious/Harmonic Conducted Emissions @ FCC 90.210		
6.11.1. Limits @ 90.210		
6.11.2. Method of Measurements		
6.11.3. Test Equipment List 75 6.11.4. Test Arrangement 75 6.11.5. Test Data 76 6.12. Transmitter Spurious/Harmonic Radiated Emissions @ FCC 90.210 91 6.12.1. Limits @ FCC 90.210 91 6.12.2. Method of Measurements 91 6.12.3. Test Equipment List 91 6.12.4. Test Setup 92 6.12.5. Test Data 92 EXHIBIT 7. MEASUREMENT UNCERTAINTY 93 7.1. Radiated Emission Measurement Uncertainty 93 EXHIBIT 8. MEASUREMENT METHODS 94 8.1. CONDUCTED POWER Measurements (ERP & EIRP) USING SUBSTITUTION METHOD 95 8.2.1. Maximizing RF Emission Level (E-Field) 95 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method 96 8.3. FREQUENCY STABILITY 98 8.4. EMISSION MASK 99		
6.11.4. Test Arrangement 75 6.11.5. Test Data	v	
6.11.5. Test Data 76 6.12. Transmitter Spurious/Harmonic RADIATED Emissions @ FCC 90.210 91 6.12.1. Limits @ FCC 90.210 91 6.12.2. Method of Measurements 91 6.12.3. Test Equipment List 91 6.12.4. Test Setup 92 6.12.5. Test Data 92 EXHIBIT 7. MEASUREMENT UNCERTAINTY 93 7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY 93 EXHIBIT 8. MEASUREMENT METHODS 94 8.1. CONDUCTED POWER MEASUREMENTS 94 8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD 95 8.2.1. Maximizing RF Emission Level (E-Field) 95 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method 96 8.3. FREQUENCY STABILITY 98 8.4. EMISSION MASK 99	1 1	
6.12. Transmitter Spurious/Harmonic RADIATED Emissions @ FCC 90.210 91 6.12.1. Limits @ FCC 90.210 91 6.12.2. Method of Measurements 91 6.12.3. Test Equipment List 91 6.12.4. Test Setup 92 6.12.5. Test Data 92 EXHIBIT 7. MEASUREMENT UNCERTAINTY 93 7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY 93 EXHIBIT 8. MEASUREMENT METHODS 94 8.1. CONDUCTED POWER MEASUREMENTS 94 8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD 95 8.2.1. Maximizing RF Emission Level (E-Field) 95 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method 96 8.3. FREQUENCY STABILITY 98 8.4. EMISSION MASK 99	Č	
6.12.1. Limits @ FCC 90.210. 91 6.12.2. Method of Measurements. 91 6.12.3. Test Equipment List 91 6.12.4. Test Setup. 92 6.12.5. Test Data. 92 EXHIBIT 7. MEASUREMENT UNCERTAINTY 93 7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY 93 EXHIBIT 8. MEASUREMENT METHODS 94 8.1. CONDUCTED POWER MEASUREMENTS 94 8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD 95 8.2.1. Maximizing RF Emission Level (E-Field) 95 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method 96 8.3. FREQUENCY STABILITY 98 8.4. EMISSION MASK 99		
6.12.2. Method of Measurements		
6.12.3. Test Equipment List 91 6.12.4. Test Setup 92 6.12.5. Test Data 92 EXHIBIT 7. MEASUREMENT UNCERTAINTY 93 7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY 93 EXHIBIT 8. MEASUREMENT METHODS 94 8.1. CONDUCTED POWER MEASUREMENTS 94 8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD 95 8.2.1. Maximizing RF Emission Level (E-Field) 95 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method 96 8.3. FREQUENCY STABILITY 98 8.4. EMISSION MASK 99		
6.12.4. Test Setup		
6.12.5. Test Data. 92 EXHIBIT 7. MEASUREMENT UNCERTAINTY. 93 7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY. 93 EXHIBIT 8. MEASUREMENT METHODS. 94 8.1. CONDUCTED POWER MEASUREMENTS. 94 8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD. 95 8.2.1. Maximizing RF Emission Level (E-Field). 95 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method. 96 8.3. FREQUENCY STABILITY. 98 8.4. EMISSION MASK. 99		
7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY		
8.1. CONDUCTED POWER MEASUREMENTS	EXHIBIT 7. MEASUREMENT UNCERTAINTY	93
8.1. CONDUCTED POWER MEASUREMENTS	7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY	93
8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD 95 8.2.1. Maximizing RF Emission Level (E-Field). 95 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method 96 8.3. FREQUENCY STABILITY 98 8.4. EMISSION MASK 99	EXHIBIT 8. MEASUREMENT METHODS	94
8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD 95 8.2.1. Maximizing RF Emission Level (E-Field). 95 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method 96 8.3. FREQUENCY STABILITY 98 8.4. EMISSION MASK 99	8.1 CONDUCTED POWER MEASUREMENTS	94
8.2.1. Maximizing RF Emission Level (E-Field)		
8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method	821 Maximizing RF Emission Level (E-Field)	95
8.3. FREQUENCY STABILITY 98 8.4. EMISSION MASK 99		
8.4. EMISSION MASK 99		
	· ·	
6.5. SPURIOUS EMISSIONS (CONDUCTED)		

FCC ID: IMA-T1088

EXHIBIT 1. SUBMITTAL CHECK LIST

Annex No.	Exhibit Type	Description of Contents	Quality Check (OK)
	Test Report	Exhibit 1: Submittal check lists	OK
		• Exhibit 2: Introduction	
		 Exhibit 3: Performance Assessment 	
		• Exhibit 4: EUT Operation and Configuration during Tests	
		 Exhibit 5: Summary of test Results 	
		 Exhibit 6: Measurement Data 	
		 Exhibit 7: Measurement Uncertainty 	
		Exhibit 8: Measurement Methods	
1	Test Setup Photos	Photos # 1 to 6	OK
2	External Photos of EUT	Photos # 1 to 2	OK
3	Internal Photos of EUT	Photos of 1 to 6	OK
4	Cover Letters	Letter from Ultratech for Certification Request	OK
		 Letter from the Applicant to appoint Ultratech to act as an agent 	ОК
		 Letter from the Applicant to request for Confidentiality Filing 	OK
5	ID Label/Location Info	ID Label & Location of ID Label	OK
		RF Module (internal)TDFM Transceiver (external)	OK
6	Block Diagrams	Transceiver Block Diagram	OK
7	Schematic Diagrams	Schematic Diagrams	OK
8	Parts List/Tune Up Info	Parts List	OK
9	Operational Description	Operation Description	OK
10	RF Exposure Info	RF Exposure Warning	OK
11	Users Manual	Installation and Operational Manual Motorola XTS 5000 Manual TDFM 600/6000 Manual	OK

EXHIBIT 2. INTRODUCTION

2.1. SCOPE

FCC Parts 2 and 90	
Telecommunication - Code of Federal Regulations, CFR 47, Parts 2 & 90 Subpart I.	
To gain FCC Certification Authorization for Radio operating in the frequency bands 806-869 MHz (12.5 kHz and 25 kHz Channel Spacing).	
Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.	
This application is for Modular Approval for Airborne mobile and base station application with the antenna gain limit of 3dBi and the minimum antenna separation distance of 70 cm.	

2.2. RELATED SUBMITAL(S)/GRANT(S)

None

2.3. NORMATIVE REFERENCES

Publication	Year	Title	
FCC CFR Parts 0- 19, 80-End	2003	Code of Federal Regulations – Telecommunication	
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
CISPR 22 & EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment	
CISPR 16-1	1999	Specification for Radio Disturbance and Immunity measuring apparatus and methods	

EXHIBIT 3. PERFORMANCE ASSESSMENT

3.1. CLIENT INFORMATION

APPLICANT		
Name:	TECHNISONIC INDUSTRIES LTD.	
Address:	240 Traders Blvd E	
	Mississauga, Ontario	
	Canada, L4Z 1W7	
Contact Person:	Richard Dalacker	
	Phone #: 905-890-2113	
	Fax #: 905-890-5338	
	Email Address: <u>rdalacker@til.ca</u>	

MANUFACTURER		
Name:	MOTOROLA INC.	
Address:	8000 West Sunrise Boulevard Fort Lauderdale, Florida USA 33322	
Contact Person:	Mr. John McCoy Phone #: 954-723-5722 Email Address: john.mccoy@motorola.com	

3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	TECHNISONIC
Product Name:	800 RF MODULE
Model Name or Number:	T1088
Serial Number:	Pre-production
Type of Equipment:	Non-broadcast Radio Transmitter Module used in Mobile Station
Oscillator's Frequency	16.8 MHz
CPU's Frequencies	18 MHz, 520 kHz
Transmitting/Receiving Antenna Type:	Non-integral, Antenna gain limit = 3 dBi maximum
	The 800 RF Module is a modular Transceiver manufactured by
Primary User Functions of EUT:	Motorola, it will be used in Technisonic Multiband P25 Airborne
	Transceiver.

FCC ID: IMA-T1088

3.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER		
Equipment Type:	[] Portable [x] Mobile	
	Base station (fixed use)	
Intended Operating Environment:	[] Commercial	
	[] Light Industry & Heavy Industry	
	[x] Airbone	
Power Supply Requirement:	7.5 Vdc	
RF Output Power Rating:	2.8 Watts (conducted)	
Operating Frequency Range:	806-869 MHz	
Duty cycle:	50 %	
RF Output Impedance:	50 Ohms	
Channel Spacing:	12.5 kHz & 25 kHz	
Occupied Bandwidth (99%):	10.4 kHz (FM voice in 12.5 kHz Channel Spacing) 15.6 kHz (FM voice in 25 kHz Channel Spacing) 10.5 kHz (FM digital in 12.5 kHz Channel Spacing)	
Maximum Data Rate:	9600 b/s	
Emission Designations*: 16K0F3E, 11K0F3E, 11K2F1D		
Antenna Connector Type:	Reversed thrust SMA female connector	

^{*} For an average case of commercial telephony, the Necessary Bandwidth is calculated as follows:

Bandwidth Calculations:

Carson's Rule for FM modulation is utilized to compute the bandwidth shown in the FCC emission designator. Carson's Rule is: $BW = 2 \times (M+DK)$, where M = Maximum modulating frequency, D = Deviation

1. For FM Voice Modulation:

Channel Spacing = 12.5 KHz, D = 2.5 KHz max., K = 1, M = 3 KHz $B_n = 2M + 2DK = 2(3) + 2(2.5)(1) = 11 KHz$ emission designation: 11K0F3E

Channel Spacing = 25 KHz, D = 5 KHz max., K = 1, M = 3 KHz $B_n = 2M + 2DK = 2(3) + 2(5)(1) = 16 \text{ KHz}$ emission designation: 16K0F3E

2. For FM Digital Modulation: Channel Spacing = 12.5 KHz, Digital Data, D = 3.2 kHz M = 9.6/2 kb/s, (FM modulation Level 4)

 $B_n = 2M + 2DK = 2(9.6/4) + 2(3.2)(1) = 11.2 \text{ KHz}$

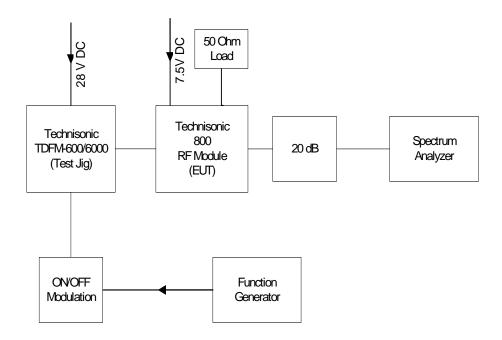
emission designation: 11K2F1D

Page 7 FCC ID: IMA-T1088

3.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	RF IN/OUT Port	1	Reversed SMA	Shielded
2	I/O Port	1	Controls Flex Assembly Connector	Non-shielded

NOTES:


(1) Ports of the EUT which in normal operation were connected to ancillary equipment through interconnecting cables via a representative interconnecting cable to simulate the input/output characteristics. RF input/output was correctly terminated to the 50 Ohm RF Load.

3.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1	
Description:	Multiband P25 Airborne Transceiver (Test Jig)
Brand name:	Technisonic
Model Name or Number:	TDFM-600/60000
Serial Number:	Pre-production
Cable Length & Type:	Non-shielded ribbon cable
Connected to EUT's Port:	Controls Flex Assembly Connector

3.6. BLOCK DIAGRAM OF TEST SETUP

EXHIBIT 4. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

4.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	7.5 Vdc, 24 V dc

4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier			
	modulated as specified in the Test Data.			
Special Test Software:	N/A			
Special Hardware Used:	The Technisonic Multiband P25 Airborne Transceiver, Model TDFM-600/6000			
	was used for setting & operating the EUT at different operating modes.			
Transmitter Test Antenna:	The EUT is tested with the transmitter antenna port terminated to a 50 Ohms			
	RF Load.			

