ELEMENT Materials Technology (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95307 USA Tel. 408.538.5600 http://www.element.com ## SAR EVALUATION REPORT **Applicant Name:** Apple Inc. One Apple Park Way Cupertino, CA 95014 USA Date of Testing: 05/22/2023 **Test Report Issue Date:** 06/06/2023 Test Site/Location: Element Morgan Hill, CA, USA **Document Serial No.:** 1C2305090020-02.BCG (Rev1) FCC ID: BCGA2437 APPLICANT: APPLE, INC. **DUT Type:** Tablet Device **Application Type:** Class II Permissive Change FCC Rule Part(s): CFR §2.1093 Permissive Change(s) See FCC Change Document Model: A2437, A2766 Reference FCC ID: BCGA2764 Date of Original Certification 10/18/2022 | Equipment | | | SAR | |-----------|-------------|-----------------------|-------------------| | Class | Band & Mode | Tx Frequency | 1g Body
(W/kg) | | CBE | NR Band n48 | 3555.00 - 3694.98 MHz | 0.99 | Note: This revised Test Report supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly. Only operations relevant to this permissive change were evaluated for compliance. Please see the original compliance evaluation in RF Exposure Technical Report S/N 1C2205090029-25.BCG (Rev2) for complete evaluation of all other operating modes. The operational description includes a description of all changed items. Note: This table above includes test data from RF exposure technical report S/N: 1C2305090019-02.BCG per FCC TCB workshop for data referencing of closely related product FCC ID BCGA2764 This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.9 of this report; for North American frequency bands only. I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested. RJ Ortanez Executive Vice President The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info. | FCC ID: BCGA2437 | SAR EVALUATION REPORT Approved by: Technical Management of the state | | |----------------------------|---|--------------| | Document S/N: | DUT Type: | Page 1 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | rage 1 01 25 | ## TABLE OF CONTENTS | 1 | DEVICE UNDER TEST | 3 | |----|---|----| | 2 | LTE INFORMATION | 10 | | 3 | INTRODUCTION | 12 | | 4 | DOSIMETRIC ASSESSMENT | 13 | | 5 | TEST CONFIGURATION POSITIONS | 14 | | 6 | RF EXPOSURE LIMITS | 15 | | 7 | FCC MEASUREMENT PROCEDURES | 16 | | 8 | SYSTEM VERIFICATION | 17 | | 9 | SAR DATA SUMMARY | 19 | | 10 | FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS | 20 | | 11 | EQUIPMENT LIST | 21 | | 12 | MEASUREMENT UNCERTAINTIES | 22 | | 13 | CONCLUSION | 23 | | 14 | REFERENCES | 24 | APPENDIX A: SAR TISSUE SPECIFICATIONS APPENDIX B: DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS APPENDIX C: PROBE AND DIPOLE CALIBRATION CERTIFICATES | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 2 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | rage 2 or 25 | ## 1 DEVICE UNDER TEST ## 1.1 Device Overview | Band & Mode | Operating Modes | Tx Frequency | |--------------------|-----------------|-----------------------| | UMTS 850 | Data | 826.40 - 846.60 MHz | | UMTS 1750 | Data | 1712.4 - 1752.6 MHz | | UMTS 1900 | Data | 1852.4 - 1907.6 MHz | | LTE Band 71 | Voice/Data | 665.5 - 695.5 MHz | | LTE Band 12 | Voice/Data | 699.7 - 715.3 MHz | | LTE Band 17 | Voice/Data | 706.5 - 713.5 MHz | | LTE Band 13 | Voice/Data | 779.5 - 784.5 MHz | | LTE Band 14 | Voice/Data | 790.5 - 795.5 MHz | | LTE Band 26 (Cell) | Voice/Data | 814.7 - 848.3 MHz | | LTE Band 5 (Cell) | Voice/Data | 824.7 - 848.3 MHz | | LTE Band 66 (AWS) | Voice/Data | 1710.7 - 1779.3 MHz | | LTE Band 4 (AWS) | Voice/Data | 1710.7 - 1754.3 MHz | | LTE Band 25 (PCS) | Voice/Data | 1850.7 - 1914.3 MHz | | LTE Band 2 (PCS) | Voice/Data | 1850.7 - 1909.3 MHz | | LTE Band 30 | Voice/Data | 2307.5 - 2312.5 MHz | | LTE Band 7 | Voice/Data | 2502.5 - 2567.5 MHz | | LTE Band 41 | Voice/Data | 2498.5 - 2687.5 MHz | | LTE Band 48 | Voice/Data | 3552.5 - 3697.5 MHz | | NR Band n71 | Data | 665.5 - 695.5 MHz | | NR Band n12 | Data | 701.5 - 713.5 MHz | | NR Band n14 | Data | 790.5 - 795.5 MHz | | NR Band n26 (Cell) | Data | 816.5 - 846.5 MHz | | NR Band n5 (Cell) | Data | 826.5 - 846.5 MHz | | NR Band n70 | Data | 1697.5 - 1707.5 MHz | | NR Band n66 (AWS) | Data | 1712.5 - 1777.5 MHz | | NR Band n25 (PCS) | Data | 1852.5 - 1912.5 MHz | | NR Band n2 (PCS) | Data | 1852.5 - 1907.5 MHz | | NR Band n30 | Data | 2307.5 - 2312.5 MHz | | NR Band n7 | Data | 2502.5 - 2567.5 MHz | | NR Band n41 | Data | 2506.02 - 2679.99 MHz | | NR Band n48 | Data | 3555.00 - 3694.98 MHz | | NR Band n77 DoD | Data | 3455.01 - 3544.98 MHz | | NR Band n77 C | Data | 3705.00 - 3975.00 MHz | | 2.4 GHz WLAN | Voice/Data | 2412 - 2472 MHz | | U-NII-1 | Voice/Data | 5180 - 5240 MHz | | U-NII-2A | Voice/Data | 5260 - 5320 MHz | | U-NII-2C | Voice/Data | 5500 - 5720 MHz | | U-NII-3 | Voice/Data | 5745 - 5825 MHz | | U-NII-5 | Voice/Data | 5955 - 6415 MHz | | U-NII-6 | Voice/Data | 6435 - 6515 MHz | | U-NII-7 | Voice/Data | 6535 - 6875 MHz | | U-NII-8 | Voice/Data | 6895 - 7115 MHz | | Bluetooth | Data | 2402 - 2480 MHz | | NB UNII-1 | Data | 5162 - 5245 MHz | | NB UNII-3 | Data | 5733 - 5844 MHz | | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 3 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 3 01 23 | ### 1.2 Data Referencing | Band & Mode | Reference Model - BCGA2764 | Variant Model - BCGA2437 | |--------------------|----------------------------|--------------------------| | UMTS 850 | Fully Evaluated | Referenced | | UMTS 1750 | Fully Evaluated | Referenced | | UMTS 1900 | Fully Evaluated | Referenced | | LTE Band 71 | Fully Evaluated | Referenced | | LTE Band 12 | Fully Evaluated | Referenced | | LTE Band 17 | Fully Evaluated | Referenced | | LTE Band 13 | Fully Evaluated | Referenced | | LTE Band 14 | Fully Evaluated | Referenced | | LTE Band 26 (Cell) | Fully Evaluated | Referenced | | LTE Band 5 (Cell) | Fully Evaluated | Referenced | | LTE Band 66 (AWS) | Fully Evaluated | Referenced | | LTE Band 4 (AWS) | Fully Evaluated | Referenced | | LTE Band 25 (PCS) | Fully Evaluated | Referenced | | LTE Band 2 (PCS) | Fully Evaluated | Referenced | | LTE Band 30 | Fully Evaluated | Referenced | | LTE Band 7 | Fully Evaluated | Referenced | | LTE Band 41 | Fully Evaluated | Referenced | | LTE Band 48 | Fully Evaluated | Referenced | | NR Band n71 | Fully Evaluated | Referenced | | NR Band n12 | Fully Evaluated | Referenced | | NR Band n14 | Fully Evaluated | Referenced | | NR Band n26 (Cell) | Fully Evaluated | Referenced | | NR Band n5 (Cell) | Fully Evaluated | Referenced | | NR Band n70 | Fully Evaluated | Referenced | | NR Band n66 (AWS) | Fully Evaluated | Referenced | | NR Band n25 (PCS) | Fully Evaluated | Referenced | | NR Band n2 (PCS) | Fully Evaluated | Referenced |