Transmitter Test Signals	
Frequency Band(s):	Near lowest, near middle & near highest frequencies in each frequency bands that the transmitter covers:
■ 806-869 MHz band:	■ 806.0000, 823.9875 and 868.9875 MHz
Transmitter Wanted Output Test Signals:	
 RF Power Output (measured maximum output power): 	■ 2.8 Watts (conducted)
Normal Test ModulationModulating signal source:	External FM Sine Wave, Internal DigitalExternal analog source and internal data source

EXHIBIT 5. SUMMARY OF TEST RESULTS

5.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

• Radiated Emissions were performed at the Ultratech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above sites have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: Nov. 4, 2003.

5.2. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS

FCC PARAGRAPH.	TEST REQUIREMENTS	APPLICABILITY (YES/NO)
90.205 & 2.1046	RF Power Output	Yes
1.1307, 1.1310, 2.1091 & 2.1093	RF Exposure Limit	Yes
90.213 & 2.1055	Frequency Stability	Yes
90.242(b)(8) & 2.1047(a)	Audio Frequency Response	Not applicable to new standard. However, tests are conducted under FCC's recommendation.
90.210 & 2.1047(b)	Modulation Limiting	Yes
90.210 & 2.1049	Emission Limitation & Emission Mask	Yes
90.210, 2.1057 & 2.1051	Emission Limits - Spurious Emissions at Antenna Terminal	Yes
90.210, 2.1057 & 2.1053	Emission Limits - Field Strength of Spurious Emissions	Yes
90.214	Transient Frequency Behavior	No

800 RF MODULE, **Model No.: T1088**, by **TECHNISONIC INDUSTRIES LTD.** has also been tested and found to comply with **FCC Part 15**, **Subpart B - Radio Receivers and Class A Digital Device**. The engineering test report has been documented and kept in file and it is available anytime upon FCC request.

5.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

5.4. DEVIATION OF STANDARD TEST PROCEDURES

None

EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

6.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 8 of this report

6.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

6.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4:2003 and CISPR 16-1.

6.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER:

The essential function of the EUT is to correctly communicate data to and from radios over RF link.

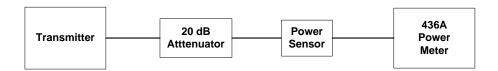
FCC ID: IMA-T1088

6.5. RF POWER OUTPUT @ FCC 2.1046, 90.205 & 90.635

6.5.1. Limits @ FCC 90.635

Please refer to FCC CFR 47, Part 90, Subpart S, Para. 90.635 for specification details.

6.5.2. Method of Measurements


Refer to Exhibit 8, § 8.1 (Conducted) and 8.2 (Radiated) of this report for measurement details

6.5.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Attenuator(s)	Weinschel Corp	24-20-34	BJ2357	DC – 8.5 GHz
Power Meter	Hewlett Packard	436A	1725A02249	10 kHz – 50 GHz, sensor dependent
Power Sensor	Hewlett Packard	8481A	2702A68983	10 MHz – 18 GHz

6.5.4. Test Arrangement

Power at RF Power Output Terminals

6.5.5. Test Data

Transmitter Output Channel	Fundamental Frequency (MHz)	Measured (Average) Low Power (Watts)	Power Rating (Watts)
Lowest	806.0000	0.93	1
Middle	823.9875	0.97	1
Highest	868.9875	1.08	1

Transmitter Output Channel	Fundamental Frequency (MHz)	Measured (Average) High Power (Watts)	Power Rating (Watts)
Lowest	806.0000	2.73	2.8
Middle	823.9875	2.76	2.8
Highest	868.9875	2.75	2.8

6.6. RF EXPOSURE REQUIRMENTS @ 1.1310 & 2.1091

6.6.1. Limits

• FCC 1.1310:- The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (minutes)
	(A) Limits for Occupational/Control Exposures			
300-1500			F/300	6
	(B) Limits for General Population/Uncontrolled Exposure			
300-1500	•••		F/1500	6

F = Frequency in MHz

6.6.2. Method of Measurements

Refer to FCC @ 1.1310, 2.1091 and Public Notice DA 00-705 (March 30, 2000)

- In order to demonstrate compliance with MPE requirements (see Section 2.1091), the following information is typically needed:
- (1) Calculation that estimates the minimum separation distance (20 cm or more) between an antenna and persons required to satisfy power density limits defined for free space.
- (2) Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement
- (3) Any caution statements and/or warning labels that are necessary in order to comply with the exposure limits
- (4) Any other RF exposure related issues that may affect MPE compliance

Calculation Method of RF Safety Distance:

 $S = PG/4\Pi r^2 = EIRP/4\Pi r^2$

Where: P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power.

S: power density mW/cm²

G: numeric gain of antenna relative to isotropic radiator

r: distance to centre of radiation in cm

FCC radio frequency exposure limits may be exceeded at distances closer than r cm from the antenna of this device

$$r = \sqrt{PG/4\Pi S}$$

FCC radio frequency exposure limits may not be exceeded at distances closer than r cm from the antenna of this device

• For portable transmitters (see Section 2.1093), or devices designed to operate next to a person's body, compliance is determined with respect to the SAR limit (define in the body tissues) for near-field exposure conditions. If the maximum average output power, operating condition configurations and exposure conditions are comparable to those of existing cellular and PCS phones., an SAR evaluation may be required in order to determine if such a device complies with SAR limit. When SAR evaluation data is not available, and the additional supporting information cannot assure compliance, the Commission may request that an SAR evaluation be performed, as provided for in Section 1.1307(d)

6.6.3. Test Data

Antenna Gain Limit specified by Manufactuer: 3 dBi

Measured Maximum	Calculated	Laboratory's Recommended Minimum RF	Manufacturer's specified antenna
RF Conducted Power	EIRP	Safety Distance r	separation distance
(watts)	(watts)	(cm)	(cm)
2.76	5.60	16.0	70.0

Note 1: RF EXPOSURE DISTANCE LIMITS: $r = (PG/4\Pi S)^{1/2} = (EIRP/4\Pi S)^{1/2}$ $S = F/1500 = 806/1500 = 0.537 \text{ mW/cm}^2$

$$r = (PG/4\Pi S)^{1/2} = (EIRP/4\Pi S)^{1/2} = (5600/4\Pi \times 0.537)^{1/2}$$

= 15.5 cm

Evaluation of RF Exposure Compliance Requirements		
RF Exposure Requirements	Compliance with FCC Rules	
Minimum calculated separation distance between antenna and persons required: 16.0 cm	Manufacturer' instruction for separation distance between antenna and persons required: 70 cm	
Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement	Please refer to page 1 of Users Manual	
Caution statements and/or warning labels that are necessary in order to comply with the exposure limits	Please refer to page 3-1 of the Users/ Manual and FCC RF Exposure folder	
Any other RF exposure related issues that may affect MPE compliance	N/A	

FCC ID: IMA-T1088

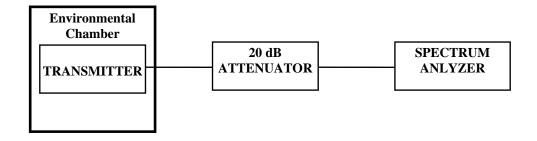
6.7. FREQUENCY STABILITY @ FCC 2.1055 & 90.213

6.7.1. Limits @ FCC 90.213

Please refer to FCC CFR 47, Part 90, Subpart I, Para. 90.213 for specification details.

FREQUENCY RANGE (MHz)	FIXED & BASE STATIONS (ppm)		STATIONS pm)
		> 2 W	≤ 2 W
806-821	1.5	2.5	2.5
821-824	1.0	1.5	1.5
851-866	1.5	2.5	2.5
866-869	1.0	1.5	1.5

^{*} The most stringent limit of 1.5 ppm for Mobile Stations > 2 watts were applied.


6.7.2. Method of Measurements

Refer to Exhibit 8, § 8.3 of this report for measurement details

6.7.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird			DC – 22 GHz
Temperature & Humidity Chamber	Tenney	T5	9723B	-40° to +60° C range

6.7.4. Test Arrangement

6.7.5. **Test Data**

Product Name:	800 RF MODULE
Model No.:	T1088
Center Frequency:	806.00 MHz
Full Power Level:	34.4 dBm
Frequency Tolerance Limit:	1.5 ppm or 1209.0 Hz
Max. Frequency Tolerance Measured:	+870 Hz or +1.08 ppm
Input Voltage Rating:	7.5 Vdc, 1.8 Amps

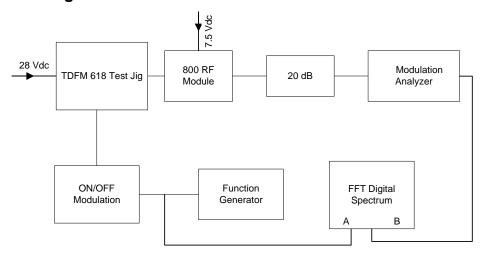
	CENTER FREQUENCY & RF POWER OUTPUT VARIATION					
		Supply Voltage (85% of Nominal) 6.4 Volts dc	Supply Voltage (115% of Nominal) 8.6 Volts dc			
(°C)	Hz	Hz	Hz			
-30	+870	N/A	N/A			
-20	+669	N/A	N/A			
-10	+409	N/A	N/A			
0	+69	N/A	N/A			
+10	+14	N/A	N/A			
+20	0	- 14	- 20			
+30	-283	N/A	N/A			
+40	-566	N/A	N/A			
+50	-747	N/A	N/A			

6.8. AUDIO FREQUENCY RESPONSE @ FCC 2.1047(A) & 90.242(B)(8)

6.8.1. Limits @ FCC 2.1047(a) and 90.242(b)(8)

Recommended audio filter attenuation characteristics are give below:

RF Band	Audio band	Minimum Attenuation Rel. to 1 kHz Attenuation
806 – 869 MHz	3 –20 kHz	$60 \log_{10}(f/3)$ dB where f is in kHz
	20 – 30 kHz	50dB


6.8.2. Method of Measurements

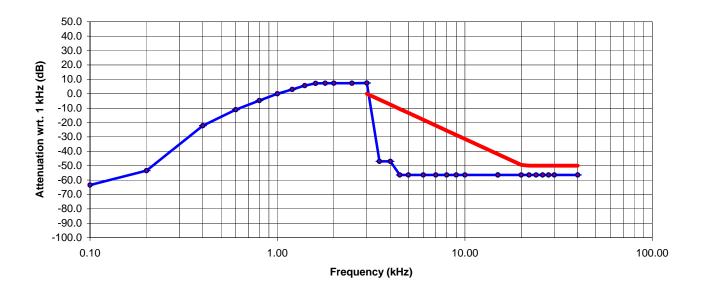
The rated audio input signal was applied to the input of the audio low-pass filter (or of all modulation stages) using an audio oscillator, this input signal level and its corresponding output signal were then measured and recorded using the FFT (Audio) EMI Receiver. Tests were repeated at different audio signal frequencies from 0 to 50 kHz.

6.8.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Modulation Analyzer	Hewlett Packard	8910B	3226A04606	150 kHz – 1300 MHz
Function Generator	Stanford Research Systems	DS345	34591	1μHz – 30.2 MHz
FFT Digital Spectrum	Advantest	R9211E	82020336	
Attenuator	Weinschel Crop.	46-20-34	BM1347	DC-18 GHz

6.8.4. Test Arrangement

6.8.5. Test Data


6.8.5.1. Audio Frequency Response of All Modulation States - 12.5 kHz Channel Spacing

	AUDIO	AUDIO	ATTEN.	ATTEN.	FCC LIMIT	
FREQUENCY	IN	OUT	(OUT - IN)	wrt. 1 kHz		PASS/
(kHz)	(dBV)	(dBV)	(dB)	(dB)	(dB)	FAIL
0.10	-12.6	-67.0	-54.4	-63.4		PASS
0.20	-12.6	-57.0	-44.4	-53.4		PASS
0.40	-12.6	-25.8	-13.2	-22.2		PASS
0.60	-12.6	-14.7	-2.1	-11.1		PASS
0.80	-12.6	-8.4	4.3	-4.7		PASS
1.00	-12.6	-3.6	9.0	0.0		PASS
1.20	-12.6	-0.6	12.0	3.0		PASS
1.40	-12.6	2.0	14.6	5.6		PASS
1.60	-12.6	3.6	16.2	7.2		PASS
1.80	-12.6	3.7	16.3	7.3		PASS
2.00	-12.6	3.7	16.3	7.3		PASS
2.50	-12.6	3.6	16.3	7.3		PASS
3.00	-12.6	3.8	16.4	7.4	0.0	PASS
3.50	-12.6	-50.6	-38.0	-47.0	-4.0	PASS
4.00	-12.6	-50.6	-38.0	-47.0	-7.5	PASS
5.00	-12.6	<-60.0	<-47.4	<-56.4	-13.3	PASS
6.00	-12.6	<-60.0	<-47.4	<-56.4	-18.1	PASS
7.00	-12.6	<-60.0	<-47.4	<-56.4	-22.1	PASS
8.00	-12.6	<-60.0	<-47.4	<-56.4	-25.6	PASS
9.00	-12.6	<-60.0	<-47.4	<-56.4	-28.6	PASS
10.00	-12.6	<-60.0	<-47.4	<-56.4	-31.4	PASS
15.00	-12.6	<-60.0	<-47.4	<-56.4	-41.9	PASS
15.00	-12.6	<-60.0	<-47.4	<-56.4	-41.9	PASS
20.00	-12.6	<-60.0	<-47.4	<-56.4	-49.4	PASS
22.00	-12.6	<-60.0	<-47.4	<-56.4	-50.0	PASS
24.00	-12.6	<-60.0	<-47.4	<-56.4	-50.0	PASS
26.00	-12.6	<-60.0	<-47.4	<-56.4	-50.0	PASS
28.00	-12.6	<-60.0	<-47.4	<-56.4	-50.0	PASS
30.00	-12.6	<-60.0	<-47.4	<-56.4	-50.0	PASS
40.00	-12.6	<-60.0	<-47.4	<-56.4	-50.0	PASS
50.00	-12.6	<-60.0	<-47.4	<-56.4	-50.0	PASS

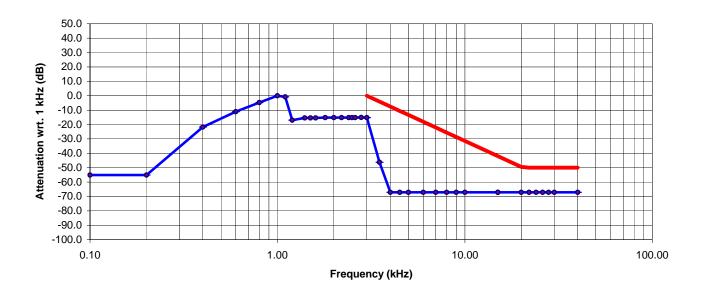
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

AUDIO FREQUENCY REPSONSE @ FCC 2.987(a) & 90.242b(8) Technisonic 800 FM Transceiver (12.5 kHz Channel Spacing)

	AUDIO	AUDIO	ATTEN.	ATTEN.	FCC LIMIT	
FREQUENCY	IN	OUT	(OUT - IN)	wrt. 1 kHz	@22.915D	PASS/
(kHz)	(dBV)	(dBV)	(dB)	(dB)	(dB)	FAIL
0.10	-9.6	<-40.0	-30.4	-45.1		PASS
0.20	-9.6	<-40.0	-30.4	-45.1		PASS
0.40	-9.6	-16.6	-7.0	-21.7		PASS
0.60	-9.6	-5.9	3.7	-11.0		PASS
0.80	-9.6	0.4	10.0	-4.7		PASS
1.00	-9.6	5.1	14.7	0.0		PASS
1.10	-9.6	4.3	13.9	-0.8		PASS
1.20	-9.6	-11.8	-2.2	-16.9		PASS
1.40	-9.6	-10.3	-0.7	-15.4		PASS
1.50	-9.6	-10.3	-0.7	-15.4		PASS
1.60	-9.6	-10.3	-0.7	-15.4		PASS
1.80	-9.6 -9.6	-10.5	-0.7	-15.4		PASS
2.00	-9.6 -9.6	-10.1	-0.5	-15.2		PASS
2.00	-9.6 -9.6	-10.1	-0.5	-15.2		PASS
2.20	-9.6 -9.6	-10.1	-0.5	-15.2		PASS
2.40	-9.6 -9.6	-10.1	-0.5	-15.2		PASS
2.50			-0.5 -0.5			
	-9.6	-10.1		-15.2		PASS
2.80	-9.6	-10.0	-0.4	-15.1		PASS
3.00	-9.6	-10.1	-0.5	-15.2	0.0	PASS
3.50	-9.6	-41.1	-31.5	-46.2	-4.0 7.5	PASS
4.00	-9.6	<-62.0	<-52.4	<-67.1	-7.5	PASS
4.50	-9.6	<-62.0	<-52.4	<-67.1	-10.6	PASS
5.00	-9.6	<-62.0	<-52.4	<-67.1	-13.3	PASS
6.00	-9.6	<-62.0	<-52.4	<-67.1	-18.1	PASS
7.00	-9.6	<-62.0	<-52.4	<-67.1	-22.1	PASS
8.00	-9.6	<-62.0	<-52.4	<-67.1	-25.6	PASS
9.00	-9.6	<-62.0	<-52.4	<-67.1	-28.6	PASS
10.00	-9.6	<-62.0	<-52.4	<-67.1	-31.4	PASS
15.00	-9.6	<-62.0	<-52.4	<-67.1	-41.9	PASS
15.00	-9.6	<-62.0	<-52.4	<-67.1	-41.9	PASS
20.00	-9.6	<-62.0	<-52.4	<-67.1	-49.4	PASS
22.00	-9.6	<-62.0	<-52.4	<-67.1	-50.0	PASS
24.00	-9.6	<-62.0	<-52.4	<-67.1	-50.0	PASS
26.00	-9.6	<-62.0	<-52.4	<-67.1	-50.0	PASS
28.00	-9.6	<-62.0	<-52.4	<-67.1	-50.0	PASS
30.00	-9.6	<-62.0	<-52.4	<-67.1	-50.0	PASS
40.00	-9.6	<-62.0	<-52.4	<-67.1	-50.0	PASS
50.00	-9.6	<-62.0	<-52.4	<-67.1	-50.0	PASS

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

 $\textbf{Tel. \#: 905-829-1570, Fax. \#: 905-829-8050, Email: } \underline{\textit{vic@ultratech-labs.com}}, Website: \ \textit{http://www.ultratech-labs.com}$

File #: TIL-037FCC90

March 17, 2004

AUDIO FREQUENCY REPSONSE @ FCC 2.987(a) & 90.242b(8) Technisonic 800 FM Transceiver (25 kHz Channel Spacing)

FCC ID: IMA-T1088

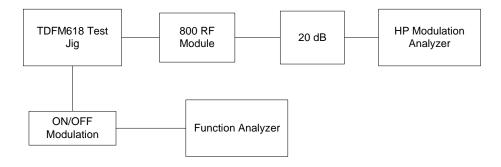
6.9. MODULATION LIMITING @ FCC 2.1047(B) & 90.210

6.9.1. Limits @ FCC 2.1047(b) and 90.210

Recommended frequency deviation characteristics are give below:

- 2.5 kHz for 12.5 kHz Channel Spacing
- 5 kHz for 25 kHz Channel Spacing System

6.9.2. Method of Measurements


For Audio Transmitter:- The carrier frequency deviation was measured with the tone input signal level varied from 0 Vp to audio input rating level plus 16 dB at frequencies 0.1, 0.5, 1.0, 3.0 and 5.0 kHz. The maximum deviation was recorded at each test condition.

For Data Transmitter with Maximum Frequency Deviation set by Factory:- The EUT was set at maximum frequency deviation, and its peak frequency deviation was then measured using EUT's internal random data source.

6.9.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Modulation Analyzer	Hewlett Packard	8910B	3226A04606	150 Khz – 1300 MHZ
Function Generator	Stanford Research Systems	DS345	34591	1μHz – 30.2 MHz
Attenuator	Weinchel Corp.	46-20-34	BM1347	DC – 18 GHz

6.9.4. Test Arrangement

6.9.5. Test Data

6.9.5.1. Data Modulation Limiting: FM modulation with random data and Modulation Limiter set at a Maximum Frequency Deviation (Factory Setting).

6.9.5.1.1. 12.5 kHz Channel Spacing

Data Baud Rate	Peak Deviation (kHz)	Recommended Maximum Limit (kHz)
9600	3.2	2.5

6.9.5.1.2. 25 kHz Channel Spacing

Data Baud Rate	Peak Deviation (kHz)	Recommended Maximum Limit (kHz)
N/A	N/A	5 kHz

* FM Data modulation is not available for 25 kHz channel spacing operation

6.9.5.2. Voice Modulation Limiting:

6.9.5.2.1. 12.5 kHz Channel Spacing

MODULATING		PEAK FR	EQUENCY DEVIATION	ON (kHz)		MANDAINA DAY
SIGNAL LEVEL	at the following modu	lating frequency:				MAXIMUM LIMIT
(mVrms)	0.1 kHz	0.5 kHz	1.0 kHz	3.0 kHz	5.0 kHz	(kHz)
50	0.7	0.7	0.7	1.6	0.7	2.5
100	0.7	0.7	0.8	2.7	0.7	2.5
150	0.7	0.7	1.1	2.7	0.7	2.5
200	0.7	0.7	1.3	2.5	0.7	2.5
250	0.7	0.8	1.5	2.5	0.7	2.5
300	0.7	0.8	1.7	2.5	0.7	2.5
350	0.7	0.8	1.9	2.5	0.7	2.5
400	0.7	0.8	1.9	2.5	0.7	2.5
450	0.7	0.9	2.2	2.5	0.7	2.5
500	0.7	0.9	2.4	2.5	0.7	2.5
600	0.7	0.9	2.4	2.5	0.7	2.5
700	0.7	1.2	2.3	2.5	0.7	2.5
800	0.7	1.4	2.3	2.5	0.7	2.5
900	0.7	1.6	2.5	2.5	0.7	2.5
1000	0.7	1.9	2.5	2.5	0.7	2.5
1500	0.7	2.4	2.4	2.5	0.7	2.5
2000	0.7	2.4	2.4	2.5	0.7	2.5
2500	0.7	2.4	2.4	2.5	0.7	2.5
3000	0.7	2.4	2.4	2.5	0.7	2.5
3500	0.7	2.4	2.4	2.5	0.7	2.5
4000	0.7	2.4	2.4	2.5	0.7	2.5
4500	0.7	2.4	2.3	2.5	0.7	2.5
5000	0.7	2.4	2.3	2.5	0.7	2.5
5500	0.7	2.4	2.3	2.5	0.7	2.5
6000	0.7	2.4	2.2	2.5	0.7	2.5
6500	0.7	2.4	2.2	2.5	0.7	2.5
7000	0.7	2.4	2.2	2.5	0.7	2.5

Voice Signal Input Level = STD MOD Level + 16 dB = 47.96 dBmVrms + 16 = 63.96 dBmV or 1.57 Vrms

MODULATING FREQUENCY (KHz)	PEAK FREQUENCY DEVIATION (KHz)	MAXIMUM LIMIT (KHz)
0.1	0.7	2.5
0.2	0.7	2.5
0.4	2.1	2.5
0.6	2.4	2.5
0.8	2.4	2.5
1.0	2.4	2.5
1.2	2.0	2.5
1.4	1.5	2.5
1.6	2.1	2.5
1.8	2.1	2.5
2.0	2.2	2.5
2.5	2.6	2.5
3.0	2.6	2.5
3.5	0.7	2.5
4.0	0.7	2.5
4.5	0.7	2.5
5.0	0.7	2.5
6.0	0.7	2.5
7.0	0.7	2.5
8.0	0.7	2.5
9.0	0.7	2.5
10.0	0.7	2.5

MODULATING			EQUENCY DEVIATION	ON (kHz)		MAXIMUM LIMIT
SIGNAL LEVEL	at the following modul	ating frequency:		1	1	WAXIMICWI LIWIT
(mVrms)	0.1 kHz	0.5 kHz	1.0 kHz	3.0 kHz	5.0 kHz	(kHz)
50	0.7	0.7	0.9	2.5	0.7	5
100	0.7	0.7	1.4	5.0	0.7	5
150	0.7	0.7	1.6	5.0	0.7	5
200	0.7	0.8	2.1	5.0	0.7	5
250	0.7	0.9	2.5	5.0	0.7	5
300	0.7	0.9	2.6	5.0	0.7	5
350	0.7	1.0	2.9	5.0	0.7	5
400	0.7	1.0	2.9	5.0	0.7	5
450	0.7	1.1	3.2	5.0	0.7	5
500	0.7	1.2	3.7	5.0	0.7	5
600	0.7	1.3	4.4	5.0	0.7	5
700	0.7	1.8	4.8	5.0	0.7	5
800	0.7	2.3	4.8	5.0	0.7	5
900	0.7	2.6	4.6	5.0	0.7	5
1000	0.7	3.5	4.0	5.0	0.7	5
1500	0.7	4.5	3.9	5.0	0.7	5
2000	0.7	4.6	3.9	5.0	0.7	5
2500	0.7	4.1	4.5	5.0	0.7	5
3000	0.7	4.5	4.5	5.0	0.7	5
3500	0.7	4.5	3.6	5.0	0.7	5
4000	0.7	4.5	3.5	5.0	0.7	5
4500	0.7	4.5	3.5	5.0	0.7	5
5000	0.7	4.9	4.3	5.0	0.7	5
5500	0.7	4.9	4.5	5.0	0.7	5
6000	0.7	4.7	4.1	5.0	0.7	5
6500	0.7	4.7	3.6	5.0	0.7	5
7000	0.7	4.7	3.6	5.0	0.7	5

Voice Signal Input Level = STD MOD Level + 16 dB = 50.88 dBmVrms + 16 = 66.88 dBmV or 2.208Vrms

MODULATING FREQUENCY (KHz)	PEAK FREQUENCY DEVIATION (KHz)	MAXIMUM LIMIT (KHz)
0.1	0.7	5
0.2	1.5	5
0.4	4.8	5
0.6	4.6	5
0.8	4.3	5
1.0	4.5	5
1.2	4.1	5
1.4	4.2	5
1.6	3.2	5
1.8	4.9	5
2.0	4.2	5
2.5	4.9	5
3.0	5.0	5
3.5	0.7	5
4.0	0.7	5
4.5	0.7	5
5.0	0.7	5
6.0	0.7	5
7.0	0.7	5
8.0	0.7	5
9.0	0.7	5
10.0	0.7	5