| NR Band n30 | Fully Evaluated | Referenced | | NR Band n7 | Fully Evaluated | Referenced | | NR Band n41 | Fully Evaluated | Referenced | | NR Band n48 | Fully Evaluated | Referenced | | NR Band n77 DoD | Fully Evaluated | Referenced | | NR Band n77 C | Fully Evaluated | Referenced | | 2.4 GHz WLAN | Fully Evaluated | Referenced | | U-NII-1 | Fully Evaluated | Referenced | | U-NII-2A | Fully Evaluated | Referenced | | U-NII-2C | Fully Evaluated | Referenced | | U-NII-3 | Fully Evaluated | Referenced | | U-NII-5 | Fully Evaluated | Referenced | | U-NII-6 | Fully Evaluated | Referenced | | U-NII-7 | Fully Evaluated | Referenced | | U-NII-8 | Fully Evaluated | Referenced | | Bluetooth | Fully Evaluated | Referenced | | NB UNII-1 | Fully Evaluated | Referenced | | NB UNII-3 | Fully Evaluated | Referenced | Per manufacturer declaration, there are two tablet devices FCC ID: BCGA2764 and FCC ID: BCGA2437, with high degree of similarity, reference model FCC ID: BCGA2764 and variant model FCC ID: BCGA2437. Both models share the same material, form factor, circuit design, and components, including antennas and their locations. The reference and variant models use the same material, form factor, circuit design, and components, including antennas and their locations. The reference and variant models use the same power tables and have same tune-up tolerances. Per FCC Approved Data Referencing Test Plan, testing was done fully on the reference model FCC ID: BCGA2764, while spot-check verification has been performed on variant model FCC ID: BCGA2437. The reference and variant model comparison data summary is included in section 9. Please see RF exposure technical report S/N 1C2205090028-26.BCG (Rev 2), 1C2205090028-33.BCG (Rev 1), and 1C2305090019-02.BCG for complete compliance evaluation for the reference model. Only operations relevant to this permissive change were evaluated for compliance. No other target changes have been made. Targets for all other bands/exposure conditions can be found in the original filing. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 4 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 4 01 23 | ## 1.3 Time-Averaging Algorithm for RF Exposure Compliance This device is enabled with the Qualcomm® Smart Transmit feature. This feature performs time averaging algorithm in real time to control and manage transmitting power and ensure the time-averaged RF exposure is in compliance with FCC requirements all the time. Refer to Compliance Summary document for detailed description of Qualcomm® Smart Transmit feature (report SN could be found in Section 1.10 – Bibliography). Note that WLAN operations are not enabled with Smart Transmit. The Smart Transmit algorithm maintains the time-averaged transmit power, in turn, time-averaged RF exposure of SAR design target, below the predefined time-averaged power limit (i.e., Plimit for sub-6 radio), for each characterized technology and band (see reference model RF Exposure Part 0 Test Report, report SN could be found in Section 1.10 - Bibliography). Only operations relevant to this permissive change were evaluated for compliance. No other target changes have been made. Targets for all other bands/exposure conditions can be found in the original filing. | Exposure Scenario: | Ant 1 Body | Ant 1 Maximum | Ant 2a/2b Body | Ant 2a/2b | Ant 3 Body | Ant 3 Maximum | Ant 4b Body | Ant 4b Maximum | | | |--------------------|--|---------------|--|-----------------|--|---------------|---|----------------|------------------------------|--------------------------| | Averaging Volume: | 1g | Tune-up | 1g | Maximum Tune-up | 1g | Tune-up | 1g | Tune-up | | | | Spacing: | 0 mm | Output Power* | | Plimit target | | DSI: | 1 | Output rower | Manufacturer's Smart | and UHB Pmax | | Technology/Band | Plimit
corresponding
to 0.8 W/kg | Pmax | Plimit
corresponding
to 0.8 W/kg | Pmax | Plimit
corresponding
to 0.8 W/kg | | Plimit
correspondin
g to 0.8 W/kg | | Transmit Uncertainty
(dB) | target
Tolerance (dB) | | NR Band n48 | 11.20 | 19.60 | 11.40 | 20.00 | 11.80 | 18.70 | 10.90 | 21.00 | +/- 1.0 | +/- 1.0 | Smart Transmit allows the device to transmit at higher power instantaneously, as high as P_{max} , when needed, but enforces power limiting to maintain time-averaged transmit power to P_{limit} . Below table shows P_{limit} EFS settings and maximum tune up output power P_{max} configured for this EUT for various transmit conditions (Device State Index DSI). Note that the device uncertainty for sub-6GHz WWAN is +1.0/-1.0 dB for this EUT. *Maximum tune up output power Pmax is used to configure EUT during RF tune up procedure. The maximum allowed output power is equal to maximum Tune up output power +/-1.0 dB tolerance for UHB. *Note all P_{limit} EFS and maximum tune up output power P_{max} levels entered in above Table correspond to average power levels after accounting for duty cycle in the case of TDD modulation schemes (for e.g., LTE TDD). #### 1.4 Power Reduction for SAR This device additionally utilizes a power reduction mechanism for Bluetooth and WLAN operations. When WLAN/Bluetooth is operating simultaneously with certain combinations of 3G/4G/5G and 5 GHz WLAN antennas, the output power of is permanently reduced. SAR evaluations were additionally performed at the maximum allowed output power for these scenarios to evaluate simultaneous transmission compliance. Additionally, this device uses an independent mechanism that limits WIFI powers to a time-averaged output power. For the purposes of this test report, all SAR measurements were performed with the algorithm disabled at the maximum time-averaged output power level. See the original filing for all other operations that were not evaluated in this permissive change. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 5 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 5 01 25 | ## 1.5 Nominal and Maximum Output Power Specifications This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06. Only operations relevant to this permissive change were evaluated for compliance. No other target changes have been made. Targets for all other bands/exposure conditions can be found in the original filing. #### 1.5.1 5G Output Power for Portable Use Conditions Table 1-1 NR Bands | | Mod | ulated Ave | rage Output | Power (in c | lBm) | | |-----------------------------------|---------|------------|-------------|-------------|--------|-------| | Mode / Ban | Ant 1 | Ant 2a | Ant 2b | Ant 3 | Ant 4b | | | NR TDD Band n48 Max allowed power | | 12.20 | 12.40 | | 12.80 | 11.90 | | [Burst-Averaged] | Nominal | 11.20 | 11.40 | | 11.80 | 10.90 | Note: For NR TDD, the above powers listed are TDD burst average and framed average values. #### 1.6 DUT Antenna Locations The overall diagonal dimension of the device is > 200 mm. A diagram showing the location of the device antennas can be found in the Antenna Diagram and Test Setup Photos Appendix. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filings. Note: See the original filing for all other operations that were not evaluated in this permissive change. Table 1-2 Device Edges/Sides for SAR Testing | Mode | Back | Front | Тор | Bottom | Right | Left | |------------------------|------|-------|-----|--------|-------|------| | NR Band n48 Antenna 1 | Yes | No | No | Yes | No | Yes | | NR Band n48 Antenna 2a | Yes | No | No | Yes | Yes | No | | NR Band n48 Antenna 3 | Yes | No | Yes | No | Yes | No | | NR Band n48 Antenna 4b | Yes | No | Yes | No | No | No | Note: Per FCC KDB Publication 616217 D04v01r01, particular edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01V06. Additional edges may have been evaluated for simultaneous transmission analysis. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 6 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 0 01 20 | ## 1.7 Simultaneous Transmission Capabilities According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures. Table 1-3 Simultaneous Transmission Scenarios | Simultaneous Transmission ocenanos | | | | | |------------------------------------|---|------|--|--| | No. | Capable Transmit Configuration | Body | | | | 1 | Cellular Band + 2.4 GHz WIFI | Yes | | | | 2 | Cellular Band + 5/6 GHz WIFI | Yes | | | | 3 | Cellular Band + 2.4 GHz Bluetooth | Yes | | | | 4 | Cellular Band+ 2.4 GHz WIFI MIMO | Yes | | | | 5 | Cellular Band+ 5/6 GHz WIFI MIMO | Yes | | | | 6 | Cellular Band + 2.4 GHz Bluetooth + 5/6 GHz WIFI | Yes | | | | 7 | Cellular Band + 2.4 GHz Bluetooth + 5/6 GHz WIFI MIMO | Yes | | | | 8 | 2.4 GHz Bluetooth + 5/6 GHz WIFI | Yes | | | | 9 | 2.4 GHz Bluetooth + 5/6 GHz WIFI MIMO | Yes
 | | | 10 | Cellular Band + 2.4 GHz Bluetooth(TXBF) + 5/6 GHz WIFI | Yes | | | | 11 | Cellular Band + 2.4 GHz Bluetooth(TXBF) + 5/6 GHz WIFI MIMO | Yes | | | | 12 | 2.4 GHz Bluetooth(TXBF) + 5/6 GHz WIFI | Yes | | | | 13 | 2.4 GHz Bluetooth (TXBF) + 5/6 GHZ WIFI MIMO | Yes | | | | 14 | Cellular Band + NB UNII | Yes | | | | 15 | Cellular + NB UNII + 2.4 GHz WIFI | Yes | | | | 16 | Cellular + NB UNII + 2.4 GHz WIFI MIMO | Yes | | | | 17 | NB UNII + 2.4 GHz WIFI | Yes | | | | 18 | NB UNII + 2.4 GHz WIFI MIMO | Yes | | | | 19 | Cellular Band + NB UNII(TXBF) + 2.4 GHz WIFI | Yes | | | | 20 | Cellular Band + NB UNII(TXBF) + 2.4 GHz WIFI MIMO | Yes | | | | 21 | Cellular Band + NB UNII(TXBF) | Yes | | | | 22 | Cellular Band + 2.4 GHz Bluetooth(TXBF) | Yes | | | | 23 | Cellular Band + 2.4 GHz WLAN + 2.4 GHz Bluetooth | Yes | | | | 24 | 2.4 GHz WLAN + 2.4 GHz Bluetooth | Yes | | | | 25 | NB UNII(TXBF) + 2.4 GHz WIFI | Yes | | | | 26 | NB UNII(TXBF) + 2.4 GHz WIFI MIMO | Yes | | | Table 1-4 Simultaneous Transmission Scenarios of Inter-Band ULCA | No. | Capable Transmit Configuration | Body | Notes | |-----|---|------|---| | 1 | Cellular Ant 1 LB + Cellular Ant 3 MB/HB | | LTE Bands transmitting from Ant 1 LB: LTE B5/12/13/14
LTE Bands transmitting from Ant 3 MB/HB: LTE B2/4/7/66/30 | | 2 | Cellular Ant 1 LB + Cellular Ant 2b MB/HB | | LTE Bands transmitting from Ant 1 LB: LTE B5/12/13/14
LTE Bands transmitting from Ant 2b MB/HB: LTE B2/4/7/66/30 | | 3 | Cellular Ant 1 LB + Cellular Ant 4b MB/HB | | LTE Bands transmitting from Ant 1 LB: LTE B5/12/13/14
LTE Bands transmitting from Ant 4b MB/HB: LTE B2/4/7/66/30 | | 4 | Cellular Ant 3 LB + Cellular Ant 1 MB/HB | | LTE Bands transmitting from Ant 3 LB: LTE B5/12/13/14
LTE Bands transmitting from Ant 1 MB/HB: LTE B2/4/7/66/30 | | 5 | Cellular Ant 3 LB + Cellular Ant 2b MB/HB | | LTE Bands transmitting from Ant 3 LB: LTE B5/12/13/14
LTE Bands transmitting from Ant 2b MB/HB: LTE B2/4/7/66/30 | | 6 | Cellular Ant 3 LB + Cellular Ant 4b MB/HB | | LTE Bands transmitting from Ant 3 LB: LTE B5/12/13/14
LTE Bands transmitting from Ant 4b MB/HB: LTE B2/4/7/66/30 | Note: The technical description includes all the possible Inter-band ULCA combinations. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 7 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 7 of 25 | Table 1-5 Simultaneous Transmission Scenarios with Inter-Band ULCA Active | No. | Capable Transmit Configuration | Body | |-----|--|------| | | | | | 1 | LTE Inter-Band ULCA + 2.4 GHz WI-FI | Yes | | 2 | LTE Inter-Band ULCA + 5/6 GHz WI-FI | Yes | | 3 | LTE Inter-Band ULCA + 2.4 GHz Bluetooth | Yes | | 4 | LTE Inter-Band ULCA + 2.4 GHz WI-FI MIMO | Yes | | 5 | LTE Inter-Band ULCA + 5/6 GHz WI-FI MIMO | Yes | | 6 | LTE Inter-Band ULCA + 2.4 GHz Bluetooth + 5/6 GHz WI-FI | Yes | | 7 | LTE Inter-Band ULCA + 2.4 GHz Bluetooth + 5/6 GHz WI-FI MIMO | Yes | | 8 | LTE Inter-Band ULCA + 2.4 GHz Bluetooth(TXBF) + 5/6 GHz WI-FI | Yes | | 9 | LTE Inter-Band ULCA + 2.4 GHz Bluetooth(TXBF) + 5/6 GHz WI-FI MIMO | Yes | | 10 | LTE Inter-Band ULCA + NB UNII | Yes | | 11 | LTE Inter-Band ULCA + UNII NB + 2.4 GHz WI-FI | Yes | | 12 | LTE Inter-Band ULCA + UNII NB + 2.4 GHz WI-FI MIMO | Yes | | 13 | LTE Inter-Band ULCA + UNII NB(TXBF) + 2.4 GHz WI-FI | Yes | | 14 | LTE Inter-Band ULCA + UNII NB(TXBF) + 2.4 GHz WI-FI MIMO | Yes | | 15 | LTE Inter-Band ULCA + UNII NB(TXBF) | Yes | | 16 | LTE Inter-Band ULCA + 2.4 GHz Bluetooth(TXBF) | Yes | | 17 | LTE Inter-Band ULCA + 2.4 GHz WI-FI + 2.4 GHz Bluetooth | Yes | Note: LTE inter-band ULCA can operate in any of the combinations in Table 1-9 - 1. There are no limitations in the above listed simultaneous transmission scenarios between cellular antennas and BT/WI-FI antennas. - 2. Wi-Fi 2.4GHz and Bluetooth 2.4 GHz can transmit simultaneously on separate antennas. 2.4 GHz WLAN Antenna 4a can only transmit simultaneously with 2.4GHz Bluetooth Antenna 2a. In this scenario Wi-Fi max power will not exceed minimum of (13.5dBm, SAR max cap, Reg max cap) power. Additionally, in disconnected mode, BT will be using iPA only. - 3. This device supports 2x2 MIMO Tx for WLAN 802.11a/g/n/ac/ax. 802.11a/g/n/ac/ax supports CDD and STBC and 802.11n/ac/ax additionally supports SDM. Each WLAN antenna can transmit independently or together when operating with MIMO. - 4. EN-DC operation is supported with LTE + 5G NR FR1 scenarios. The LTE anchor bands are shown in the NR FR1 checklist. - 5. This device supports VoWIFI. - 6. This device supports VoLTE. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 8 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | rage o or 25 | #### 1.8 Miscellaneous SAR Test Considerations #### (A) WIFI/BT There were no changes made to the WIFI and BT operations within this device. Please see original filing for complete evaluation of these operating modes. #### (B) Licensed Transmitter(s) Only operations relevant to this permissive change were evaluated for compliance. Please see original filing for complete evaluation for all other operating modes. The operational description includes a description of all changed items. NR implementation supports SA and NSA mode. In EN-DC mode, NR operates with the LTE Bands shown in the NR FR1 checklist acting as anchor bands. Per FCC guidance, SAR tests for NR Bands and LTE Anchors Bands were performed separately due to limitations in SAR probe calibration factors. This device supports LTE/NR capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE/NR Band falls completely within an LTE/NR band with a larger transmission frequency range, both LTE/NR bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE/NR bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range. ## 1.9 Guidance Applied - FCC KDB Publication 447498 D01v06 (General SAR Guidance) - FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz) - FCC KDB Publication 616217 D04v01r02 (Tablet) #### 1.10 Device Serial Numbers Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9. ## 1.11 Bibliography | Report Type | Report Serial Number | |---|----------------------| | RF Exposure Part 0 Test Report | 1C2305090019-03.BCG | | RF Exposure Part 1 Test Report (Original) | Original Filing | | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 9 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | rage 9 01 23 | ## 2 LTE INFORMATION | | 1 | TE Information | | | | | |---|--|----------------------------------|---|---|---|--| | Form Factor Frequency Range of each LTE transmission band | | | Tablet Device | | | | | requency Range of each LTE transmission band | | LTE
LTE | Band 71 (665.5 - 695.5 M
Band 12 (699.7 - 715.3 M | Hz)