6.10. EMISSION MASK @ FCC 2.1049, 90.208 & 90.210

6.10.1. Limits @ FCC 90.209 & 90.210

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FREQUENCY RANGE (MHz)	Maximum Authorized BW (KHz)	CHANNEL SPACING (KHz)	Recommended Max. FREQ. DEVIATION (KHz)	FCC APPLICABLE MASK @ FCC 90.210
806-821/851-866	20	25	5	MASK B (Voice) & MASK G (Data)
821-824/ 866-869	20	12.5	5	MASK B (Voice) & MASK H (Data)

6.10.2. Method of Measurements

Refer to Exhibit 8, § 8.4 of this report for measurement details

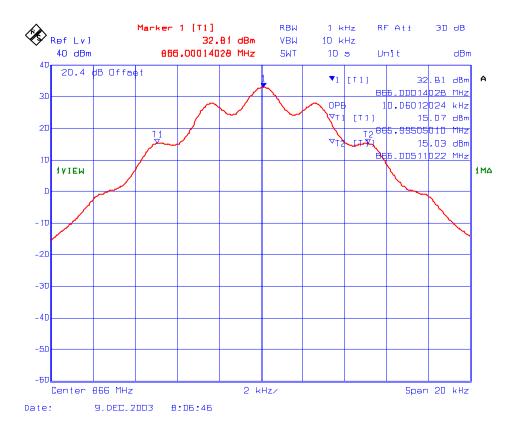
6.10.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird			DC – 22 GHz
Audio Oscillator	Hewlett Packard	HP 204C	0989A08798	DC to 1.2 MHz

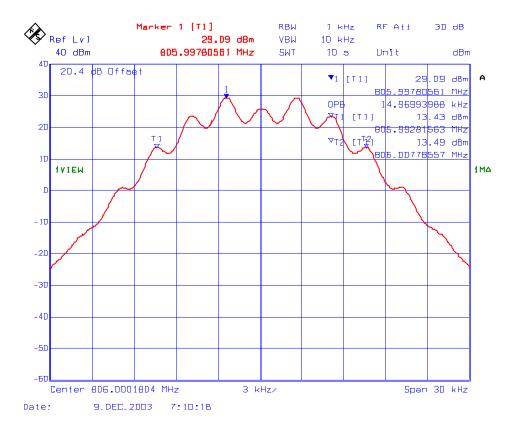
6.10.4. Test Arrangement

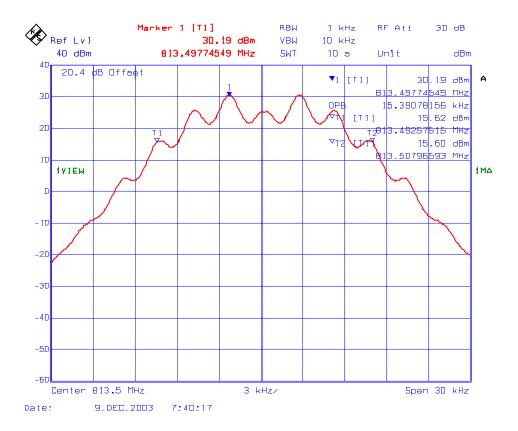
6.10.5. Test Data

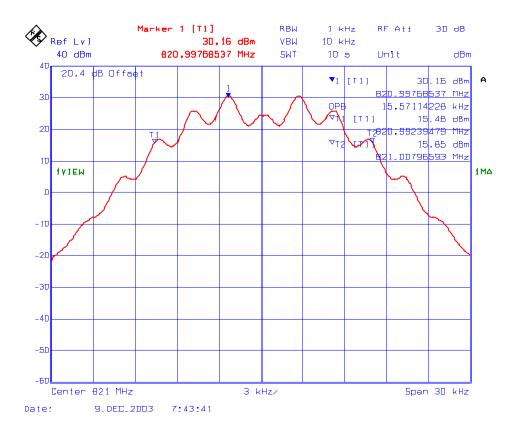
6.10.5.1. 99% Occupied Bandwidth


Frequency (MHz)	Channel Spacing (kHz)	Modulation	Measured 99% OBW (kHz)	Recommended 99% OBW (kHz)
821.0000	12.5	FM Analog Voice	10.4	11.25
823.9875	12.5	FM Analog Voice	10.2	11.25
866.0000	12.5	FM Analog Voice	10.1	11.25
868.9875	12.5	FM Analog Voice	10.1	11.25
806.0000	25.0	FM Analog Voice	15.0	20.0
813.5000	25.0	FM Analog Voice	15.4	20.0
821.0000	25.0	FM Analog Voice	15.6	20.0
851.0125	25.0	FM Analog Voice	15.2	20.0
858.5000	25.0	FM Analog Voice	15.1	20.0
866.0000	25.0	FM Analog Voice	15.0	20.0
			_	
821.0000	12.5	FM digital Synthesized	10.3	11.25
823.9875	12.5	FM digital Synthesized	10.5	11.25
866.0000	12.5	FM digital Synthesized	9.7	11.25
868.9875	12.5	FM digital Synthesized	9.6	11.25

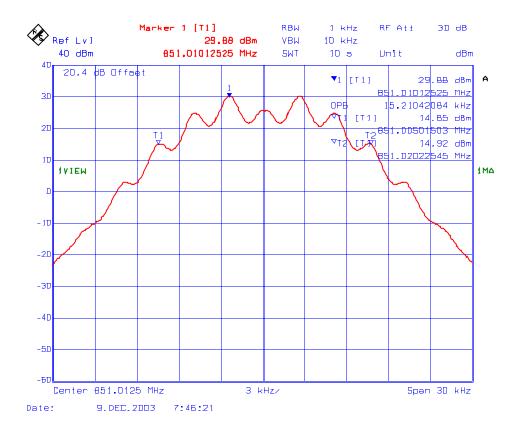
Conform. Please refer to following Plots # 1 through # 14 for details of measurements.


Plot #: 2 99% Occupied Bandwidth Measurement, Freq: 823.9875 MHz 12.5 kHz Channel Spacing, FM Modulation, 2.5 kHz Sine wave signal

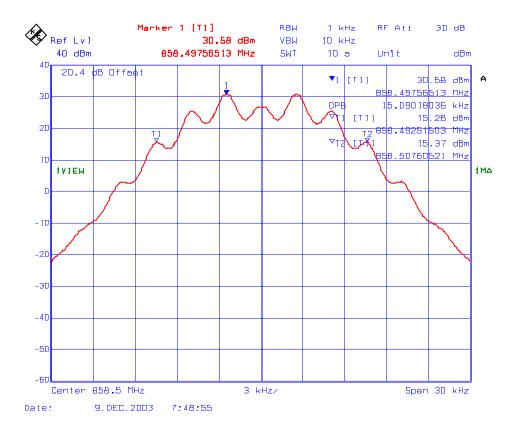

Plot #: 4 99% Occupied Bandwidth Measurement, Freq: 868.9875 MHz 12.5 kHz Channel Spacing, FM Modulation, 2.5 kHz Sine wave signal

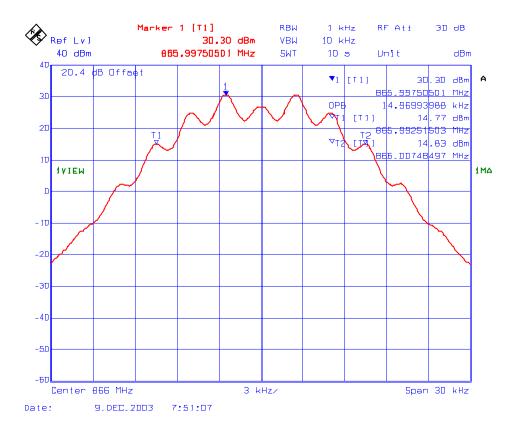


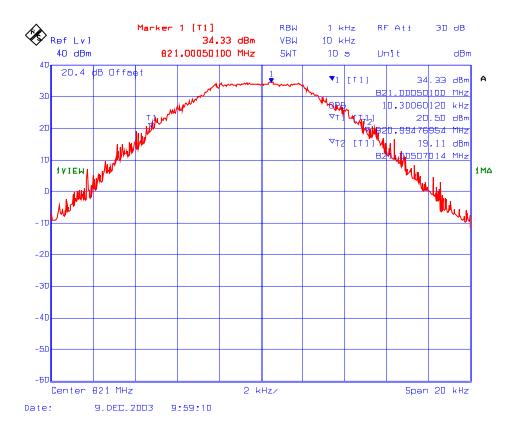
FCC ID: IMA-T1088

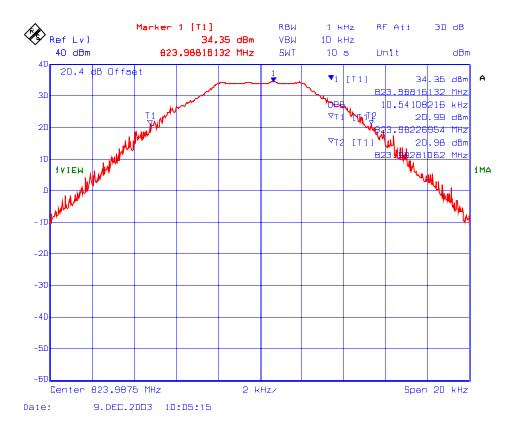

Plot #: 6 99% Occupied Bandwidth Measurement, Freq: 813.50 MHz 25 kHz Channel Spacing, FM Modulation, 2.5 kHz Sine wave signal

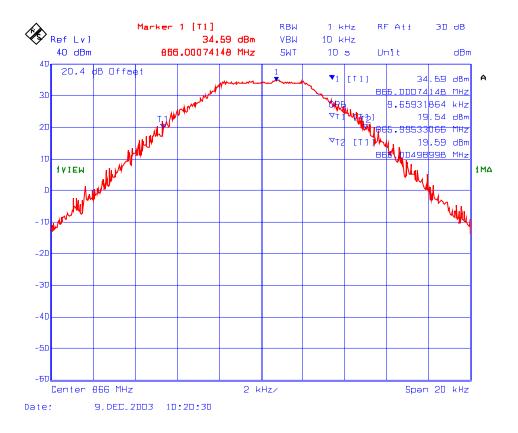
Plot #: 7 99% Occupied Bandwidth Measurement, Freq: 821.00 MHz 25 kHz Channel Spacing, FM Modulation, 2.5 kHz Sine wave signal



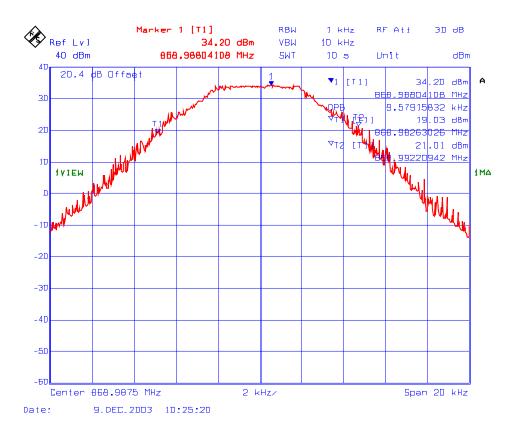

Plot #: 8 99% Occupied Bandwidth Measurement, Freq: 851.0125 MHz 25 kHz Channel Spacing, FM Modulation, 2.5 kHz Sine wave signal


Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


Plot #: 9 99% Occupied Bandwidth Measurement, Freq: 858.50 MHz 25 kHz Channel Spacing, FM Modulation, 2.5 kHz Sine wave signal

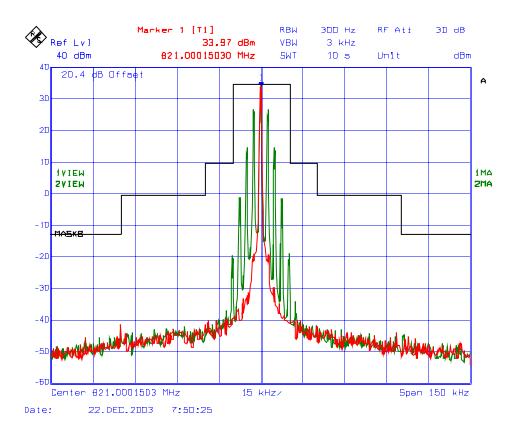


Plot #: 11 99% Occupied Bandwidth Measurement, Freq: 821.00 MHz 12.5 kHz Channel Spacing, Digital Modulation

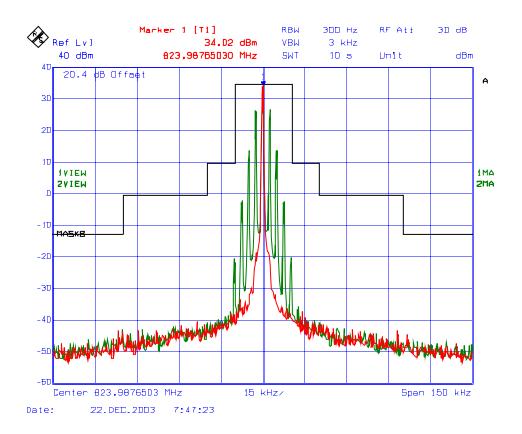


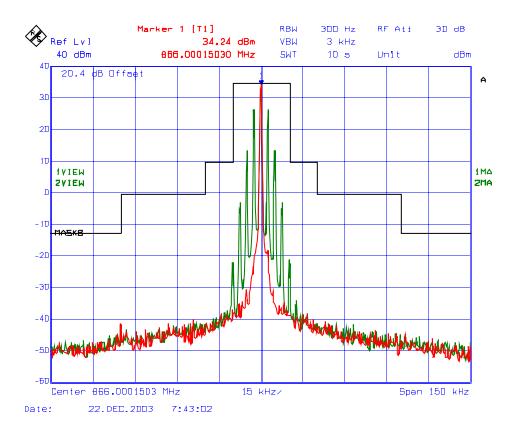
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