Hz) | | | | | LTE Band 17 (706.5 - 713.5 MHz) | | | | | | | | LTE Band 13 (779.5 - 784.5 MHz) | | | | | | | 1 | LTE Band 14 (790.5 - 795.5 MHz) LTE Band 26 (Cell) (814.7 - 848.3 MHz) | | | | | | | ľ | LTE Band 5 (Cell) (824.7 - 848.3 MHz) | | | | | | | | | LTE Ban | 9.3 MHz) | | | | | | LIE Band 4 (AWS) (176.7 - 176.1 MHz) LIE Band 4 (AWS) (176.7 - 176.1 MHz) LIE Band 2 (PCS) (186.7 - 190.3 MHz) LIE Band 2 (PCS) (186.7 - 190.3 MHz) LIE Band 30 (2007.5 - 201.2 MHz) | ľ | | LTE | Band 7 (2502.5 - 2567.5 N | MHz) | | | | į | LTE Band 41 (2498.5 - 2687.5 MHz) | | | | | | | | | | Band 48 (3552.5 - 3697.5 I | | | | | Channel Bandwidths | | | 71: 5 MHz, 10 MHz, 15 MH
12: 1.4 MHz, 3 MHz, 5 MH | | | | | | | L. | TE Band 17: 5 MHz, 10 MH | tz . | | | | | | - E | TE Band 13: 5 MHz, 10 MH
TE Band 14: 5 MHz, 10 MH | tz | | | | i | | LTE Band 26 | (Cell): 1.4 MHz, 3 MHz, 5 | MHz, 10 MHz | | | | | | LTE Band 5 (| (Cell): 1.4 MHz, 3 MHz, 5 I | MHz, 10 MHz | | | | | | | .4 MHz, 3 MHz, 5 MHz, 10
4 MHz, 3 MHz, 5 MHz, 10 | | | | | ŀ | | LTE Band 25 (PCS): 1. | 4 MHz, 3 MHz, 5 MHz, 10 | MHz. 15 MHz. 20 MHz | | | | | | LTE Band 2 (PCS): 1.4 | MHz, 3 MHz, 5 MHz, 10 | MHz, 15 MHz, 20 MHz | | | | | | L' L'E Rond | TE Band 30: 5 MHz, 10 MH
7: 5 MHz, 10 MHz, 15 MH | dz
n no Mila | | | | ŀ | | LTE Band | 41: 5 MHz, 10 MHz, 15 MH | tz, 20 MHz | | | | | | LTE Band | 41: 5 MHz, 10 MHz, 15 MH
48: 5 MHz, 10 MHz, 15 MH | lz, 20 MHz | | | | Channel Numbers and Frequencies (MHz)
TE Band 71: 5 MHz | Low | Low-Mid
133147) | Mid
680.5 (133297) | Mid-High
695.5 (| High | | | TE
Band 71: 0 MHz | | 33147) | 680.5 (133297)
680.5 (133297) | 693.5 (| | | | TE Band 71: 15 MHz | 670.5 (| 133197) | 680.5 (133297) | 690.5 (| 133397) | | | TE Band 71: 20 MHz | 673 (1 | 33222) | 680.5 (133297) | | 33372) | | | TE Band 12: 1.4 MHz
TE Band 12: 3 MHz | | (23017) | 707.5 (23095)
707.5 (23095) | 715.3 (| (23173) | | | TE Band 12: 5 MHz | | (23025) | 707.5 (23095)
707.5 (23095) | 714.5 (| | | | TE Band 12: 10 MHz | 704 (| 23060) | 707.5 (23095) | 711 (2 | 23130) | | | TE Band 17: 5 MHz | | (23755) | 710 (23790) | 713.5 (| | | | TE Band 17: 10 MHz | | 23780) | 710 (23790) | | 23800) | | | TE Band 13: 5 MHz
TE Band 13: 10 MHz | 779.5 | (23205)
VA | 782 (23230)
782 (23230) | 784.5 (| | | | TE Band 14: 5 MHz | | (23305) | 793 (23330) | 795.5 | | | | TE Band 14: 10 MHz | N | VA. | 793 (23330) | N | | | | TE Band 26 (Cell): 1.4 MHz | | (26697) | 831.5 (26865) | 848.3 (27033) | | | | TE Band 26 (Cell): 3 MHz
TE Band 26 (Cell): 5 MHz | | (26705) | 831.5 (26865) | 847.5 (27025)
846.5 (27015) | | | | TE Band 26 (Cell): 10 MHz | 819.0 | (26715) | 831.5 (26865)
831.5 (26865) | 844.5 | 26990) | | | TE Band 5 (Cell): 1.4 MHz | 824.7 | 824.7 (20407) | 836.5 (20525) | 848.3 (| (20643) | | | TE Band 5 (Cell): 3 MHz | 825.5 (20415) | | 836.5 (20525) | 847.5 | | | | TE Band 5 (Cell): 5 MHz
TE Band 5 (Cell): 10 MHz | | (20425) | 836.5 (20525) | 846.5 (| | | | TE Band 66 (AWS): 14 MHz | | 20450)
(131979) | 836.5 (20525)
1745 (132322) | 844 (2
1779.3 (| 20600) | | | TE Band 66 (AWS): 3 MHz | | (131987) | 1745 (132322) | 1778.5 | | | | TE Band 66 (AWS): 5 MHz | | (131997) | 1745 (132322) | 1777.5 | | | | TE Band 66 (AWS): 10 MHz | | 132022) | 1745 (132322) | 1775 (1 | | | | TE Band 66 (AWS): 15 MHz
TE Band 66 (AWS): 20 MHz | | (132047)
132072) | 1745 (132322)
1745 (132322) | | (132597) | | | TE Band 4 (AWS): 1.4 MHz | 1710.7 | (19957) | 1732.5 (20175) | 1770 (132572)
1754.3 (20393) | | | | TE Band 4 (AWS): 3 MHz | 1711.5 | (19965) | 1732.5 (20175) | 1753.5 | | | | TE Band 4 (AWS): 5 MHz | | (19975) | 1732.5 (20175) | 1752.5 (20375) | | | | TE Band 4 (AWS): 10 MHz
TE Band 4 (AWS): 15 MHz | | (20000) | 1732.5 (20175)
1732.5 (20175) | 1750 (| 20350)
(20325) | | | TE Band 4 (AWS): 20 MHz | | (20023) | 1732.5 (20175) | 1747.5 | 20300) | | | TE Band 25 (PCS): 1.4 MHz | 1850.7 | (26047) | 1882.5 (26365) | 1914.3 | (26683) | | | TE Band 25 (PCS): 3 MHz | | (26055) | 1882.5 (26365) | 1913.5 | | | | TE Band 25 (PCS): 5 MHz
TE Band 25 (PCS): 10 MHz | | (26065) | 1882.5 (26365)
1882.5 (26365) | 1912.5
1910 (| (26665) | | | TE Band 25 (PCS): 15 MHz | | (26115) | 1882.5 (26365)
1882.5 (26365) | 1910 (| | | | TE Band 25 (PCS): 15 MHz
TE Band 25 (PCS): 20 MHz | 1860 (| 26140) | 1882.5 (26365) | 1905 (| 26590) | | | TE Band 2 (PCS): 1.4 MHz
TE Band 2 (PCS): 3 MHz | | (18607) | 1880 (18900) | | (19193) | | | TE Band 2 (PCS): 3 MHz | | (18615)
(18625) | 1880 (18900)
1880 (18900) | 1908.5 | (19185)
(19175) | | | TE Band 2 (PCS): 10 MHz | 1855 (| 18650) | 1880 (18900) | 1905 (| 19150) | | | TE Band 2 (PCS): 15 MHz | 1857.5 | (18675) | 1880 (18900) | 1902.5 | (19125) | | | TE Band 2 (PCS): 20 MHz
TE Band 30: 5 MHz | | (18700) | 1880 (18900) | 1900 (| | | | TE Band 30: 5 MHz | | (27685)
VA | 2310 (27710)
2310 (27710) | 2312.5
N | (27735)
/A | | | TE Band 7: 5 MHz | | (20775) | 2535 (21100) | | (21425) | | | TE Band 7: 10 MHz | 2505 (| (20800) | 2535 (21100) | 2565 (| 21400) | | | TE Band 7: 15 MHz | 2507.5 | (20825) | 2535 (21100) | 2562.5 | (21375) | | | TE Band 7: 20 MHz
TE Band 41: 5 MHz | 2510 (
2506 (39750) | 20850)
2549.5 (40185) | 2535 (21100)
2593 (40620) | 2560 (
2636.5 (41055) | 21350)
2680 (41490) | | | TE Band 41: 0 MHz | 2506 (39750) | 2549.5 (40185)
2549.5 (40185) | 2593 (40620) | 2636.5 (41055) | 2680 (41490) | | | TE Band 41: 15 MHz | 2506 (39750) | 2549.5 (40185) | 2593 (40620) | 2636.5 (41055) | 2680 (41490) | | | TE Band 41: 20 MHz | 2506 (39750) | 2549.5 (40185) | 2593 (40620) | 2636.5 (41055) | 2680 (41490) | | | TE Band 48: 5 MHz
TE Band 48: 10 MHz | 3552.5 (55265)
3555 (55290) | 3600.8 (55748)
3601.7 (55757) | N/A
N/A | 3649.2 (56232)
3648.3 (56223) | 3697.5 (56715)
3695 (56690) | | | TE Band 48: 15 MHz | 3557.5 (55315) | 3602.5 (55765) | N/A | 3647.5 (56215) | 3692.5 (56665) | | | TE Band 48: 20 MHz
JE Category | 3560 (55340) | 3603.3 (55773) | N/A | 3646.7 (56207)
18 (OPSK 16OAM 64OA | 3690 (56640)
M 256OAM) | | | Modulations Supported in UL | DL UE Cat 20 (QPSK, 16QAM, 64QAM, 256 QAM) , UL UE Cat 18 (QPSK, 16QAM, 64QAM, 256QAM) QPSK, 16QAM, 64QAM, 256QAM | | | | | | | TE MPR Permanently implemented per 3GPP TS 36.101 | | | | | | | | ection 6.2.3~6.2.5? (manufacturer attestation to be provided) | YES | | | | | | | A-MPR (Additional MPR) disabled for SAR Testing? | YFS | | | | | | | TE Carrier Aggregation Possible Combinations | 75. | o toobolool descript' ' | cludes all the possible carri | or aggregation combined | no. | | | | In | o common description inc | nacco an the possible Carri | o oggregation combinatio | | | | TE Additional Information | This device does not su
Specifications. Uplink of | upport full CA features on a | 3GPP Release 15. All uplir
n the PCC. The following L
ffloading, eMBMS, Cross-C | nk communications are ide
TE Release 15 Features a | entical to the Release 8
are not supported: Rela | | | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 10 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 10 01 25 | | | N | R Information | | | | | |---|---|--|--|---|--|--| | orm Factor
requency Range of each NR transmission band | | | Tablet
NR Band n71 (665.5 - 695.5 MH | iz) | | | | | | NR Band n12 (701.5 - 713.5 MHz) NR Band n14 (790.5 - 795.5 MHz) | | | | | | | NR Band n/26 (Cell) (816.5 - 546.5 MHz) NR Band n/5 (Cell) (826.5 - 546.5 MHz) NR Band n/70 (1697.5 - 7407.5 MHz) | | | | | | | | | | NR Band n66 (AWS) (1712.5 - 1777. | 5 MHz) | | | | | | | NR Band n25 (PCS) (1852.5 - 1912.
NR Band n2 (PCS) (1852.5 - 1907.5 | 5 MHz) | | | | | | | NR Band n30 (2307.5 - 2312.5 M
NR Band n7 (2502.5 - 2567.5 M | Hz) | | | | | | | NR Band n41 (2506.02 - 2679.99 I
NR Band n48 (3555.00 - 3694.98 I
NR Band n77 DoD (3455.01 - 3544.9 | MHz) | | | | Channel Bandwidths | | | NR Band n77 C (3705.0 - 3975.0 I
NR Band n71: 5 MHz, 10 MHz, 15 MHz | | | | | | | | NR Band n12: 5 MHz, 10 MHz, 15
NR Band n14: 5 MHz, 10 MHz | z | | | | | | | NR Band n26 (Cell): 5 MHz, 10 M
NR Band n5 (Cell): 5 MHz, 10 MHz, 15 M
NR Band n70: 5 MHz, 10 MHz, 15 | IHz, 20 MHz | | | | | | NR Band n | 66 (AWS): 5 MHz, 10 MHz, 15 MHz, 20 PCS): 5 MHz, 10 MHz, 15 MHz, 20 MHz, | MHz, 30 MHz, 40 MHz | | | | | | 1 | NR Band n2 (PCS): 5 MHz, 10 MHz, 15 N
NR Band n30: 5 MHz, 10 MHz | MHz, 20 MHz | | | | | | NR Band n41: 20 MHz | 7: 5 MHz, 10 MHz, 15 MHz, 20 MHz, 25
:. 30 MHz, 40 MHz, 50 MHz, 60 MHz, 70 | MHz, 30 MHz, 40 MHz
MHz, 80 MHz, 90 MHz, 100 MHz | | | | | NR Band | 1 n77 DoD: 10 MHz, 15 M | NR Band n48: 10 MHz, 20 MHz, 30 MHz, 10 MHz, 20 MHz, 30 MHz, 40 MHz, 50 MHz, 10 MHz, 50 MHz, 10 MHz, 50 MHz, 10 1 | iz, 40 MHz
60 MHz, 70 MHz, 80 MHz, 90 MHz, 100 MHz
0 MHz, 70 MHz, 80 MHz, 90 MHz, 100 MHz | | | | Channel Numbers and Frequencies (MHz)
IR Band n71: 5 MHz | Low | Low-Mid
133100) |
Mid
680.5 (136100) | Mid-High High
695.5 (139100) | | | | IR Band n71: 10 MHz
IR Band n71: 15 MHz | 668 (1 | 33600)
134100) | 680.5 (136100)
680.5 (136100) | 693 (138600)
690.5 (138100) | | | | IR Band n71: 20 MHz
IR Band n12: 5 MHz | 673 (1 | | 680.5 (136100)
707.5 (141500) | 688 (137600)
713.5 (142700) | | | | IR Band n12: 0 MHz
IR Band n12: 16 MHz
IR Band n12: 15 MHz | 704 (1 | 40800)
141300) | 707.5 (141500)
707.5 (141500)
707.5 (141500) | 713.5 (142700)
711 (142200)
708.5 (141700) | | | | ik Band n12: 16 MHz
IR Band n14: 5 MHz
IR Band n14: 10 MHz | | 158100) | 707.5 (141500)
793 (158600)
793 (158600) | 708.5 (141700)
795.5 (159100)
N/A | | | | R Band n14: 10 MHz
R Band n26 (Cell): 5 MHz
R Band n26 (Cell): 10 MHz | | 163300) | 793 (158600)
831.5 (166300)
831.5 (166300) | 846.5 (169300)
844 (168800) | | | | R Band n.5 (Cell): 10 MHz R Band n5 (Cell): 5 MHz R Band n5 (Cell): 10 MHz | 826.5 (| 165300) | 831.5 (166300)
836.5 (167300)
836.5 (167300) | 846.5 (169300) | | | | R Band n5 (Cell): 15 MHz | 831.5 (| 65800)
166300) | 836.5 (167300) | 844 (168800)
841.5 (168300) | | | | R Band n5 (Cell): 20 MHz
R Band n70: 5 MHz
R Band n70: 10 MHz | 1697.5 | (66800)
(339500) | 836.5 (167300)
1702.5 (340500) | 839 (167800)
1707.5 (341500) | | | | R Band n70: 15 MHz | N | | 1702.5 (340500)
1702.5 (340500) | 1705 (341000)
N/A | | | | R Band n86 (AWS): 5 MHz
R Band n86 (AWS): 10 MHz | 1715 (| (342500)
343000) | 1745 (349000)
1745 (349000) | 1777.5 (355500)
1775 (355000) | | | | R Band n66 (AWS): 15 MHz
R Band n66 (AWS): 20 MHz | 1717.5 i
1720 (: | (343500)
344000) | 1745 (349000)
1745 (349000) | 1772.5 (354500)
1770 (354000) | | | | R Band n66 (AWS): 30 MHz
R Band n66 (AWS): 40 MHz | 1730 (| 345000)
346000) | 1745 (349000)
1745 (349000) | 1765 (353000)
1760 (352000) | | | | R Band n25 (PCS): 5 MHz
R Band n25 (PCS): 10 MHz | 1852.5 (| 371000) | 1882.5 (376500)
1882.5 (376500) | 1912.5 (382500)
1910 (382000) | | | | R Band n25 (PCS): 15 MHz
R Band n25 (PCS): 20 MHz | 1860 (| | 1882.5 (376500)
1882.5 (376500) | 1907.5 (381500)
1905 (381000) | | | | R Band n25 (PCS): 25 MHz
R Band n25 (PCS): 30 MHz | 1865 (3 | (372500)
373000) | 1882.5 (376500)
1882.5 (376500)
1882.5 (376500) | 1902.5 (380500)
1900 (380000) | | | | R Band n25 (PCS): 40 MHz
R Band n2 (PCS): 5 MHz | | 1870 (374000)
1852.5 (370500) | | 1895 (379000)
1907.5 (381500) | | | | IR Band n2 (PCS): 10 MHz
IR Band n2 (PCS): 15 MHz | | 1857.5 (371000)
1857.5 (371500) | | 1905 (381000)
1902.5 (380500) | | | | IR Band n2 (PCS): 20 MHz
IR Band n30: 5 MHz | 2307.5 | 1860 (372000)
2307.5 (461500) | | 1900 (380000)
2312.5 (462500) | | | | IR Band n30: 10 MHz
IR Band n7: 5 MHz | | N/A 2310 (462000)
2502.5 (500500) 2535 (507000) | | N/A
2567.5 (513500) | | | | IR Band n7: 10 MHz
IR Band n7: 15 MHz | 2505 (t
2507.5 | 501000)
(501500) | 2535 (507000)
2535 (507000) | 2565 (513000)
2562.5 (512500) | | | | IR Band n7: 20 MHz
IR Band n7: 25 MHz | 2512.5 | 502000)
(502500) | 2535 (507000)
2535 (507000) | 2560 (512000)
2557.5 (511500) | | | | IR Band n7: 30 MHz
IR Band n7: 40 MHz | 2520 (| 503000)
504000) | 2535 (507000)
2535 (507000) | 2555 (511000)
2550 (510000) | | | | R Band n41: 20 MHz
R Band n41: 30 MHz | 2506.02 (501204)
2511 (502200) | 2549.49 (509898)
2552.01 (510402)
2567.34 (513468) | 2592.99 (518598)
2592.99 (518598)
N/A | 2636.49 (527298) 2679.99 (535998)
2634 (526800) 2674.98 (534996)
2618.67 (523734) 2670 (534000) | | | | R Band n41: 40 MHz
R Band n41: 50 MHz
R Band n41: 60 MHz | 2516.01 (503202)
2521.02 | (504204)
(505200) | 2592.99 (518598)
2592.99 (518598) | 2618.67 (523734) 2670 (534000)
2664.99 (532998)
2659.98 (531996) | | | | R Band n41: 70 MHz
R Band n41: 80 MHz | 2531.01 | (506202)
(507204) | N/A
N/A | 2655 (531000)
2649.99 (529998) | | | | R Band n41: 90 MHz
R Band n41: 100 MHz | 2541 (| 508200)
(509202) | N/A
2592.99 (518598) | 2644.98 (528996)
2640 (528000) | | | | R Band n48: 10 MHz
R Band n48: 20 MHz | 3555 (637000)
3560.01 (637334) | 3601.68 (640112)
3603.33 (640222) | N/A
N/A | 3648.33 (643222) 3694.98 (646332)
3646.68 (643112) 3690 (646000) | | | | R Band n48: 30 MHz
R Band n48: 40 MHz | 3565.02 (637668)
3570 (638000) | 3605.01 (640334)
N/A | N/A
3624.99 (641666) | 3645 (643000) 3684.99 (645666
N/A 3679.98 (645332 | | | | R Band n77 DoD: 10 MHz
R Band n77 DoD: 15 MHz | 3457.5 | | 3500.01 (633334)
3500.01 (633334) | 3544.98 (636332)
3542.49 (636166) | | | | R Band n77 DoD: 20 MHz
R Band n77 DoD: 30 MHz
R Band n77 DoD: 40 MHz | 3460.02
3465 (i | 331000) | 3500.01 (633334)
3500.01 (633334) | 3540 (636000)
3534.99 (635666) | | | | R Band n77 DoD: 50 MHz | 3475.02 | (631334)
(631668) | N/A
N/A | 3529.98 (635332)
3525 (635000) | | | | R Band n77 DoD: 60 MHz
R Band n77 DoD: 70 MHz | N
N | /A | 3500.01(633334)
3500.01(633334) | N/A
N/A | | | | R Band n77 DoD: 80 MHz
R Band n77 DoD: 90 MHz | N
N | /A | 3500.01(633334)
3500.01(633334) | N/A
N/A | | | | R Band n77 DoD: 100 MHz
R Band n77 C: 10 MHz | 3705 (647000) | 3759 (650600) | 3500.01(633334)
3813 (654200) 3867 (65 | | | | | R Band n77 C: 15 MHz
R Band n77 C: 20 MHz
R Band n77 C: 30 MHz | 3707.52 (647168)
3710.01 (647334)
3715.02 (647668) | 3762 (650700)
3762 (650800)
3765 (651000) | 3813.51 (654234) 3866.49 (6
3813.99 (654266) 3866.01 (6
3815.01 (654334) 3864.99 (6 | 357734) 3918 (661200) 3969.99 (664666 | | | | R Band n77 C: 40 MHz
R Band n77 C: 50 MHz | 3720 (648000)
3725.01 (648334) | 3768 (651200)
3782.49 (652166) | 3816 (654400) 3864 (65
3840 (656000) | | | | | R Band n77 C: 60 MHz
R Band n77 C: 70 MHz | 3730.02 (648668)
3735 (649000) | 3803.34 (653556) | N/A N/A | 3876.66 (658444) 3949.98 (663332) | | | | R Band 177 C: 80 MHz
R Band 177 C: 90 MHz | 3740.01 (649334)
3745.02 (649668) | 3804.99 (653666)
N/A
N/A | 3840 (656000) | N/A 3939.99 (662666 | | | | R Band n77 C: 100 MHz
CS for NR Band n71/n12/n14/n26/n5/n70/n66/n25/n2/n30/n7 | 3745.02 (649668)
3750 (650000) | N/A
N/A | 3840 (656000)
N/A N/A | | | | | CS for NR Band n/1/n1/2/n14/n26/n5/n/unbe/n25/n2/n3uin/