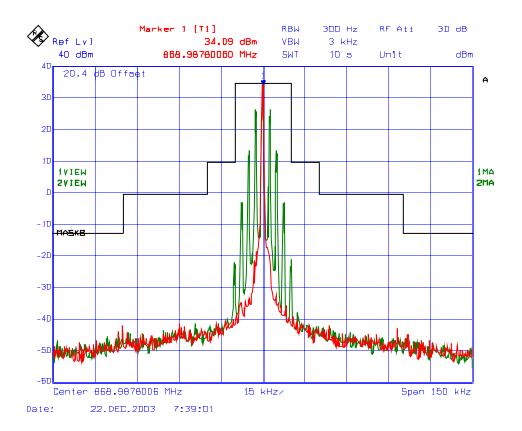
Plot #: 14 99% Occupied Bandwidth Measurement, Freq: 868.9875 MHz 12.5 kHz Channel Spacing, Digital Modulation

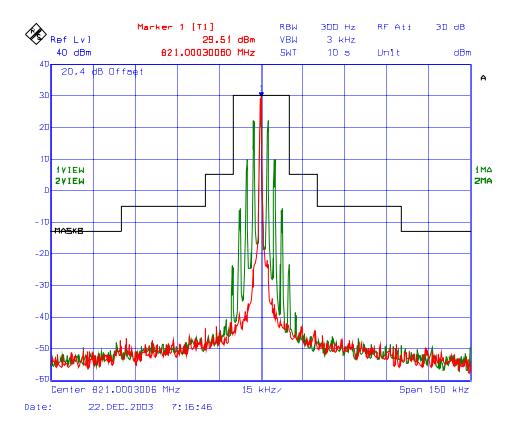


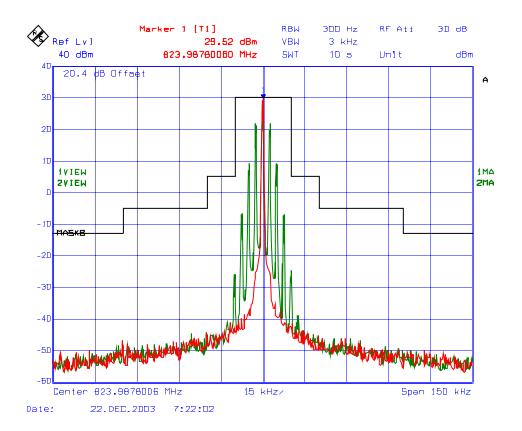
6.10.5.2. Emission Masks

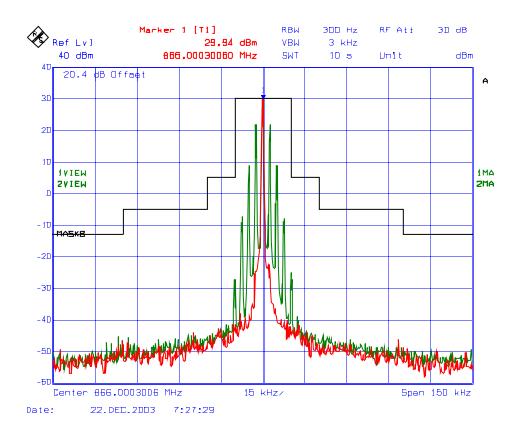

Conform.

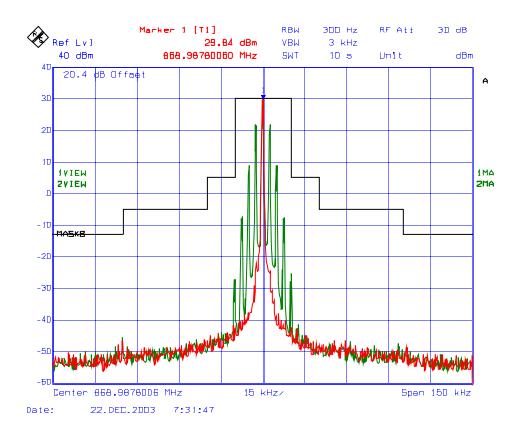

- Please refer to Plots # 15 through # 16 for Details of Emission Mask B (Voice) Measurements in high power mode for 12.5 kHz Channel Spacing operation in 821-824 MHz Band.
- Please refer to Plots # 17 through # 18 for Details of Emission Mask B (Voice) Measurements in high power mode for 12.5 kHz Channel Spacing operation in 866-869 MHz Band.
- Please refer to Plots # 19 through # 20 for Details of Emission Mask B (Voice) Measurements in low power mode for 12.5 kHz Channel Spacing operation in 821-824 MHz Band.
- Please refer to Plots # 21 through # 22 for Details of Emission Mask B (Voice) Measurements in low power mode for 12.5 kHz Channel Spacing operation in 866-869 MHz Band.
- Please refer to Plots # 23 through # 25 for Details of Emission Mask B (Voice) Measurements in high power mode for 25 kHz Channel Spacing operation in 806-821 MHz Band.
- Please refer to Plots # 26 through # 28 for Details of Emission Mask B (Voice) Measurements in high power mode for 25 kHz Channel Spacing operation in 851-866 MHz Band.
- Please refer to Plots # 29 through # 31 for Details of Emission Mask B (Voice) Measurements in low power mode for 25 kHz Channel Spacing operation in 806-821 MHz Band.
- Please refer to Plots # 32 through # 34 for Details of Emission Mask B (Voice) Measurements in low power mode for 25 kHz Channel Spacing operation in 851-866 MHz Band.
- Please refer to Plots # 35 through # 36 for Details of Emission Mask H (Data) Measurements in high power mode for 12.5 kHz Channel Spacing operation in 821-824 MHz Band.
- Please refer to Plots # 37 through # 38 for Details of Emission Mask H (Data) Measurements in high power mode for 12.5 kHz Channel Spacing operation in 866-869 MHz Band.
- Please refer to Plots # 39 through # 40 for Details of Emission Mask H (Data) Measurements in low power mode for 12.5 kHz Channel Spacing operation in 821-824 MHz Band.
- Please refer to Plots # 41 through # 42 for Details of Emission Mask H (Data) Measurements in low power mode for 12.5 kHz Channel Spacing operation in 866-869 MHz Band.

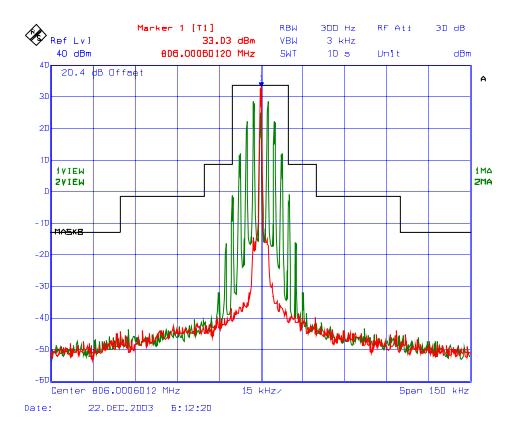

Plot # 15 Emission Mask B (Voice), High Power, Freq. 821.00 MHz FM Modulation with 2.5 kHz Sine wave signal, 12.5 kHz Channel Spacing

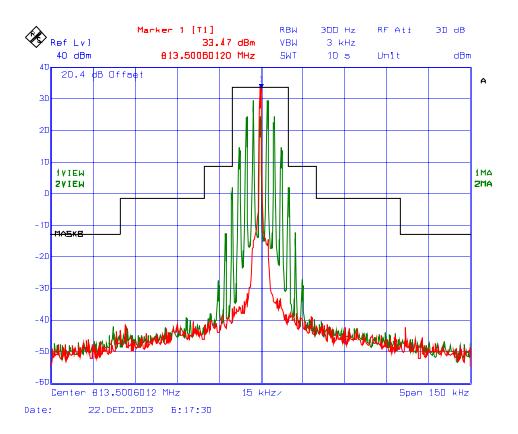

Plot # 16 Emission Mask B (Voice), High Power, Freq. 823.9875 MHz FM Modulation with 2.5 kHz Sine wave signal, 12.5 kHz Channel Spacing

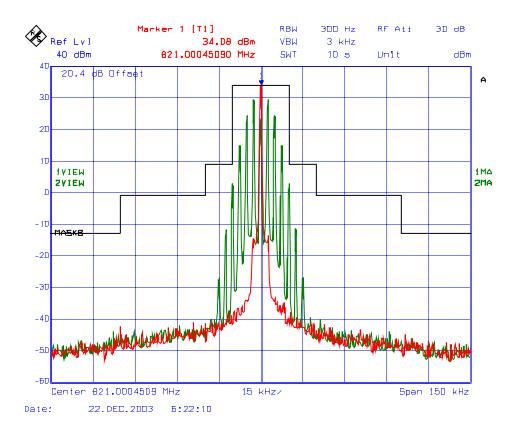


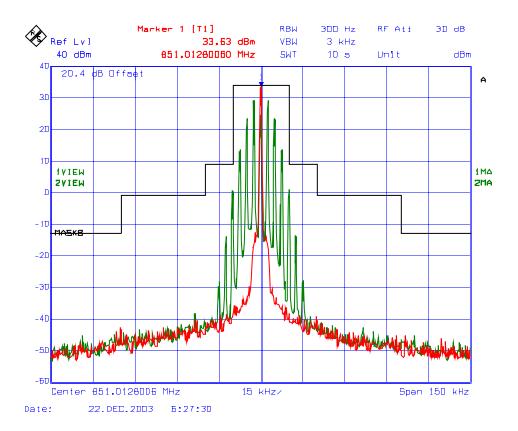


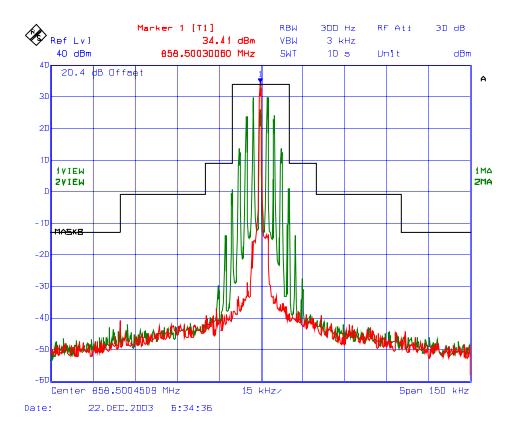

Plot # 19 Emission Mask B (Voice), Low Power, Freq. 821.00 MHz FM Modulation with 2.5 kHz Sine wave signal, 12.5 kHz Channel Spacing

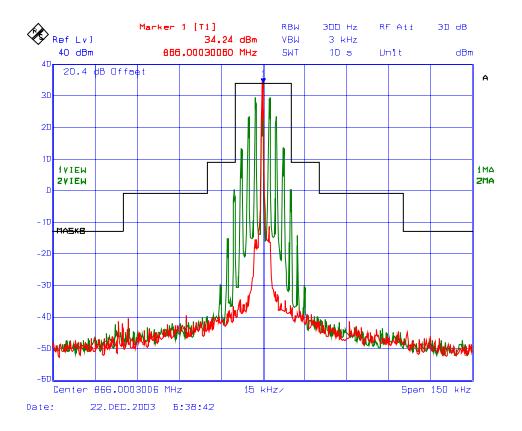

Plot # 20 Emission Mask B (Voice), Low Power, Freq. 823.9875 MHz FM Modulation with 2.5 kHz Sine wave signal, 12.5 kHz Channel Spacing



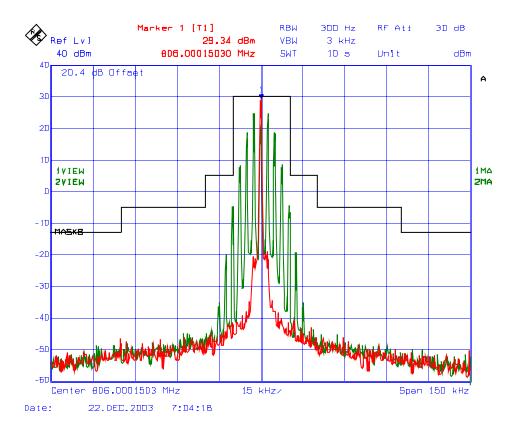

Plot # 23 Emission Mask B (Voice), High Power, Freq. 806.00 MHz FM Modulation with 2.5 kHz Sine wave signal, 25 kHz Channel Spacing

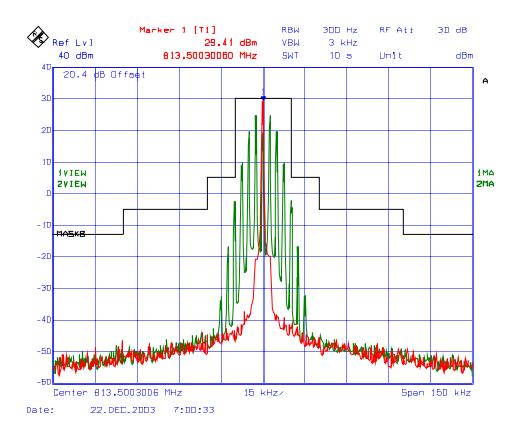

File #: TIL-037FCC90 March 17, 2004

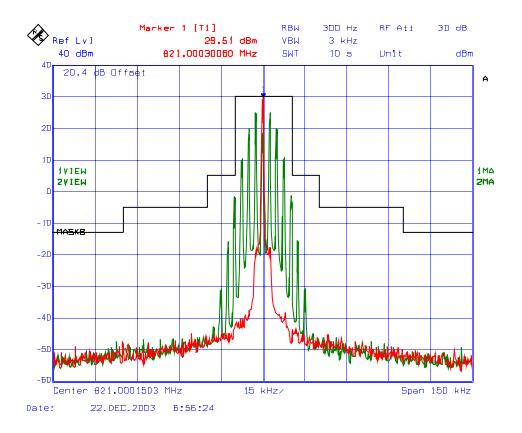

Plot # 24 Emission Mask B (Voice), High Power, Freq. 813.50 MHz FM Modulation with 2.5 kHz Sine wave signal, 25 kHz Channel Spacing

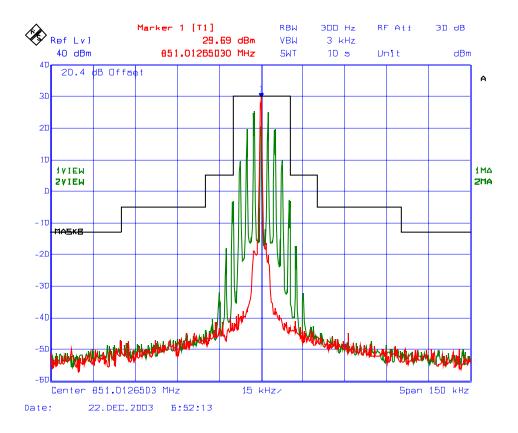


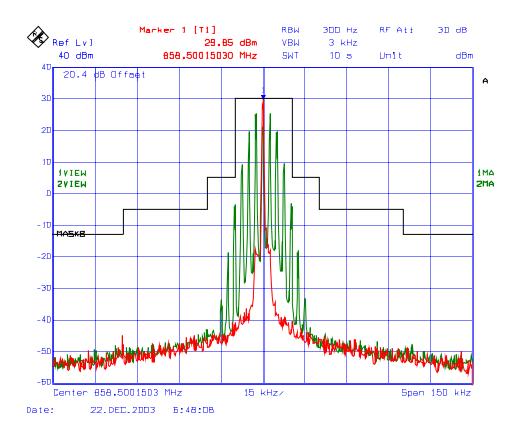
Plot # 26 Emission Mask B (Voice), High Power, Freq. 851.0125 MHz FM Modulation with 2.5 kHz Sine wave signal, 25 kHz Channel Spacing

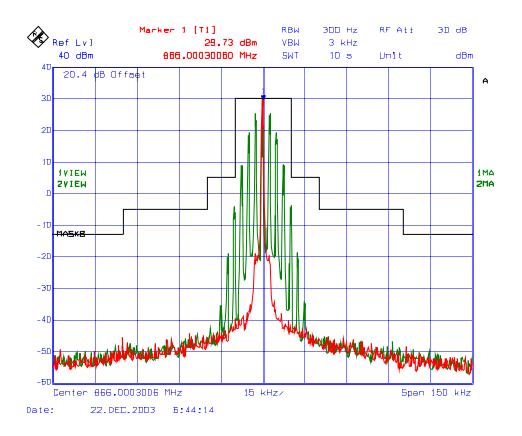


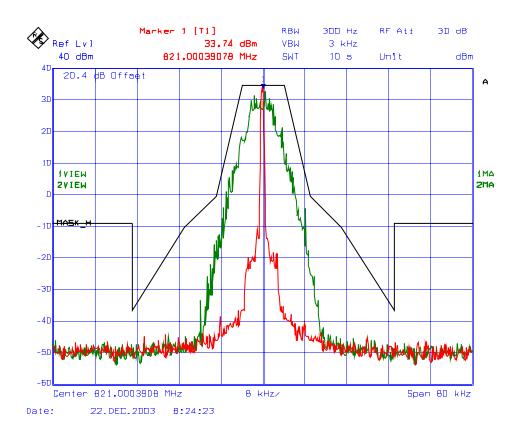

Plot # 28 Emission Mask B (Voice), High Power, Freq. 866.00 MHz FM Modulation with 2.5 kHz Sine wave signal, 25 kHz Channel Spacing

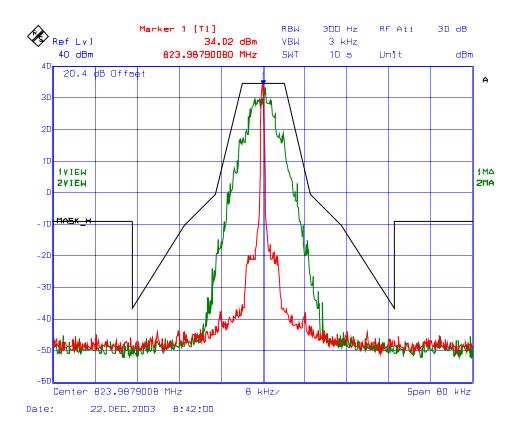

Plot # 29 Emission Mask B (Voice), Low Power, Freq. 806.00 MHz FM Modulation with 2.5 kHz Sine wave signal, 25 kHz Channel Spacing


Plot # 30 Emission Mask B (Voice), Low Power, Freq. 813.50 MHz FM Modulation with 2.5 kHz Sine wave signal, 25 kHz Channel Spacing

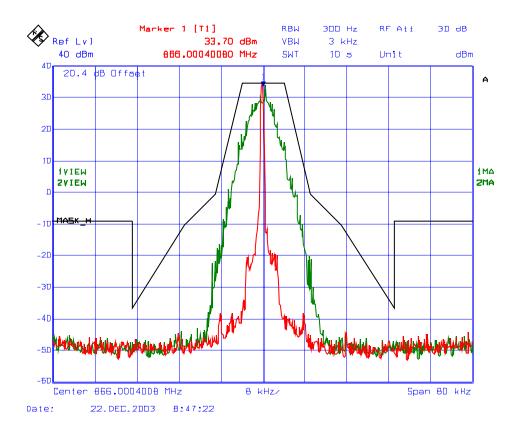

Plot # 31 Emission Mask B (Voice), Low Power, Freq. 821.00 MHz FM Modulation with 2.5 kHz Sine wave signal, 25 kHz Channel Spacing


Plot # 32 Emission Mask B (Voice), Low Power, Freq. 851.0125 MHz FM Modulation with 2.5 kHz Sine wave signal, 25 kHz Channel Spacing

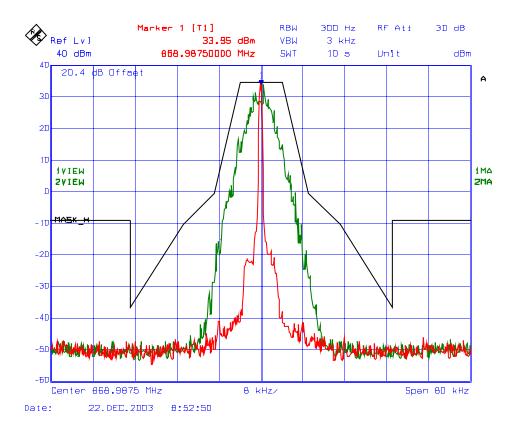

Plot # 33 Emission Mask B (Voice), Low Power, Freq. 858.50 MHz FM Modulation with 2.5 kHz Sine wave signal, 25 kHz Channel Spacing


Plot # 34 Emission Mask B (Voice), Low Power, Freq. 866.00 MHz FM Modulation with 2.5 kHz Sine wave signal, 25 kHz Channel Spacing

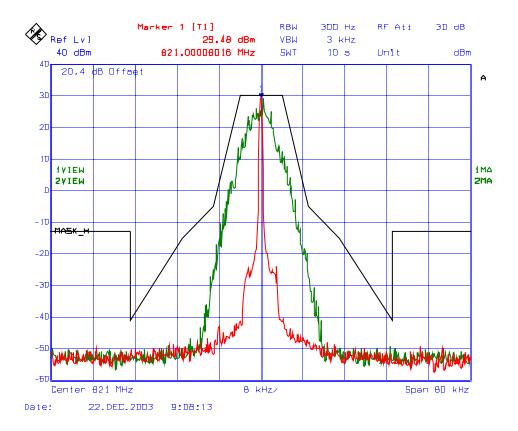
Plot # 35 Emission Mask H (Data), High Power, Freq. 821.00 MHz
Digital Modulation, 12.5 kHz Channel Spacing

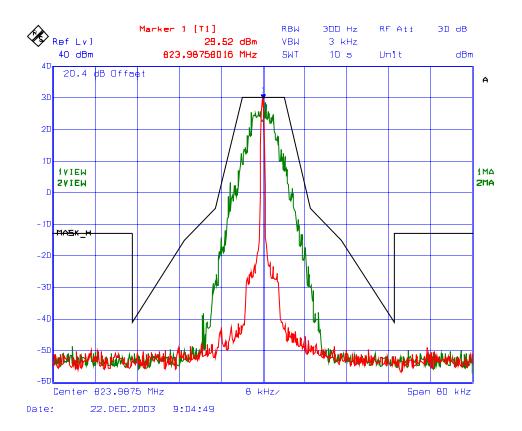


Plot # 36 Emission Mask H (Data), High Power, Freq. 823.9875 MHz
Digital Modulation, 12.5 kHz Channel Spacing

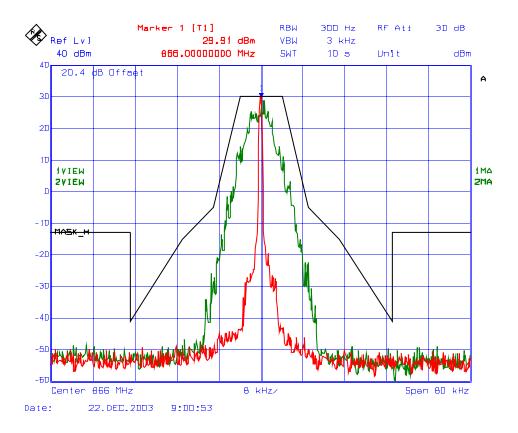


File #: TIL-037FCC90 March 17, 2004

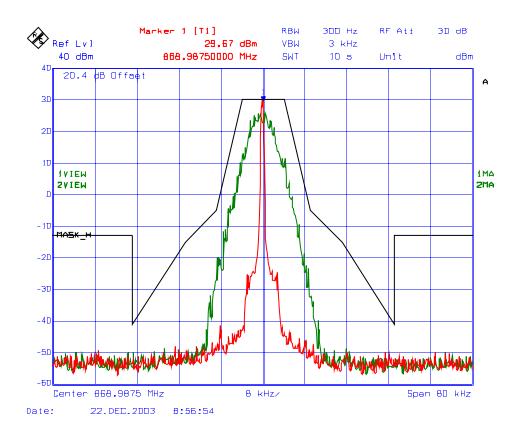

Plot # 37 Emission Mask H (Data), High Power, Freq. 866.00 MHz Digital Modulation, 12.5 kHz Channel Spacing



Plot # 38 Emission Mask H (Data), High Power, Freq. 868.9875 MHz
Digital Modulation, 12.5 kHz Channel Spacing



Plot # 39 Emission Mask H (Data), Low Power, Freq. 821.00 MHz
Digital Modulation, 12.5 kHz Channel Spacing



Plot # 41 Emission Mask H (Data), Low Power, Freq. 866.00 MHz
Digital Modulation, 12.5 kHz Channel Spacing

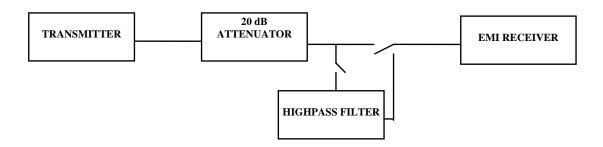
Plot # 42 Emission Mask H (Data), Low Power, Freq. 868.9875 MHz
Digital Modulation, 12.5 kHz Channel Spacing

6.11. TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS @ FCC 90.210

6.11.1. Limits @ 90.210

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules Frequency Range		Attenuation Limit (dBc)
90.210(b) – Voice 10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio		43+10*log(P) or -13 dBm
90.210(d) – Voice & data	10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio	50+10*log(P) or -20 dBm or 70 dBc whichever is less


6.11.2. Method of Measurements

Refer to Exhibit 8 § 8.5 of this report for measurement details

6.11.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	
EMI Receiver/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz	
Attenuator(s)	Bird			DC – 22 GHz	
Audio Oscillator	Hewlett Packard	HP 204C	0989A08798	DC to 1.2 MHz	
Highpass Filter, Microphase	Microphase	CR220HID	IITI11000AC	Cut-off Frequency at 600 MHz, 1.3 GHz or 4 GHz	

6.11.4. Test Arrangement

6.11.5. Test Data

Remarks:

- The transmitter conducted emissions were scanned from 10 MHz to 5 GHz at 12.5 kHz channel spacing / FM voice modulation, 12.5 kHz channel spacing / FM digital modulation and 25 kHz channel spacing / FM voice modulation and the results were found the same. The following tables show test data measured with the transmitter set at 12.5 kHz channel spacing / FM voice modulation as representative.
- The most stringent limit = 50 + 10*log (P in watts) were applied for both 12.5 kHz and 25 kHz channel spacing operation for worst case of measurements.