CS for NR Band n41/n48/n77 DoD/n77 C | | | 15 kHz
30 kHz | | | | | odulations Supported in UL | | DFT | -s-OFDM: π/2 BPSK, QPSK, 16QAM, 64
CP-OFDM: QPSK, 16QAM, 64QAM, | QAM, 256QAM
256QAM | | | | MPR (Additional MPR) disabled for SAR Testing? | | | YES | | | | | N-DC Carrier Aggregation Possible Combinations | The technical description includes all the possible carrier aggregation combinations | | | | | | | TE Anchor Bands for NR Band n71 TE Anchor Bands for NR Band n12 | | LTE Band 66/2/7/48 LTE Band 66/2/30/48 | | | | | | TE Anchor Bands for NR Band n14
TE Anchor Bands for NR Band n26 (Cell) | | LTE Band doctrouve LTE Band doctrouve NA NA | | | | | | TE Anchor Bands for NR Band n5 (Cell) | | | LTE Band 66/2/30/7/48 | | | | | TE Anchor Bands for NR Band n70
TE Anchor Bands for NR Band n66 (AWS) | | | N/A
LTE Band 71/12/13/14/5/2/30/7/ | 48 | | | | TE Anchor Bands for NR Band n25 (PCS) TE Anchor Bands for NR Band n2 (PCS) | | | LTE Band 12/66/48
LTE Band 12/13/14/5/66 | | | | | TE Anchor Bands for NR Band n30 | LTE Band 12/14/5/68 | | | | | | | TE Anchor Bands for NR Band n7 TE Anchor Bands for NR Band n41 | LTE Band 12/5/66
LTE Band 26/4/66/2/25 | | | | | | | TE Anchor Bands for NR Band n48
TE Anchor Bands for NR Band n77 DoD | LTE Band 2/13/5/66 LTE Band 7/12/13/14/5/66/230/7/41 | | | | | | | TE Anchor Bands for NR Band n77 C | - | LTE Band 71/12/13/14/568/2/30/7/41
LTE Band 71/12/13/14/568/2/30/7/41 | | | | | | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 11 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | rage iror 25 | ### 3 INTRODUCTION The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1] The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. #### 3.1 SAR Definition Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined
as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1). Equation 3-1 SAR Mathematical Equation $$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$ SAR is expressed in units of Watts per Kilogram (W/kg). $$SAR = \frac{\sigma \cdot E^2}{\rho}$$ where: σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³) E = Total RMS electric field strength (V/m) NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6] | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | | | | |----------------------------|-----------------------|--------------------------------|--|--|--| | Document S/N: | DUT Type: | Page 12 of 25 | | | | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 12 01 25 | | | | ### 4 DOSIMETRIC ASSESSMENT #### 4.1 Measurement Procedure The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013: - The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. - 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value. Figure 4-1 Sample SAR Area Scan - 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details): - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell). - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR. - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated. Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04* | _ | Maximum Area Scan
Resolution (mm) | Maximum Zoom Scan
Resolution (mm) | Max | imum Zoom So
Resolution (| | Minimum Zoom Scan | | | | |-----------|--|--|------------------------|------------------------------|---------------------------------|------------------------|--|--|--| | Frequency | (Δx _{area} , Δy _{area}) | (Δx _{200m} , Δy _{200m}) | Uniform Grid | G | raded Grid | Volume (mm)
(x,y,z) | | | | | | t died ydiedy | 1 20011 7 200117 | Δz _{zoom} (n) | Δz _{zoom} (1)* | Δz _{zoom} (n>1)* | , ,,, , | | | | | ≤ 2 GHz | ≤ 15 | ≤8 | ≤5 | ≤4 | ≤ 1.5*∆z _{zoom} (n-1) | ≥ 30 | | | | | 2-3 GHz | ≤ 12 | ≤5 | ≤5 | ≤4 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30 | | | | | 3-4 GHz | ≤12 | ≤5 | ≤4 | ≤3 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 28 | | | | | 4-5 GHz | ≤ 10 | ≤ 4 | ≤3 | ≤2.5 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 25 | | | | | 5-6 GHz | ≤ 10 | ≤ 4 | ≤2 | ≤2 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 22 | | | | *Also compliant to IEEE 1528-2013 Table 6 | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | | | | |----------------------------|-----------------------|--------------------------------|--|--|--| | Document S/N: | DUT Type: | Page 13 of 25 | | | | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 13 01 23 | | | | ## 5 TEST CONFIGURATION POSITIONS #### 5.1 Device Holder The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. ### 5.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02 Per FCC KDB Publication 616217 D04v01r02, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 14 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | Fage 14 01 25 | ## **6 RF EXPOSURE LIMITS** #### 6.1 Uncontrolled Environment UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. #### 6.2 Controlled Environment CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Table 6-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6 | | MAN EXPOSURE LIMITS | e. | |--|--|----------------------------------| | | UNCONTROLLED ENVIRONMENT | CONTROLLED
ENVIRONMENT | | | General Population
(W/kg) or (mW/g) | Occupational
(W/kg) or (mW/g) | | Peak Spatial Average SAR
_{Head} | 1.6 | 8.0 | | Whole Body SAR | 0.08 | 0.4 | | Peak Spatial Average SAR
Hands, Feet, Ankle, Wrists, etc. | 4.0 | 20 | - 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. - 2. The Spatial Average value of the SAR averaged over the whole body. - The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: | | | | |----------------------------|-----------------------|-------------------|--|--|--| | | | Technical Manager | | | | | Document S/N: | DUT Type: | Page 15 of 25 | | | | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 ago 10 01 20 | | | | ## 7 FCC MEASUREMENT PROCEDURES Power measurements for licensed transmitters are performed using a base station simulator under digital average power. ## 7.1 Measured and Reported SAR Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB
690783 D01v01r03. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | | | | |----------------------------|-----------------------|--------------------------------|--|--|--| | Document S/N: | DUT Type: | Page 16 of 25 | | | | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 ago 10 01 20 | | | | ## **8 SYSTEM VERIFICATION** #### 8.1 Tissue Verification Table 8-1 Measured Tissue Properties | | | | | <u> </u> | | | | | | |--|-------------|--|---|----------|--------|------------------------------------|-------------------------------------|---------|--------| | Calibrated for
Tests Performed
on: | Tissue Type | Tissue Temp During
Calibration (°C) | Frequency Conductivity, Dielectric Conduc | | | TARGET
Conductivity,
σ (S/m) | TARGET
Dielectric
Constant, ε | % dev σ | %devε | | | | | 3300 | 2.619 | 37.776 | 2.708 | 38.157 | -3.29% | -1.00% | | | | | 3350 | 2.666 | 37.686 | 2.759 | 38.100 | -3.37% | -1.09% | | | | | 3450 | 2.761 | 37.504 | 2.861 | 37.986 | -3.50% | -1.27% | | | | | 3500 | 2.807 | 37.397 | 2.913 | 37.929 | -3.64% | -1.40% | | | | | 3550 | 2.857 | 37.300 | 2.964 | 37.871 | -3.61% | -1.51% | | | | | 3560 | 2.868 | 37.284 | 2.974 | 37.860 | -3.56% | -1.52% | | 05/22/2023 | 3600 Head | 19.3 | 3600 | 2.905 | 37.203 | 3.015 | 37.814 | -3.65% | -1.62% | | | | | 3650 | 2.957 | 37.105 | 3.066 | 37.757 | -3.56% | -1.73% | | | | | 3690 | 2.999 | 37.045 | 3.107 | 37.711 | -3.48% | -1.77% | | | | | 3700 | 3.009 | 37.025 | 3.117 | 37.700 | -3.46% | -1.79% | | | | | 3750 | 3.060 | 36.948 | 3.169 | 37.643 | -3.44% | -1.85% | | | | | 3900 | 3.213 | 36.713 | 3.323 | 37.471 | -3.31% | -2.02% | | | | | 3930 | 3.244 | 36.664 | 3.353 | 37.437 | -3.25% | -2.06% | Note: Per April 2019 TCB Workshop Notes, single head-tissue simulating liquid specified in IEC 62209-1 is permitted to use for all SAR tests. The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | | | | |----------------------------|-----------------------|--------------------------------|--|--|--| | Document S/N: | DUT Type: | Page 17 of 25 | | | | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 ago 17 01 20 | | | | ## 8.2 Test System Verification Prior to SAR assessment, the system is verified to +/- 10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Table 8-2 System Verification Results – 1g | | System Verification TARGET & MEASURED | | | | | | | | | | | | | | | |--|---------------------------------------|------|------------|------|------|------|------|------|-------|--------------------|--------|--------|--|--|--| | SAR Tissue Frequency Type Date Temp. Temp. (C) (C) (W) Source SN Probe SN SAR1g (W/kg) SAR1g (W/kg) SAR1g (W/kg) (W/kg) SAR1g (W/kg) (W/kg) (W/kg) (W/kg) SAR1g (W/kg) (W/ | | | | | | | | | | Deviation1g
(%) | | | | | | | AM4 | 3500 | HEAD | 05/22/2023 | 21.9 | 20.9 | 0.10 | 1126 | 7490 | 7.010 | 67.00 | 70.100 | 4.63% | | | | | AM4 | 3700 | HEAD | 05/22/2023 | 21.9 | 20.9 | 0.10 | 1097 | 7490 | 6.560 | 68.10 | 65.600 | -3.67% | | | | Figure 8-1 System Verification Setup Diagram Figure 8-2 System Verification Setup Photo | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 18 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 10 01 25 | ### 9 SAR DATA SUMMARY ### 9.1 Standalone Body SAR Data Table 9-2 CBE Spot-check Verification for Data Referencing | | MEASUREMENT RESULTS |---------|--|------|-----------------|--------------------|-----------------------------------|--------------------|---------------------|----------|--------------------|-------------------------|------------|---------|-----------|---------|--------------|------------|----------|-------------------|----------------------|-----------|-----------------------|---| | | FREQUENCY | | Mode | Bandwidth
[MHz] | Maximum
Allowed
Power [dBm] | Conducted
Power | Power Drift
[dB] | MPR [dB] | Antenna
Config. | Device Serial
Number | Modulation | RB Size | RB Offset | Spacing | Side | Duty Cycle | SAR (1g) | Scaling
Factor | Reported
SAR (1g) | SAR (10g) | Reported
SAR (10g) | Reported SAR for
Refence Model
(1g) | | MHz | | Ch. | | | rower [dbiii] | [dBm] | | | | | | | | | | | (W/kg) | ĺ | (W/kg) | (W/kg) | (W/kg) | (W/kg) | | 3679.98 | 645332 | High | NR Band n48 | 40 | 12.20 | 11.71 | -0.03 | 0 | Ant 1 | V49T9PH3JW | QPSK | 50 | 0 | 0 mm | back | 1:1 | 0.887 | 1.119 | 0.993 | 0.229 | 0.256 | 0.993 | | | | Α | NSI / IEEE C95. | 1 1992 - SA | FETY LIMIT | | | Body | | | | | | | | | | | | | | | | | Spatial Peak | | | | | | 1.6 W/kg (mW/g) | | | | | | | | | | | | | | | | | | Uncontrolled Exposure/General Population | | | | | | | | | | | | | average | ed over 1 gr | am | | | | | | | #### General Notes: - 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 616217 D04v01r02 and FCC KDB Publication 447498 D01v06. - 2. Batteries are fully charged at the beginning of the SAR measurements. - 3. Liquid tissue depth was at least 15.0 cm for all frequencies. - 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. - 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06. - 6. FCC KDB Publication 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v06 was applied to determine SAR test exclusion for adjacent edge configurations. - 7. This device is the depopulated version of the fully populated reference model FCC ID: BCGA2764. The worst-case configurations of reference model for each equipment class and antenna was selected for spot-check verification with the variant model. The spot-check verification results showed negligible impact of RF exposure from the depopulation therefore, the RF exposure data was referenced based on the reference model test results - 8. See the original filing for all other operations that were not evaluated in this permissive change. #### NR Notes: - NR implementation supports SA and NSA modes. NR implementation in EN-DC mode operates with the LTE Bands shown in the NR FR1 checklist acting as anchor bands. Per FCC guidance, SAR tests for NR Bands and LTE Anchors Bands were performed separately due to limitations in SAR probe calibration factors. - 2. Due to test setup limitations, SAR testing for NR was performed using test mode software to establish the connection. - 3. This device additionally supports some EN-DC conditions where additional LTE carriers are added on the downlink only. - 4. Per FCC Guidance, NR modulations and RB Sizes/Offsets were selected for testing such that configurations with the highest output power were evaluated for SAR tests. - 5. See the original filing for all other operations that were not evaluated in this permissive change. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical
Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 19 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 19 01 25 | ### 10 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS #### 10.1 Introduction The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter. #### 10.2 Simultaneous Transmission Procedures This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g SAR. Please see complete compliance evaluation of reference FCC ID BCGA2764 in RF Exposure Technical Report S/N 1C2205090028-26.BCG (Rev 2), 1C2205090028-33.BCG (Rev 1), and 1C2305090019-02.BCG for standalone reported SAR for models and bands not evaluated for variant models. #### 10.3 Simultaneous Transmission Conclusion The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | | |----------------------------|-----------------------|--------------------------------|--| | Document S/N: | DUT Type: | Page 20 of 25 | | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 20 01 25 | | ## 11 EQUIPMENT LIST | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|--|------------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/14/2022 | Annual | 6/14/2023 | US39170118 | | Agilent | E4438C | ESG Vector Signal Generator | 1/18/2023 Annual | | 1/18/2024 | MY47270002 | | Agilent | N5182A | MXG Vector Signal Generator | 7/4/2022 | Annual | 7/4/2023 | MY48180366 | | Agilent | SMF100A | Signal Generator | 3/28/2022 | Biennial | 3/28/2024 | 101590 | | Agilent | N9020A | MXA Signal Analyzer | 3/15/2023 | Annual | 3/15/2024 | US46470561 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343971 | | Anritsu | MA24106A | USB Power Sensor | 2/9/2023 | Annual | 2/9/2024 | 1520505 | | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/27/2023 | Biennial | 3/27/2025 | 230208311 | | Control Company | 4353 | Long Stem Thermometer | 10/21/2022 | Annual | 10/21/2023 | 200645912 | | Insize | 1108-150 | Digital Caliper | 4/5/2022 | Biennial | 4/5/2024 | 409193536 | | Keysight Technologies | N9030A | 3Hz-44GHz PXA Signal Analyzer | 8/18/2022 | Annual | 8/18/2023 | MY49430494 | | MCL | BW-N10W5+ | 10dB Attenuator | CBT | N/A | CBT | 1611 | | MCL | BW-N3W5+ | 3dB Attenuator | CBT | N/A | CBT | 1812 | | MCL | BW-N6W5+ | 6dB Attenuator | CBT | N/A | CBT | 1311 | | Mini-Circuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | ZUDC10-83-S+ | Directional Coupler | CBT | N/A | CBT | 2050 | | Pasternack | PE2208-6 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Huber + Suhner | 74Z-0-0-21 | Torque Wrench | 4/6/2022 | Biennial | 4/6/2024 | 83881 | | SPEAG | DAKS-3.5 | Portable DAK | 9/19/2022 | Annual | 9/19/2023 | 1045 | | SPEAG | D3500V2 | 3500 MHz SAR Dipole | 6/9/2021 | Biennial | 6/9/2023 | 1126 | | SPEAG | D3700V2 | 3700 MHz SAR Dipole | 10/21/2022 | Annual | 10/21/2023 | 1097 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 12/13/2022 | Annual | 12/13/2023 | 1644 | | SPEAG | EX3DV4 | SAR Probe | 12/9/2022 | Annual | 12/9/2023 | 7490 | | SPEAG | MAIA | Modulation and Audio Interference Analyzer | CBT | N/A | CBT | 1601 | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | | |----------------------------|-----------------------|--------------------------------|--| | Document S/N: | DUT Type: | Page 21 of 25 | | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 21 01 25 | | ## 12 MEASUREMENT UNCERTAINTIES | а | b | С | d | e= | f | g | h = | i = | k | |---|-------|--------|-------|--------|----------|----------|-------------------------|-------------------------|----------------| | | | | | f(d,k) | | | c x f/e | cxg/e | | | | IEEE | Tol. | Prob. | (-, , | Ci | Ci | 1gm | 10gms | \vdash | | Uncertainty Component | 1528 | (± %) | Dist. | Div. | 1gm | 10 gms | Ū | | V _i | | , , , , , | Sec. | (± /6) | Dist. | DIV. | igiii | 10 gills | u _i
(± %) | u _i
(± %) | v _i | | Measurement System | | | | | | | (± /6) | (± /6) | | | Probe Calibration | E.2.1 | 7 | N | 1 | 1 | 1 | 7.0 | 7.0 | ∞ | | Axial Isotropy | E.2.2 | 0.25 | N | 1 | 0.7 | 0.7 | 0.2 | 0.2 | 8 | | Hemishperical Isotropy | E.2.2 | 1.3 | N | 1 | 0.7 | 0.7 | 0.9 | 0.9 | ∞ | | Boundary Effect | E.2.3 | 2 | R | 1.73 | 1 | 1 | 1.2 | 1.2 | ∞ | | Linearity | E.2.4 | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | 8 | | System Detection Limits | E.2.4 | 0.25 | R | 1.73 | 1 | 1 | 0.1 | 0.1 | 8 | | Modulation Response | E.2.5 | 4.8 | R | 1.73 | 1 | 1 | 2.8 | 2.8 | ∞ | | Readout Electronics | E.2.6 | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response Time | E.2.7 | 0.8 | R | 1.73 | 1 | 1 | 0.5 | 0.5 | ∞ | | Integration Time | E.2.8 | 2.6 | R | 1.73 | 1 | 1 | 1.5 | 1.5 | ∞ | | RF Ambient Conditions - Noise | E.6.1 | 3 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - Reflections | E.6.1 | 3 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | Probe Positioner Mechanical Tolerance | E.6.2 | 0.8 | R | 1.73 | 1 | 1 | 0.5 | 0.5 | ∞ | | Probe Positioning w/ respect to Phantom | E.6.3 | 6.7 | R | 1.73 | 1 | 1 | 3.9 | 3.9 | ∞ | | Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | E.5 | 4 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | ∞ | | Test Sample Related | | | | | | | | | | | Test Sample Positioning | E.4.2 | 3.12 | N | 1 | 1 | 1 | 3.1 | 3.1 | 35 | | Device Holder Uncertainty | E.4.1 | 1.67 | N | 1 | 1 | 1 | 1.7 | 1.7 | 5 | | Output Power Variation - SAR drift measurement | E.2.9 | 5 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ∞ | | SAR Scaling | E.6.5 | 0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | Phantom & Tissue Parameters | | | | | | | | | | | Phantom Uncertainty (Shape & Thickness tolerances) | E.3.1 | 7.6 | R | 1.73 | 1.0 | 1.0 | 4.4 | 4.4 | ∞ | | Liquid Conductivity - measurement uncertainty | E.3.3 | 4.3 | N | 1 | 0.78 | 0.71 | 3.3 | 3.0 | 76 | | Liquid Permittivity - measurement uncertainty | E.3.3 | 4.2 | N | 1 | 0.23 | 0.26 | 1.0 | 1.1 | 75 | | Liquid Conductivity - Temperature Uncertainty | E.3.4 | 3.4 | R | 1.73 | 0.78 | 0.71 | 1.5 | 1.4 | ∞ | | Liquid Permittivity - Temperature Unceritainty | E.3.4 | 0.6 | R | 1.73 | 0.23 | 0.26 | 0.1 | 0.1 | ∞ | | Liquid Conductivity - deviation from target values | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Permittivity - deviation from target values | | 5.0 | R | 1.73 | 0.60 | 0.49 | 1.7 | 1.4 | ∞ | | Combined Standard Uncertainty (k=1) | E.3.2 | | RSS | Į. | <u> </u> | ı | 12.2 | 12.0 | 191 | | Expanded Uncertainty k=2 | | | | 24.4 | 24.0 | | | | | | (95% CONFIDENCE LEVEL) | | | | | | | | | | The above measurement uncertainties are according to IEEE Std. 1528-2013 | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | | |----------------------------|-----------------------|--------------------------------|--| | Document S/N: | DUT Type: | Page 22 of 25 | | | 1C2305090020-02.BCG (Rev1) | Tablet Device | 1 age 22 01 25 | | ### 13 CONCLUSION #### 13.1 Measurement Conclusion The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects
are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3] | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 23 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | Fage 23 01 23 | ### 14 REFERENCES - [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996. - [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006. - [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992. - [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002. - [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. - [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995. - [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113. - [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124. - [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175. - [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2. - [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873. - [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23. - [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada; 1987, pp. 29-36. - [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995. - [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992. - [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992. - [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652. - [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 24 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | rage 24 01 23 | - [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone. - [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016. - [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015. - [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015 - [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07 - [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01 - [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04 - [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04 - [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02 - [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02 - [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009. | FCC ID: BCGA2437 | SAR EVALUATION REPORT | Approved by: Technical Manager | |----------------------------|-----------------------|--------------------------------| | Document S/N: | DUT Type: | Page 25 of 25 | | 1C2305090020-02.BCG (Rev1) | Tablet Device | Fage 23 01 23 |