6.11.5.1. High Power Setting (34.36 dBm) at Lowest Frequency (806.0000 MHz)

Fundamental Frequ	damental Frequency: 806.0 MHz					
RF Output Power:	RF Output Power: 34.36 dBm (Conducted)					
Modulation:		FM modulation with 2.5 kHz Sine Wave Signal				
FREQUENCY		TTER CONDUCTED ENNA EMISSIONS	LIMIT	MARGIN	PASS/	
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL	
4030.0	-37.8	-72.1	-54.4	-17.7	PASS	

The emissions were scanned from 10 MHz to 10 GHz and all emissions within 20 dB below the limits were recorded. Please refer to plots # 43 & 44 for details of measurement.

6.11.5.2. High Power Setting (34.41 dBm) at Middle Frequency (823.9875 MHz)

Fundamental Frequ	iency: 82	23.9875 MHz				
RF Output Power:	34	4.41 dBm (Conducted)				
Modulation:	F	FM modulation with 2.5 kHz Sine Wave Signal				
FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/	
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL	
10 -10000	**	**	-54.4	< -20.0	PASS	

The emissions were scanned from 10 MHz to 10 GHz and all emissions within 20 dB below the limits were recorded. Please refer to plots # 45 & 46 for details of measurement.

Page 77 FCC ID: IMA-T1088

6.11.5.3. High Power Setting (34.39 dBm) at Highest Frequency (868.9875 MHz)

Fundamental Frequ	damental Frequency: 868.9875 MHz					
RF Output Power:	RF Output Power: 34.39 dBm (Conducted)					
Modulation:	FM 1	FM modulation with 2.5 kHz Sine Wave Signal				
FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/	
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL	
4336.67	-31.9	-66.3	-54.4	-11.9	PASS	

The emissions were scanned from 10 MHz to 10 GHz and all emissions within 20 dB below the limits were recorded. Please refer to plots # 47 & 48 for details of measurement.

6.11.5.4. Low Power Setting (29.66 dBm) at Lowest Frequency (806.0000 MHz)

RF Output Power: 29.66 dBm (Conducted) Modulation: FM modulation with 2.5 kHz Sine Wave Signal FREQUENCY TRANSMITTER CONDUCTED LIMIT MARGIN PASS/ ANTENNA EMISSIONS	Fundamental Frequ	iency: 806	6.0 MHz				
FREQUENCY TRANSMITTER CONDUCTED LIMIT MARGIN PASS/ ANTENNA EMISSIONS	RF Output Power:	RF Output Power: 29.66 dBm (Conducted)					
ANTENNA EMISSIONS	Modulation:	FM	FM modulation with 2.5 kHz Sine Wave Signal				
	FREQUENCY			LIMIT	MARGIN	PASS/	
(MHz) (dBm) (dBc) (dBc) (dB) FAIL	(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL	
10 -10000 ** ** -49.7 <-20.0 PASS	10 10000	**	**	-49.7	< -20.0	PASS	

The emissions were scanned from 10 MHz to 10 GHz and no emissions within 20 dB below the limits were found. Please refer to plots # 49 & 50 for details of measurement.

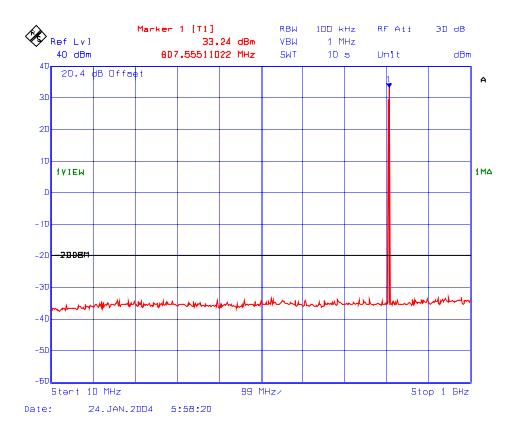
6.11.5.5. Low Power Setting (29.86 dBm) at Middle Frequency (823.9875 MHz)

Fundamental Frequency: 823.9875 MHz					
RF Output Power:	RF Output Power: 29.86 dBm (Conducted)				
Modulation:	on: FM modulation with 2.5 kHz Sine Wave Signal				
FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 -10000	**	**	-49.9	< -20.0	PASS

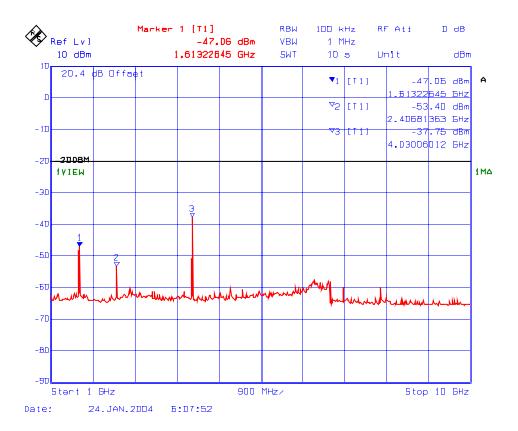
The emissions were scanned from 10 MHz to 10 GHz and no emissions within 20 dB below the limits were found. Please refer to plots # 51 & 52 for details of measurement.

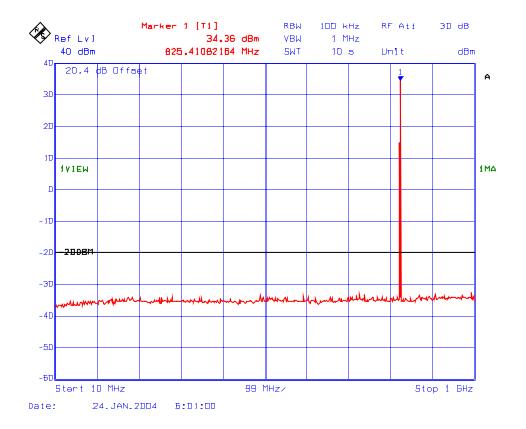
Page 78

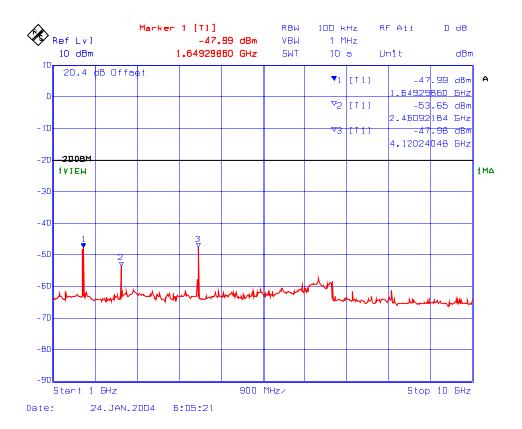
FCC ID: IMA-T1088

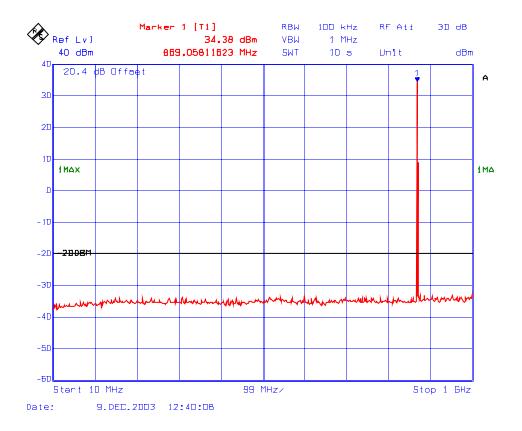

6.11.5.6. Low Power Setting (30.33 dBm) at Highest Frequency (868.9875 MHz)

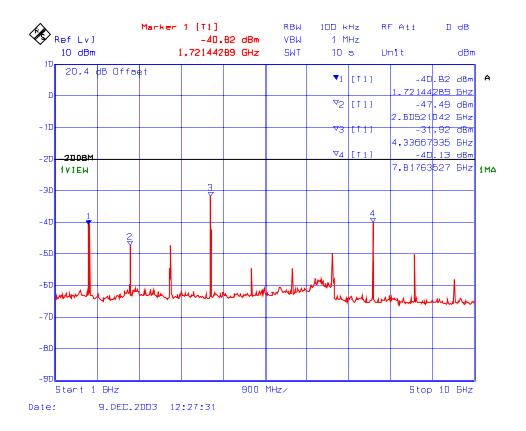
Fundamental Frequ	Fundamental Frequency: 868.9875 MHz				
RF Output Power:	RF Output Power: 30.33 dBm (Conducted)				
Modulation:	fodulation: FM modulation with 2.5 kHz Sine Wave Signal				
FREQUENCY		TRANSMITTER CONDUCTED ANTENNA EMISSIONS		MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
10 -10000	**	**	-50.4	< -20.0	PASS

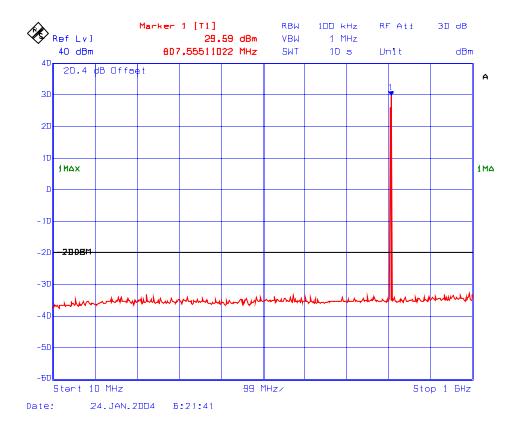

The emissions were scanned from 10 MHz to 10 GHz and no emissions within 20 dB below the limits were found. Please refer to plots # 53 & 54 for details of measurement.

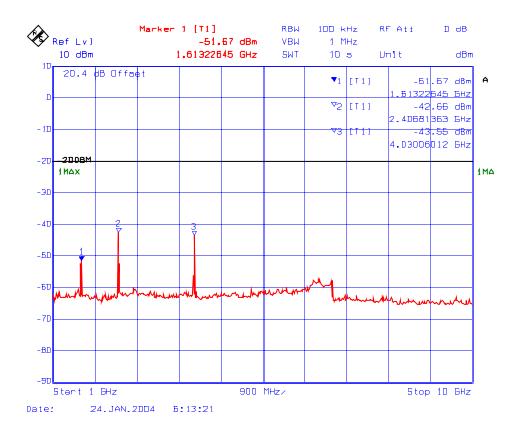

March 17, 2004

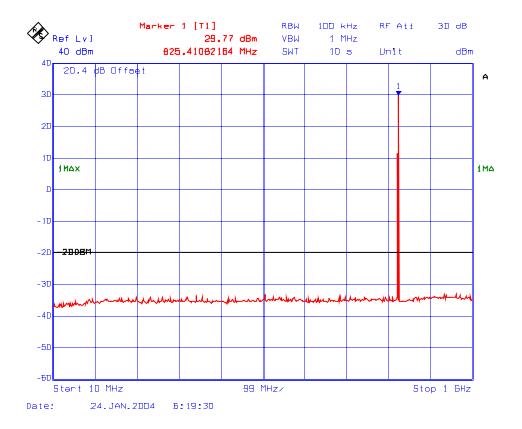

Plot # 43 Transmitter Antenna Power Conducted Emissions. Freq. 806.00 MHz, High Power


Plot # 44 Transmitter Antenna Power Conducted Emissions. Freq. 806.00 MHz, High Power

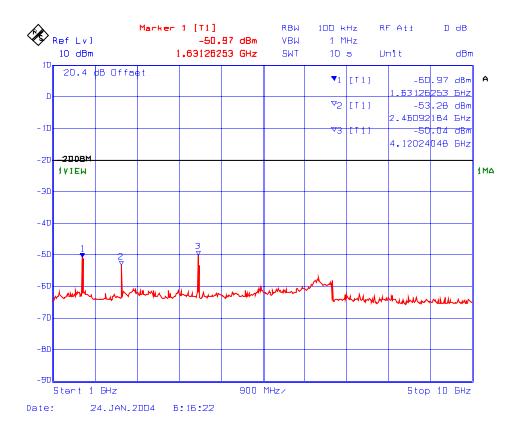


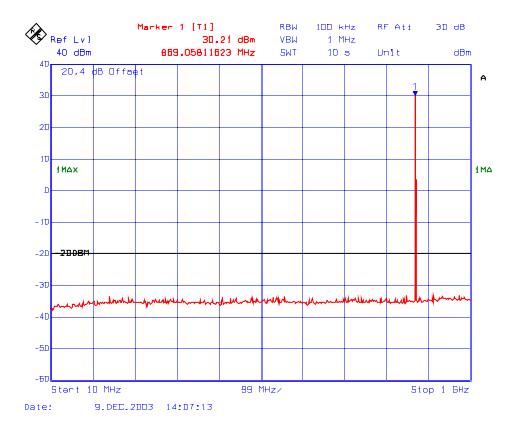


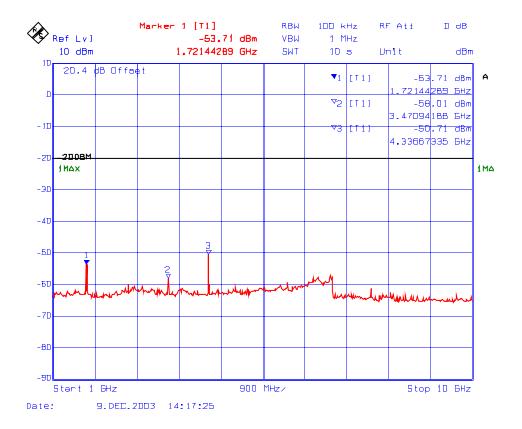

Plot # 47 Transmitter Antenna Power Conducted Emissions. Freq. 868.9875 MHz, High Power



Plot # 49 Transmitter Antenna Power Conducted Emissions. Freq. 806.00 MHz, Low Power




Plot # 51 Transmitter Antenna Power Conducted Emissions. Freq. 823.9875 MHz, Low Power



FCC ID: IMA-T1088

FCC ID: IMA-T1088

6.12. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 90.210

6.12.1. Limits @ FCC 90.210

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules Frequency Range		Attenuation Limit (dBc)
90.210(b) – Voice 10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio		43+10*log(P) or -13 dBm
90.210(d) – Voice & data	10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio	50+10*log(P) or -20 dBm or 70 dBc whichever is less

6.12.2. Method of Measurements

The spurious/harmonic ERP measurements are using substitution method specified in Exhibit 8, § 8.2 of this report and its value in dBc is calculated as follows:

- (1) If the transmitter's antenna is an integral part of the EUT, the ERP is measured using substitution method.
- (2) If the transmitter's antenna is non-integral and diverse, the lowest ERP of the carrier with 0 dBi antenna gain is used for calculation of the spurious/harmonic emissions in dBc:

 Lowest ERP of the carrier = EIRP 2.15 dB = Pc + G 2.15 dB = xxx dBm (conducted) + 0 dBi 2.15 dB
- (3) Spurious /harmonic emissions levels expressed in dBc (dB below carrier) are as follows:

ERP of spurious/harmonic (dBc) = ERP of carrier (dBm) – ERP of spurious/harmonic emission (dBm)

6.12.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett Packard	HP 8546A		9 kHz to 5.6 GHz with
EMI Receiver				built-in 30 dB Gain Pre-
				selector, QP, Average &
				Peak Detectors.
RF Amplifier	Com-Power	PA-102		1 MHz to 1 GHz, 30 dB
				gain nomimal
Microwave Amplifier	Hewlett Packard	HP 83017A		1 GHz to 26.5 GHz, 30 dB
				nominal
Biconilog Antenna	EMCO	3142	10005	30 MHz to 2 GHz
Dipole Antenna	EMCO	3121C	8907-434	30 GHz – 1 GHz
Dipole Antenna	EMCO	3121C	8907-440	30 GHz – 1 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3155	9911-5955	1 GHz – 18 GHz
RF Signal Generator	Hewlett Packard	HP 83752B	3610A00457	0.01 – 20 GHz

Page 92

FCC ID: IMA-T1088

6.12.4. Test Setup

Please refer to Photo 1 to 2 in Annex 1 for detailed of test setup.

6.12.5. Test Data

Remarks:

- The transmitter conducted emissions were scanned from 10 MHz to 5 GHz at 12.5 kHz channel spacing / FM voice modulation, 12.5 kHz channel spacing / FM digital modulation and 25 kHz channel spacing / FM voice modulation and the results were found the same. The following tables show test data measured with the transmitter set at 12.5 kHz channel spacing / FM voice modulation as representative.
- The most stringent limit = 50 + 10*log (P in watts) were applied for both 12.5 kHz and 25 kHz channel spacing operation for worst case of measurements.

6.12.5.1. Near Lowest Frequency (806.0000 MHz)

FREQUENCY	E-FIELD @3m	ERP mea	on Method	EMI DETECTOR	ANTENNA POLARIZATION	LIMIT	MARGIN	PASS/
(MHz)	(dBuV/m)	(dBm)	(dBc)	(Peak/QP)	(H/V)	(dBc)	(dB)	FAIL
1612	70.5	-21.3	-55.7	PEAK	V	-54.4	-1.3	PASS
1612	69.5	-22.0	-56.3	PEAK	Н	-54.4	-1.9	PASS
4030	69.0	-30.0	-64.4	PEAK	V	-54.4	-10.0	PASS
4030	70.5	-28.5	-62.9	PEAK	Н	-54.4	-8.5	PASS
The emission	ns were scan	ned from 10 N	1Hz to 8 GHz	and all emiss	sions within 20 o	dB below th	ne limits were	recorded.

6.12.5.2. Near Middle Frequency (823.9875 MHz)

FREQUENCY (MHz)	E-FIELD @3m (dBuV/m)	ERP mea Substitution (dBm)	sured by on Method (dBc)	EMI DETECTOR (Peak/QP)	ANTENNA POLARIZATION (H/V)	LIMIT (dBc)	MARGIN (dB)	PASS/ FAIL
1648	70.0	-21.1	-55.5	PEAK	V	-54.4	-1.1	PASS
1648	69.4	-21.8	-56.2	PEAK	Н	-54.4	-1.8	PASS
4120	70.2	-21.6	-56.0	PEAK	V	-54.4	-1.6	PASS
4120	69.3	-22.6	-57.0	PEAK	Н	-54.4	-2.6	PASS
The emission	ns were scan	ned from 10 N	//Hz to 8.5 GI	Hz and all em	issions within 20	dB below	the limits we	re recorded.

6.12.5.3. Highest Frequency (868.9875 MHz)

FREQUENCY (MHz)	E-FIELD @3m (dBuV/m)	ERP mea Substitutio (dBm)	sured by on Method (dBc)	EMI DETECTOR (Peak/QP)	ANTENNA POLARIZATION (H/V)	LIMIT (dBc)	MARGIN (dB)	PASS/ FAIL		
1738	65.1	-24.1	-58.5	PEAK	V	-54.4	-4.1	PASS		
1738	59.9	-33.6	-68.0	PEAK	Н	-54.4	-13.6	PASS		
4345	64.1	-26.5	-60.9	PEAK	V	-54.4	-6.5	PASS		
4345	57.1	-38.1	-72.5	PEAK	Н	-54.4	-18.1	PASS		
The emission	The emissions were scanned from 10 MHz to 8.5 GHz and all emissions within 20 dB below the limits were recorded.									

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

 $Tel.~\#:~905-829-1570, Fax~\#:~905-829-8050, Email: \underline{vic@ultratech-labs.com}, Website: http://www.ultratech-labs.com$

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (<u>+</u> dB)		
(Radiated Emissions)	DISTRIBUTION	3 m	10 m	
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0	
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Antenna Directivit	Rectangular	+0.5	+0.5	
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5	
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2	
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25	
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4	
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0	
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67(Bi) 0.3 (Lp)$ Uncertainty limits $20\text{Log}(1 \pm \Gamma_1 \Gamma_R)$	U-Shaped	+1.1	<u>+</u> 0.5	
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5	
Repeatability of EUT		-	-	
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72	
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44	

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$$
 And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$

EXHIBIT 8. MEASUREMENT METHODS

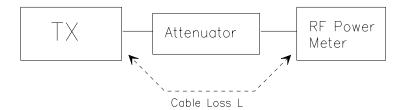
8.1. CONDUCTED POWER MEASUREMENTS

- The following shall be applied to the combination(s) of the radio device and its intended antenna(e).
- If the RF level is user adjustable, all measurements shall be made with the highest power level available to the user for that combination.
- The following method of measurement shall apply to both conducted and radiated measurements.
- The radiated measurements are performed at the Ultratech Calibrated Open Field Test Site.
- The measurement shall be performed using normal operation of the equipment with modulation.

Test procedure shall be as follows:

Step 1: Duty Cycle measurements if the transmitter's transmission is transient

- Using a EMI Receiver with the frequency span set to 0 Hz and the sweep time set at a suitable value to capture the envelope peaks and the duty cycle of the transmitter output signal;
- The duty cycle of the transmitter, x = Tx on / (Tx on + Tx off) with 0 < x < 1, is measure and recorded in the test report. For the purpose of testing, the equipment shall be operated with a duty cycle that is equal or more than 0.1.


Step 2: Calculation of Average EIRP. See Figure 1

- The average output power of the transmitter shall be determined using a wideband, calibrated RF average power meter with the power sensor with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- The e.i.r.p. shall be calculated from the above measured power output "A", the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

$$EIRP = A + G + 10log(1/x)$$

 $\{ X = 1 \text{ for continuous transmission } => 10 \log(1/x) = 0 \text{ dB } \}$

Figure 1.

8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD

8.2.1. Maximizing RF Emission Level (E-Field)

- (a) The measurements was performed with full rf output power and modulation.
- (b) Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in ÉMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency
Resolution BW: 100 kHz
Video BW: same
Detector Mode: positive
Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (1) Repeat for all different test signal frequencies

March 17, 2004

File #: TIL-037FCC90

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST

8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency: equal to the signal source

Resolution BW: 10 kHz
Video BW: same
Detector Mode: positive
Average: off

Span: 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

- (c) Select the frequency and E-field levels obtained in the Section 8.2.1 for ERP/EIRP measurements.
- (d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):
 - ♦ DIPOLE antenna for frequency from 30-1000 MHz or
 - ♦ HORN antenna for frequency above 1 GHz }.
- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna:
 - ♦ DIPOLE antenna for frequency from 30-1000 MHz or
 - ♦ HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (1) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

$$P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1$$

 $EIRP = P + G1 = P3 + L2 - L1 + A + G1$
 $ERP = EIRP - 2.15 dB$

Total Correction factor in EMI Receiver #2 = L2 - L1 + G1

- Where: P: Actual RF Power fed into the substitution antenna port after corrected.
 - P1: Power output from the signal generator
 - P2: Power measured at attenuator A input
 - P3: Power reading on the Average Power Meter
 - EIRP: EIRP after correction ERP: ERP after correction
- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.:

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: TIL-037FCC90 March 17, 2004

Figure 2

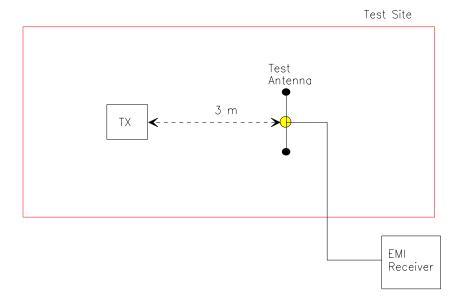
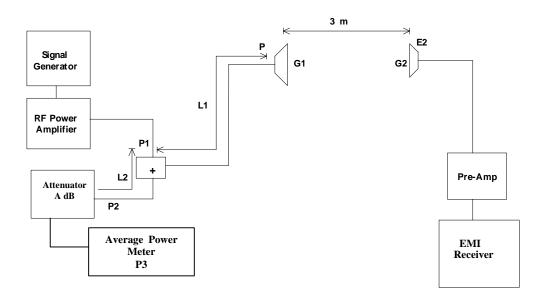



Figure 3

FREQUENCY STABILITY

800 RF MODULE, Model: T1088 FCC ID: IMA-T1088

Refer to FCC @ 2.1055.

8.3.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows: From -30 to +50 centigrade except that specified in subparagraph (2) & (3) of this paragraph.
- (b) Frequency measurements shall be made at extremes of the specified temperature range and at intervals of not more than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short-term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stability circuitry need be subjected to the temperature variation test.
- (d) The frequency stability supply shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provide with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (e) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment).

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

8.4. EMISSION MASK

Voice or Digital Modulation Through a Voice Input Port @ 2.1049(c)(i): The transmitter was modulated by a 2.5 KHz tone signal at an input level 16 dB greater than that required to produce 50% modulation (e.g.: ±2.5 KHz peak deviation at 1 KHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

<u>Digital Modulation Through a Data Input Port @ 2.1049(h)</u>:- Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the Emission Masks shall be shown for operation with any devices used for modifying the spectrum when such devices are operational at the discretion of the user.

The following EMI Receiver bandwidth shall be used for measurement of Emission Mask/Out-of-Band Emission Measurements:

- (1) For 25 kHz Channel Spacing: RBW = 300 Hz
- (2) For 12.5 kHz or 6.25 kHz Channel Spacings: RBW = 100 Hz

The all cases the Video Bandwidth shall be equal or greater than the measuring bandwidth.

8.5. SPURIOUS EMISSIONS (CONDUCTED)

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.1049, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the EMI Receiver controls set as RBW = 30 kHz minimum , VBW \geq RBW and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

FCC CFR 47, Para. 2.1057 - Frequency spectrum to be investigated:- The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The

amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC CFR 47, Para. 2.1051 - Spurious Emissions at Antenna Terminal:- The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of the harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.